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ABSTRACT

T ime-to-Digital Converters (TDCs) perform the conversion (sampling and quantisation) of
time periods into digital (binary) numbers and are vital for Time-of-Flight (ToF) systems
such as RADAR, LiDAR, SONAR and Ultrasonics. They are also vital in frequency-locking

applications such as All-Digital Phase-Locked Loops (ADPLLs) and Delay-Locked Loops (DLLs),
quantum applications such as Quantum Key Distribution (QKD), Single-Photon LiDAR / Single-
Photon Time-of-Flight (SPToF) and coincidence counting.

The literature on TDCs is fragmented, with research clustering around specific applications
and little cross-pollination of ideas between them. Therefore, I reviewed all these areas for novel
TDC architectures and found several new designs including algorithmic, successive approximation
and wave union TDCs. Most designs were based on Application Specific Integrated Circuits
(ASICs) due to the hardware flexibility, with the rest on Field Programmable Gate Arrays
(FPGAs), all of which have been verified.

One of the most promising hardware architectures for TDCs are FPGAs as they are of a
lower cost than ASICs. I have presented the first TDC implementation on the FPGA’s DSP blocks
and resolved the extreme non-linearity in the DSP blocks with multisampling techniques to
produce an effective delay line with performance comparable to carry chains (13.60 ps single-shot
precision). DSP delay lines avoid the use of general-purpose fabric, allowing larger quantities of
channels or more applications to be integrated on to a single device.

The long bubbles caused by applying the wave union multisampling technique were unable to
be corrected by existing bubble correctors. Therefore, a new hardware bubble corrector, which
operates at line rate with zero dead time (130 MHz, 144 bits/cycle on my TDCs), was designed
and tested.
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INTRODUCTION

1.1 Research Motive

T
ime-to-Digital Converters (TDCs) are relatively obscure compared to their analog

counterparts, Analog-to-Digital Converters (ADCs), due to the relative lack of time-

domain systems to which they can be applied. However, this has changed in recent

years. Light Detection And Ranging (LiDAR) systems have seen a surge in popularity due to the

advent of autonomous (“self-driving”) cars, improvements in pulsed lasers and Single-Photon

Avalanche Diodes (SPADs) have allowed Quantum Key Distribution (QKD) to become a reality,

Phase-Locked Loops (PLLs) are being replaced by All-Digital PLLs (ADPLLs) and many designers

are looking to Time-Mode Signal Processing (TMSP) to solve problems that are not tractable

with analog systems due to their poor area scaling. As these applications see more widespread

adoption, so too will TDCs, and thus TDC designs need to be available to satisfy the performance

and cost requirements of these applications.

The current literature on TDCs can best be described as fragmented. Communities have

developed around specific applications such as Time-of-Flight (ToF), frequency-locking (such as

ADPLLs) and quantum, with very little interaction between these communities. Some researchers

are approaching TDCs from a more theoretical perspective, and interacting with many of these
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CHAPTER 1. INTRODUCTION

communities, but the penetration of ideas is not very high. Therefore, one of the main goals of

this PhD project is to aggregate designs from across the literature and communities, compare and

summarise the available architectures, and provide recommendations according to performance

requirements.

TDCs are often costly components due to the specific hardware requirements for implementing

them. As we will see in later sections, the hardware that can be used for TDC operation is quite

limited. If the hardware is expensive, then the cost of integrating a TDC into a system will also

be high. Therefore, the other main goal of this PhD project is to develop new TDC architectures

which can be used to target unique cost-performance-complexity trade-offs and enable TDCs to

be applied to new areas.

1.2 Aims and Goals

The key aims and goals of this PhD project are:

• To identify applications to which TDCs can be applied.

• To identify and define metrics by which TDCs can be compared.

• To review TDC architectures present in the literature, compare them in terms of defined

metrics, and make recommendations for the identified applications.

• To develop new TDC architectures with alternative characteristics to those currently

available in the literature.

• To identify methods to combine TDC architectures available in the literature to achieve

improved characteristics.
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1.3. LIST OF CONTRIBUTIONS

1.3 List of Contributions

Table 1.1: List of contributions.

Publication My Contribution Advancement of the

State-of-the-Art

S. Tancock and N. Dahnoun, “Digital

Signal Processing Systems: Choosing a

Processor,” in 2020 International

Conference Engineering and

Telecommunication (En&T), Nov 2020,

Plenary Talk.

Details on CPU,

GPU, FPGA and

microcontroller

architectures.

Summarises all the different

architectures for custom

algorithms and makes

suggestions based on

performance, cost and power.

S. Tancock, E. Arabul, and N. Dahnoun,

“A Review of New Time-to-Digital

Conversion Techniques,” IEEE

Transactions on Instrumentation and

Measurement, vol. 68, no. 10, pp.

3406–3417, 2019.

Review of all

current literature,

selection of

techniques to

include,

comparison and

summarisation of

techniques.

Brought current review

literature up to date with the

inclusion of Successive

Approximation, Algorithmic,

Wave Union, SERDES and

DSP Delay Line TDCs. Also

summarises available

calibration and linearisation

techniques.

S. Tancock, J. Rarity, and N. Dahnoun,

“Developments in Time-to-Digital

Converters during 2020,” in 5th

International Nordic-Mediterranean

Workshop on Time-to-Digital

Converters and Applications

NoMe–TDC 2021, 2021.

Discovery, selection,

comparison,

summarisation and

evaluation of

papers to be

included.

Summarises the 14 new TDC

architecture papers, 4 new

TDC application papers, and

4 review and analysis papers

published in 2020.

Continued on next page
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Table 1.1: List of contributions. (Continued)

S. Tancock, E. Arabul, N. Dahnoun,

and S. Mehmood, “Can DSP48A1

adders be used for high-resolution

delay generation?” in 2018 7th

Mediterranean Conference on

Embedded Computing (MECO), IEEE.

Institute of Electrical and Electronics

Engineers (IEEE), Aug 2018, pp. 1–6.

Investigation of the

internal delay

structure of the

DSP48A1 blocks,

collating and

digesting results.

Provided an initial

investigation into the

feasibility of DSP blocks as

delay generators.

S. Tancock and N. Dahnoun, “A 5.25

ps-resolution TDC on FPGA using DSP

blocks,” in Proceedings of the Digital

Image & Signal Processing’19

conference, October 2019.

Creation of the

TDC core and

read-out logic,

collating and

digesting data,

speculation on the

internal structure

of the DSP block.

Produced a functional TDC

using the FPGA’s DSP blocks

instead of general purpose

logic, reducing logic

utilisation and providing a

high-resolution TDC.

Continued on next page
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Table 1.1: List of contributions. (Continued)

S. Tancock, J. Rarity, and N. Dahnoun,

“Temperature Characterisation of the

DSP Delay Line,” in 5th International

Nordic-Mediterranean Workshop on

Time-to-Digital Converters and

Applications NoMe–TDC 2021, 2021.

TDC design,

experimental

set-up and

temperature

characterisation.

Significantly improved the

characterisation of the DSP

blocks as delay generators,

providing metrics which were

missing from previous papers

as well as temperature

sensitivity characterisation.

Lent further evidence to our

speculations on the internal

structure of the DSP48E1

post-adder.

S. Tancock, J. Rarity, and N. Dahnoun,

“The Wave-Union Method on DSP

Blocks: Improving FPGA-based TDC

resolutions by 3x with a 1.5x area

increase,” IEEE Transactions on

Instrumentation and Measurement

(Accepted), 2021.

TDC design and

data collation and

digestion

Significantly reduced the

DSP Delay Line’s area

requirements using the Wave

Union technique with an

FSR injector.

Continued on next page
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Table 1.1: List of contributions. (Continued)

S. Tancock, J. Rarity, and N. Dahnoun,

“A Long-Range Hardware Bubble

Corrector Technique for

Short-Pulse-Width and

Multiple-Registration Encoders,” in 5th

International Nordic-Mediterranean

Workshop on Time-to-Digital

Converters and Applications

NoMe–TDC 2021, 2021.

Algorithm and

hardware design,

proof of

correctnesss.

Created a new bubble

corrector in hardware that

operates with zero dead time

and is capable of correcting

multiple large bubbles which

are infeasible with

traditional bubble correction

techniques.

S. Tancock, J. Rarity, and N. Dahnoun,

“Improving TDC Resolution with the

Multi-Chain Vernier Method,” IEEE

Access (submitted), 2021.

TDC design and

simulation.

Proof of concept showing that

multi-chain techniques may

be possible on Vernier Delay

Lines.

E. Arabul, S. Paesani, S. Tancock, J.

Rarity, and N. Dahnoun, “A Precise

High Count-Rate FPGA Based

Multi-Channel Coincidence Counting

System for Quantum Photonics

Applications,” IEEE Photonics Journal,

vol. 12, no. 2, pp. 1–14, 2020.

Delay line

optimisations,

dual-clock

multisampling,

triggering logic

design and design

debugging

Demonstrated a 320 Mcps,

8.9 ps RMS, 8-channel

coincidence counter which is

much higher performance

than competing 8-channel

designs and operates beyond

the saturation rate and

significantly below the timing

noise floor of the

single-photon avalanche

diodes.
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1.3.1 Comparison between the Literature and My Contributions
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Figure 1.1: (a) A basic delay line on ASICs or Discrete Logic; (b) a basic LUT delay line on an
FPGA; (c) state-of-the-art: a carry chain based delay line; (d) my contribution: a DSP block based
delay line.
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Figure 1.2: (a) Current state-of-the-art: the wave union method on carry chains; (b) my contribu-
tion: the wave union method on DSP blocks (T = Start).

Table 1.2: Comparison of DSP and carry chain delay lines.

Technique Device Resource
Resolution
(average)

Utilisation
(10 ns clock)

Delay Line
Spartan-6

FPGA
6-input look-up

table (LUT6)
20 ps 128 CLBs

Delay Line Artix-7 FPGA
6-input look-up

table (LUT6)
15 ps 170 CLBs

DSP Delay Line
Spartan-6

FPGA
DSP Block
(DSP48A1)

16.7 ps 13 DSPs

DSP Delay Line Artix-7 FPGA
DSP Block
(DSP48E1)

9.8 ps 22 DSPs

4x DSP Delay
Line

Artix-7 FPGA
DSP Block
(DSP48E1)

5.25 ps 74 DSPs

8x DSP Delay
Line

Artix-7 FPGA
DSP Block
(DSP48E1)

3.70 ps 146 DSPs
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1.4. STRUCTURE OF THIS THESIS

1.4 Structure of this Thesis

In the following sections, the applications of TDCs and metrics by which we evaluate them

will be explained. Chapter 2 is the next chapter and describes the different hardware available

for a possible implementation of a TDC. It will describe the benefits and drawbacks of various

technologies before diving into more detail on Field Programmable Gate Arrays, which have been

the main focus of this PhD project. After that, Chapter 3 will present a detailed review of TDC

architectures in the available literature, showing the performance-cost trade-offs that are already

available to designers. Related to this chapter are the first two major contributions of this PhD

project, a review paper published in IEEE Transactions on Instrumentation and Measurement

[8] and another published in the Nordic Mediterranean Time-to-Digital Converter Workshop

(NoMeTDC) [9]. Then, Chapter 4 will describe the third major contribution of this PhD project, a

new TDC architecture implemented on an FPGA’s DSP blocks [10–13]. After that, Chapter 6 will

describe the bubble correction logic designed for use in high-performance TDCs on DSP blocks

[14]. This logic solves a major issue with the DSP block TDCs, namely the long bubbles that occur

in the thermometer codes. Next, Chapter A will describe the final major contribution of this PhD

project: the Multi-Chain Vernier TDC architecture [15]. Finally, Appendix B will detail other

contributions I have made to the wider field of Electronic Engineering.

1.5 Applications

Time-to-digital converters (TDCs) play a vital role in almost all computational systems in exis-

tence. From their appearance in Phase-Locked Loops (PLLs), where they measure the difference

between the loop and the reference clock to avoid clock drift, to Time of Flight (ToF) applications

where the time between an emission and reception is measured to discover information about an

object from which the signal was reflected or the environment through which the signal passed.

In addition, there are also quantum versions of these applications, where the signal is a single

quantum, and the PLL or time-of-flight measurement must perform well despite some quanta

being lost in-flight. They also make an appearance in medical imaging, as some systems such as

Positron Emission Tomography (PET) and Fluorescence Lifetime Imaging (FLIM) use the ToF or
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CHAPTER 1. INTRODUCTION

absorption time of tissues or substances to form an internal image of a complex structure such as

a human body.

Table 1.3: Comparison of performance requirements for TDC applications.

Application SSP
Dead
Time

DNL
(LSB)

INL
(LSB)

Range Channels Power

LiDAR
(automotive,

single-point,

forward-facing)

< 100 ps < 10 ns < 1 < 10 > 1 us1 1 < 10 W

LiDAR
(automotive,

single-point, all-around)

< 100 ps < 1 ns < 1 < 10 > 500 ns 1 < 50 W

LiDAR
(automotive, multi-point,

all-around)

< 100 ps < 10 ns < 1 < 10 > 500 ns ≥ 8 < 50 W

Coincidence
Counting
(Positron Emission

Tomography)

< 10 ps < 10 ns < 5 < 20 > 10 ns ≥ 2 – 2

Coincidence
Counting
(Quantum Photonics)

< 10 ps < 10 ns < 5 < 20 > 100 ns ≥ 4 < 10 W3

Spectrometry
(Time-of-Flight Mass

Spectrometry)

< 10 ps – 2 < 5 < 20 > 10 ms 1 – 2

Spectrometry
(Fluorescence Lifetime

Imaging)

< 50 ps < 1 ns < 5 < 20 > 100 ns 1 – 2

Frequency
Locking
(All-Digital

Phase-Locked Loops)

< 300 fs – 2 – 2 < 5 > 1 ns4 1 < 1 mW

Frequency
Locking
(Quantum Key

Distribution)

< 50 ps < 10 ns < 5 < 20 > 1 us > 2 < 10 mW

1 > 150 m maximum distance.
2 Not a major concern.
3 Due to thermal noise.
4 Dependent on clock period.
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1.5.1 Coincidence Counting

Time-to-digital converters can be also utilised as time taggers in time correlation systems such as

coincidence counters. These systems play an essential role in quantum physics experiments for

gating the events of interest from the background noise and measuring the gamma ray correlation

in PET systems. Coincidence counters are correlator tools which are tailored to measure the

occurrences of simultaneous signal events over multiple channels. This is done by checking

whether the events are happening within the same time window called the coincidence window.

In a PET scanner setup, a positron emitting radiotracer substance is introduced into the

subject’s body and the subject is surrounded by detectors which observe gamma rays. As the

positron-emitting substance decays inside the patient’s body, positrons meet with electrons,

which results in annihilation of both the positron and electron. An annihilation of a positron and

electron pair generates two gamma rays that travel in opposite directions towards two photon

detectors placed in the surroundings. Counting the coincidences caused by the two gamma rays

emitted allows analysis of the radiotracer’s distribution in the body, which is then used for image

formation. TDCs can be utilised to digitise gamma ray pairs’ times of flight in such a set-up.

Examples of such a scheme can be found in [16–20].

1.5.2 Spectrometry

Another area where TDCs are commonly used is spectrometry. Spectrometry can be defined as

distinguishing mixed substances based on an interaction between light and their matter. Common

spectrometry examples where TDCs can be used are Time of Flight Mass Spectrometry (TOFMS)

and fluorescence spectrometry. In TOFMS, the times of flight of ions are used to measure the ions’

mass to charge ratio. This process starts with ionising the atoms and molecules to be measured

causing the required number electrons to be knocked off to form a positive ion. Then, the ions are

accelerated to the same kinetic energy and projected for a known distance. Since heavier and

lighter ions have different velocities due to their different masses, their time of flight will vary,

and this reveals information about their charge to mass ratio [21]. ToF tomography is an example

of mass spectrometry.

Fluorescence spectroscopy, which is commonly used in chemistry, biomedicine and medicine
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to analyse organic compounds [22], is used to determine the fluorescence content of the substance

by measuring the decay time after the substance has been excited by a light beam. TDCs are

employed as a part of the Time-Correlated Single Photon Counting (TCSPC) tools used to measure

the decay time [23].

1.5.3 Rangefinding

Rangefinding ToF systems such as LiDARs are another common application of TDCs. In a typical

LiDAR, the START signal corresponds to the time when the laser transmitter starts to illuminate

the target with photons and the detection of reflected photons from the target by the receiver

is denoted as the STOP signal. The differences between these values are used to determine the

photons’ time-of-flight between transmission and detection, and the photons’ time-of-flight can be

used to measure the distance. A TDC is employed to quantise and digitise the events of START

and STOP signals in such applications.

For a photon or pulse of light travelling through free space, the speed of the photon is c. The

distance to the object in question is d and the object is at an angle (θ,φ) (vertical, horizontal)

from the transmitter. The time of emission is Tst, and the time of reflected pulse/photon reception

is Tsp. Therefore, the distance d will be as in (1.1), noting that the pulse must complete a round

trip (2d) between the start and stop. Then, the cartesian coordinates of the object (x, y, z) can be

calculated as in (1.2) relative to the transmitter, with the x and z axes being perpendicular to the

transmitter (plane of projection) and the y axis being parallel to the transmitter (into the plane).

A visualisation of the cartesian (x, y, z) and spherical (d,θ,φ) coordinate systems with respect to

a ToF sensor can be seen in Fig.1.3.

d = c(Tsp −Tst)
2

(1.1)

x = d cosφ sinθ

y= d sinφ sinθ

z = d cosθ

(1.2)
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Z
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Y

θ 

φ 

Object

Figure 1.3: Visualisation of a Time-of-Flight (ToF) system, showing the cartesian as well as
spherical coordinate systems.

As the time resolution of single-photon detectors is on the order of 100 ps [24], the desired

resolution and precision of a TDC is approximately 10 ps. On the other hand, readily available

Avalanche PhotoDiodes (APDs) can easily reach < 10 ps rise time error [25], so a TDC resolution

and precision of < 1 ps is desirable to obtain the highest accuracies. The Differential Non-

Linearity (DNL) must also be low enough to avoid significant mismeasurements if the largest

code is hit by coincidence. For older PET detectors, the Full-Width Half-Maximum (FWHM) is on

the order of 10 ps [20], so a detector resolution of 1 ns, achievable with a counter or multi-phase

clock, is acceptable. However, for newer PET systems utilising Silicon Photomultipliers (SiPMs)

and aiming to directly measure positron emissions without the aid of tomographic inversion, a

resolution of 10 ps is desirable to obtain sub-millimeter accuracy [20].
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1.5.4 Frequency Locking

Traditionally, frequency locking has been performed using phase-locked loops (PLLs). These are

analog systems composed of a ring oscillator (RO), phase detector (PD), loop filter (LF) and charge

pump (CP) [26, 27]. In normal operation, the ring oscillator will oscillate at a frequency Fosc

somewhat similar to the input frequency Fin. The rising edge of the output of the RO will be

compared to the rising edge of the input signal by the phase detector. If the edge of the RO is

before the edge of the input, then the PD determines that the RO is running too fast (Fosc > Fin)

and thus will instruct the CP to reduce the frequency. However, if the edge of the RO is after the

edge of the input, then the PD determines that the RO is running too slow (Fosc < Fin) and thus

will instruct the CP to increase the frequency. This mode of operation will also cause the phase

of the oscillator Φosc to become aligned with the phase of the input signal Φin, since a phase

mismatch would be seen as a frequency mismatch.

The charge pump controls the current available to the RO via current-starving transistors,

thereby adjusting its period and frequency. Specifically, the charge pump increases and decreases

the voltage at the gate of the current-starving transistors, which decreases or increases the

source-drain resistance of the current-starving transistors respectively. If the resistance increases

(the voltage at the gate decreases), less current will be available to the RO for the purpose of

charging and discharging the internal node capacitance at each stage of the oscillator, and so the

frequency will decrease. Conversely, if the resistance decreases (voltage at the gate increases),

there will be more current available to the RO for charging and discharging node capacitances,

and therefore the frequency will increase. By adjusting the voltage available at the gate, the

charge pump can modify the RO frequency Fosc.

When a basic PLL reaches a steady state (Fosc ≈ Fin and Φosc ≈Φin), there is a tendency for

Fosc to oscillate about Fin due to overshooting the adjustment to be made to reach the correct

frequency, or due to minor perturbations in the phase. Therefore, most PLLs implement a low-

pass filter as their LF to dampen changes in the frequency. This allows Fosc to become much

closer to Fin, reduces the frequency at which Fosc varies and reduces the sensitivity of the PLL

to noise.

However, the sensitive analog components present in PLLs do not scale efficiently to smaller
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process nodes [28]. As the process node gets smaller, PVT variations become more prominent

relative to the smallest possible element. These variations reduce the performance and reliability

of the PLL, and so much larger components with lower PVT variations are needed. The result of

this is that the PLL is becoming a more significant aspect in chip area and power consumption,

thus it needs to be optimised.

All-digital phase-locked loops (ADPLLs) operate similarly to PLLs but replace the analog

components with digital ones wherever possible. The advantages of this are the improved power

and area scaling to smaller process nodes as well as the addition of digital processing techniques

that improve the performance of the PLL. However, this comes at the cost of design complexity.

With an ADPLL, the PD, which can be relatively simple, is replaced with a high-precision low-

range TDC, the CP is replaced by a digital-to-analog converter (DAC) and the LF is replaced by a

digital filter. The RO and current-starving transistors often stay the same, although it is possible

to replace the current-starving transistors with a digitally controlled capacitance to adjust the

frequency of the RO. As the components are now digital, they can be scaled down to minimum

size without compromising performance.

Key to this implementation is the TDC. The TDC has the purpose of determining the phase

relationship between the RO output and the input frequency. Therefore, the TDC must be

bidirectional (allowing negative delays, where the stop occurs before the start), high-precision

(to accurately determine the phase relationship) and low-cost (minimal power and area as the

ADPLL does no useful work for the user). As the clock period is often short, the range of the TDC

can be short, and as the LF reduces the locking speed to improve noise immunity, the sample rate

does not have to be high (TDC dead time can be relatively long compared to other applications).

1.5.5 Health and Monitoring

Monitoring system and environment parameters and health is important to ensure the longevity

of a system and avoid malfunction or misuse. Occasionally, a TDC will be used in a monitoring

application, usually with the aim of converting a pulse width to binary. For example, in [29],

Chen et. al. employed a latching TDC for monitoring PLL health. The TDC should always give

approximately the same results when triggered with the output of a healthy PLL as the on time
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and off time should remain relatively constant. Should the maximum or minimum period exceed

normal operating ranges, this indicates that the PLL may need replacing due to degradation of

the delay components or conditioning circuitry. The latching encoder expects some discriminators

to always be triggered, while others are never triggered, and should this be violated, allows an

alarm to be triggered to signal PLL degradation.

Chen et. al. also modified the pulse-generation element in a PS TDC to allow for temperature

measurement as well as time interval measurement [30]. When in temperature mode, a fixed-

width pulse is provided to the delay line, and the output code observed. As the temperature of the

chip fluctuates, the reduction in pulse width per element will vary, resulting in higher or lower

output codes for a known-width pulse. This was characterised experimentally and then used to

calibrate the temperature readout. The temperature resolution was less than 0.1 K/LSB (Kelvin

per Least Significant Bit) and the resolution of the TDC was 45 ps.

In [2], Ma et. al. applied TDCs to the hardware security domain. By exploiting VT variations

on an FPGA, they were able to use the results from a TDC characterising the system clock and a

neural network to detect the insertion of Trojan hardware on the FPGA fabric and thus avoid

leaking information to the Trojan. They demonstrated that this approach was robust even under

process and environment variations, which would normally be expected to upset such a scheme.

As a final example, Rostami et. al. demonstrated a Cyclic Successive Approximation (CSA)

TDC for use in a Capacitance to Digital Converter (CDC) [31]. The proposed CSA TDC used a

switched capacitor bank to adjust the delay of the SA stage. More importantly, though, is the fact

that the scheme has memory. The scheme is able to improve its conversion time and therefore

sample rate with slowly varying signals by starting estimation at the previous value of the signal,

then adjusting in either direction (the TDC core is bipolar) to reach the new sample. This is an

interesting concept and may be useful to include in future time-of-flight or other oversampling

applications.

The common feature between all these TDC systems is that they have a knowledge of what is

an ‘acceptable’ or ‘standard’ output and then report on differences between the observed sample

and the expected value. This is quite different from other applications which output values

without modification and may be a good target for application-aware optimisations.
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Figure 1.4: Application of TDCs to hardware security by Ma et. al. [2]. When a trojan is added
to the FPGA device, the TDC-based detector observed changes in voltage and temperature and
sounded the alarm.

1.5.6 Commercial Availability

Many TDC products are available commercially for different purposes. An example of a low

cost two-channel LiDAR TDC is the Texas Instruments TDC7201 chip which provides 55 ps

resolution and 67 ns dead time [32]. For applications such as coincidence correlation, a TDC

such as Swabian Instrument’s Time Tagger, which provides up to 144 channels with 4 ps RMS

resolution and 2.1 ns dead time, can be used [33]. PicoQuant’s Picoharp and Hydraharp series,

which can provide down to 1 ps resolution in up to eigth channels of operation [34], and Becker

Hickl’s SPC series, which can provide 1.1 ps resolution with up to 512 channels in a multi-device

system [35], are popular TDC products for Time-Correlated Single Photon Counting (TCSPC).

However, they both suffer from long dead times of 80 ns and 100 ns respectively. In addition,

IdQuantique’s ID900 Time Controller is another example of a commercial time tagging box which

provides 20 ps resolution with up to 64-channel operation and only 10 ns dead time [36].
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1.6 Performance and Cost

In this section, we will explore the metrics by which we measure the performance of a TDC

design.

1.6.1 Least Significant Bit (LSB)

When converting an analog quantity (time) into a digital quantity (binary code), the analog value

must be quantised. Quantisation is the process of taking a continuous value and assigning it to

one of many discrete values, often known as ’bins’ or ’least significant bits’ (LSBs). Each LSB will

map to a range of input values (many different values fall into the same bin), with the average

of these values considered the best estimate for the value of the bin (minimises the distance

between the input value and the value of the bin).

The size of the LSBs (which may not be uniform) is a major contributing factor to almost all

TDC metrics, except when so small as to become negligible. As it is almost entirely dependent on

the physical manufacturing process, some metrics are quoted as multiples of the LSB to make

their description agnostic to the manufacturing process.

1.6.2 Range

The range is an important yet often overlooked aspect of a TDC. The range of a TDC is the

difference between the maximum measurable value and the minimum measurable value. If

the maximum range is insufficient for an application, a TDC may suffer saturation conditions

(reporting the maximum value for times above the maximum value), missed events (a pair of

start and stop not reported due to the over-range condition), time-aliasing (a larger time being

reported as a smaller time) or mis-attribution (a stop signal being attributed to the wrong start

signal). This is most likely to happen in applications without a strictly bounded upper range

(such as time-of-flight, where the maximal distance may not be known) or where the TDC range

is intentionally under-specified (such as all-digital phase-locked loops, where the TDC is expected

to saturate for large phase differences). Alternatively, if the minimum range is insufficient for an

application, the TDC may suffer from missed events or miss-attribution. This is most likely to
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happen in short-range time-of-flight (where the channel delays are mismatched and the short

range causes the stop to trigger before the start) and double-ended applications such as positron

emission tomography (the pair of particles may hit the channels in any order).

For many TDCs, most notably those that measure the start and stop signals relative to an

external reference, the minimum measurable value is zero, defined by the fact that the stop

signal must occur after the start signal, and so any stop signals that arrive before the start signal

are assumed to be related to a previous start signal. However, in other TDCs, most notably those

that measure the stop signal relative to the start signal, there is a minimum measurable value

defined by input delays, minimum pulse widths and setup times from the start to stop signals.

Some TDCs allow double-ended operation, where the start and stop signals can occur in any order

(thus, the minimum is the negation of the maximum). However, these double-ended TDCs often

have limited ranges or cannot process multi-hit events due to the difficulty of determining which

start signal a particular stop signal should be attributed to (example, start signals happening at

0 ns, 10 ns, 20 ns etc. and a stop signal at 6 ns; it is difficult to determine whether the stop signal

is 6 ns after the first start or 4 ns before the second start).

An increase in range can often result in a decrease in accuracy, precision and resolution. For

systems that measure the stop signal relative to the start signal, an increase in range may result

in a proportional decrease in resolution as each possible quantisation is enlarged to cover the

new range. Decreases in resolution will also cause precision to drop. In addition, as the range

increases, the inaccuracy in the quantisation will often scale linearly (proportional difference) but

sometimes non-linearly (as the operation of the TDC may change its characteristics due to process,

voltage and temperature variation). Alternatively, for systems that measure the start and stop

relative to an external reference, the accuracy of the external reference plays an important role

in influencing the accuracy and precision as the range increases. When the range is small enough

that the same external reference signal can be used for quantisation, the external reference has

no effect. However, as the range increases, different reference signals will be required to perform

the quantisation, and so the accuracy and precision of the difference between these reference

signals will significantly affect the output result.

In this thesis, the range, R, of a TDC will be considered as the sum of the sizes of all the LSBs,
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as in (1.3), where τi is the size of the LSB with index i, N is the total number of LSBs, Tmax is

the delay after the final bin transitions and Tmin is the delay before the first bin transitions. The

number of bits at the output, B, will be the ceiling of the Effective Number Of Bits, ENOB as per

(1.4), which in turn is the base-2 log of the effective bin width τeq as in (1.6). The equivalent bin

width is defined according to σ, the Single-Shot Precision (SSP), as per (1.5) [37].

R =
N−1∑
i=0

τi = Tmax −Tmin (1.3)

B = ⌈ENOB⌉ (1.4)

τeq =σ
p

12 (1.5)

ENOB = log2

(
R
τeq

)
(1.6)

1.6.3 Accuracy

The accuracy is a commonly misinterpreted parameter of a TDC. It is commonly interpreted as

the average distance (a positive value) between the measurements and the true value. However,

the correct interpretation is the average difference (positive or negative). For example, with two

estimates T0 and T1 of a true value T, where T0 = T +1.01 and T1 = T −0.99, the average of T0

and T1 is T+1.01+T−0.99
2 = T+0.01. The distance interpretation would describe an average error of

abs(1.01)+abs(−0.99)
2 = 1.00, whereas the difference interpretation would describe an average error

of 1.01−0.99
2 = 0.01, which is clearly more correct.

The main factors contributing to inaccuracy in a TDC are channel offsets and miscalibration.

If the delay from the input signal to the TDC core varies on a per-channel basis, the quantised

delay will be offset by the difference in input delay between the start and stop channels. This

channel offset can generally be considered constant on each device but may be affected by voltage

and temperature fluctuations. Miscalibration is when the nominal value of a quantisation does

not match the delay required to cause it. This is again caused by process, voltage and temperature

fluctuations causing the delay of each LSB to fluctuate relative to their nominal value. While

these errors can be very significant if not compensated for, compensation is a relatively easy task

via calibration.
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Figure 1.5: Centre of target: true value; (a) a process that is accurate but not precise; (b) a process
that is precise but not accurate; (c) a process that is accurate and precise.

Calibrating for channel offset is a very simple task. One of the channels, normally channel

zero, the start channel or the channel with the shortest delay, will be used as a frame of reference

and be considered to have zero offset (the offset of a channel relative to itself must be zero). Then,

a single signal is introduced to both the reference channel and another channel, and quantised.

The average difference in the quantised value between the reference channel and channel in

question will be the channel offset of the channel. As this method relies on accuracy within a

channel, the channel offset calibration must be performed after calibrating the individual LSBs

within a channel relative to its start.

Calibrating the LSBs within a channel can be performed at multiple different levels. The

most basic is average delay calibration. The most accurate is code density calibration. Between

these are various other methods that trade-off complexity, run-time and calibration accuracy.

This is summarised in Figure 1.6.

Average delay calibration involves measuring the delay of the entire TDC and dividing by the

number of LSBs to determine the size of a single LSB. For some TDCs, particularly multi-stage

TDCs with a coarse quantiser and a fine quantiser, measuring the entire range of the TDC is

intractable, and so a sub-section of the TDC (e.g., the fine quantiser, the length of a loop iteration

in a looped TDC) is measured instead. This ensures that the average delay of an LSB is the same

as the nominal delay of an LSB but does not account for individual variations in LSB size.

This method is often used to complement other methods, particularly to adjust for voltage and
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Figure 1.6: Comparison of calibration effort between methods. * Subsampling decreases resolution
while improving calibration accuracy and linearity.

temperature variations at run-time (since it is assumed that voltage and temperature variations

affect all LSBs proportionally). When performing the average delay calibration, two values

are measured, Tmin and Tmax, which correspond to the delay immediately before the first bin

transitions and the time immediately after the final bin transitions, respectively. The average

delay of each element, τ is calculated as in (1.7), and thus the nominal value of the LSB with

index i, Ti, is defined as in (1.8). The 1
2 component is required to ensure that the nominal value

is at the centre of the bin.

τ= Tmax −Tmin

N −1
= R

N −1
(1.7)

Ti = Tmin +τ

(
i+ 1

2

)
(1.8)

Code density calibration involves measuring the delay of each individual bin through a

stochastic process. The TDC samples a uniform distribution multiple times, and as a result,

quantity of measurements with a particular value (falling into a single LSB) will be proportional

to the size of the corresponding LSB. A large LSB will result in numerous measurements with the

corresponding value, while a small LSB will result in few measurements with the corresponding
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value. If the quantity of measurements (from here on referred to as ‘hits’) with the corresponding

value is divided by the total hits, the size of an LSB can be represented as a proportion of the

entire TDC. If the length of the TDC (or some subsection of it) is known, either via average delay

calibration or via relation to an external reference of known period, then the size of an LSB can

be directly represented as a delay.

Code density calibration necessarily requires a large number of hits to function as a stochastic

process with any meaningful accuracy, and thus may take significant time to calibrate (meanwhile,

the TDC may be non-operational). Code density calibration also improves integral non-linearity.

The width of each LSB, τi, is defined as in (1.9), where hi is the number of hits for LSB i, htotal is

the total number of hits (as per (1.10)), and R is the range of the TDC. Then, the nominal value

of LSB i, Ti is defined as the sum of all prior LSBs plus half the current LSB, as in (1.11).

τi = R×hi

htotal
(1.9)

htotal =
N−1∑
i=0

hi (1.10)

Ti = Tmin + τi

2
+

i−1∑
j=0

τ j (1.11)

Another technique that may be considered is multi-point average delay calibration. Compared

to single-point average delay calibration (which measures from the start to the end of the

TDC’s range), multi-point calibration measures multiple smaller subsections of the TDC. This

significantly improves accuracy where drift is present within the TDC’s range but may also

reduce accuracy if the selection of subsections is unfortunate (this may also happen with single-

point average delay calibration if there are large LSBs near the start or end of the TDC). When

calibrating a subsection between LSBs i and j, the transition times of bins i and j+1, Si and

S j+1 are captured, and the average delay of all LSBs in the range, τi, j is defined as in (1.12).

Then, the nominal value of LSB k, Tk is defined as the delay of the start of the region (Si), plus

k− i times the average delay within the region, plus half an average delay (to reach the centre of

the bin), as in (1.13).
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τi, j =
S j+1 −Si

j+1− i
(1.12)

Tk = Si +τi, j (k+1/2− i) (1.13)

The sliding scale technique operates similarly to multi-point average delay calibration in

terms of measuring the delay of a section of the TDC, but instead of measuring a fixed section,

the sliding scale technique measures a random section of the TDC similar to the code density

test. This allows quick, relatively accurate calibration along the entire length of the TDC without

significant negative effects when the measured TDC section is placed unfortunately (since the

multiple random measurements even out any bad calibrations). However, the sliding scale

technique, due to averaging across a large number of bins applies a smoothing effect to its output

values and thus fails to properly recognise individual large LSBs in its normal mode of operation

(although, a significantly advanced calibration engine with sufficient samples would be able

to detect large bins by comparing adjacent quantisations). Implementation of the sliding-scale

calibration may vary, but a common implementation would be an alpha filter, where the current

estimate of each bin width τi is modified slightly (by a factor of α) by the most recent measurement

τ to create an updated value τi
′, as in (1.14). The nominal value of a bin is calculated as in code

density calibration but may need to be normalised to ensure that the sum of the bin widths match

the range.

τi
′ = τi(1−α)+τα (1.14)

Table 1.4: Comparison of calibration techniques.

Calibration Method Calibration Accuracy Calibration Time Calibration Effort

Average Delay Low Low Low

N-Point Average
Delay

Medium Low Medium

Sliding Scale Medium Medium Low

Code Density High Medium High
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1.6.4 Precision

Precision is arguably the most important metric for a TDC, given that inaccuracy can be removed

via calibration and all the other performance metrics affect the precision. It also defines the

usefulness of the results observed by the user. The precision of a TDC is defined as the spread of

measurements about an average value (which may not be the true value). A TDC can be precise

(have a small spread) without being accurate (close to the true value). Figure 1.5b shows an

example of this, with the measurements being tightly clustered but far from the true value. If the

offset between the cluster centroid and the true value is known and stable, then calibration can

account for the offset, effectively converting Figure 1.5b into Figure 1.5c.

The spread of values about their centroid is normally measured by the Single-Shot Precision

(SSP) or the Full-Width Half-Maximum (FWHM). The SSP is equal to the standard deviation

of a single constant measurement, while the FWHM is the distance between the two points at

which the probability of a measurement falls to half the maximum probability.

The main factors contributing to TDC imprecision are LSB resolution, miscalibration and

reference signal jitter. As the size of an LSB increases (resolution decreases), the possible range of

values which that LSB can represent will increase. As the best estimate for the value of an LSB

is the centre of the range it covers, the greater the range of the LSB, the greater the probability

of a measurement being further from the true value.

In addition, if the TDC is miscalibrated (or not calibrated at all), the nominal value of the

LSB will not match the range of true values that cause it to occur, and so the difference between

the average value and the individual measurements will increase significantly. If the difference

between the true value and the measured value varies between LSBs, and multiple measurements

cause hits in different LSBs, this will then impact precision (if the hits always occur in the same

LSB, the result will be inaccurate but not imprecise).

For example, if a Time-to-Digital Converter (TDC) is free-running (measuring a trigger

relative to a clock signal), it is unknown where the trigger may land in the TDC’s range. When the

TDC is miscalibrated, the difference between the true value and the quantised value varies across

the range of the TDC. Therefore, multiple measurements will vary significantly in their distance

from the true value, causing an imprecision. This is particularly noticeable in double-shot tests
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(start and stop signals are measured relative to the system clock), where the start and stop signal

have a fixed time difference between them, but may occur at any point in the TDC’s clock period.

While the true value of their time difference is constant, variation in the difference between the

measured values will be exhibited as imprecision.

Finally, for TDCs that measure relative to an external reference, variations in the reference

signal will cause the delay between the reference and the start or stop to vary, increasing the

spread of measured values.

Unlike accuracy, it is much harder to improve the precision of a TDC. A lack of calibration can

be overcome by performing calibration, and this will significantly improve resolution where the

TDC is highly non-linear. Reference signal jitter can often be improved by upgrading the external

reference to one with a higher precision, such as an Oven-Controlled Crystal Oscillator (OCXO),

and further calibrating this with an accurate time standard such as GPS or a local Rubidium

time standard. The LSB resolution can only be improved by altering the architecture of the TDC

or averaging multiple samples of the same input signal.

Determining the single-shot precision directly can be difficult as it requires a repeatable delay,

which is difficult to ensure due to voltage and temperature variations. Therefore, the double-shot

precision (DSP)[38] is often calculated as an intermediary, and then the SSP can be calculated as

in (1.15). The DSP is the standard deviation of the time difference between two events Tstop and

Tstart as in (1.16). Achieving a repeatable delay between two events is trivial as both channels

capturing the events can be provided the same signal, which will cause a repeatable delay equal

to the channel offset.

SSP = DSPp
2

(1.15)

DSP =
√∑

(Tstop −Tstart)2

N −1
−N

(∑
(Tstop −Tstart)

N −1

)2
(1.16)

1.6.5 Resolution

Resolution is a very important metric for a TDC due to being the largest contributor to imprecision

when greater than ∼10 ps (below this value, other errors such as miscalibration, noise and jitter
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are more significant). The resolution is defined as the minimum possible difference between two

measurements that can be reliably distinguished. Given that a measurement falls uniformly in

each LSB, to reliably distinguish one measurement from another, the difference between the

two must be at least the width of a bin to ensure that different LSBs are selected for the two

measurements. Therefore, the resolution is nominally equal to the LSB size, unless other TDC

components further limit the resolution. As the LSB size may vary across the TDC, the resolution

can also vary. Therefore, the resolution must be defined statistically in relation to all the LSBs.

Normally, the mean of the LSB sizes (as in (1.17)) is used as the resolution, however, as larger

LSBs are more likely to experience a hit and affect the overall resolution or precision, there is an

argument that the square mean (as in (1.18)) or cubic mean (as in (1.19)) are more appropriate.

Alternatively, the resolution can be calculated as an equivalent width [39], that is, the width of a

bin required to match the SSP provided by the TDC. The equivalent width can be calculated as

in (1.20), either via summing the sizes of the bins or via computing the SSP (σ).

τ=
∑N−1

i=0 τi

N
(1.17)

τ=
√∑N−1

i=0 τ2
i

N
(1.18)

τ= 3

√∑N−1
i=0 τ3

i

N
(1.19)

τeq =
√∑N−1

i=0 τ3
i

NR
=σ

p
12 (1.20)

Improvements in resolution can occur through three methods. First, an improvement in the

underlying hardware may reduce the delay of each LSB, resulting in a smaller range of true

values that can hit the LSB and thus improving the resolution. Next, a change in architecture

can result in the LSBs becoming fundamentally smaller or being sub-divided by other LSBs.

Finally, averaging can improve the resolution by making multiple measurements of the same

value (with some random error) and then combining these to achieve a more precise (higher

resolution) result. Averaging can be achieved either by taking multiple physical measurements of

the desired phenomenon, or by replaying a single measurement multiple times with sufficient

variation to allow averaging to occur.
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It is important to note that averaging can only improve the resolution and precision if the

measurement is not perfectly repeatable. A variation in the measurement normally reflects the

relationship between the centre of an LSB and the true value: if the measurement occasionally

increases by one LSB, the true value is most likely above the centre of the LSB. Alternatively,

if the measurement occasionally decreases by one LSB, the true value is most likely below

the centre of the LSB. If the measurement is evenly distributed between two LSBs, then the

measurement is likely on the boundary between the two LSBs. The source of the variation can be

quite varied; it could be differences in LSB sizes on different channels of the TDC, it could be

different delays relative to the external reference (in which case, the difference must be known

to adjust the various measurements to the same range), or the signal could enter the TDC at

different positions in the quantiser (which would result in different LSBs being attributed to the

same true value).

1.6.6 Linearity

Linearity is an important metric for a TDC, but like accuracy, it is easily corrected for. Linearity

can be defined in two forms: the Differential Non-Linearity (DNL) is the maximum difference

between the centres of two adjacent LSBs minus one, as in (1.21). This is a similar metric to the

resolution and is often quoted as a multiple of the average LSB size (e.g., DNL = 1.7 LSB). The

Integral Non-Linearity is the maximum difference between the midpoint of a bin (nominal value)

and the ideal linear transfer function (as in the average delay calibration), as per (1.22). For a

TDC where all LSBs are exactly the same size, the DNL is 0 LSB (the difference between the

LSB centres is equal to the LSB size, therefore 1 LSB−1 LSB = 0 LSB) and the INL is 0 LSB (the

midpoints exactly match the linear transfer function).

DNL = max (Ti+1 −Ti)−1 (1.21)

INL+ = max
(
Ti −

(
Tmin + R× (i+0.5)

N −1

))
INL− = min

(
Ti −

(
Tmin + R× (i+0.5)

N −1

)) (1.22)
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For a TDC with uneven LSB sizes, the DNL and INL are generally worse. The DNL is at

its maximum where the sum of two adjacent LSB sizes is largest, as this causes the difference

between the centres to be highest. For the INL, the value is dependent on the presence of

calibration. For an uncalibrated TDC, the maximum INL will likely be furthest from the point at

which the nominal values and true values coincide. Depending on the TDC design, this could be

at the start, the end, or at some point in the middle. The cumulative effect of inaccurate average

bin sizes will dominate the INL, resulting in the point furthest away having the highest INL.

For a TDC with average delay calibration, it is expected that the start and stop of the TDC are

correctly calibrated (low INL at these points). Therefore, the point at which the INL is at its

maximum will necessarily be near the middle, unless some architectural periodicity constrains it

to another region. A good example of this is looped TDCs, where each loop will have the same

characteristics, and so the INL passes through zero each time the loop repeats. Finally, with

an accurate calibration such as code density calibration, the INL will be at its maximum at the

boundary of the largest LSB. As the TDC is accurately calibrated, the nominal value matches the

true centre of each LSB, so the maximum difference will occur at the boundary of an LSB where

the true value is furthest from the centre (and thus furthest from the nominal value), and the

boundary is furthest away from the centre in the largest LSB. A poor calibration will necessarily

increase the INL.

Improvement of the linearity is difficult, but not as difficult as improving the resolution. For

the DNL, improvements can be made by sub-dividing large LSBs. There are many ways to do this,

with the most common being averaging multiple measurements, introducing multiple, branching

paths through the TDC, or sub-dividing large LSBs with smaller ones in other channels. DNL

may also be made less significant by excluding the large LSBs from the normal region of operation

(this is most easily achievable when the large LSBs are near the ends) or by simply improving

the base resolution or matching between components. INL is most significantly improved by

calibration, and once that is complete, improvements to the DNL cause similar improvements to

the INL (since both are based on the size of the largest bins).
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1.6.7 Quantity of Channels

Unlike the previous metrics, which relate to the performance of a single measurement, the

quantity of channels focuses on the number of measurements that can be made in parallel. The

number of channels in a TDC defines the number of active inputs which can be simultaneously

connected to the TDC. For some applications, such as Time-of-Flight (ToF) or All-Digital Phase-

Locked Loop (ADPLL) applications, the number of channels is of minor importance, as there will

often be only one start and one stop signal operating in parallel, and the accuracy, precision and

repetition rate are generally more important. For other applications such as nuclear, quantum

metrology and multi-hit ToF, having multiple channels to receive many start or stop signals is

required, but these applications may not require high accuracy, precision or repetition rates.

Quantity of channels is highly related to area. If the area of a TDC is low, then the TDC can

be duplicated to produce multiple channels. Similarly, if the area of a TDC is high, there may not

be sufficient room for all the required channels. However, the quantity of channels may not be

inversely proportional to the area. Introducing more channels to an existing TDC is often more

efficient than duplicating the entire TDC, as the decode logic, serialisation logic, reference signal

and even start channel can often be shared between channels. Also, some logic may be global and

not require duplicating when operating multiple channels, such as the phases of the clock in a

multi-phase clock system.

1.6.8 Repetition Rate

The repetition rate is highly related to the TDC architecture and is often the main driving force

behind design choices. The repetition rate is defined as the maximum rate at which successive

events can occur without any being missed. For many systems, the repetition rate is a small

multiple of the system clock frequency, which is often strongly related to the external reference of

that system. For others, the repetition rate will be defined by the maximum length of the TDC

(for cases where the input signal travelled the entire length of the TDC) plus the time required

to reset the device. Occasionally, the repetition rate is limited by the decode or serialisation

functionality, but this is uncommon as providing high-bandwidth parallel logic is relatively simple

compared to the TDC core.
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Requirements for repetition rates are very specific to given applications. For ToF applications,

the repetition rate may be related to the frequency of start pulses, the repetition rate of the

receiver which feeds the stop channel, or the rate at which a surface needs to be scanned. For

nuclear applications, the repetition rate will often be defined by the rate at which particles are

emitted from the sample being characterised. For frequency locking applications, the repetition

rate only needs to be slightly above the target frequency to quantise every edge. Finally, for

quantum applications, the repetition rate only needs to be as high as the rate of the element that

produces entangled particles.

1.6.9 Power

Power is a relatively uncommon consideration for TDCs as meeting performance, channel quantity

and area targets are more important. However, when considering TDCs that must operate in

adverse conditions or on finite power sources, power becomes an important metric. The power

consumed by a TDC can be broken into two components: the static power, which is consumed

while the TDC is powered on, and the dynamic power, which is consumed only while the TDC

is operating on some data. The ratio between dynamic power and static power is dependent on

the frequency of input events as well as the architecture. Some architectures have very little

circuit activity while switched on, and so the static power becomes more significant. The same

can happen when input events are uncommon: even if the cost of processing an event is high, if

it rarely occurs, the overall cost will be low compared to the cost of keeping the TDC powered.

Conversely, some architectures have large amounts of switching occurring even when there are

no input events. This, or a high rate of input events, can cause the dynamic power to significantly

exceed the static power.

The main techniques to reduce power include minimising switching (both while the TDC

is active and while it is idle), reducing area (a smaller TDC has less logic for current to leak

through) and turning off sections of the TDC while it is not in use (clock gating). For a system

with genuinely random input events, clock gating is difficult. However, most systems are not

truly random, often producing a hint that an input event will occur before it does. For example,

in a ToF system, the activation of the start signal is often periodic, so the TDC can be powered
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down if it recognises that there will not be another start signal for a long time. Also, the stop

signal often quickly follows the start signal, so once the stop has occurred, the stop channel can

go to sleep until the next start signal.

Reducing switching in a TDC is most often achieved by careful design, avoiding wasted logic

and avoiding processing while the input events are not active. For example, two designs of delay

line TDCs Figure 1.9 have the same architecture but very different dynamic power requirements

as one puts the clock signal through the delay line and captures it with the start and stop, while

the other puts the start and stop through the delay line and captures them with the clock. When

the TDC is inactive, the first design still causes the delay line to oscillate due to feeding the

clock into the delay line, while the other does not oscillate as there is no start or stop. This

results in the first design requiring more dynamic power than the other. Similarly, looped TDCs

tend to have much lower static powers when idle than their non-looped counterparts, as they

require significantly less components and so leak significantly less current. However, the counter

attached to a looped TDC introduces more switching, and so they take a penalty in dynamic

power compared to non-looped TDCs.

Fig. 1.10 demonstrates the three main forms of power draw. The first is dynamic power.

When a logic gate (in this case, a CMOS inverter) output switches from a zero to a one, the

intrinsic capacitance at each node in the gate will need to be charged from the power rail for the

output to reach the required voltage. The capacitance stores E = CV 2

2 joules of energy, while the

energy drawn from the power rail is E =QV = CV 2. Therefore, while charging, half the power

is dissipated as heat through the PMOS transistor. When the logic gate output switches from

a one to a zero, each internal node discharges to ground and the energy stored in the intrinsic

capacitance is dissipated through the NMOS transistor.

Next is short-circuit power. When a logic gate switches, the PMOS transistors turn on as long

as the voltage at the gate is less than Vdd −Vth, where Vdd is the source voltage and Vth is the

threshold voltage, normally ∼0.7 V. The NMOS transistors turn on if the voltage at the gate is

more than Vth. If Vdd > 2Vth, there will be a period Tsc where both transistors are turned on and

a low-resistance path will exist between the two power rails. During this period, a large amount

of current will flow (Isc = Vdd
RP+RN

, RP is the PMOS resistance, RN is the NMOS resistance) and
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a high power draw is experienced (Psc = IscVdd, Esc = FswPscTsc, Esc is the total energy drawn

due to short-circuit conditions and Fsw is the switching frequency). However, this period is a

fraction of the switching time and so is very rarely active.

Finally, static power is caused when current leaks through a transistor that is ‘off ’. A transistor

which is off does not have an infinite resistance, but rather a relatively high resistance, often

∼10000x the resistance when the transistor is on. However, a small quantity of current is able

to make its way through the transistor from one power rail to the over, resulting in a small but

constant power draw, Pleak =V I leak = V 2

Rof f +Ron
≈ V 2

Rof f
.

1.6.10 Area

Area constraints for a TDC are very common to allow for duplication to provide multiple channels,

reduce cost by utilising smaller integrated circuits to implement the TDC, or to allow integration

into a much larger system without requiring a separate integrated circuit. If area was not

considered as an important metric, performance limitations would become trivial to overcome as

the designer could simply add more TDC channels until the correct performance targets were

met.

Area is predominantly affected by the architecture of the TDC and the number of channels

present. Architectures which require more logic to produce a single delay, which require accurate

analog components or have little common logic between channels cause significantly larger areas.

Similarly, increasing the number of channels tends to significantly increase the required area,

except in architectures where the cost of adding more channels is trivial. However, implementing

looped TDC architectures allows for a significant reduction in area as the length of the TDC is

folded back on itself, and the section of the TDC which corresponds to the true value is stored in

a counter.

1.6.11 Time-to-Market and Technology

As most TDC research is either not commercially viable at the moment or involved in projects

which may take many years to complete, time-to-market is not a significant concern to most TDC

designers, but it deserves mentioning as it may become very important in the future. TDC designs
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with complex architecture that require large durations spent testing and debugging result in a

much higher time-to-market, which may cause a user to miss the target window for usage of the

TDC. Similarly, TDCs designed on Application-Specific Integrated Circuits (ASICs) generally

require long times to prototype and manufacture, with production runs sometimes taking several

months to complete, compared to designs on Field-Programmable Gate Arrays (FPGAs) which

can be bought off-the-shelf and designed and deployed in a much smaller timescale. Architectures

that are more generic and have faster time-to-markets generally cost more and have lower

performance (as is the case for FPGAs), but provide benefits in terms of updatability, lower initial

costs and lower development costs.
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Figure 1.7: (a) A TDC with perfectly distributed bins. (b) A TDC with a poor DNL. The DNL
will be at its maximum between bins two and three (both above-average size, bin ≡ LSB). (c) A
demonstration of how averaging and sufficient measurement uncertainty can improve accuracy.
The estimated value t is closer to the true value t as the distribution between bins three and four
allows us to infer the value of t to a resolution higher than the bin size.
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Figure 1.9: Comparison of power usage with different inputs to a delay-line TDC. (a) Clock as
input to the delay line, trigger as input to flip-flops. (b) Trigger as input to the delay line, clock as
input to the flip-flops.
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Figure 1.10: Demonstration of power consumption with a CMOS inverter (common delay element)
as a sample circuit. Left: dynamic power; middle: short-circuit power; right: static power.
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2.1 Abstract

T
ime to Digital Converters have been implemented on a large variety of technologies,

from analog circuits [40] to discrete digital logic [41], from microprocessors [42] to

Application-Specific Integrated Circuits (ASICs)[40], from Emitter-Coupled Logic (ECL)

[43] to Complementary Metal-Oxide-Semiconductor (CMOS) [40], and everything in-between.

To understand the design, architecture, and implementation of TDCs, we must first under-

stand the underlying technologies on which they are built, as this informs us both of what is

possible, as well as what is efficient or high-performance. Therefore, this chapter is dedicated to

describing the different technologies available for us to build TDCs on. Some platforms will be

quickly discarded as they are unsuitable for TDC implementation.

In Section 2.2, we start off with Central Processing Units (CPUs), which are easy to program

but relatively inefficient at their tasks. We then proceed through architectures which are suc-

cessively lower-level and more difficult to design for, through Graphics Processing Units (GPUs)

and Digital Signal Processors (DSPs), to Micro-Controller Units (MCUs). We then move on to

simple analogue systems, and build up in complexity from there, through discrete logic and

Field-Programmable Gate Arrays (FPGAs), to Application-Specific Integrated Circuits (ASICs).
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We describe the characteristics of all the aforementioned platforms, their advantages and

disadvantages, both directly related to the design space as well as touching on matters related

to the development process. We will quickly see that programmable processors are a poor fit

for TDC, and so it is the second half of the mentioned technologies (analog systems through to

ASICs) which is more appropriate for the TDC task.

We will also see that the use of discrete analog and digital systems are incapable of the scales

at which modern TDCs operate, relegating them to low-cost and historical systems. Modern

designs are almost entirely constricted to the space of FPGAs and ASICs, the latter of which may

be purely digital or mixed-signal (analog and digital).

In the following section (2.3), we will move on to exploring FPGAs in more detail, as the

technology which was utilised for this PhD project. We will describe the building blocks present in

an FPGA, how they operate, how they are utilised, and how they are composed to form a complex

digital system. Many examples of Hardware Definition Language (HDL) code will be given along

with its synthesised equivalents to demonstrate how code is translated to the FPGA’s building

blocks.

The pros and cons of all platforms are summarised in Table 2.1.

In Chapter 3, the various published TDC implementations on the technologies described in

this chapter will be reviewed and compared.
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Table 2.1: Table summarising the pros and cons of different hardware platforms.

Hardware Pros Cons
Suitability

for TDCs

CPU

• Programmable to perform many

tasks.

• High single-thread performance.

• Virtual memory allows for easy

multi-threading.

• Can run many in parallel.

• Response times are variable.

• Virtual memory may cause accesses

to take a long time.

• Time to execute instructions varies.

• No instruction to generate a small

time delay.

None

GPU

• Highly parallel to optimise

instruction and data throughput.

• Simple cores optimise work done per

Watt.

• Programmable.

• All cores within a cluster must

perform the same instructions, with

only the data changing.

• Code is difficult to write and

optimise.

• Control-style code is slow.

• Single-threaded performance is low.

• Data needs to be frequently

exchanged between the GPU and a

host CPU.

• Slow, variable response times and

high latency.

• Need to submit data to process in

batches.

• No ability to generate small delays.

None

Continued on next page
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Table 2.1: Table summarising the pros and cons of different hardware platforms. (Continued)

DSP

• Single-Instruction Multiple Data

(SIMD) instructions allow multiple

data items to be processed

simultaneously.

• Optimised performance per Watt for

common mathematical instructions

(multiplication and addition) and

serial data input.

• Consistent, predictable response

times.

• Direct Memory Access (DMA)

engines to move data while CPU is

performing useful work.

• Direct access to peripherals to

interface with outside world.

• Performance of control-style code is

poor.

• Writing code takes significant effort

to achieve high performance.

• Complex memory hierarchy needs to

be considered when designing code.

• Smallest delay is limited by system

clock frequency, down to 1 ns.

Low

MCU

• Simple instruction set allows for

small, low power, low complexity

core.

• Consistent and predictable response

times.

• Direct access to peripherals to

interface with outside world.

• Low performance.

• Limited available memory makes

fitting code in available RAM

difficult.

• Smallest delay is limited by system

clock frequency, down to 2 ns.

Low

Continued on next page
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Table 2.1: Table summarising the pros and cons of different hardware platforms. (Continued)

Analog

Systems

• Can work directly with time domain

signals or convert to voltage domain.

• Theoretically infinite resolution.

• Remainders from conversion can be

amplified and returned to the

encoder.

• Off-the-shelf availability.

• Resolution is practically limited by

noise floor and component linearity.

• All components are temperature- and

voltage-dependent, so performance

varies significantly over time.

• Components are difficult to match

precisely, and impossible to hit a

specific value, causing inaccuracies.

• Printed Circuit Board (PCB) needs to

be designed to maintain signal

integrity.

• Cannot be changed after design is

submitted.

Medium

Discrete

Logic

• Cheap and simple for small circuits.

• Off-the-shelf availability.

• Can work directly with time-domain

signals.

• Can be integrated easily with analog

systems.

• PCB needs to be designed to

maintain signal integrity.

• Voltage noise causes timing jitter due

to limited slew rates.

• Resolution is limited by bandwidth,

delay and mismatch of signal traces

and devices.

• Cannot be changed after design is

submitted.

Medium

Continued on next page
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Table 2.1: Table summarising the pros and cons of different hardware platforms. (Continued)

FPGAs

• Can synthesise any digital system

using array of look-up tables and

storage elements.

• Re-programmable to eliminate errors

or change system design.

• Close proximity of elements reduces

signal degradation and impact of

noise.

• Cannot perform any analog

processes.

• Synthesis of a digital system only

matches functionality, delay may

vary between the described system

and synthesised system.

• Limited bandwidth and higher delay

compared to purpose-built system

due to the addition of configurable

routing and configurable logic.

• In most cases, smallest delay limited

by the delay of a logic element, down

to 10 ps.

• Difficult to program.

High

ASICs

• Can implement any electronic

system.

• Smallest delay can be based on

differences between elements or

analog values.

• Custom routing allows for optimal

performance and minimal delays.

• Up-front cost and time to market are

high.

• Minimum order quantities in tens of

thousands.

• Very difficult to design, often

requiring a team multiple months (as

opposed to a single person for other

platforms).

• Cannot be changed after the design

is submitted.

• A single mistake is very costly.

High
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2.2 Hardware Types

2.2.1 CPUs

Central Processing Units (CPUs) are large, high-power processors that command the operation

of a more complex system. They are characterised by their complexity, performance, access to

large quantities of memory (which is often a separate device), and general-purpose interfaces

designed to connect to peripherals (otherwise known as controllers) which communicate with the

outside world.

They are generally non-deterministic, meaning the delay between an event happening and

the system responding is variable. This makes them relatively inappropriate for real-time

applications, and therefore not very useful as TDCs. While their high frequency suggests they

may be able to implement a high-performance counter based TDC, the long and variable delay

between events occurring and the CPU responding massively degrades the precision to the point

where it is not an effective TDC, especially considering the cost of the CPU (as clock speeds

increase, so does both the cost and the non-determinism).

2.2.2 GPUs

Graphics Processing Units (GPUs) are specialised processors designed for the purpose of process-

ing graphics data quickly and efficiently. They are characterised by massive parallelism which

allows large quantities of data to be processed simultaneously, high memory bandwidths and

interface speeds to provide data to the massively parallel core, and lower clock speeds compared

to CPUs (but higher than most other hardware in this section).

While the parallelism may lead the amateur to believe that these devices are a good choice for

TDCs (as each core might be able to perform its own characterisation, and these characterisations

then combined), this is not the case. Any signal input to the device is very quickly synchronised

to the system clock a long time before reaching the highly parallel GPU cores, and so each

core will observe the same signal with no variations between each core. This removes the

measurement diversity required to make multiple measurements valuable, and therefore reduces

the performance to the same as that of a single-core device, which is significantly lower than a
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Figure 2.1: Common example of a CPU in a system. RAM = Random-Access Memory. L1P = Level
1 Program Cache. L1D = Level 1 Data Cache. SB = South Bridge. IO = Input/Output. PCI =
Peripheral Component Interconnect. USB = Universal Serial Bus.

CPU despite GPUs costing significantly more than CPUs.

2.2.3 DSPs

Digital Signal Processors (DSPs) are specialised processors, similar to GPUs, designed to perform

a single task very efficiently. In the case of DSPs, the task they specialise in is Digital Signal

Processing (also DSP), which can generally be expressed as a repetition of multiplications and

additions, operating on some data retrieved from the environment, and producing some data to

be sent to the environment. For this purpose, the design of a DSP is focused around two main

goals: high performance multiplication, addition and looping in the core, as well as efficient data

reception and transmission from outside the processor. To achieve this, many of the hardware

designed to optimise control code in a CPU is discarded in favour of fast multiplication and
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Figure 2.2: Internal layout of a GPU.

addition operating on many elements at once (Single Instruction Multiple Data, SIMD). Focus

is also put on optimising the transfer of data in and out of the CPU, with peripherals known

as Direct Memory Access (DMA) engines used to transfer data in the background, as well as

complex peripherals designed for the purpose of communicating with common Analog-to-Digital

Converters (ADCs), Digital-to-Analog Converters (DACs) and other data sources and sinks.

Similarly to MCUs, DSPs are very predictable and therefore excellent for real-time appli-

cations. As a result, they can also be used as rudimentary counter based TDCs. Unlike MCUs,

DSPs have much higher clock rates (hundreds of megahertz), meaning that, when used in this

mode, they perform significantly better. However, this comes at a significant cost, and so is not

advisable (it is much more efficient to implement a counter in discrete logic). Another option with

a DSP is to use the signal processing capabilities along with significant quantities of data to

infer high-resolution timing. With a high-speed ADC or sufficiently low slew rate, it is possible
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to capture the rising edge of a signal as it is transitioning, rather than after the transition is

complete. If the slew rate is sufficiently slow, it may be possible to capture the transition multiple

times during its rise. The progress through the rising edge of the signal (and therefore the voltage

observed by the ADC) will be proportional to the delay between the start of the signal’s rising

edge and the next clock pulse. Therefore, it is possible to interpolate the exact position of the

start of the rising edge (or any other point on the rising edge) using this quantisation, to a much

higher precision than would be provided by a simple counter. The drawback of this scheme is

the reliance on analog components and a slow signal slew rate, which makes it susceptible to

crosstalk and noise, similar to an analog system.

2.2.4 MCUs

Microcontrollers (MCUs) are very simple processors designed to directly control hardware. They

take input directly from sensors and determine how to correctly drive corresponding actuators.

Typical characteristics of microcontrollers include low clock speeds (tens of megahertz), small

quantities of Random-Access Memory (RAM, tens of kilobytes) and Read-Only Memory (ROM,

hundreds of kilobytes), and direct communication with pins, rather than communicating via a

peripheral as a CPU would. Microcontrollers, due to the lack of hardware complexity, tend to be

very predictable and much easier to tightly control, making them ideal for real-time applications,

where clock speed and memory size allow.

Microcontrollers are common candidates for very low performance TDC designs. Due to

their predictability and low-level control, it is possible to achieve reliable timing results with

appropriate code. However, due to their low clock speed and therefore slow response to external

stimuli, they are not capable of implementing high-performance TDCs. One common technique,

used in low-performance ultrasonic Time-of-Flight (ToF) applications, is to capture the value of

a counter when the ultrasonic signal is emitted (the ‘start’ signal) and then capture the value

of the counter again when the ultrasonic signal reflects back into the transceiver (the ‘stop’

signal). The counter counts up once per clock tick, and therefore the resolution of the TDC is

equal to the system clock period. As this may be in the region of tens of megahertz (16 MHz is a

common clock frequency), the resolution would be in the range of tens of nanoseconds (66.67 ns

48



2.2. HARDWARE TYPES

RAM

Peripheral 1

Peripheral 2

Peripheral 3
M

em
o

ry
 C

o
n

tr
o

lle
r

Controller

Controller

Controller

Accelerator Accelerator Accelerator DMA Engine

L2 Cache

CPU Core CPU Core

CPU Core CPU Core

L1P Cache L1D Cache L1P Cache L1D Cache

L1P Cache L1D CacheL1P Cache L1D Cache

M
em

o
ry

 B
u

s

Memory Bus

DSP

Figure 2.3: Example internal layout of a DSP.

for 16 MHz). Care must be taken when considering how and when the counter is captured: if

there is uncertainty in the delay between toggling a pin on the CPU core and the physical pin

toggling, or if there is uncertainty in the time taken for the CPU to react to a pin toggling (e.g.,

entering an interrupt service routine), this will affect the precision of the conversion. Therefore,

code paths may need to be carefully designed to minimise or eliminate uncertainty and timing

variation to achieve acceptable precisions, depending on the application.

2.2.5 Analog Systems

Analog systems are an exception compared to the other hardware types in this list, as they rely

on the voltage of a signal to contain information rather than just the presence or lack thereof.

Due to this, analog systems often require significantly fewer components than a digital system of

equivalent performance. Therefore, they were ideal choices in the early days of TDC designs as
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each component required a separate Integrated Circuit (IC) which came with an associated cost

and physical area on a circuit board, so keeping component count low was important.

However, for all their gains in reduced component counts, they introduced issues with signal

integrity and noise. Unlike purely digital systems which suffer from near immunity to thermal

and voltage noise, analog systems are very sensitive to noise and this limits their performance

significantly. Voltage noise, thermal noise and leakage all distort the perceived voltage at the

input to an analog component, reducing the precision, linearity, and accuracy of the conversion to a

digital number. To correct for this, it is essential to introduce expensive components with low noise

floors, complex power delivery systems with multi-phase power and lots of smoothing capacitors

with low Equivalent Series Resistance (ESR) for high-frequency operation and employ careful

circuit design to minimise signal crosstalk and thermal fluctuations. All of this increases system

cost and design complexity, so as digital logic has become cheaper per-component (particularly

with multiple components being implemented on a single IC), analog methods have fallen out of

fashion.

Analog systems have seen a miniature revival with Analog Mixed Signal (AMS) and hybrid

digital-analog designs. In these designs, all the analog circuitry is implemented on a single

IC along with the digital circuitry. These designs reduce the Bill of Materials (BoM) and thus

regain some of the losses seen when implementing high-performance analog systems with

discrete components. In addition, the hybrid digital-analog systems do not rely entirely on analog

conversion, but instead use a mix of digital and analog to achieve a higher performance with

fewer components. Often, with these hybrid systems, due to the low resolution of the analog

parts or the inherent matching achieved by having the components close together on the same

integrated circuit, a lot of the issues with component variation and noise are no longer important.

However, due to being near other components and digital logic, crosstalk becomes a much more

significant issue and designs must be carefully planned to minimise crosstalk.

2.2.6 Discrete Logic

Discrete logic is the generic term for connecting multiple single-function Integrated Circuits

(ICs) together to accomplish a more complex goal. For example, one might combine an IC that
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implements an adder with an IC that implements a multi-bit flip-flop (i.e., a register, alternatively

two integrated circuits that implement multi-bit latches) and an IC that generates a clock signal

to implement an accumulator circuit. With one of the inputs on the adder tied to the value of one,

the accumulator becomes a counter implemented in discrete logic, which can then be combined

with more flip-flops to create a TDC. While each IC is inherently simple in its purpose, cascading

and looping these components can accomplish complex tasks, and this is how CPUs, GPUs and

MCUs were built in their early days.

Discrete logic, while simple to implement, has many drawbacks, and so isn’t seen often in

modern systems. The design takes large amounts of space due to the packaging on each IC

(including both the enclosure and the pins), the space required to route signals between ICs and

the power distribution to each IC. It also has performance issues to the relatively low bandwidth

and high delay between pins of individual ICs compared to within a single device. Cost is also a

major drawback, as each IC has significant costs associated with it due to chip packaging and

shipment. As a result, outside of some niche applications, discrete logic is a relic of the past since

it is much more efficient to integrate all the required functionality onto a single chip.

2.2.7 FPGAs

Field-Programmable Gate Arrays (FPGAs) are the mid-point between programmable processors

and custom integrated circuits. Unlike custom integrated circuits, the logic and wires present on

an FPGA are fixed. However, unlike a programmable processor, the purpose of and interconnection

between the logic is not fixed, but instead configurable. Using a layer of SRAM cells which store

configuration bits for the FPGA, the routing is configured to arbitrarily connect logic components

together, and the logic is configured to implement arbitrary binary functions. In addition, an

FPGA will contain state-holding elements such as latches or flip-flops to store data from one cycle

to the next, as well as dedicated clock routing resources that provide balanced delay paths to all

elements on the device, reducing clock skew issues. Finally, the FPGA will include IO components

to take signals in to and out of the chip, as well as ‘IP’ blocks which implement common functions

efficiently.

FPGAs are a common choice for TDC designs. Using the configurable routing and program-
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ming the look-up tables, custom logic can be designed to perform TDC tasks. Common examples

of this include using the carry chains as delay elements and the D-type flip-flops as arbitrators to

capture the state of the delay line. It is common for FPGA designs to quantise with respect to a

system clock since this can be distributed to the flip-flops via the clock tree and clock grid.

2.2.8 ASICs

Application-Specific Integrated Circuit (ASIC) is the general term for fabricating a custom IC to

implement a specific application. Unlike the devices we have seen until now, they are generally

not configurable or programmable outside the intentions of the designer (e.g., clock speed, number

of active inputs, calibration etc.). The benefit of using an ASIC is the flexibility at design-time:

any system that is physically possible in the available area can be implemented on an ASIC and

the low per-unit cost at high volumes. However, the drawbacks are the large upfront cost, design

complexity, long time-to-market, and lack of modifiability after fabrication.

ASICs are very popular platforms for TDC designs due to the lack of restrictions compared

to FPGAs. Analog Mixed Signal (AMS) and hybrid analog-digital designs are only possible

on ASICs, as are some of the more complicated architectures such as Vernier TDCs, Vernier

Rings, Successive Approximation TDCs, Gated Ring Oscillators, Pulse-Shrinking TDCs and

more. Also, ASIC performance is generally a factor of 10 higher than FPGA performance at the

same process node due to the lower load per-cell, more optimised routing, more optimised logic

elements and tighter control over sources of uncertainty such as clock skew. However, in the deep-

sub-nanometre region that modern process nodes occupy, the prohibitively large development

and manufacturing cost of the latest process nodes results in ASIC designs rarely being on

process node parity with FPGA designs. The gap in process node parity between ASIC and FPGA

designs has been swiftly growing as FPGAs can benefit from economies of scale, while ASICs

are restrained by the cost of small production runs. This has resulted in the performance gap

between FPGA designs and ASIC designs narrowing significantly even though the architecture

gap is still present.
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2.3 FPGAs in Detail

2.3.1 FPGA Overview

The goal of an FPGA architecture is to provide a flexible foundation on which a wide range of

digital systems can be built. To accomplish this, it must determine an optimal trade-off between

the flexibility of the architecture and the optimality for common designs. The more flexible

the base architecture, the more types of digital system can be built. However, as elements

become more flexible, they also become less optimal for common designs, resulting in greater

area utilisation, slower clock speeds and higher costs to implement a digital system. Therefore,

the architecture is optimised to perform well for common tasks and provide basic support for

uncommon tasks.

The impact of non-optimal logic elements on area, clock speed and cost often compounds

itself. The lower clock speeds can be solved through heavier pipelining, cascaded and parallel

logic and cycle stealing, but this increases the required area. As the required area increases,

the latency of routing signals around the design increases, thereby reducing clock speed again.

Also, as the area increases, the cost of the FPGA increases, both in terms of running cost (energy

consumption) and initial cost (purchase of a sufficiently large FPGA). This is the reason why

Chapter 4 will investigate DSP blocks, as they are more heavily optimised and therefore can

reduce area, increase clock speeds and reduce costs.

The architecture of the FPGA can be roughly divided into three aspects: the configurable logic

which implements individual binary functions, the configurable routing which connects multiple

binary functions together to produce a digital system, and the configurable peripherals which

allow the digital system to communicate with the environment. All of these are configured via a

layer of SRAM cells which enable and disable connections in the routing, compose the truth table

of the logic and control voltages at the pins.

The configurable logic can similarly be broken down into three main components: the Look-Up

Tables (LUTs) which generate arbitrary binary functions on parallel inputs, the carry logic which

optimises the passing of signals between adjacent bits, and the storage elements which store the

results for use on the next logic cycle. The carry logic is not necessary in a logic block, but due to
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the prevalence of binary functions that are defined relative to adjacent bits, operation without

the carry block would result in significantly worse performance.

2.3.2 FPGA Building Blocks

2.3.2.1 LUT

The implementation of a LUT is often designed as a tree of multiplexers (MUXes) attached to a

small SRAM memory and the input signals. The input signals attach to the select inputs of the

MUX tree, and the SRAM memory is attached to the data inputs. When the input to the LUT

changes, the MUX tree selects a different bit from the SRAM to forward to the output of the

LUT. By changing the data stored in the SRAM, the logic function of the LUT can be changed by

outputting a different bit for a particular combination of inputs.

For example, a LUT2 has four different possible combinations for its inputs, meaning the

SRAM must contain four bits (one bit per possible input combination). There will be two layers in

the MUX tree, with the first layer consisting of two MUXes with their select input attached to

the first input bit (I0) and their data input bits attached to the four SRAM outputs. The second

layer will contain a single MUX, with the select input connected to the second input bit (I1) and

the data inputs connected to the outputs of the first layer of MUXes. When I0 changes, each of

the two MUXes in the first layer will switch which of the two SRAM bits they are forwarding to

the second layer, and the second layer will continue to pass one of these two bits to the output.

When I1 changes, the MUX in the second layer will switch which first-layer MUX it is forwarding

the output from. Due to this architecture, it is often the case that the last input bit (I1 in a LUT2,

I5 in a LUT6, etc.) will have the shortest critical path, making it ideal for use on the critical path

of the circuit, while other input bits have longer delays, making them ideal for non-critical paths.

2.3.2.2 Carry Chain

Many operations, such as addition and numerical comparison, result in dependencies between

adjacent bits. In order to implement these very common operations quickly, the carry chain

provides a fast logic path (main carry path) between adjacent bits, rather than using general-
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Figure 2.4: Implementation of a two-input LUT using multiplexers and SRAM cells. The SRAM
cells store the truth table, and the multiplexers select the correct element from the truth table.

purpose routing to loop back to the input of the adjacent LUT. This fast path has been the target

of most FPGA TDC designs in recent years.

The implementation of the carry chain is a relatively simple prospect. The main carry path

consists of one two-input MUX per stage, which selects between a bit generated by the LUT (in

the case of carry generation or deletion) and the carry from the previous stage (in the case of

carry propagation). This minimalistic path allows the carry to propagate through the chain much

faster than by using the switch to loop back to each successive bit, as the carry is always utilising

a dedicated path. As the most common usage of a carry chain is for addition or subtraction, which

also require an eXclusive OR (XOR) between the data and the carry bit to produce an output,

there is also a built-in XOR gate to avoid routing to a LUT in another logic block to implement

the XOR operation. This is all positioned between the LUT and the flip-flops, allowing a single

logic block (or column of logic blocks where the addition has a large number of bits) to implement

an addition and store the result in a register without using any general-purpose routing (switch,

local or global interconnect).
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2.3.2.3 Storage Element

The storage elements are an important component in an FPGA for the device to have memory, to

interface with other systems using synchronous protocols, and to regulate the flow of data through

the device. Without flip-flops, the designer would need to purposefully waste large chip areas to

generate delays to keep data synchronised in the time domain and ensure that all data reaches

its destination in the correct order. As most systems are synchronous systems, with developers

aiming for high clock speeds and deeply pipelined logic or vast state machines, FPGAs include

multiple storage elements in each logic block to provide sufficient granularity and quantities of

storage.

Each storage element normally acts as a D-type Flip-Flop (DFF). As there is a custom

connection to the clock grid to efficiently route the clock signal to the clock input of each DFF, the

result presented by any LUT or carry chain can be quickly and efficiently captured by the nearby

DFF. This trivialises the routing and some of the delay analysis for most systems. If a system

is under-performing, the storage elements can be reconfigured to act as latches, which allows a

technique known as ‘cycle stealing’ to be used to meet difficult timing constraints.

In addition to the individual DFFs present on the device, there are two other types of storage:

distributed RAM and RAM blocks. RAM blocks are custom logic blocks designed to hold larger

quantities of data than the DFFs in the logic blocks. As they are random-access memory, not

all data can be written or read simultaneously, which is a disadvantage compared to the DFFs.

However, they often hold around 32 kbits of memory, compared to DFFs which would store less

than two hundred bits in the same area.

Distributed RAM refers to the use of the configuration memory for the LUTs as a RAM or

shift register. Distributed RAM is much less dense than RAM blocks, with about approximately

5 kbits (20 slices, four LUTs per slice, 64 bits per LUT in Xilinx’s case) in the same area as a

32 kbit RAM block. However, it has much wider data widths due to the shallow memory depth

and is significantly more configurable than RAM blocks due to being implemented on the LUTs.

It is also much faster to read than RAM blocks, as the look-up is asynchronous (although it can

be registered through the DFFs if desired).
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2.3.2.4 DSP Blocks

Due to the increasing complexity of designs targeting FPGAs, as well as the architectures

themselves, it becomes more attractive to introduce more specialised, higher-performance logic to

optimise for very common tasks. As multiplication and addition are the most common operations

performed in a digital system, custom logic which directly implements these two tasks is beneficial

in larger FPGAs. Therefore, most FPGA manufacturers have introduced Digital Signal Processor

(DSP) blocks on their fabric.

A DSP block operates similarly to a scaled-down version of a DSP’s arithmetic pipeline. The

DSP block contains both a multiplier and an adder, with optional registers between each stage

and configuration bits that can be set to modify the behaviour of the block. Unlike a DSP, it does

not have the control logic to convert instructions into configuration bits or peripherals to interact

with the environment - these matters are left to the FPGA engineer and general-purpose logic.

The general-purpose logic is used to control the configuration of the DSP block, and then the DSP

block processes data quicker and more efficiently than the general-purpose logic.

Considering DSP blocks from both major FPGA manufacturers (Intel, Xilinx), there are

many common design decisions between the two. Both architectures include systolic registers,

a pre-adder, a relatively large multiplier, a post-adder, a loopback path, and dedicated paths

to chain DSP blocks together. These are included in both architectures as they are important

operations for a DSP block. However, where Xilinx makes all its registers systolic for maximum

flexibility, Intel makes only a few registers systolic to maximise clock frequency. This pattern

seems to be reflected across the entire architecture, with Intel optimising more heavily for the

most common designs, while Xilinx focuses more on flexibility and leans on its tools to efficiently

utilise the fabric.

Most DSP blocks can be chained together for the purpose of operating on larger inputs or

implementing filters with a pipeline methodology. DSP block inputs and outputs can pass control

bits and partial results between DSP blocks via dedicated paths to perform larger operations.
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Figure 2.5: Architecture of Intel’s variable-precision DSP blocks [3].

Figure 2.6: Simplified architecture of Xilinx’s DSP48E1 blocks [4].

2.3.2.5 Input/Output Buffers

The input/output buffers (I/O blocks) control the connection between the FPGA fabric and external

pins. When a buffer is set to output, an internal signal will be routed to the buffer’s input, and the

buffer will amplify this signal to the requested logic standard and drive the signal onto the pins.
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Figure 2.7: Detailed architecture of Xilinx’s DSP48E1 blocks [4].

Alternatively, when the buffer is configured as an input, it will act as a comparator, comparing

the voltage at the pin to a reference voltage and then driving a logical one or zero onto the FPGA

fabric. In many cases, a pin must be required to act as both an input and output (for bi-directional

data), in which case the buffer will act in a tri-state mode, with an extra input to toggle between

input and output.

Input and output buffers must be suitably flexible to interface with most other common

integrated circuits without external level-shifting circuitry. However, as the range of supported

voltages and drive strengths increases, so too does the size of the I/O block as well as the

supporting power conditioning circuitry required to achieve the correct voltage and current levels.

Therefore, manufacturers limit the range of supported standards to those that are likely to be

encountered by the FPGA. As a result, interfaces with higher speeds are often only supported at

lower voltages and without tri-state support as most devices capable of high speeds are also low

voltage devices, and tri-state operation is much slower. Comparatively, slow interfaces tend to be

available in a wider variety of voltage standards and with tri-state support.

For very high-speed serial interfaces, a custom block called SERDES (SERialiser/DESerialiser)
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is used. When deserialising, this block samples a high-speed serial signal multiple times per clock

cycle and then outputs these samples as a parallel chunk of data. Similarly, when serialising, the

block takes a chunk of parallel data and outputs all bits sequentially in a single clock cycle. This

allows the high-rate serial interface to be down-converted to a lower-rate parallel interface which

can be processed by the FPGA fabric.

2.3.3 FPGA Architecture

2.3.3.1 Logic Blocks

The design of the logic blocks has seen a gradual increase in complexity as designs and chip sizes

have increased. In the earliest FPGAs, a logic block might consist of one to four Look-Up Tables

(LUTs) each with just two inputs (thus called LUT2), each connected to a latch. Either the direct

output of the LUT or the latch would then be connected through the switch to the routing. As

designs have become more complex, the logic block has increased in size. Modern FPGAs will

often contain four to eight LUTs, each with six inputs (LUT6) and up to two outputs. These LUTs

are then connected to between eight and sixteen Flip-Flops (FFs) which can also be configured as

latches. In addition, there is often an optional carry chain placed between the LUTs and the FFs

to accelerate addition and other multi-bit operations, as well as multiplexers to combine multiple

LUTs into larger LUTs and XOR gates to accelerate addition and subtraction operations.

2.3.3.2 Routing Resources

Design of the routing becomes a very difficult task to manage as FPGA sizes increase. Originally,

FPGAs were descended from CPLDs (Complex Programmable Logic Devices) and were fully

connected, allowing any input to reach any output, and vice-versa. However, as the number of logic

elements increases, the amount of routing in a fully connected scheme increases exponentially.

Therefore, a more efficient method of routing is required. To solve the problem, the principle of

locality is key: as the distance between two elements increases, the probability of needing to

connect them decreases. It is very rare for a single signal to be distributed to the entire design

(except the clock signal, for which we have dedicated routing). Therefore, it is not required to have

sufficient routing to route all signals everywhere else simultaneously. Instead, routing is tiered,
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with more routing available to route signals over short distances, and less routing available to

route signals over long distances. To maximise the locality of the design, it is important to place

related logic elements close together, in a ratio that minimises the need to travel long distances.

For this purpose, FPGA manufacturers decide on a set of logic that covers most applications and

group it together in a logic block, then apply routing between logic blocks.

The routing tiers can generally be grouped into five categories: the dedicated paths, the local

switch, the local interconnect, the global interconnect, and the clock tree. The local switch is the

second tier of routing and is responsible for routing signals from outputs of a logic block to its

inputs, as well as routing signals to and from other tiers of routing. For example, the switch may

receive a signal from the local interconnect, as well as a signal from the output of the attached

logic block, and route these two signals to two different inputs of the logic block, as well as routing

the output signal to the global interconnect.
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Figure 2.8: Routing structure of an FPGA, showing local switch (green), local interconnect
(orange), global interconnect (blue), clock grid (red) and dedicated path (purple) connections.
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The local interconnect is the third tier of routing. The local interconnect is a group of paths

that connect adjacent or semi-adjacent logic blocks together. As these paths do not stretch the

entire length of the device, and thus require less area, significantly more of them are available.

These paths are most commonly used for cascaded or iterative logic, where a signal is passed

from one logic element to the next with very little fanout (fanout: ratio between the quantity of

destinations and strength of the source of a signal). Using the local interconnect and switches

together, a signal can be passed over long distances, but this is very inefficient as the signal must

pass through a large quantity of logic to reach its destination.

The global interconnect is the fourth tier of routing. The global interconnect usually consists

of horizontal and vertical buses spanning the entire length or breadth of the chip, often with

gates at regular intervals to regenerate the signal and allow the bus to be split into multiple

smaller buses. If a signal needs to be transported over a long distance, or connected to multiple

endpoints, it will be connected to one of these buses, and many of the buses may be connected

together to deliver the signal over a wide area. For long-distance routing, these paths are more

efficient than chaining local interconnect, but since they span the entire length of the device,

they require a lot of area and thus are fewer in number. Also, as the connection from the source

to each sink is a direct path on a Manhattan grid, the signal skew can be very large between

different endpoints, so it is not ideal for timing-sensitive signals.

The clock tree is the fifth and final tier of routing. The clock tree is a balanced and heavily

buffered path to all points on the device, minimising signal skew and maximising fanout at

the expense of delay, flexibility, and quantity of paths. A modern FPGA may have only tens

of clock trees, often ten or less per clock region, of which there are several per device. Clock

routing may be split into global clock routing, which distributes a signal to multiple clock regions,

regional clock routing, which distributes a signal to multiple clusters of logic, and local clock

routing, which distributes a clock signal to individual logic elements. The global and regional

clock routing is very carefully balanced, often utilising an H-tree to balance paths. Conversely,

the local clock routing will often utilise a clock grid to reduce the delay and complexity of routing

to each individual element, at the cost of a small quantity of clock skew.

The dedicated paths are the lowest level of routing, and comprise of a large number of very
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short, dedicated wires between logic elements. These paths are often within a logic block, for

example from the output of a Look-Up Table (LUT) to the input of a flip-flop, but may also be

between strictly adjacent logic blocks, for example the connection between the carry out of one

carry chain and the carry in of another carry chain. They only have one or a few possible sources,

and a single possible destination. These are the fastest paths in the device, but also the least

flexible, and so their usage is heavily dependent on the target application.

Some FPGAs have started to utilise stacked integrated circuits to increase logic density per

chip. This gives rise to a new tier of routing - Through-Silicon Vias (TSVs). This tier of routing

very similar to global interconnect, however, global interconnect would best be described as

‘planar interconnect’ in this scheme as it is only able to route within a single plane of the device,

and the TSVs are required to route between layers. As the accuracy of stacking ICs is not as

high as the implanting of metal wires, TSVs require significantly more space than the planar

interconnect and so even less are available, although not to the same extent as the clock trees.

Similarly to the planar interconnect, they do not balance delay, and so skew between layers can

become quite large, often exceeding the length of the clock cycle and requiring buffering.

2.3.3.3 Slice Organisation

Modern FPGAs also vary the logic blocks available to optimise for multiple applications. For

example, some logic blocks may have more FFs, others may have more LUTs, and some will allow

the configuration memory of the LUTs to be chained together to implement a shift register or

distributed RAM. Manufacturers also replace a small subsection of the logic blocks with other

custom logic. Most commonly among these are Digital Signal Processing (DSP) blocks which

implement multiplication, accumulation, shifting, binary operations and pattern detection, RAM

blocks which implement high-density SRAM, clock management blocks which generate and

distribute high-frequency, low-noise, low-skew, and phase-related clock signals to the sequential

elements on the device; and IO blocks which implement high bitrate communications (SERialiser-

DESerialiser, SERDES).

Using Xilinx’s Artix 7 FPGAs as an example, a modern logic block (‘Configurable Logic Block’

or ‘CLB’ in Xilinx terminology) will contain two ‘slices’, each of which contains four LUT6s; a
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four-element carry chain with dedicated paths from the previous logic block and to the next logic

block; some extra custom gates such as two extra layers of multiplexers to combine the four

LUT6s to two LUT7s or a single LUT8 and XOR gates to accelerate addition; and eight FFs which

can also be reconfigured as latches. Xilinx connects each CLB (and thus its two slices) to a switch,

which is then responsible for routing to other logic blocks. Dedicated carry paths operate between

CLBs, so a carry chain in one CLB will connect to the corresponding carry chains in the vertically

adjacent CLBs, with the carry input connected to the CLB below (south of) the current CLB,

and the carry input connected to the CLB above (north of) the current CLB. This, along with

the routing bias which contains more (and shorter) paths to connect the output of the current

CLB to the input of the CLB to the right (east), results in a general preference bit parallelism

to be arranged vertically (with the MSB being north of the LSB) and bit sequentialism to be

arranged horizontally (with a bit to the right being the product of a bit to the left). In a sense,

this is a self-fulfilling prophecy: by designing the routing as such, it encourages designs to follow

this regular approach, and by having designs follow this regular approach, the routing can be

optimised and reduced to just the small amount present. If a design were to intentionally go

against these conventions, it would likely experience poor performance, routing congestion or

even a failure to implement on the device due to a lack of available routing.

In comparison, Intel’s modern logic blocks (Logic Array Blocks, LABs) contain two groups of

five Adaptive Logic Modules (ALMs), with the LAB control placed between the two groups. Carry

signals propagate south through ALMs in a LAB, with an optional dedicated path to the next

LAB. The ALM contains four LUT4 blocks, two carry chain elements (resulting in twenty bits of

carry chain per LAB), four DFFs (not configurable as latches, so no cycle stealing) and some extra

multiplexers to combine the LUT4 blocks into a LUT6 with two outputs. Each ALM has eight

inputs, with various degrees of sharing between LUTs, and two outputs, each of which can take

the value of any of the four LUT4 elements (allowing for a true LUT6 as well as a complementary

LUT6 using the same truth table and two bits to differentiate between the outputs). Similarly to

Xilinx’s LUT elements, the LUTs in Intel’s ALMs can be used as distributed RAM, with a 32x2

(32 deep, 2 wide) memory per ALM, resulting in 32x20 per LAB (compared to 64x8 per CLB).

Intel also has RAM blocks on their fabric, with 20 kbit per block and a data width of up to 40 bits.
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2.4 Conclusion

In this section, we have described the various processor types available to use in a system. We

have evaluated all of these with respect to TDC implementations and found that only FPGAs, and

ASICs are suitable for high performance TDC designs. Analog systems and discrete logic were

suitable for some older systems, but have significant drawbacks in terms of power, repetition rate

or resolution, making them unattractive choices for modern TDCs, and CPUs, GPUs, MCUs and

DSPs are only suitable for low-performance TDC applications such as Ultrasonics and SONAR.

Between FPGAs and ASICs, ASICs have been shown to be much more flexible due to the

wider variety of logic types available, the capability to operate analog components and dynamic

logic and more. However, the cost of ASICs is much higher than FPGAs. ASICs have a much

higher tooling cost (static manufacturing cost), longer time-to-market, more complex development

process and are less readily available than FPGAs. Also, reproduction of results obtained by other

researchers is difficult without having access to the same fabrication facility. Comparatively,

FPGAs are available off-the-shelf, can be developed for and tested relatively rapidly (although

not as rapid as CPUs and MCUs), have a relatively short time-to-market and have a much lower

tooling cost. Therefore, we examined FPGAs in more detail.

We described the main components of an FPGA in depth, with specific attention paid to the

purpose of the components, the design trade-offs which lead to the current architecture and the

applicability of each element to TDC designs. In particular, we observed the different levels of

routing available to forward signals between logic elements and the effect that the routing has on

signals. We also examined the logic elements in depth, describing the purpose of each component

and its applicability to TDCs. Finally, we looked at some of the more specialist blocks such as

DSP block and input/output block, observing their functionality and the role they might play in a

TDC system.

While we have concluded ASICs and FPGAs to be the most appropriate for modern TDC

implementations, a system that requires a TDC will often be required to perform other tasks

such as device control, calibration, data read-out, signal fusion and signal processing. For this

purpose, many different pieces of hardware (e.g., CPU, FPGA and DSP) will often be integrated
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onto a single integrated circuit (IC). Sometimes, this may even result in a change in hardware

choice for the TDC: an ASIC may be optimal for a given task, but an FPGA may be chosen instead

due to integrating a CPU or MCU on the same IC, which can then be used for control without

introducing a second IC and interfacing the two. Similarly, many ASIC based TDCs use FPGAs

to assist with data readout and processing to reduce development time and circuit complexity.
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3.1 Abstract

T
ime-to-digital converters are used for a variety of purposes to collect data from the

environment in which a system operates, and so the study of how to implement them

to required standards and efficiently is an important topic. This chapter looks at the

various methods of time-to-digital conversion available in the literature and compares them

on the aspects of count rate, accuracy, precision, number of channels and logic utilisation. A

truncated version of this review, focusing only on techniques that had not appeared in review

literature, was published in IEEE Transactions on Instrumentation and Measurement as “A

Review of New Time-to-Digital Conversion Techniques” [8]. A more recent review, focusing only

on techniques published in 2020, was presented at NoMeTDC 2020 [9].

3.2 Introduction

Time-to-digital converters (TDCs) play a vital role in almost all computational systems in exis-

tence. From their appearance in Phase-Locked Loops (PLLs), where they measure the difference

between the loop and the reference clock to avoid clock drift, to time-of-flight applications where
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the time between an emission and a reception is measured to discover information about an

object from which a signal is reflected, or the environment through which the signal passes. In

addition, there are also quantum versions of these applications, where the signal is a single

photon, and the PLL or time-of-flight measurement must perform well despite some photons

being lost in-flight. They also make an appearance in medical imaging, as some systems such

as positron emission tomography (PET) and magnetic resonance imaging (MRI) use the time of

flight or absorption time of tissues or substances to form an internal image a complex structure

such as a human body.

To perform these applications efficiently, it is important to choose the correct TDC design to

fit the application. Rarely does a system choose a TDC design from the outset, but rather choose

a performance target and hence decide on the required TDC. This requirement will vary not only

according to said performance requirement, but also according to the underlying technology on

which the TDC is built. If the technology platform is advanced, then it may be possible to use a

less accurate, low logic utilisation TDC, whereas on a more basic platform a more expensive TDC

may be required to hit performance targets. Similarly, in some cases the logic utilisation of the

TDC required to hit performance targets would be so large that it requires the designer move to

a more advanced technology platform to reduce TDC complexity.

Therefore, this section aims to provide an overview of the TDC architectures available, along

with their benefits and drawbacks, to aid the designer in choosing an appropriate TDC to satisfy

their design requirements. It will look at TDCs implemented both on field-programmable gate

arrays (FPGAs) and application-specific integrated circuits (ASICs), which differ vastly in terms

of the resources and flexibility available, both in production and in the field and hence benefit

more or less from various techniques.

The rest of this section will be structured as such: in section 2, various TDC architectures

will be explored, with a subsection dedicated to each TDC design. Section 3 will then compare

the results achieved from the various designs in the literature, while considering the difference

in technology platform. This will lead on to section 4, where the various advantages will be

compared, with section 5 concluding with recommendations on which architectures provide the

best trade-offs. [40, 44–51]
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3.3 TDC Architectures

Table 3.1: Summary of TDC Architectures.

Architecture
Precision
(SSP)

Range Dead Time Area Power

Counter 500 ps > 1 s 1 ns Very Low Low

Delay Line 20 ps 10 ns 5 ns Medium Medium

Looped Delay Line 20 ps > 1 s 5 ns Low Medium

Vernier Delay Line 1 ps 1 ns 100 ns Medium Medium

Vernier Ring 1 ps > 1 s 10 ns Low Medium

Pulse-Shrinking 5 ps 5 ns 100 ns Medium Medium

Looped
Pulse-Shrinking

5 ps > 1 s 10 ns Very Low Medium

Local Passive
Interpolation

3 ps 5 ns 2 ns High High

Stochastic 100 fs 30 ps 50 ps Medium Medium

Successive
Approximation

1 ps 1 ms 10 ns Low Low

Algorithmic 200 ps > 1 s 1 µs Low Low

Gated Ring Oscillator 20 ps > 1 s 100 ps Low Medium

Stochastic Phase
Interpolation

1 ps 2.5 ns 2.5 ns High High

Wave Union < 1 ps 10 ns 10 ns Medium Medium

TAC-ADC 10 ps 1 µs 1 µs Very High Very High

SERDES 100 ps > 1 s 200 ps Low Medium

Time Amplification 1 ps 1 µs 1 ms Very High Very High

3.3.1 Counter TDC

Perhaps the most obvious, and most basic, of TDCs, is the counter TDC. The counter TDC consists

of a simple counter circuit with the signal to count upwards is attached to the system clock. In

this scheme, the value of the counter is captured on the rising edge of the trigger (which may

be synchronised to the system clock), and the difference between two triggers is the difference

between their counter values multiplied by the clock frequency.

This scheme is very efficient in terms of logic utilisation. The counter’s size increases linearly
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with the number of bits (using a ripple counter). Also, additional channels are cheap to implement,

requiring only a single register to store the value of the counter each time.

However, the counter TDC falls behind all other TDCs in terms of accuracy. The clock

frequency rises exponentially with regards to the number of bits, which not only imposes a hard

limit caused by the speed at which the logic will operate, but also a soft limit caused by the power

consumption, which increases linearly with clock speed until the limit of the logic speed, and

then cubic with the clock speed as the voltage must be increased to satisfy timing requirements.

This is expressed in (3.1), where T is the time period to be measured, Tclk is the clock period, N

is the max count of the TDC, B is the number of bits in the TDC, AFF is the area of a flip-flop

(storage element) and AI:O is the average area of a function with I inputs and O outputs (for

example, A3:2 is the average area of a function with 3 inputs and 2 outputs).

However, the counter TDC is used in most TDC applications. In some cases, it is because the

counter TDC is sufficient for the purpose, such as ultrasonic range-finding where an accuracy of

a few centimetres is sufficient. Alternatively, the counter TDC may form part of a multi-stage

system, where the counter is the top level, producing most the range, and within each clock cycle

there is a more accurate time measurement performed by another TDC. The dead time of the

counter TDC is one clock cycle. The linearity is entirely controlled by clock drift and jitter, and

can easily be controlled down to ∼10 ps.

Also, there is a derivation of the counter TDC, which will hence be referred to as a Controlled

Ring Oscillator (CRO) which allows some significant improvement without losing the benefits of

the counter TDC. By creating multiple clocks with a known phase difference, the accuracy can

be increased efficiently for low quantities of clocks. However, as this method is also exponential

in the number of bits, beyond 2-4 bits’ improvement (4-16 phase-shifted clocks) it also becomes

ineffective. It’s logic area utilisation is expressed in (3.2), where Tmin and Amin are the delay and

area of the minimal delay element in the clock divider / phase generator and Nph is the number

of phases in the TDC.

The counter TDC is applicable to all methods of implementation. ASICs pull ahead in terms

of accuracy, as they can be seen to reach tens of GHz clock speeds, resulting in resolutions in the

range of tens or hundreds of picoseconds. FPGAs experience much lower accuracy, generally only
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Figure 3.1: (a) A counter TDC; (b) A multi-phase clock

73



CHAPTER 3. REVIEW

reaching a gigahertz, but also significantly benefit from the reduced area, as most FPGAs will be

designed to efficiently implement counters and adders. Also, they are the only form of TDC that

can be implemented by software on a general-purpose processor, as a general-purpose processor

is capable of both counting and storing the value of a counter.

It is the implementations in general-purpose processors for low-performance applications

that make up most of the sole usage of this type of TDC. As these implementations are generally

devoid of any scientific progress, they are generally unpublished and hence very few papers, if

any, can be found on the sole use of counters as TDCs. On the other hand, almost all TDCs that

will be seen from here on make use of a counter in some way: as a coarse stage in a multi-stage

system, in each phase of an MPC (which may then be the coarse part of a multi-stage system), or

as the low resolution, high range measurement device in a dual-slope TAC-TDC.

N = T
Tclk

B = log2(N)

ACTR = B∗ (AFF + A3:2)

(3.1)

Nph = Tclk

Tmin

AMPC = B∗Nph ∗ (AFF + A3:2)+Nph ∗ Amin

(3.2)

3.3.2 Delay Line TDC

The delay line TDC is perhaps the most used after the counter TDC. This is a very simple

design where the ‘start’ signal propagates through a series of logic elements, and the ‘stop’ signal

captures the state of the delay line at a point in time. As each logic element has an associated

propagation delay, the time between the start and stop signals is represented by the highest

position of a ‘1’ in the delay line.

The delay line TDC suffers from two issues. The accuracy is limited by the smallest repeatable

logic delay in the system, with the only way to increase it being to increase the voltage, up

to a limit, and the number of delay elements needed (hence the logic utilisation) increases

exponentially with the number of bits of range needed.
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As a result, most designs couple the delay line TDC with a counter TDC, with the number of

delay line elements defined by the optimal crossover in resource requirements between increasing

the number of delay line elements and decreasing the clock period of the counter. The utilisation

of a delay line TDC is as in (3.3) and (3.4), where Tmin is the time of the minimal delay element, T

is the total delay to be measured (normally 1 clock period) and N is the number of delay elements.

APE is the area of the priority encoder, Amin is the area of the minimal delay element and Aarb

is the area of an arbiter.

The dead time of the delay line TDC is entirely dependent on the decoding logic, with some

designs being capable of capturing multiple trigger signals per system clock cycle. The linearity

is mainly dependent on variation in the delay elements, both on a local scale (affects DNL) and

on a global scale (affects INL).

There is a derivation of the delay line TDC known as the hierarchical TDC. This TDC

obtains an improvement to the logic utilisation by using many separate delay lines, each one

triggering the next and being half the length of the previous. This allows the hierarchical TDC to

directly output the binary value rather than a priority code (which a delay line outputs), which

requires more memory cells and a priority encoder to convert to binary. The logic utilisation of

the hierarchical TDC is as in (3.5). There is also a version, known henceforth as a differential

DL (DDL), which operates in a differential mode, with the difference between the positive and

negative signals determining between 0 and 1. This method provides better signal integrity,

reduces the effects of NMOS/PMOS mismatch, and mostly avoids metastability, but requires

significantly more area than a standard DL, up to 4x in many cases.

Delay line TDCs are implementable both on ASICs and on FPGAs, as is the case for its

various derivations. ASICs, as always, obtain better performance than FPGAs, however, the

difference is much less than in other methods, as the primitives available on common FPGAs are

close to their ASIC counterparts.

When implemented on ASICs, delay lines can feed their final bin into a phase detector

(PD), which then controls a charge pump (CP) which feeds the gates of some current-starving

transistors, which then current-starve the delay elements in the delay line. By providing a stable

clock at the other input of the PD and the input of the delay line, the delay of the elements can
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Figure 3.2: A delay line. DFF = D-type Flip-Flop.

be automatically adjusted to avoid voltage and temperature variation, and the average delay

of an element will be known to be Tclk/N. These Voltage-Controlled Ring Oscillators (VCROs)

then have their delay line state captured when a start or stop signal enters the system, providing

the delay line functionality while remaining stable over variations in voltage and temperature,

something not possible on FPGAs. Also, as the clock is being sent through the delay line rather

than the start or stop signal, the same delay line can be used for multiple channels if the delay of

the paths to each channel are balanced. This is not possible in an FPGA as the routing is fixed

and generally unbalanced, however, in an ASIC, it is possible to balance the delay of the paths

to each channel (an H tree, generally used in clock distribution, is a good example of a suitable

structure) and hence create multiple channels with very little extra logic utilisation (only 1 more

register required for each channel).

N = T
Tmin

(3.3)

ADL TDC = ADL + APE

= N ∗ (Amin + Aarb)+N ∗ A3:2

(3.4)

AHDL TDC = ADL ∗
(

1
2
+ 1

4
+ ...+ 1

N

)
= N ∗ (Amin + Aarb ∗

log2(N)∑
i=1

(
1
2i

)
≈ N ∗ (Amin + Aarb)

(3.5)

Due to their mediocre performance (as will be seen in comparison to other methods in the

following sections), it is generally rare to see examples of literature with simple delay lines on
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ASIC technologies, with most ASIC designs tending to opt for the slightly more complex, but

better performing, VCROs when aiming for multiple channels or small footprint, and other higher

resolution methods when aiming for performance. On the other hand, FPGA architectures often

have elements ideal for implementing a delay line but very little available to implement other

methods, especially methods that require balanced paths or analog control, such as the VCRO.

For example, [52–56] all present TDCs implemented on FPGAs, and all use the basic form of

delay line to implement their fine time measurement. As a result, they are each limited by the

smallest logic element available in their architecture, with [52] exhibiting the highest resolution

at 17ps due to its use of dedicated carry logic in a Xilinx Virtex-5 FPGA. [55] claims to have a

higher resolution of 6ps, but ultimately confuses resolution with precision, in fact resulting in an

implementation with a 6 ps Single-Shot Precision (SSP) and resolution of 25psp
2

= 17.67ps as per

the standard error of the mean (two samples caused by the ’minimal’ wave union). All of these

papers try to make use of specialised elements to obtain the smallest possible delay, but as these

elements will vary by architecture, the end results vary significantly, with [54] obtaining the

lowest resolution of 400ps on an Altera ACEX 1K.

On the other hand, [57–62] all opted for VCROs, due to their ASIC implementation allowing

for the more advanced architecture and analog control. [60] could have made great use of this

by distributing the result of the VCRO to four channels, with each channel consisting of only a

register to store the state, but instead creates a VCRO for each channel. [59], on the other hand,

uses a combination of the two methods, with a global counter and VCRO used for coarse and

medium timing, while a delay line was used on each channel for fine timing. [63] uses a delay

line despite being an ASIC implementation, however, as the focus of the paper is not on TDCs

but rather on frequency synthesis for Bluetooth, this decision was probably made to save area

and development time rather than to improve the performance of the TDC, which was shown to

be suitable for the application even without temperature and voltage invariance.

3.3.3 Vernier Delay Line

To obtain higher accuracy than can be achieved with a standard delay line, the Vernier delay

line was proposed. The Vernier delay operates using a ‘fast’ and ‘slow’ delay line, where the fast
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delay line is the same speed as a standard delay line, and the slow delay line is slightly slower.

The start signal is sent through the slow delay line which feeds to the D inputs of flip-flops, and

the stop signal sent through the fast delay line, which controls the clock inputs. The stop signal

‘catches up’ with the start signal at a rate equal to the difference between the two logic element

delays. Flip-flops where the start signal arrived first will be ‘1’, whereas elements where the stop

signal arrived first will be ‘0’, thereby generating a priority code.

As can be seen, this scheme does not rely on fast elements, but rather elements with a small

but reliable difference between them. This allows a relatively slow technology to obtain relatively

high accuracy, at the cost of double the logic elements, half of the logic elements no longer being

minimum-sized, and a reduced range for the same number of elements. The area utilisation is

expressed in (3.6), with T1 and T2 being the delays and A1 and A2 being the areas of the two

types of delay elements. T1 < T2.

N = T
T2 −T1

AV DL = N ∗ (A1 + A2 + Aarb)
(3.6)

L = N ∗ (T2 −T1)
Tcnt

AV R = AV DL

L
= Tcnt ∗ (A1 + A2 + Aarb)

T2 −T1

(3.7)

The dead time of the Vernier delay line is dependent on the delay of the slow elements and

the number of elements. Specifically, it is N ×T2. As the range of the VDL is N × (T2 −T1), the

dead time exceeds the range by a factor of T2
T2−T1

. The linearity of the Vernier TDC is dependent

Figure 3.3: A Vernier delay line
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on the matching of adjacent delay elements and the routing, which can generally be controlled

quite well, particularly with non-minimum-width components.

A closely related concept to this is the Vernier ring. The Vernier ring involves a Vernier delay

line where the output is the inversion of the input looped back on itself, and the D flip-flops

replaced with counters. The counters count the number of times the start signal passes them

before the stop signal, and hence the position in an equivalent conventional Vernier delay line

can be calculated. Using this method, the logic utilisation is determined by the speed at which

the counters can operate and the time difference between a fast and slow element. The time

difference multiplied by the number of elements in the ring must meet the timing constraints

(max frequency) of the counters. The area, as expressed in (3.7), is divided by the loop factor L,

which is defined based on the maximum clock period of the counters, Tcnt.

Looped TDC architectures such as the Vernier Ring tend to have improved linearity as the

loop length can be easily calibrated, bringing the calibrated INL to zero every N
L elements. The

dead time is also improved with the Verier ring as the signal only needs to propagate through

a sufficient number of loops to convert the input, plus one more before the propagation can be

halted, compared to the full range in the case of VDLs.

The vast majority ([64–75]) of Vernier implementations occur on ASIC platforms, as the

generation of similar delays with a small, reliable difference is much easier in custom design

due to the ability to individually size transistors. However, some FPGA architectures have

been exploited to employ the Vernier technique, either making use of two differently-clocked

oscillators ([76]) or differences in routing delay ([77]) to provide the time difference. While the

ASIC technologies have been seen to provide much higher resolutions (880fs in [68]) than delay

lines on equivalent process nodes, the FPGA implementations have fallen out of favour as the

routing delay difference between the two paths is often much higher than an individual element’s

delay in modern FPGAs, resulting in standard delay lines emerging the superior implementation

(the highest achieved resolution was 27ps in [76] as opposed to the 17ps seen in [52]). Also worthy

of note is [78], which uses the vernier method on an FPGA to create a Digital-to-Time Converter

(DTC), the inverse of a TDC, using the PLLs on Altera and Xilinx FPGAs, achieving a 1.58ps

resolution on Altera Stratix III FPGAs. If this could be inverted to create a TDC, then this
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methodology would make a significant leap forward in FPGA TDCs, however, the PLLs cannot be

easily started and stopped, which would be required to synchronise them to the input signals. It

is noted that [76] is worthy of a revisit as FPGA technology has significantly advanced since this

paper, and hence a higher resolution may be able to be achieved.

As for specific implementation details worthy of note, [64, 68] make use of PLL components

such as PDs and CPs to ensure the stability of the fast and slow delay lines with respect to

temperature and voltage variations, as well as to adjust them to obtain the finest-possible delay

difference between them. However, this requires two clocks with a very small frequency difference,

which is not easy to obtain. [65, 66, 75] all make use of multi-dimensional schemes to reduce the

conversion time and area, with [65, 66] triggering a large number of vernier oscillators using the

outputs of a standard delay line, while [75] performs comparisons between multiple miss-aligned

elements in the vernier line to quickly achieve long delays without long vernier lines or dead

times. [70] is probably the most interesting as it shows a method of using a single looped vernier

delay line as the second level of a system, triggered by the residue (in comparison to the other

methods mentioned, which connect an individual vernier oscillator or delay line to each tap of

the higher level).

3.3.4 Pulse-shrinking TDC

Pulse shrinking TDCs operate by converting the start and stop signals into a single pulse-width

encoded signal, which is then passed through pulse-shrinking elements until it becomes too

small to be measured. The number of elements that it appears at, then, is proportional to the

width of the pulse and hence the time difference between the start and stop signals. As this

method does not rely on delay elements, it can achieve time resolutions smaller than that of the

smallest delay element. However, the time taken to convert the pulse is often quite long as the

size mismatches between the elements (required for the pulse shrinking) result in relatively long

delays between each shrinking element. The area utilisation is expressed in (3.8), where APSE

is the area of a pulse-shrinking element, comprised of a minimum-sized inverter (A inv) and an

unbalanced inverter (Aub). The number of elements is inversely proportional to the shrinking

time Tshr, which is the difference between the widths of the signal before and after encountering
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the pulse-shrinking element.

Pulse-shrinking TDCs have a long dead time similar to VDLs as the delay of a pulse-shrinking

element is much greater than the quantity the pulse is shrunk by. This results in high accuracy

but long dead times, equal to N ×Ts, where Ts is the delay of the pulse-shrinking element.

Linearity is dependent on the precision of Tshr, the difference between the pulse width before and

after the element. This can be made more accurate by using non-minimum-width components to

reduce variation.

There is also a slight variation on this design where the pulse is passed through the same

pulse-shrinking element multiple times over, and a counter is used to determine the number of

times the pulse passes before becoming immeasurable. This alteration significantly decreases

area utilisation, especially in the case of TDCs with a large number of bits (high range), but will

often require a reduction in the count speed as the counter will not operate at the same rate as

the pulse shrinker so extra delay elements are added. To solve this, some designs use a fixed

number of pulse shrinkers in a loop (similar to a vernier ring), each connected to a counter (or

just the final one connected to a counter), to achieve the maximum count rate while still retaining

the excellent area scaling exhibited by the simple looped version.

N = T
Tshr

= T
Wa −Wb

APS = N ∗ APSE + APE = N ∗ (A inv + Aub)+N ∗ A3:2

(3.8)

In current literature, [79] is one of the few examples of a non-cyclic system, although it does

make an attempt at reducing the area requirements using row and column decoders to reduce

the detection logic. However, most systems make use of a cyclic system, with [80–82] using a

Pulse Shrinking
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Start
Stop
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T-nTs

Figure 3.4: A pulse shrinking TDC
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single pulse-shrinking element per stage, which obtains the highest linearity (only one element)

but results in lower count rates due to the addition of a normal delay line to compensate for the

maximum rate of the counter, whereas [83–86] use multiple pulse shrinking elements to obtain

higher count rates at the expense of some linearity. The highest resolution was 6ps, as reported

by [84], but it can be seen that this fails to exceed the resolutions achieved by other sub-bin

methods such as the VDL. As a result of the aforementioned drawbacks, this method is rarely

used.

3.3.5 Local Passive Interpolation

The Local Passive Interpolation (LPI) TDC replaces the delay elements with differential delay

elements, with a feedback path consisting of equal-valued resistors leading back to the same-

polarity input. The resistors act as a voltage divider between the input and output, and as the

output will be retarded with respect to the input, the nodes between the resistors will cross the

threshold voltage at different times, therefore decimating the time below that of a single delay

element. The output of this scheme is a differential signal which could be captured by a sense

amplifier flip-flop or a standard S-R latch, depending on the metastability requirements of the

system.

In the ideal case this scheme requires 2N resistors to provide a N-bit resolution increase, and

in the absence of noise, this would be the case, as the differential mode of operation compensates

for component mismatching due to local process variations. However, due to the thermal noise,

power supply noise and induced noise from the high frequency switching of digital components,

this performance is severely degraded. Also, the logic requirements of this scheme require many

times the area of other schemes due to the cost of creating a differential delay line, as well as

ohmic resistors. The area utilisation is expressed in (3.9), and is composed of some new primitives,

including the area of a differential delay element Admin, the area of a differential arbiter, Adarb,

and the area of an ohmic resistor, Ares. N here represents the number of differential delay

elements, whereas Nres represents the number of resistors per differential delay element.

The DNL of the LPI TDC is mainly based on the matching between the analog components.

When implemented with resistors, which require a large area, the mismatch is generally low and
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so the DNL is small. When implemented with diodes, the mismatch is much higher, resulting in

more variation and higher DNL. The INL is dependent on mismatch between the differential

amplifiers, which is generally low as the components need to be non-minimum-size to drive the

analog sections of the LPI TDC.

N = T
Tdmin

Tmin = Tdmin
Nres

ALPI = N ∗ ALPI Elem + APE

= N ∗ (Tdmin +Nres ∗ (2∗ Ares + Adarb))

+N ∗Nres ∗ A3:2

(3.9)

LPI TDCs are a relatively recent development in the field of TDCs, and as such, most papers

are authored by Henzler et. al. [87–89]. These systems show a LPI TDC with 4x interpolation

achieving a 4.7ps resolution. Kim et. al. [90] also implemented Henzler’s design in 180nm

(compared with 90nm) and achieved 7.84ps resolution, with the multiplexers in Henzler’s design

replaced with tri-state inverters to reduce the time delay between coarse stages. This increased

the resolution from 14.3ps, which was achieved using Henzler’s original design.

Figure 3.5: An LPI TDC
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3.3.6 Stochastic TDC

When high accuracy is required without regard for range, a stochastic TDC (STDC) is often

employed, such as in PLLs. These devices already have a good approximation of the time at

which a signal will occur, and only require a small range to identify how far out they are. For this

purpose, the stochastic TDC is a good option. The stochastic TDC utilises the metastable nature

of flip-flops when their inputs change near to their clock edge. The further a signal is retarded

relative to the clock edge, the less likely it is to appear at the output. These statistics can then be

used by employing many flip-flops to estimate the chance of an individual flip-flop showing some

value, and then using this probability to estimate the time difference between the clock edge and

the signal.

While the stochastic TDC can provide extremely accurate timing, it does so at a cost. A single

stochastic TDC is incapable of providing timing estimates outside of the range in which it exhibits

metastability, and so many individual stochastic TDCs offset by delays would have to be used to

be used to provide a larger range. Also, the number of logic elements rises exponentially with

the number of bits of accuracy. Finally, the jitter in the timing measurements is higher than

most other TDCs, being the entire width of the metastability region at most, meaning it may not

always be accurate. As with any unweighted statistical process, the accuracy increases with the

square root of the number of samples (standard error of the mean) and the range is bounded

by the sample minimum and sample maximum. Depending on the process and type of arbiter

used, this will result in a maximum range in the order of tens of picoseconds, and a theoretically

infinite resolution (although this is somewhat limited by the increasing area utilisation), as

expressed in (3.10

The dead time of a stochastic TDC is dependent on the settling time of the flip-flops. This is

generally on the order of tens or hundreds of picoseconds, depending on process node, resulting in

TDCs that can operate at very high speeds. Therefore, decoding the output (population counting

and calibration) tends to be the bottleneck. The linearity of a stochastic TDC is very high in the

center of its available range (due to a large quantity of flip-flops dividing the range finely), but

reduces near the edge of its range (due to relatively fewer flip-flops having extreme blackout

times and thus a more coarsely divided range).

84



3.3. TDC ARCHITECTURES

Tmin = Tsmax −Tsmin

N

ASTDC = N2 ∗ Aarb

(3.10)

In the current literature, there are two main designs of stochastic TDC. The first is the

style used in All-Digital Phase Locked Loops (ADPLLs), where a stochastic TDC is used in

isolation for frequency/phase error tracking [91–98]. As the aim of these systems is to make two

periodic signals align, the limited range seen in these TDCs is not an issue, as over successive

measurements the stochastic TDC will always output the same value (either maximum or

minimum) until the time difference of two signals is within the range of the TDC, at which point

the TDC can then operate in its normal mode, and the two signals will not drift out of phase far

enough to surpass the range of the TDC. In these systems, we see resolutions as high as 20fs in

[95], with ranges in the region of ±15ps in the aforementioned to ±35ps in [92].

The other design seen in current literature is the use of a stochastic TDC as the fine stage of a

multi-level TDC [99]. As the range of black-out times or metastability period is often in the range

of 1-10 inverter delays, it is often possible to connect a stochastic TDC to each stage of a delay line

to interpolate between the delay line’s time bins. Systems using this method generally exhibit

the high range of a delay line, especially when paired with a counter, as well as a much greater

resolution than can be achieved with a delay line. However, they generally do not have the same

resolution as their purely stochastic counterparts, as to increase the resolution more arbiters

must be added to each stage of the delay line, making a high resolution prohibitively large on-die.

Figure 3.6: A stochastic TDC
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It would be worth looking into a residue-selection system (which occasionally appears in a wide

range of designs) to decouple the stochastic TDC from individual time bins so that one highly

accurate STDC could service the entire delay line.

As a side note, a few designs have been described, such as [100], which claim to be "quasi-

stochastic". These designs, however, are not operating on the traditional stochastic principles,

but rather using bit counting (rather than a priority encoder) to obtain a more reliable edge in

the delay line under metastability conditions. With very high resolutions, some arbiter designs

(particularly D Flip-Flops) will have such long metastability times that it covers tens of bins, and

due to the Gaussian nature of the blackout time, the highest bin number can vary wildly over

many measurements. As a result, the often-used priority encoder is no longer suitable in these

circumstances. Instead, these systems resort to bit counting (also known as population counting

or ones-encoding), as this relies on the number of bits rather than the position of the highest bit.

This is roughly equivalent to sorting the bits to be in-order then applying the priority encoder. As

the number of bits in the metastability region is more reliable than the position of the highest

bit, this increases the precision of the TDC.

3.3.7 Successive Approximation TDC

Successive Approximation TDCs (SA TDCs), named due to their derivation from successive

approximation Analog-to-Digital Converters (ADCs), operate by delaying the start and stop

signals using a variable delay line and comparing which signal exits first, then routing the signal

to propagate through a shorter delay line.

Simple linear SA TDCs are relatively straightforward to implement, as each stage of the

approximation is a fixed delay line with the propagation delay being half that of the previous

stage. However, they subsequently suffer in terms of large area utilisation and poor matching

over the course of the TDC due to local process variations. The delay can be stabilised by applying

bias voltages derived from a delay-locked loop (DLL) that divides the previous stage’s time by

two, but this adds extra complexity, and therefore cost, to the circuit.

The dead time of a successive approximation TDC is slightly longer than its maximum range.

At each stage, either the start or stop signal is delayed by a power-of-two fraction of the maximum
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range, plus some extra delay due to routing and comparison. The sum of all these fractions of the

maximum range adds to give the maximum range itself, while the N copies of the extra delay add

on to extend the dead time slightly further than the maximum range. The linearity is dependent

on the accuracy of the delays. As large delays are easy to make accurate, the INL tends to be low,

but inaccuracies in the generation of small delays result in a fairly high DNL.

Therefore, Cyclic SA TDCs (CSA TDCs) have been proposed where the signal is routed

repeatedly through the same delay element - a Digital-to-Time Converter (DTC), which has its

delay repeatedly halved as the start and stop signals converge. As the same delay elements are

being used each time, the effect of local process variation is much smaller, and for the same range

and precision, only half the delay elements are needed, as per Equations 3.11, 3.12 and 3.13. This

means that the full-scale range of the CSA TDC (without the addition of another level of TDC) is

twice the length of the largest generatable delay (
∑∞

i=0

(
1
2i

)
= 2).

N = T
Tmin

(3.11)

ASA = Amin

(
N
2

+ N
4

+ . . .+ N
N

+ N
N

)
+B (2Amux + Aarb)

= Amin

(
N

N = 2B +
B∑

i=1

(
N
2i

))

+B (2Amux + Aarb)

= N ∗ Amin +B(2Amux + Aarb)

(3.12)

ACSA = ADTC + Aarb + Asel

=
(

N ∗ Amin

2
+ (B−1)Amux

)
+ Aarb + (2Amux +2AOR)

(3.13)

Specifically, Equation 3.11 describes the number of elements N in the DTC as a function of

the full-scale range T and the minimum time resolution Tmin. For simplicity, only a homogeneous

DTC (only one type of delay element) is considered in these equations. Equation 3.12 describes

the area of a linear SA-TDC in terms of the area of a minimum-sized delay element Amin, N as

87



CHAPTER 3. REVIEW

defined in Equation 3.11, the number of bits of resolution B, the area of a multiplexer Amux and

the area of an arbitrator (flip-flop, SR latch, current-sense amplifier etc.) Aarb. It can be seen

that the result includes roughly the same number of elements as a simple delay line TDC, so the

linear SA-TDC only benefits when non-homogeneous elements are used (e.g., by adjusting load

through capacitors).

Equation 3.13 shows the area of a CSA-TDC in terms of the area of a DTC ADTC, the area of

an arbitrator Aarb and the area of a selector Asel . The DTC only needs to cover half the full-scale

range T of the TDC so only needs half the delay elements N
2 , and then must use B−1 multiplexers

to enable or disable sections of the DTC. The selector can be composed of two multiplexers and

two OR gates.

Fig. 3.7 shows the operation of a CSA TDC. The “Arbiter and Selector” block in Fig. 3.7()

chooses to forward either A’ and B or A’ and B’ to its outputs depending on whether A’ or B arrives

first. If A’ arrives before B, this implies that the delay between A and B is longer than the period

of DTCa (Digital to Time Converter ‘a’), therefore it forwards A’ and B to reduce this delay and

then halves the delay for the next cycle. If B arrives before A’, then the delay between A and B

does not exceed DTCa, therefore it forwards A’ and B’, which have the same delay difference as A

and B, so that the delay is maintained for the next round where the delay is once again halved. If

A’ arrives before B, a ‘1’ is output on Tb when B arrives, otherwise a ‘0’ is output on Tb when B

arrives. The A signal can be used to allow double-ended operation (stop before start) or to clear

the state of the arbiter for the next round. The TDC here outputs the code “1011001”, which is a

fractional number with an MSB of 1, resulting in 1+0.25+0.125+0.015625= 1.390625, which is

the closest number below 1.4.

The hierarchical TDC [51] is observably similar to the SA TDC, and in fact can be considered

a less efficient form of the SA TDC, as the next stage is triggered twice, whereas the SA TDC only

triggers the next stage once. Also, as the hierarchical TDC does not choose between the delayed

and non-delayed versions of the signals, some conditional bit flipping is needed on the outputs

which is not needed in the SA TDC.

The asynchronous pipelined TDC demonstrated in [101] is also a form of successive approxi-

mation TDC. However, since the aim is to quantify pulse time (rising edge to falling edge), the
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residue is formed by finding the dead time or overlap between the signal and the delayed version

of the same signal. If the signal overlaps it’s delayed version, then the period of the signal is

longer than the delay, otherwise it is shorter. The residue, which is the quantity by which the

signal overlaps or misses the delayed version, is then quantised by an exponentially shorter delay.

The authors of [101] achieved a resolution of 200 ps due to the dead zone of the residue generator,

which was shown to be 189.7 ps.

Similarly to Local Passive Interpolation (LPI) TDCs (see Henzler [40]), SA TDCs are relatively

new in the current literature, with more than half of the papers published by Mäntyniemi et al.

[102–104]. These papers show a TDC operating at up to 610 fs resolution with a 5 ns range (or

1.21 ps resolution with a 328 us range) using a switched capacitor array (and a Voltage-Controlled

Oscillator (VCO) for the 328 us range) for the Digital-to-Time Converter (DTC), which is explained

in more detail in [105]. Building on this, Chung et al. [106] propose unrolling the SA loop to

increase sample rates. Using 65 nm CMOS (compared with 350 nm in [104]), 80MS/s was achieved,

compared to 5MS/s in [104]. However, due to the inferior switched-capacitor implementation,

[106] only managed a 9.77 ps resolution. [107] presents a technique one might call a linear SA

TDC, in that it linearly increases the delay until the two signals align. However, as it has no signal

recovery, duplication, or residue, it requires multiple samples of the input signal before it can

detect the correct time difference, which is not tolerable in many applications. Also, this system

exhibits a 474 ps resolution, which is well behind even delay line implementations available

in 2016 (17 ps in [107]), when this paper was written. [48, 108] also present a linear (unrolled)

implementation of the SA-TDC, achieving 25 ps and 12.5 ps respectively on 180 nm.

3.3.8 Algorithmic TDC

Algorithmic TDCs, first proposed by Keranen and Kostamovaara in [5] and used again in [109],

are functionally similar to CSA TDCs (see Section 3.3.7). However, at each stage of the successive

approximation, instead of reducing the delay exponentially, it amplifies the residue exponentially

and re-quantises the amplified residue with the same delays.

Keranen’s paper uses a scheme similar to a dual-slope TAC, but instead of increasing and

decreasing the amplitude, it increases the phase of a ring oscillator at two different speeds. The
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Figure 3.7: (a) Block diagram and (b) waveform of a CSA TDC.
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sample conversion based on [5] (residue = 38% of a clock period). Outputs (M, N, M, N, . . . ) are 3,
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number of ‘fast’ oscillations between the start and stop (system clock edge) are counted, and

then the oscillator is switched to its ‘slow’ mode. The time taken for the oscillator to reach a full

oscillation (phase is zero) will be dependent on the quantisation residue of the counter process,

and will be amplified by a ratio of F f ast
Fslow

, where F f ast is the frequency in ‘fast’ mode, and Fslow is

the frequency in ‘slow’ mode.

Fig. 3.8(b) shows the wave trace for an algorithmic TDC. The ring oscillator starts oscillating

at a high frequency (e.g., F f ast = 6×Fclk) when the trigger signal transitions from 0-1 (first

dashed line, red) and oscillates until the next clock edge (second dashed line, blue). At this point

the value of the M counter (which counts ring oscillator periods) is sampled to produce the first

residue. Then, the ring oscillator is switched to a low frequency (e.g., Fslow = 2×Fclk) and the N

counter (which counts whole clock periods) is started. This runs until the ring oscillator wraps

around to Φ= 0 at which point the N counter is sampled to produce the next residue and the

counter is set back to the high frequency. At each stage, the algorithmic TDC is amplifying

and quantising the residue from the previous stage through the change of the ring oscillator’s

frequency. If Fslow were to be slower than Fclk, it would be possible to reach N > 1 and increase

the amplification at each stage, at the expense of longer conversion times.

The dead time of the algorithmic TDC is very high due to requiring several clock cycles to

perform conversion. On stage of the conversion is done per each slow clock cycle, with multiple

stages requried for a relatively high resolution. However, the linearity of the algorithmic TDC

is relatively high, as it is dependent on oscillators, which can be accurate and precise to sub-

picosecond levels if required.

In [109], a second oscillator is started in fast mode while the first is in slow mode to quantise

the amplified residue, and then the first oscillator is used to quantify the second amplified residue

(etc.). On the other hand, in [5], the system clock is used to quantify the amplified residue, and

then a further residue is generated from the time between the oscillator reaching zero phase

and the next system clock edge, which is quantified using the same method as the original pulse

(using the oscillator in fast mode to quantify, then switching to slow mode to amplify).
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3.3.9 Gated Ring Oscillator

Gated Ring Oscillator (GRO) TDCs are similar to the multi-phase clock TDCs mentioned in

3.3.1. However, they use a gated ring oscillator instead of multiple clock phases, which has

the property of maintaining it’s phase between measurements. As a result, a first-order noise-

shaping effect is applied to the quantisation noise, resulting a lower average error. This results in

better performance when multiple measurements are made with the TDC, but does not increase

the accuracy of a single measurement, the so-called single-shot precision (SSP). If Nth order

noise-shaping is required to obtain the required accuracy, then it has been suggested to use N

relaxation oscillators with a digital filter to neutralise the error. The areas expressed in (3.14),

along with an example showing how the accumulated errors eventually wrap around to 0 when

they reach a whole clock phase.

AGRO = AMPC

R0 = 0

T1 = N11 ∗Tclk +N12 ∗Tph +R1

T̄1

Tph
= (N11 ∗Tclk + (N12 +1)∗Tph

−R0)DIV Tph

T1 − T̄1 = (R1 +R0)MOD Tph

T2 = N21 ∗Tclk +N22 ∗Tph +R2

T̄2

Tph
= (N21 ∗Tclk + (N22 +1)∗Tph

− (R1 +R0))DIV Tph

T2 − T̄2 = (R2 +R1 +R0)MOD Tph

(3.14)

The maintained phase is caused by the use of an enable signal, which is high when a start

has occurred but the stop has yet to occur. This signal is used to connect the GRO to the voltage

rails, and hence when the signal is low, the nodes in the GRO maintain their voltage via the

parasitic capacitance at each node. When the enable signal becomes high again, the GRO can

hence start from where it left off. However, as with the LPI TDC, the usage of analog voltages
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in the TDC results in the performance degrading with increased induced noise in the device.

This is significantly worse inside the GRO TDC, as the voltage is being stored in capacitors with

no method to replenish themselves, which effectively integrates the noise over the period that

the enable signal is low. This, along with leakage current through the capacitors, results in a

minimum required count rate to continue working which becomes worse in noisier environments.

The minimum required count rate will often be satisfied in single-particle systems due to dark

counts in the detectors. However, in high-energy and regular time-of-flight applications, this

could pose a significant problem for the system.

The dead time of a gated ring oscillator is effectively zero, as the TDC is immediately ready

to continue oscillating. Therefore, the dead-time will be controlled by the performance of the

decoding logic. In return for this, the gated ring oscillator has a minimum input frequency

required to keep the internal nodes charged and avoid loosing its state (at which point erroneous

measurements may occur). The DNL of a gated ring oscillator is dependent on the local variation

between delay elements, while the INL is generally low due to the looped nature of the device.

Due to the other benefits provided by GROs, most literature is not focused on the absolute

resolution of the GRO, but rather the integrated noise or noise shaping properties [110–112].

However, some systems try to push the boundaries of resolution with GRO-based systems. [113–

115] make use of a multipath ring oscillator instead of a standard ring oscillator to reduce the

time between stages by connecting outputs from multiple stages before to the current stage.

However, they do this at the expense of power consumption due to the increased time the inverters

spend in short circuit mode. Despite this, these systems are attractive as they achieve higher

Figure 3.9: A gated ring oscillator.
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resolutions than their simpler counterparts (6ps compared with the 50ps achieved in [110]),

hence further improving the noise characteristics of the measurement.

[111] is rather unusual in that it uses a relaxation oscillator with a current source as opposed

to a ring oscillator, and hence manages to obtain 6ps resolution without assistance from bypass

schemes. [116, 117], on the other hand, opt to incorporate the vernier technique into their GROs,

resulting in much higher resolutions than normally achievable with a GRO, as low as 5.8ps in

[117].

3.3.10 Stochastic Phase-Interpolation TDC

The Stochastic Phase-Interpolation (SPI) TDC was first introduced by Kim et. al. [100] and then

later analysed in Gammoh. et. al. [118]. In this scheme, multiple delayed versions of the clock

signal are created via a delay line, then gated by the and between start and an inverted stop.

These gated clock signals are then introduced to the clock inputs of D flip-flops with the D input

tied to logical one. During the period where the start signal is high and the stop signal is low, clock

edges arriving at taps in the delay line cause the corresponding D flip-flops to latch a logical one.

Meanwhile, edges that arrive at a tap when start is low or stop is high are gated out, therefore

leaving the D flip-flop at logical zero. The distribution between ones and zeros allows the TDC to

determine the portion of the clock period for which start was high and stop was low, and therefore

the fine time value. If the difference between start and stop was greater than a clock cycle, then

all D flip-flops would output a logical one, therefore showing that the range of this TDC is no

higher than a clock cycle.

This scheme has been described as “PVT-tolerant” as the quantisation does not rely on the

delay of the individual delays of the buffers delaying the clock, but rather the distribution of ones

and zeros. For the linearity of the TDC to be disturbed, it is not sufficient for a single area of

the TDC to suffer from degraded performance. Instead, multiple areas of the TDC, spaced such

that they match the period of the clock signal, must suffer from similarly degraded performance

to adjust the overall distribution of the edges. For example, if all the elements of the delay line

were to suffer from degraded performance due to a temperature increase, then the increase in

element delay would result in each clock edge reaching fewer bins during the active time of the
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TDC, but more clock edges would be present in the delay line due to the increased overall delay.

The increase in clock edges would compensate for the reduction of bins reached by each clock

edge, maintaining linearity and precision.

The dead time of the SPI TDC is dependent on the decoding and reset logic. Once the TDC

has triggered, all the flip-flops must be reset to zero before the TDC can be triggered again. The

logic must read out data before resetting the flip-flops. Therefore, the reset procedure often takes

two clock cycles to complete. Linearity is high due to the stochastic nature of the TDC, relying on

the distribution of ones and zeros rather than one particular delay.

The main drawback of this TDC is the required area. As multiple clock edges must be held

within the delay line to perform quantisation, the length of the delay line must vastly exceed

the clock period. For example, the original paper [100] uses 214 delay elements to achieve a

resolution of 10 bits, creating a redundancy of 214/210 = 16. Similarly, Gammoh’s paper [118] uses

16x redundancy, but with a 10-bit quantisation and 6-bit output (210/26 = 16).

1

Clk

Start Stop

T

0 0 1 1 0 0 0 0 1 1 0 0 0

Figure 3.10: Architecture of a Stochastic Phase Interpolation TDC. The proportion of ones at the
output is dependent on T

Tclk
.
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N = 2B (3.15)

M = 2B+k (3.16)

ASPI = ADL + APC (3.17)

= M∗ (Amin + Aarb)+ M
2

∗ A2:2 + M
4

∗ A4:3 (3.18)

+ M
8

∗ A6:4 + . . .+ M
M

∗ A(2∗(B+k)):(B+k+1) (3.19)

= M∗ (Amin + Aarb)+
B+k∑
i=1

M
2i ∗ A(2∗i):(i+1) (3.20)

3.3.11 Wave Union Launchers

In [1], Wu and Shi propose a method of improving precision past the gate delay: the wave union

TDC. Rather than dispatching one edge per trigger and quantising this edge, the authors suggest

dispatching multiple edges and quantising all of them by a method similar to the gated ring

oscillator (GRO), but without the need for more than one input sample.

The authors suggest two methods for doing this. The first (type A) is to store a wavelet inside

a delay line and release it on incidence of a trigger. When the stop signal occurs, the wavelet is

held in place and quantised. Each edge in the wavelet is individually quantised and the edges

are then combined to give a more accurate measurement of the original trigger position. This is

referred to as an FSR (finite step response) wave union launcher.

Fig. 3.11 shows the design of an FSR wave union TDC. The first M bins are used to store the
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Figure 3.11: Initial section of a wave union launcher using multiplexers (the delay line continues
further).
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FSR pulse and for quantisation, with the remaining N bins being used solely for quantisation. In

[1], M was 16 bins (with the distance between edges in the FSR being 13 bins), while N was 48

(i.e., the delay line was three times the length of the FSR storage).

The second method (type B) is to attach a startable ring oscillator to the front of the delay

line. The trigger signal starts the ring oscillator, which then oscillates for several cycles before

stopping. This is referred to as an ISR (infinite step response). The oscillations happen over

multiple system clock (stop) cycles.

In the type B wave union TDC, shown in Figs. 3.12() and 3.12(a), the period of the oscillator

must not be too similar to the period of the system clock so that the sampling process does not

repeatedly hit the same large bin (as this would result in a large DNL). However, this means that

there will be cases where ring oscillator edges will not be seen once. The authors of [1] identify

three possible cases: U, V and W patterns, corresponding to jumps of zero, one and twwo ring

oscillator periods. The jump type is determined from the output values of the priority encoder:

• For a value in the range 3N/4→ N followed by a value in the range N/4→ N/2, this implies

both signals were the same ring oscillator edge (based on the operation of the priority

encoder) and hence is a case of the U pattern.

• For a value in the range N/4→ N/2 followed by a value in the range 3N/4→ N, this implies

that a ring oscillator edge has been missed, and hence is a case of the W pattern. This will

only happen if the ring oscillator is faster than the clock period (meaning an edge can pass

between two samples).

• All other jumps are classified as V patterns, and are indicative of the standard operation of

the TDC.

The first method can increase the accuracy quite significantly, from 165 ps per bin worst

case and 60 ps per bin average case (in the original TDC), to 65 ps per bin worst case and 30 ps

per bin best case. It does this without significantly increasing the dead time (2.5 ns to 5 ns)

but the decoding complexity increases due to increasing the number of edges to be decoded per

output (although this was performed on a computer in the original paper). The second method

was measured through the RMS error of measuring a fixed time difference and resulted in an
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Figure 3.12: Example of a type B (ISR) wave union launcher. (a) Gate-level implementation; the
NAND gate and first three buffers act as the startable oscillator. (b) Waveform of a type B wave
union launcher where FCLK > FOSC.

improvement from 40 ps to 10 ps for 16 measurements (in comparison to 25 ps RMS for the

FSR method), albeit at an 18 times dead time increase (2.5 ns to 45 ns). This is summarised in
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Table 3.2.

DNL is generally low in wave-union TDCs as smaller bins tend to sub-divide larger bins,

increasing resolution and decreasing non-linearity. INL is generally quite high before calibration

due to differences in bin density at different points in the delay line compounding, but is generally

small after calibration due to the small bins and relatively similar bin sizes. Dead time is slightly

higher than one clock cycle, as this is how long it takes for the edges to leave the delay line ready

for the next trigger signal.

Subsequently, the authors of [55] made use of the wave union TDC and managed a 1.8 times

improvement on the bins inside their Virtex 4 FPGA from 16 ps RMS to 9 ps RMS.

In [119], Hu et al. suggest a Stepped-Up Tree Encoder (SUTE) to efficiently encode the edges

on a Virtex 4 FPGA in the presence of bubbles and the non-thermometer code presented by the

type A wave union TDC. The encoder uses a pre-processing stage capable of removing single-bit

bubbles (e.g., 0000 1011 1111) which encodes the position of the 0→ 1 edge in subgroups of four

bits, plus a flag to determine if the transition occurs in that subgroup and a flag to determine if a

transition happens on the border of subgroups.

The 4-wide grouping suppresses the single-bit bubbles and hence allows the resultant outputs

to be sent to an array of standard priority encoders for encoding via some switching multiplexers

which distribute the edges to the encoders. This ensures that multiple edges can be encoded in a

single clock cycle, and the maximum number of edges is determined by the number of terms in

the FSR (wavelet generator).

3.3.12 TAC-ADC

Other than the purely digital techniques explored so far, there are also some analog techniques

that can be used to achieve the same thing, generally in the form of a time-to-analog converter

Method Mean Bin Worst Bin RMS Error Dead Time
Delay line 60 ps 165 ps 40 ps 2.5 ns
Type A (FSR) 30 ps 65 ps 25 ps 5 ns
Type B (ISR) – – 10 ps 45 ns

Table 3.2: Performance of the wave union TDCs in [1].
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(TAC) paired with an analog-to-digital converter (ADC). This converts the time between the

start and stop signals to an analog signal such as voltage (usually by charging a capacitor), then

converts the analog signal to a digital one using an ADC.

Due to the extensive research done on ADCs, the accuracy is often very high. However, the

cost of the discrete analog components needed to hold the analog signal between the stages is

high, since the signal integrity decreases when miniaturised onto SOI technologies. Also, due to

the time taken to raise and then sample the analog signal, the count rate of these devices is often

much lower (dead time much higher) than all-digital methods. (3.21) expresses the resolution

of the TAC-ADC system, where ENL represents non-linearities in the time-to-voltage transfer

characteristic of the capacitor and current source, such as due to the parasitic inductance of the

system.

INL is generally dependent on the quality and limitations of the components used in the

design, with poor-quality voltage sources and leaky / high ESR (Equivalent Series Resistance)

capacitors leading to high INL, while high-quality current sources and capacitors produce low

INLs. DNL is mainly dependent on the quality of the ADC, with flash ADCs often having poor

DNL and successive approximation ADCs having much better DNL.

To mitigate this, the ADC architecture with the fastest conversion rate, a flash ADC, is

almost always employed. However, the area utilisation of the flash ADC is exponential in the

number of bits B, as shown in (3.22). Also, compared to other TDCs, most of the the equation

has been multiplied by the technology scaling factor S to account for the fact it does not shrink

with technology improvements as digital methods do (and hence gets comparatively worse as

technology scales). In the equation, ADCAP represents a capacitor for digital purposes (i.e., one

that is allowed to scale with technology improvements), ACSRC represents a current source for

digital purposes, and ACMP represents a comparator for digital purposes.

101



CHAPTER 3. REVIEW

Tmin = Tclk ∗
(

1
2B +ENL

)
(3.21)

AT AC = AADC + AACAP + AACSRC

= 2B ∗ (S∗ ACMP + AFF + A3:2)

+S∗ (ADCAP + ACSRC)

(3.22)

The TAC-ADC combination mainly appears in older literature, and regularly exceeds all

other methods available at that time in area and precision. As digital logic scaled, the difference

between TAC-ADC methods and digital methods lessened, until eventually digital elements

overtook the resolution of TAC-ADCs, which rarely improve in precision. For example, [120]

was written in 1988, well before other digital methods even reached sub-nanosecond timing, yet

managed 10ps timing resolution. However, the resolution achieved was highly dependent on

the quality of analog components used, with [121–124] achieving resolutions between 10ps and

312.5ps, as well as count rates between 100KHz and 100MHz. Also, it can be seen by comparing

the count rate and speed for various implementations that the count rate generally increases as

the resolution decreases, since higher resolution ADCs either need significantly more area than

a low-resolution counterpart, or they need to apply another conversion technique with higher

resolution, but slower operation.

Figure 3.13: A TAC-ADC combination acting as a TDC. The integrator could be replaced with
any other design.
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3.3.13 SERDES TDC

When operating on an FPGA, serialiser deserialiser (SERDES) blocks can be used to create

uniform delay elements to form high resolution fine time interpolation TDCs. SERDES are

generally used in high-speed communication applications where the input/output (I/O) channels

are limited. The transmitter’s parallel input is serialised using a high-speed clock. At the receiver,

the data is deserialised to the original parallel format. In other words, SERDES blocks have

lower data rates at the input, they conduct the transmission at a faster clock frequency and have

the lower data rate again at the output. As a result, the I/O required for the transmission is

minimised and no data is lost during transmission due to the faster data rate. Modern FPGAs

offer SERDES blocks which can provide 10 times clock multiplication and so 10 times faster

serialisation. Since SERDES blocks are uniform chains of shift registers which are synchronised

with a high-speed clock throughout the transmission, they provide high resolution fine time

quantisation. As described in [125], a SERDES based 96-channel TDC was implemented on two

Altera Stratix EP1S30F780C6 FPGAs which achieved a 1.2 ns resolution.

Due to the constantly-converting design of the SERDES TDC, the dead time is effectively

zero (limited by the decoding logic and resolution). The INL is also low, being dependent on the

quality of the input clock, which can be improved to sub-picosecond accuracy if needed. However,

the DNL may be fairly high due to inaccuracies in generating the derivative (bit) clocks from the

input clock.

3.3.14 Time Amplification

To increase the accuracy of the TDC, some have proposed using time amplifiers (TAs) to multiply

the time domain signal, measure the multiplied signal, and then divide by the gain of the TA.

This way, the accuracy is multiplied by the TA’s gain, however, it also introduces a relatively

large dead time where the detector is not able to detect a signal on the same channel due to the

previous signal is in the process of being amplified or measured, resulting in a lower count rate

and missed counts. Also, the range which can be obtained from this level of the TDC is divided by

the TA’s gain. These effects are represented in (3.23), where GT is the gain of the TA, Tunamp is

the resolution of the TDC when unamplified, and T1 to T4 are the start, stop, amplified start and
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Figure 3.14: A SERDES TDC with 4 x interpolation. Φ is the phase of the clock signal from 0 to
2π.

amplified stop signals respectively. The range, N ∗Tmin, is hence going to be smaller than the

range of the unamplified TDC, N ∗Tunamp, while the resolution is ’higher’ (lower valued).

TAs are generally designed in one of two ways: either they exploit metastability in a system

to amplify the time difference, or they use an analog dual-slope design. The metastability method,

which puts some logic into a metastable state and then quantises the time taken to settle, is

limited in range to the metastability time of the components. This can be increased by lowering

the speed of the components (by increasing the length of the transistors), but this increases area.

Dual-slope systems convert the time difference into an analog voltage, and then convert this

analog voltage back into time, but with a different gain factor (GATC = k∗GT AC). The time

of either the entire process or just the falling slope is quantised to obtain the time. Dual-slope

methods suffer from the same drawbacks as TAC-ADCs: Bad scaling with process technology and

slow conversion times.

The use of time amplification generally increases dead time, as the period to be converted is

longer and the number of elements to convert it must also increase. DNL generally decreases due

to the residue of large bins being broken down by the time amplifier and re-converted, while INL

tends to suffer due to inaccuracies in the amplification process.
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Figure 3.15: A dual-slope time amplifier.

T2 −T1 <= N ∗Tmin

T4 −T3 <= N ∗Tunamp

T4 −T3 = (T2 −T1)∗GT

Tmin = Tunamp/GT

N ∗Tmin = N ∗Tunamp/GT

(3.23)

Usage of metastable TAs is generally split into two areas: small time delays that need to

be recorded extremely precisely, and as a component in a multi-level system. The systems that

need to measure small time delays usually directly amplify the input signal, then measure with

a suitably high precision TDC (such as a DL or VDL) [126]. As the range is bounded by the

metastability time, it is possible to employ relatively inefficient methods (in terms of scaling in

number of bits) at this stage to obtain higher accuracies. On the other hand, the systems that

need to measure long time delays will generally produce a "residue" - the difference between the

measured time value (for example, 14ps in a 1ps resolution system) and the actual time value

(for example, 14.47ps). This residue (0.47ps in the example) is then amplified to a much higher

value (for example, 18.8ps under a 40x amplification) and measured again, possibly using a more

accurate TDC than the one that generated the residue (for example, a DL generates the residue

while a VDL consumes the amplified residue) [127–129].

A few systems [130–132] take this a step further and repeatedly amplify the time residue,

either applying this to a 1-bit TDC to compare the time difference to a known quantity, or

105



CHAPTER 3. REVIEW

measuring the time difference at each stage and generating a new residue. As is suggested

by the number of references, the two-stage systems, often called pipeline TDCs, are by far the

most common as the need to measure an extremely small maximum time difference is quite

rare, except in ADPLL applications, which are often served by STDCs or other high-resolution,

short-range TDCs.

As for dual-slope systems, these were most popular at the same time as TAC-ADCs, as

they would often be connected to the enable signal of a simple counter as they charged or

discharged. [133, 134] show modern realisations of a dual-slope TACs, with the one employing a

dual-downwards slope with a capacitor, current source, and comparator, while the other employs

a scheme where multiple parasitic (gate) capacitors are charged or discharged in a delay line,

with the progression of a signal through the delay line being measured. Such a system may be

considered similar to a gated ring oscillator in terms of its operation. However, it doesn’t exhibit

noise shaping properties, and hence it is not useful to classify it as one. The more traditional

implementations, such as [135, 136], have fallen out of favour due to increased component

mismatch making current sources, and hence linear transfer characteristics, harder to achieve as

the process node shrinks.

In terms of resolution, the highest achieved was 630fs in [132], which also achieved a range

of 1.3ns. This was most likely due to the repeated use of time amplifiers to amplify the residue

at each stage, using an architecture similar to a linear SA-TDC. Despite the possibility of the

pipeline TDCs achieving a much longer range that 1.3ns, none decided to do so, either because the

range was unneeded or because the area efficiency (when a TA is connected to each intermediate

output stage) is too bad to create more that approximately 10 bits of resolution.

3.4 Performance

Discussion of various architectures’ merits and demerits is, unfortunately, insufficient to make

a decision on which architecture is best for a particular use case. Hence, this section analyses

a portion of TDCs available in current literature, showing the achieved performance in each

case as well as the architecture and process technology used. Table 3.3 displays key performance
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metrics from many recent (last 20 years) papers on time-to-digital converters. The table is sorted

by resolution, as this is arguably the most important metric for a TDC, but it also includes

information on process technology, integral and differential non-linearity, single-shot precision,

number of bits and range, number of channels, and the architecture used.

Not all information can be expressed in such a table, and so exceptions worthy of note are

as follows: [74], [136] and [123] are the only papers in the table that do not use CMOS, using

an unspecified FPGA, a 0.8µm BiCMOS process and an unspecified ECL process respectively.

[59], [146] and [110] are unique in that they also integrate arrays of single-photon avalanche

photodiode (SPAD) pixels on the same chip, with either a one-to-one or one-to-many matching

between TDC and SPAD, thereby incorporating an entire depth-mapping system onto a single

chip.

[79], [143] and [140] are also worthy of mention, as they use multi-dimensional schemes

to reduce area requirements. The former arranges it’s pulse-shrinking elements into a two-

dimensional grid, with row and column decoders being used to ascertain the position at which

the pulse was extinguished, and the latter two employ a scheme of splitting their delays into a

sequential set (e.g., 1, 2, ..., 8) which operates on each column, and a sparse set (e.g., 1, 9, 17, ...)

which operates on the rows, with the arbiters comparing the two delayed signals to each other, as

opposed to a delayed signal against an undelayed signal. Finally, the usage of switched capacitor

arrays in [104] and [102] and resistive dividers in [87] and [89] shows how analog components

can be used to great effect while still exhibiting technology scaling improvements.

3.5 Architecture Comparison

It can be seen from Table 3.3 that main trade-off many designs make is between conversion

time, resolution, and range. Stochastic and metastable time amplifier systems are both similar in

that they sacrifice their range to increase their resolution and conversion rate. This makes them

excellent for systems that have events happening very quickly (such as short-range time-of-flight

(ToF)) or close to a known reference (such as frequency synthesis), but makes them bad for

applications that require a large dynamic range, such as long-range ToF systems. However, due
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Method Technology* Resolution (ps) DNL (LSB) INL (LSB) SSP (LSB) Channels Ref

Algo TDC 350 0.61 ±0.4 ±4.5 ±1.2 1 [109]

CSA-TDC + Counter 350 0.61 N/A N/A N/A 1 [104]

STDC 130 0.7 ±1.4 ±2.4 N/A 1 [92]

Branching CRO 65 0.85 ±0.27 ±2.94 1 1 [137]

TAC-ADC N/A 1 N/A ±10 1 1 [138]

CSA-TDC + Counter 350 1.2 N/A ±6.67 3 1 [102]

DL + TA + DL 90 1.25 ±0.8 ±3 1 1 [127]

Algo TDC 350 2 N/A ±1.25 ±0.15 1 [5]

Looped LPI-TDC 90 4.7 ±0.6 ±1.2 0.7 1 [87]

Looped LPI-TDC 90 4.7 ±0.5 ±1.0 N/A 1 [89]

Wave Union A FPGA 6 N/A N/A 1 48 [55]

GRO 130 6 N/A N/A N/A 1 [115]

VDL + DL + Counter 180 10 N/A N/A N/A 1 [70]

Wave Union B FPGA 10 N/A N/A 1 8 [1]

TAC-ADC + Counter ECL 10 N/A ±2 1.5 1 [123]

TA + DL 180 11.25 N/A N/A 1.33 1 [139]

Flash (2D) + CRO + Counter 350 12.2 N/A ±0.41 0.66 1 [140]

Vernier SA-TDC 180 12.5 ±0.4 ±0.4 N/A 1 [48]

Looped PS 800 20 ±0.5 N/A 1 1 [82]

TA + SA-TDC 90 20 N/A N/A N/A 8 [141]

DDL + Counter 90 21 ±0.7 ±0.7 N/A 1 [142]

VDL + CRO + Counter 350 24 ±0.55 ±1.5 N/A 1 [72]

Flash (2D) + CRO + Counter 600 30 N/A ±1.33 32 1 [143]

VDL 700 30 N/A ±1.0 0.2 1 [64]

Hierarchical TDC 90 31.25 N/A N/A N/A 1 [144]

Dual-Slope TAC + Counter 800 32 N/A ±0.16 0.94 1 [136]

DL + Counter 130 40 N/A N/A N/A 1 [63]

CSA-TDC + CRO + Counter 350 42 N/A N/A N/A 1 [50]

GRO 130 45 N/A N/A N/A 1 [145]

CRO + Counter 130 50 ±0.5 ±2.4 N/A 1024 [110]

PS (2D Array) 800 50 N/A ±3.5 N/A 1 [79]

CRO + Counter 130 55 ±0.3 ±2.5 N/A 20480 [146]

Wave Union A FPGA 60 +1.17 ±1.08 0.42 1 [1]

CRO + Counter 180 61 ±0.23 ±0.3 1 24 [61]

VDL + DL + Counter FPGA 75 N/A N/A 0.53 1 [74]

CRO 65 80 N/A N/A N/A 1 [58]

DDL + CRO + Counter 350 97 ±0.09 ±1.89 N/A 32 [59]

TAC-ADC + Counter 500 312.5 ±0.2 ±0.3 0.32 1 [122]

CRO 800 530 ±0.36 ±0.36 N/A 1 [57]

SERDES, 2 chips x 48 channels FPGA 1200 ±0.167 N/A ±0.5 48x2 [125]

Table 3.3: Comparison of TDCs in the current literature
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to their high count rate and resolution, they are also useful as the lowest level in a multi-level

system, where they provide the least significant bits while leaving the more significant bits to

other methods.

Vernier, pulse-shrinking, dual-slope time amplifier and, to a lesser extent, successive ap-

proximation systems instead decide to sacrifice conversion rates and area for better range and

resolution. This is excellent for systems with a low repetition rate or where the repetition rate

can be controlled (such as long-range ToF), but inadequate when a high repetition rate (such as

short-range ToF or quantum key distribution) is required, as often the only option is to employ

an interpolation or pipelining scheme which can massively hurt area efficiency.

Delay line and controllable and gated ring oscillator methods avoid low count rates and low

range, but suffer in terms of resolution, meaning they are often a good choice either as a mid

or upper level of a multi-level TDC, or in the case where the application does not require high

precision, such as for low-rate frequency synthesis, long-distance low-resolution time-of-flight

and quantum key distribution with low dead-count rates. The GRO method can also suffer from

some signal integrity issues in low count rate systems but excels when measuring the same time

period multiple times over due to its first order noise shaping.

TAC-ADCs and local passive interpolation methods perform very well in all three areas but

suffer from signal integrity and area efficiency problems, as well as a lack of technology scaling in

the TAC-ADC’s case. If an LPI TDC were extended to its logical extreme with several resistors in

its potential divider, it could probably achieve much higher resolutions than shown in Table 3.3,

although the area utilisation would increase exponentially due to the number of resistors needed.

Flash TDCs are highly configurable, with high resolutions and ranges available at the expense

of area and conversion time, making them excellent as a mid or low-level section of a system,

although they don’t achieve the same resolutions as stochastic, time amplification, vernier or

local passive interpolation methods.
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3.6 Conclusions and Recommendations

In conclusion, time to digital conversion has developed many approaches over the last two

decades, each of which has its own unique characteristics. When measuring the same signal

many times over, it is worth employing a gated ring oscillator for its first order (and higher

order when multiple GROs are used together) noise shaping. If the conversion rate of the target

system is of little concern, then, depending on area constraints, utilising looped vernier or pulse

shrinking methods is advised, as the analog components in dual-slope systems do not scale well

with technology.

Beyond this, the systems that have been shown to perform best are multi-level systems that

exploit the benefits of multiple architectures while covering the weaknesses with the others. Most

notably, SA-TDCs are delay-element agnostic, meaning they can incorporate a large variety of

delay generation methods to assist in obtaining the correct range and resolution, and output the

residue (the difference between the measured and actual value of the time difference) at each

stage, which can then be passed directly to a higher resolution TDC. It is suggested that, should

a small-enough residue be obtained at the final output of the SA-TDC, either a stochastic or

metastable time amplification method be used to obtain optimal accuracy. Similarly, if a CSA-TDC

were employed, a time amplifier could be switched in as the system approaches the lowest bits to

amplify the time difference and hence reduce the requirements for small delays.

Methods that use traditionally analog components in a way that allows them to scale, such as

local passive interpolation and switched capacitor arrays (as seen in the CSA-TDC papers) allow

for very small time differences typically not seen in digital methods. However, these systems

require careful choice of components and layout to minimise non-linearity and interference from

other components, and often require large areas of the layout (although not as much as other

analog methods). Hence, they are worth consideration if the expertise and design constraints

allow for such an approach.
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DSP BLOCKS AS DELAY GENERATORS

4.1 Abstract

I
n this section, a novel TDC architecture involving DSP blocks on FPGAs is described.

There are three papers related to this section: [10], [11] and [12]. Therfore, this section is

split into an introduction section and three investigation sections, each of which describes

a different stage of our investigation into the DSP blocks.

Section 4.3 describes our initial investigation into the DSP blocks. We observed the properties

of the Xilinx Spartan 6 DSP48A1 blocks when configured as a classic delay line, and ultimately

concludes they are unsuitable for use in isolation due to the high differential non-linearity but

may be suitable as a semi-fine stage of a multi-stage TDC or when combined in an equivalent

coding line. Section 4.4 then moves to the Artix 7 DSP48E1 blocks that will be used for the rest of

the section and shows how we were able to achieve 5.25 ps resolution with four parallel DSP delay

lines and ones-encoders for decoding. Then, Section 4.5 characterises the DSP blocks in more

depth and with respect to temperature, observing that some measures of performance improve

with temperature due to the reduction in the size of the Ultra-Wide Bins (UWBs). Following this,

Chapter 5 will demonstrate the introduction of the wave union technique to a DSP delay line to

achieve comparable resolution to the parallel DSPs with a significant reduction in area. However,
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the very large bubbles along with multiple edges presented a decoding challenge that was solved

with the bubble corrector described in Chapter 6.

Table 4.1: Comparison of DSP and carry chain delay lines.

Technique Device Resource
Resolution
(average)

SSP
Utilisation

(10 ns clock)

Delay Line
Spartan-6

FPGA

6-input
look-up table

(LUT6)
20 ps 25 ps 128 CLBs

Delay Line
Artix-7
FPGA

6-input
look-up table

(LUT6)
15 ps 13.16 ps 170 CLBs

DSP Delay
Line

Spartan-6
FPGA

DSP Block
(DSP48A1)

16.7 ps – 13 DSPs

DSP Delay
Line

Artix-7
FPGA

DSP Block
(DSP48E1)

9.8 ps 52.56 ps 22 DSPs

4x DSP
Delay Line

Artix-7
FPGA

DSP Block
(DSP48E1)

5.25 ps – 74 DSPs

8x DSP
Delay Line

Artix-7
FPGA

DSP Block
(DSP48E1)

3.70 ps – 146 DSPs

4.2 Introduction

4.2.1 Initial Investigation

When looking specifically at FPGA-compatible TDCs, the most common method utilised appears

to be delay lines, as there is almost always some form of delay element available on an FPGA.

Sometimes, an FPGA will have a suitable architecture for implementing a vernier delay line

[147], and sometimes an element can be found which is suitable for pulse shrinking, but this is

dependent on the particular FPGA architecture. Delay lines can be generated in various ways,

such as with the look-up tables (LUTs) configured as buffers, but the highest resolution found so

far appears to be the carry chain [148] made available for addition operations.

As FPGAs are often required to perform addition and subtraction, most vendors implement

carry logic with a fast interconnect between logic blocks [3, 149], as this is commonly the critical

path, and so fast carry logic may drastically increase the speed of the design. The carry logic also
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generally propagates perpendicularly to the rest of the logic interconnects, as this allows parallel

signals which are part of the same number to have similar routes through the FPGA, thereby

increasing the probability of meeting timing requirements. These carry chains are also ideal for

implementing fast delay lines which output a priority code based on the delay between the start

and stop signals.

However, there is another source of fast carry propagation: DSP blocks. Both Intel (formerly

Altera) and Xilinx have DSP blocks on their FPGA fabric to accelerate multiplication and addition

operations even further than is possible on the general-purpose fabric [3, 6]. But despite the

importance of generating high-resolution delays, there are seemingly no reports on the viability

of the FPGA’s built-in DSP block as a delay generator, despite the architecture suggesting that

it is suitable. Therefore, in Section 4.3, we examine the capability of Xilinx’s DSP48A1 blocks,

present on their Spartan 6 series FPGAs, to generate small delays and hence act as a delay line.

If the implementation of delay lines on DSP blocks is successful, it is expected that we can

achieve higher resolutions and precisions compared to carry chains (due to dedicated addition

logic) while using less area (2 DSP blocks for every 10 slices in applicable tiles, which is 2.5x as

dense) and freeing general-purpose logic for other purposes (other system tasks or more delay

lines).

4.2.1.1 Structure

Section 4.3 will be structured as follows: first, there will be a section describing the changes made

to the DSP48E1, how they affect the design, and how the system is configured to obtain delays

from these elements. Then, there will be a section detailing our testing methodology. After that,

there is a section on the results obtained from our tests. Next is a section discussing the results

obtained. Finally, there will be a conclusion section and discussion of further work.

4.2.2 Solving the Non-Linearity

With the introduction of its 7-series FPGAs, Xilinx introduced a new iteration of their DSP48

block, the DSP48E1. In Section 4.4, we examine how the DSP48E1 has changed and what this

means for the generation of high-resolution delays with this block. We also apply multichain
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techniques (Equivalent Coding Line, ECL) to four parallel DSP delay lines to create a higher-

resolution TDC.

The DSP48E1 blocks are a significant upgrade compared to the DSP48A1 blocks seen in

Section 4.3, implementing a pattern recogniser, deeper pipelining, higher clock speeds, SIMD and

2-input logic functions [4]. We once again utilise the post-adder in the DSP as this provides a fast

carry through multiple elements and perform code density tests to determine the feasibility of

using the new DSP blocks as delay generators.

4.2.2.1 Structure

Section 4.4 will be structured as follows: first, there will be a section describing the changes made

to the DSP48E1, how they affect the design, and how the system is configured to obtain delays

from these elements. Then, there will be a section detailing our testing methodology. After that,

there is a section on the results obtained from our tests. Next is a section discussing the results

obtained. Finally, there will be a conclusion section and discussion of further work.

4.2.3 Temperature Characterisation

Characterisation of the temperature dependence of a TDC is vital to the applicability of the

device to real-world scenarios. As events are captured, converted, and output, the TDC core

consumes energy and the power dissipation rises, providing a vector for temperature increases

in the device. In addition, most TDCs will be part of a much larger system, and changes in load

on other parts of the system may cause a rise in chip, board or ambient temperature which

could negatively impact the TDC. This is even more important when events must be captured

at picosecond timing resolution, as even a small change in temperature can result in erroneous

measurements. Therefore, characterisation results that can be used to adjust measurements in

post-processing or inform the need for recalibration of the system are vital.

In Section 4.5, we will be taking a closer look at the DSP delay line, focusing on the character-

isation of the DSP delay line across a wide range of temperatures as well as in-depth analysis of

the Differential Non-Linearity (DNL), Integral Non-Linearity (INL), Single-Shot Precision (SSP),

resolution and channel offset.
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4.2.3.1 Structure

Section 4.5 will be structured as follows: Section 4.5.1 will detail the design of the system, test

setup and characterisation methodology. Section 4.5.2 will then present the characterisation re-

sults and highlight some trends in the data, specifically with regards to temperature. Section 4.5.3

will then present some discussion on the implication of the observed results and Section 4.5.4

will summarise our findings and present some possible avenues for future investigation.

4.2.4 Delay Lines

The basic operation of a delay line (regardless of the architecture and delay element used) is as

follows: a start signal (Fig. 4.1: trigger) enters a cascade of delay elements. Each of these elements

require a time delay (T) for a signal at the input to propagate to the output. By cascading these

delay elements, we can form an array of signals with incrementally increasing delay. These

elements are input to the data input (D) of a discriminator (displayed as Flip-Flops in Fig. 4.1). At

some point after the start signal, a stop signal (Fig. 4.1: clock) causes all discriminators to latch.

If the start signal arrived at the discriminator before the stop signal, then the discriminator will

latch a ‘1’. If the stop signal arrived before the start signal, the discriminator will latch a ‘0’. At

the data outputs (Q) of the discriminators, a thermometer code will therefore be formed, with

each bit in the thermometer code signifying a time increase of T relative to the previous bit. This

thermometer code is then converted to a binary value before being output.

The resolution of a delay line is dependent on the delay of the elements used in its construction.

For example, in a modern FPGA, the CARRY4 elements used in most delay lines have an average

delay of 15 ps (each CARRY4 has four taps and a total delay of 60 ps). Comparatively, a modern

ASIC may have delay elements as small as tens of femtoseconds. However, when the delay of the

elements is non-uniform (due to process variations and uneven loading), the performance and

resolution of the TDC will be degraded compared to the average. Therefore, the equivalent width

(4.1) [37] is a better measure of resolution, and non-linearity numbers such as the Differential

Non-Linearity (DNL) and Integral Non-Linearity (INL) are often quoted.
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Figure 4.1: General operation of a delay line. Output code 1110 is a thermometer code reading
4ns < T0 < 6ns (2 ns LSB). Green: positive ∆Ti (output ‘1’); Red: negative ∆Ti (output ‘0’).
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4.3 Initial Investigation

4.3.1 DSP48A1 Architecture

Almost every DSP algorithm has MAC (Multiply Accumulate) operations. In the Spartan-3A

architecture, the DSP48A slice is available for MAC operations and it has been extended into

the DSP48A1 slice in the Spartan-6 series. In Spartan-6 FPGAs, DSP48A1 slices are organized

as vertical columns along with some additional dedicated logic and routing [6]. One of the

most important features is the ability to cascade a result from one DSP48A1 slice to the next

without the use of general fabric routing. Each DSP48A1 slice contains an 18-bit input pre-

adder followed by an 18 x 18 bit two’s complement multiplier and a 48-bit sign-extended post-

adder/subtracter/accumulator, a function that is widely used in digital signal processing. Fig. 4.2

shows a simplified block diagram of the DSP48A1.
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Figure 4.2: A simplified block diagram of the DSP48A1 [6]

All these arithmetic operations are hard-wired into the silicon at fabrication time. Every

arithmetic function has pipeline registers on its input and output. These registers are very close

to the corresponding function logic and can be bypassed, so arithmetic functions (Combinational

Logic) can directly connect to FPGA fabric. The performance of DSP48A1 is explained in [150].

4.3.2 System Design

4.3.2.1 Generating a delay line inside a DSP48A1

The first task was to attempt to generate a delay line inside a single DSP48A1 block. A delay

line requires a single input that changes from 0 to 1 (or vice-versa), and multiple outputs which

transition successively. Preferably, it would also have unregistered inputs and outputs from

adjacent blocks. For this purpose, we chose the post-adder in the DSP block. The benefit of the

post-adder is the carry in and carry out connections, which can be configured to be unregistered.

Also, it contains the shortest path to the output pins of the DSP48A1. Finally, the P register can

be configured to provide the output discrimination required, thereby reducing the logic utilisation.

To configure the DSP48A1 block, all register bypass MUXes (as shown in Figure 4.3) were

used to bypass their associated registers. The X input to the post-adder was set to use the D:A:B

concatenated input port, which had all 48 bits set to 1, thereby causing the post-adder to carry

any additional non-zero input through the internal carry chain. The Z input was set to use the C

input where Z[0] is connected to the trigger and all other bits are connected to 0. The connection

of C[0] to the trigger allows for the trigger to be input to the DSP carry chain.

When chaining multiple DSP blocks together, only the first DSP block has the Z input con-
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Figure 4.3: The internal architecture of the DSP48A1 block (utilised components only), based on
[6].
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Figure 4.4: Configuration of a single DSP block as a delay generator.

nected to the trigger. All subsequent DSP blocks have their Z inputs connected to zero. However,

whereas the carry input of the first DSP block is always zero, subsequent DSP blocks have their

carry input connected to the carry output of the previous DSP block via the CARRYCASCOUT
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Figure 4.5: Theoretical internal operation of a DSP block as a delay generator, shown per-bit
(carry look-ahead not shown). Bits 0-3 and 44-47 shown.

and CARRYCASCIN ports (CARRYCASCIN of block i is directly connected to CARRYCASCOUT

of block i−1).

4.3.2.2 Placement on the FPGA Fabric

The carry in and carry out are dedicated connections between the DSPs, which are placed

column-wise. By using the device-native blocks in the chosen hardware description language, the

synthesis tool is forced to use adjacent DSP blocks with minimal inter-DSP latency. As a result,

the delay between DSP48A1 blocks is minimised, resulting in optimal differential linearity in the

delay line. A snippet of the instantiation of a DSP48A1 block can be seen below, full details are

available in Xilinx UG615 [151]:
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Figure 4.6: Configuration of a chain of DSP blocks for use as a delay line.

1 carry48: DSP48A1 generic map (

2

3 -- Registers enabled or disabled with 0 or 1.

4 A0REG => 0,

5 A1REG => 0,

6 ...

7 CARRYINSEL => "OPMODE5", -- Carry in mux

8 RSTTYPE => "ASYNC" -- Asynchronous reset signal.

9

10 ) port map (

11

12 -- Output signals
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13 CARRYOUT => carrys(1),

14 P => code(47 downto 0),

15 BCOUT => open,

16 PCOUT => open,

17 CARRYOUTF => open,

18 M => open,

19

20 -- Input signals

21 CLK => clk,

22 A => "00" & X"0000",

23 B => "0" & X"0000" & trigger,

24 C => X"FFFF_FFFF_FFFF",

25 D => "00" & X"0000",

26 CARRYIN => carrys(0),

27 OPMODE => "00001111",

28 PCIN => X"0000_0000_0000",

29

30 -- Clock Enable signals

31 CEA => '0',

32 CEP => '1', -- Clock Enable for P is the only one high.

33 ...

34

35 -- Reset signals

36 RSTA => '0',

37 RSTB => '0',

38 ...

39 );

40
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4.3.2.3 Triggering Logic

To avoid reading out when there is no valid data in the delay line, some triggering logic was

implemented. The trigger was passed through a synchroniser which normalised it to the clock

edge, and then the current value of the trigger was compared to the value of the trigger on the

previous clock cycle. If the trigger is high on the current clock cycle and was low on the previous

clock cycle (rising edge triggered), then this implies a new trigger came in and so there is valid

data in the delay line. This is then used to enable the priority encoder and read-out logic, which

convert the priority code to binary and transmit the binary to a host computer respectively.

QD QDTrigger

QD

[0]
/
N

«

1

/ N

/
N

EN
[N-1]

Figure 4.7: Schematic of triggering logic used in delay line.

To do this, the trigger signal is delayed by multiple clock cycles so that it stays in-line with the

valid conversion as it propagates through the synchronisers and priority encoder, before finally

becoming the enable signal for the read-out logic, which is described in the Section 4.3.2.4.

4.3.2.4 Read-Out Logic

Read-out was performed using the parallel interface provided by the Opal Kelly SDK [152]. This

interface allows 16-bit quantities to be transferred to a host PC using the USB present on Opal

Kelly FPGA carrier boards. As the tags are 10-bit quantities and the coarse count is not required

for code density testing, the upper six bits of each word were set to 0, while the 10-bit bin number

was stored in the lower bits of the word. A 10-bit quantity was required as 20 DSP blocks were

implemented (960 bins) to ensure no tags exceeded the end of the delay line.

The transmitted data was collected by software on the host PC in a comma-separated variable

format, then imported into GNU Octave for analysis. The analysis could have been performed
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on-chip using a histogrammer, but the USB readout was chosen to enhance debugging capabilities

and allow more detailed analysis than is possible on-chip.
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Figure 4.8: Readout logic for the TDC channels implemented with DSP48A1 blocks.

4.3.3 Test Methodology

High-resolution and PVT-stable delay lines and capture registers are required for TDC applica-

tions. As we use the DSP48A1’s post-adder carry propagation logic (48 bits) and the P register

as the capture register, we can expect the delay line’s characteristics to be similar to that of

a carry look-ahead adder (the architecture used in most adders). The carry lookahead logic is

defined by (4.2), where Ci is ith carry output and it is produced by G i = A i.Bi (carry generation)

or Pi = A i ⊕Bi (carry propagation).

Ci =G i +Pi.Ci−1 (4.2)

We model the DSP delay line using the generic model shown in Fig. 4.9. Each buffer here

corresponds to the carry propagation logic between one bit of the adder and the previous bits

of the adder. This allows us to use standard average delay and code density testing methods to

determine the delay of each bit of the adder. In some cases the delay between adjacent bits may

be nominally negative. This is due to carry bypass logic forwarding a bit by multiple stages, and
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so a bit i is being driven by bit i− k, where k > 1. This results in bit i transitioning before bit

i−1, thus the relative delay is negative.

In the average delay tests, we determine the time taken for the start signal to reach the

final time bin (end of the last ’buffer’) as shown in Fig. 4.9. This implies an output code of

0xFFFF...FFFF and the MSB being ’1’. In the code density tests, we determine the propagation

delay of each ’buffer’ by providing random signals in the time domain, uniformly distributed with

respect to the stop signal, and creating a histogram of the priority encoder outputs. In the case

that the stop signal is not equally routed (there are buffers between each bin on the stop line),

the bin size will increase by the delay to the corresponding register and decrease by the delay to

the previous register.

Figure 4.9: Generic model of a delay line.

4.3.3.1 Average Delay Testing

In the average delay test, the post-adder was set up to have all the bits on one of its inputs high,

and all the bits on the other input low except the LSB, which was connected to the trigger signal.

As we are adding one to the maximum representable number, all the bits will roll around to

0 through the carry propagation logic. To determine the average delay, we calculate the time

difference between the LSB and MSB transitioning.

To implement this, we first connected two probes from a 1GHz oscilloscope to adjacent FPGA

outputs (same IOB). These outputs were both connected to the LSB of a DSP block with the
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D:A:B input (through the X-mux) being 0xFFFFFFFFFFFF to enable the carry chain and the C

input (through the Z-mux) being 0 except the LSB, which was the trigger generated by an on-chip

oscillator. The probe delays were then adjusted to tear (align) the signals before re-routing one

output to the MSB of the DSP block, which resulted in an almost identical path while including

the full delay of the DSP. The nets were inspected in the FPGA editor tool to ensure that the

routing of the two signals was matched (close together) and to allow us to re-route or re-constrain

the signals if not.

+

DSP48A1

Input

Reference

Signal

Matched Paths

FPGA

48'hFFFFFFFFFFFF

47'h000000000000 LSB

MSB
X

Z

Figure 4.10: Method to test the average delay of a single DSP48A1 block. 48’hNNNNN: a 48-bit
bus with hexadecimal value NNNNN.

4.3.3.2 Code Density Testing

In addition to the average delay testing, code density testing is an important component in

determining the viability of a delay generation method. Even if the average delay is exceptionally

low, a TDC is unusable unless the non-linearity characteristics are decent. A good parallel to this

is the linearity of an ADC. Even if an ADC can be found to have 20 bits of resolution (well in

excess of most modern ADC designs), this is useless if one bin covers half the range of the ADC

while the other 1048575 cover the other half. In such a case, the effective resolution is at most

two bits. Such an ADC is useful, however, as putting another ADC in parallel but offset in the

voltage domain could allow the two ADCs to efficiently cover the entire voltage range. On the
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other hand, this increases the area requirements. The same can be said for a bad TDC; if the

code density is decent, corrections can be made to cover for its weakness using another TDC in

parallel. We will be using three types of code density test to examine the DSP blocks: a linear

code density test, a cyclic code density test and a subdivided code density test.

Linear Code Density Testing Code density testing is one of many techniques to measure

the linearity of the TDC. The code density test provides random, uniformly distributed signals

to the TDC and stores the conversion results. When provided with a uniformly random signal

(in the time domain), the number of times a particular code will be output by the TDC will be

proportional to the size of the time bin corresponding to that code. A larger time bin (longer delay

until the next storage element) will accumulate more ’hits’ (number of times the corresponding

bin code is output) whereas a smaller time bin will accumulate less hits. Once a suitable number

of hits has been accumulated to obtain an accurate measure of the width of each bin, the size of

time bin i, τi, will be calculated as in (4.3).

τi = Hi ×Tclk

Htotal
(4.3)

Ti =
i∑

j=0

H j ×Tclk

Htotal
(4.4)

In (4.3), Hi is the number of hits for bin i, Htotal is the total number of hits for all bins, and

Tclk is the period of the system clock (which acts as our stop signal, and so the period is the

maximum possible time difference). Similarly, the cumulative form of this equation, Ti, can be

used to determine the delay up to a certain bin (and is hence used for calibration). The uniformly

random pulses were provided to the TDC by an external pulse generator outputting a square

wave at 10 MHz with a 10% duty cycle. Data was read out via USB (University of Bristol) or

serial connection (Quaid-i-Azam University) after encoding and serialisation.

Cyclic Code Density Testing In this test, the post-adder P register is enabled, and two

independent oscillators are used to produce a random phase drift. The first oscillator is similar to

the average delay test and is connected in the same way to generate the first carry. A 1kHz trigger
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signal with a different oscillator is connected to the P pipeline register to capture the carry propa-

gation randomly. In the capture register, invalid codes (0x000000000000 and 0xFFFFFFFFFFFF)

are removed, and the rest of the codes are transferred to a PC via a serial interface.
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Figure 4.11: Diagram of the cyclic code density test.

Subdivided Code Density Testing To eliminate the possibility of carry look-ahead logic

eliminating some bins by forwarding the carry across 24 bins at once, we implemented a method

which simultaneously tests both the lower and upper 24 bits without continuity between them.

In this test, a 10MHz trigger signal was input into a DSP block at positions 0 and 24 through the

C input and Z-mux, while the D:A:B input and X-mux was set to 0x7FFFFF7FFFFF so that the

carries would stop at positions 23 and 47 respectively. The number of cases of each output (23

and 47) being high was recorded on a host PC via a serial connection.

4.3.3.3 Validation

To ensure the results we achieved were accurate, we cross-validated our results across two labs,

designs and pieces of hardware. The first design used linear code density testing on a Spartan-6

LX150 FPGA packaged by Opal Kelly [153] on a custom signal breakout board at the University of

Bristol. The other device, a Spartan-6, used a cyclic code density test at Quaid-i-Azam University.

If our results are to be believed, we expect that the individual bin sizes will not be the same, but

the patterns in bin sizes should match. For example, if there is a recurring pattern every four

bins on one device, we would also expect to see a similar recurring pattern on the other device.
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Figure 4.12: Diagram of the subdivided code density test. The missing bits on the X input disable
some of the carry chain.

If this does not occur, then this suggests that the external components in the design (test input

signal, read-out logic, system clock etc.) are interfering with the measurement and hence the

design can be fixed to remove the effect of these external influences.

4.3.4 Results

4.3.4.1 Average Delay Testing

Under testing, it was found that the delay between the two output signals was 800 ps (Fig. 4.13),

representing the entirety of the DSP delay. As there are 48 bins, this evaluates to a mean bin

width of 16.7 ps, which is significantly better than the 21 ps present in Spartan 6 carry chains. A

similar test was performed, but measuring the time to output bit 23 rather than bit 47. This gave

a relative delay of 400 ps, showing that the total delays in the first and second halves of the DSP

are equal.
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Figure 4.13: Time difference between the two output signals on a 1GHz oscilloscope.

4.3.5 Code Density Testing

Histograms from the code density tests conducted at the University of Bristol and Quaid-i-Azam

University were collected, with the bin widths for a single DSP block shown in Fig. 4.14 and the

calibration graph (cumulative bin widths based on stochastic code density testing) for a large

(960 bin = 20 DSP) delay line shown in Fig. 4.16. The diagrams have been normalised to the

number of hits and the clock period to obtain the delay times of each bin. As the delay is on the

y axis, a large vertical jump (large bin width) is undesirable (low resolution), whereas a small,

non-zero vertical jump is desirable (high resolution). No vertical ascension between bins implies

a lost code, which can be ignored.
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Figure 4.14: A histogram of a 384k-hit cyclic code density test, converted to bin sizes. Results
from the Univeristy of Bristol and Quaid-i-Azam University are shown in parallel.
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Figure 4.15: A histogram of the 384k-hit linear code density test, converted to bin sizes.
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Figure 4.16: The calibration chart obtained from a histogram of a 384k-hit linear code density
test.
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Figure 4.17: The histogram of the subdivided test.
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Figure 4.18: DNL graph for a DSP48A1 delay line.
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Figure 4.19: INL graph for a DSP48A1 delay line.
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4.3.6 Discussion

4.3.6.1 Average Delay Testing

The average delay testing showed that the signals that emerged from the output pins of the

FPGA had a difference of 800 ps between them. This suggests that the average delay of the bins

is 16.7 ps. This is a 20.5% improvement on the CARRY4 chain, presuming that all bins are in use

(non-zero effective width). However, as bins that have a zero effective width do not contribute to

the resolution of the system (they are missing bins), the more missing bins we discover in the

code density test, the lower the effective resolution.

Parameter CARRY4 DSP48A1

Total Delay 80 ps 800 ps

Quantity of Taps 4 48

Average Tap Delay 20 ps 16.7 ps

DNL 2 LSB 15 LSB

INL 22 LSB 23 LSB

Table 4.2: Parameters of CARRY4 and DSP48A1 blocks.

4.3.6.2 Code Density Testing

As can be seen from the code density tests in Figs. 4.14 and 4.16, a single DSP48A1 does not

create effective delay lines. While the average bin size per DSP is small (16.7 ps from the average

delay testing), the bin sizes are very widely skewed, with most bins exhibiting an effective width

of 0 ps (or so small that they could not be measured). Meanwhile, the minority of bins exhibited

large delays in the range of 40-170 ps and the few bins at the boundary of a DSP block exhibited

delays between 200 and 350 ps. As the missing bins (zero effective width) do not contribute to the

resolution of the system, the actual resolution is 34.8 ps with a standard deviation of 51.3 ps.

This is a significantly worse resolution (larger time difference) than has been achieved by the

carry chains ((µ,σ)= (34ps,51ps) compared with (21ps,25ps)). As a result, we can conclude that

these devices are unsuitable for generating high-resolution delays (i.e., acting as the final stage

in a multi-stage TDC) in isolation. However, as they do generate a significant delay, they may be
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useful as a semi-fine stage in a multi-stage TDC, thereby reducing the required length of the fine

delay line (and hence reducing the overall logic utilisation).

Alternatively, multiple DSP blocks could be utilised in a parallel staggered fashion, allowing

delay lines to sub-divide each other in an equivalent coding line. As the resolution increases with

the square root of the number of delay lines, 2.62 (i.e., 3) DSP48A1 delay lines would be needed

to obtain the same resolution as a CARRY4 chain. The rest of this section will be dedicated to

examining the cause of the observed delays.

First, we observe the large bins at multiples of 48 in the linear test. A comparatively large

bin in a structure usually denotes some form of discontinuity in the logic structure, and in this

case the discontinuity is the crossing between DSP48A1 blocks. Each DSP48A1 block provides

48 time bins, and then a carry out which is directly connected to the next DSP block. While this

direct connection is fast compared to most FPGA routes, it is still significantly slower than the

routes inside the DSP block as the signal must travel through three configuration multiplexers

between the post-adders of each DSP block.

Second, we notice that the bins which are a multiple of 96 (even multiples of 48) are larger

than the odd multiples of 48. Unlike the odd multiples, the even multiples of 48 not only need to

propagate between two DSP48A1 blocks, but also across a clocking discontinuity. One in every

four DSP interconnects is on a clock management tile (CMT) boundary, while another is bridging

the CMT’s dedicated clock routing area. These jumps cause the multiples of 96 to have larger

bins than the odd multiples of 48.

Beyond this, we notice that bins which are an odd multiple of 24 are also relatively large.

The available documentation from Xilinx gives no indication as to the cause of this, and so it can

only be presumed that there is some discontinuity in the internal addition logic present in the

DSP48A1. An example of this would be carry look-ahead logic, which in a 48-bit adder would

forward the carry signal to multiples of 24.

Under the split test, we see that the presence of the bins after bin 24 becomes much more

pronounced. This adds credibility to the suggestion that the missing bins are caused by carry

look-ahead logic is bypassing bins to increase adding speed, but at the expense of delay line

differential non-linearity.
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Figure 4.20: A diagram to show how clock routing causes larger delays every 96 bins.

4.3.7 Conclusion

In conclusion, we have found that the post-adder in a DSP48A1 block can be used to generate

delays with an average length of 34.8 ps and a standard deviation of 51.3 ps. This is a lower

accuracy than the competing CARRY4 chain solutions, but this could be remedied by using

multiple staggered DSP48A1 blocks in parallel. The larger delay generated by the DSP48A1

blocks was found to be suitable as a semi-fine delay generation as would be required in a multi-

stage TDC. We discovered this using average delay calculation and code density testing. We also

found that the INL is comparable to a carry chain implementation ∼23 LSB, while the DNL is

significantly worse ∼15 LSB compared to ∼2 LSB.
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4.4 Solving the non-linearity
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Figure 4.21: Block diagram showing the architecture of the parallel system.

4.4.1.1 Singular DSP

As our aim was to turn the 48-bit post-adder in the DSP48E1 into a delay line, we needed to

examine its operation. The post-adder has three major inputs, the 48-bit X, Y and Z multiplexers

(MUXes), as well as 1 minor input (the carry input), one major output (the P output), 1 minor

output (the carry out) and two control inputs, the operation mode and arithmetic logic unit (ALU)

mode. In addition, there are several configuration registers to enable or bypass various pipeline

registers in the DSP48E1.

The operation of the DSP’s post-adder (Fig. 4.22) is to take the outputs of the X, Y and Z mul-

tiplexers (which are fed by external inputs, constants, loopback paths or other logic components
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such as the multiplier) and add them together with the carry in (CIN) to produce a 49-bit output,

with the upper bit being the carry out (COUT) and the lower 48 bits being the P output of the

DSP block. Both the Z input and the P/COUT output can be inverted to enable addition and

subtraction while still retaining carry functionality.

Unlike the DSP48A1, the Y mux has an option to use a hard-coded 48 binary ones as the

input, so we decided to use this rather than manually inputting the same pattern. Similarly, for

the trigger, the DSP48E1 adds to the DSP48A1 by including a dedicated carry input from the

general-purpose FPGA fabric, so we were able to use this for the least-significant DSP’s carry

input and have all DSPs with the X and Z inputting all zeros, again through a hard-wired input

to the mux.

The X, Y and Z multiplexers are configured using the OPMODE configuration input. In the

basic propagating configuration, the Y multiplexer uses bits two and three of OPMODE and is

always configured to forward the value 0xFFFF FFFF FFFF to the post-adder. The X multiplexer

uses bits zero and one of OPMODE and is configured to introduce zero to the post-adder. The Z

multiplexer is set to use zero for a standard delay line. The carry in is connected to the previous

DSP block in most cases, but to the trigger signal (start / stop) in the case of the first DSP.

Once the trigger signal is introduced to the delay line, the edge(s) propagate through the

internals of the DSP, causing bits to swap from zero to one or one to zero. These bits are sent to

the P output, where they are then captured by flip-flops on the FPGA’s general-purpose fabric at

the positive edge of the clock.

As with the DSP48A1, all pipeline registers were disabled except for the P output register. In

the DSP48A1, the carry cascade output was connected to a different register to the P output, so

the P output register could be used as a discriminator while the carry register was bypassed. In

the DSP48E1, the carry output and P output both go through the same register (see Figure 4.22)

so the register must be disabled to allow the carry to propagate to the next DSP asynchronously.

Therefore, external fabric flip-flops were required to register the output.

In some other designs [154] (published after [11]), the carry signal propagates through the

pre-adder cascade (ACIN/ACOUT or BCIN/BCOUT) which allows for the DSP’s P register to be

used. However, we are using the post-adder cascade (CARRYCASCIN/CARRYCASCOUT) in our
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Figure 4.22: DSP add/sub operation, showing the purpose of the ALUMODE[1:0] and OP-
MODE[7:0] inputs, based on [4].

design, which excludes the use of the P register in order to operate an asynchronous carry path

(enabling the P register would interrupt carry propagation with a register synchronised to the

system clock).

4.4.1.2 Multiple DSP and TDC Design

Once we had determined the set-up for a single DSP, we then sequenced 20 of them to be sure

we would cover the whole clock period, resulting in a maximum of 960 bins. These bins were

registered by two levels of flip-flops on nearby FPGA fabric (to eliminate metastability), and then

inverted and consumed by a priority encoder, which determines the most significant position of a

one (a zero before inversion) to see how far the delay propagated. These most significant positions

were then output to a PC via a parallel interface (Digilent’s DPTI) for histogramming.

The DSP blocks in the design were configured with a ’head’ block which accepted an external

carry input and multiple ’tail’ blocks which accepted a carry input via the dedicated routing from
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the previous DSP block. The trigger signal was introduced to the first DSP block as the external

carry signal, while all DSPs were configured to calculate ¬(0xFFFF_FFFF_FFFF + Carry). In

this configuration, the internal adder starts with all the sum bits equal to one, resulting in an

output code of all zeros and an output carry of zero. When the input carry toggles from zero to

one, the internal adder starts propagating the new carry bit up the carry chain, resulting in

all the internal carries transitioning to one and all the sum bits transitioning to zero, thereby

resulting in a successive toggle of output bits from zero to one. Once the carry bit reaches the

Most Significant Bit (MSB) of the adder (which may be before it reaches other intermediate bits),

the carry leaves the DSP and enters the next DSP via dedicated routing. This is demonstrated in

Figure 4.23.

For our delay line of 960 bins (corresponding to 20 DSP blocks of 48 bins each), we need a

10-bit code to fully encode the quantity of ones. This was combined with an eight-bit channel

identification code, a two-bit clock identification code (for synchronising multiple DSP delay lines

when the trigger is near to a clock edge) and a 44-bit coarse counter to produce a 64-bit output

code. This 64-bit output code (produced in the TDC clock domain at 120 MHz, with up to two

channels triggering at once, and up to one trigger per channel every four clock cycles) was then

passed through several serialisation stages to arbitrate between the two channels, serialise the

data stream into bytes, buffer it and switch to a 60 MHz USB clock domain. Once it entered the

60 MHz USB clock domain, it was sent to an attached PC via a USB 2.0 interface (Digilent’s

DPTI) at ∼ 480Mb/s. The data was captured by the PC and post-processed for calibration and

characterisation.

4.4.1.3 Ones-Encoder

Due to the disappointing results of the histogram (multiple missing bins, see Section 5), we

determined that we needed a way to recover these missing bins. The missing bins occur due to

the flip-flop on bin i+1 passing its blackout time before the flip-flop in bin i, meaning the priority

encoder does not pick up the transition of bin i since bin i+1 is already high.

In effect, the priority encoder is discarding the majority of the bins present due to them not

transitioning in-order. Therefore, we switched to an order-invariant encoder (the ones-encoder)
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Figure 4.23: Configuration of multiple DSP blocks as delay generators.

to recover these bins. However, the ones-encoder does not retain edge position information, and

so is not capable of operating when the on-time of the trigger is shorter than the clock period (a

ones-encoder cannot distinguish between 1100 0000 and 0000 0110, both have a value of ‘2’).

As the number of bins that are high is monotonically increasing, we can instead use a ones-

encoder for un-ordered bin detection. With a ones-encoder, even if bin i transitions after bin i+1,

the two transitions will still give two different outputs, separated by a single LSB. With this, we
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other bits; (right) A ones-encoder which encodes the quantity of ones.
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Figure 4.25: A waveform showing how a priority encoder misses some codes while a ones-encoder
retains all codes.

were able to recover the missing bins, although these bins were extremely small.
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4.4.1.4 Parallel Delay Lines

Although the bins were recovered, there was still a significant difference in size between the last

bin in a DSP and the rest. As the sum of the rest of the bins was more than 1/3 of the size of

the large bin (170 ps vs 310 ps), it was possible to sub-divide the large bins by creating multiple

delay lines with fractions of a DSP as an offset, and then summing the results of these delay

lines. As each delay line is monotonically increasing, stepwise, as the time between the trigger

and clock increases, the sum of the delay lines must also monotonically increase, with each delay

line sub-dividing the others’ large bins.

Σtt

tt

t

codecode

codecode

code

Figure 4.26: When multiple delay lines which monotonically increase are combined (outputs
summed), the result also monotonically increases.

Specifically, each delay line has a low-resolution region (the last bin in each DSP) and a

high-resolution region (the intermediate bins) per DSP. The aim is to have at least one of the

parallel delay lines in its high-resolution region at all times. Therefore, the start of each delay

line is successively offset by a fraction of the delay line shorter than the high-resolution region.

This ensures that one DSP chain will enter its high resolution region before the previous chain

leaves its high-resolution region.

The offsets, being much smaller than a DSP on its own, were provided by CARRY4 blocks. As
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Figure 4.27: A block diagram showing how the high resolution regions of the DSP blocks overlap
in the time domain to create an equivalent coding line with high resolution along its length (with
the exception of the initial region, which can be removed by the triggering logic).

each CARRY4 block is, on average, 65 ps and the delay of a DSP block is 550 ps, two CARRY4

blocks are sufficient to provide the first delay, with subsequent delays successively adding pairs

of CARRY4 blocks to generate successive offsets.

4.4.2 Methodology

For the DSP48E1, we used a linear code density test to determine the delay of each component.

The results of the code density test were then histogrammed per-DSP and per-bin to determine

the overall delay of each DSP block in the chain as well as the bin distribution within a DSP. We

used a 1 MHz external pulse generator to generate the rising edges (start signals) asynchronously

to the system clock (stop signal) to obtain an even distribution of delays with respect to the

system clock, which had a frequency of 120 MHz. Read-out was performed live for 1,041,043 tags

and histogramming performed off-line.
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The input signal was a single 1 MHz, 3.3 V (0 V - 3.3 V) square wave produced by a BK

Precision 4054B 30 MHz function generator. To ensure a stable delay between the start and stop

channels, measuring only the variability caused by the TDC core, ther signal was split on-chip

to feed the two delay lines. As the clock of the function generator is asynchronous to the TDC

core (supplied by a 120 MHz Phase-Locked Loop), this 100 kHz input is effectively random over a

period sufficient to ensure the clocks drift in and out of phase. These tags were collected in the

normal mode of operation, with all tags used for calibration and pairs of tags with equivalent

coarse counts used for testing (to remove any clock jitter from the measurement). A diagram of

this can be seen in Figure 4.36 and a picture of this in Figure 4.29.
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Figure 4.28: Block diagram of test setup.

4.4.3 Results

4.4.3.1 Per-DSP

Fig. 4.30 shows the time bins on a per-DSP basis. When discarding outliers, we observe a 553 ps

mean delay with 74 ps standard deviation. DSP 0 is an outlier that describes the path mismatch

between the trigger / coarse counter and the fine counter. DSPs with indexes greater than 14 are

completely outside the clock period and only occur due to metastability in the triggering logic,

while DSP 14 is only partially (25%) within the clock period and so can be considered an outlier.
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A
B
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D

Figure 4.29: Block diagram of test setup.
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Figure 4.30: Delays of the DSP blocks.
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4.4.3.2 Per-bin

Fig. 4.31 shows the time bins on a per-bin basis, averaged across all non-outlier DSPs. We see

that most of the delay is concentrated in the final bin (bin 47), while the rest is scattered across

the bins approximately evenly. However, due to the high final bin, the mean is 11.5 ps and the

standard deviation 45.1 ps (would be 5.17 ps and 9.72 ps respectively if not for the final bin).

Figure 4.31: Average delay within a DSP block.

4.4.3.3 Overall

Fig. 4.32 shows the time bins across the DSP blocks. All the large peaks occur in the last bin (47)

of a DSP, demonstrating the repeatability of the results across multiple DSPs.
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Figure 4.32: Linear code density test.

4.4.3.4 With Ones-Encoder

Fig. 4.33 shows the whole-system histogram when the ones-encoder is used with a single delay

line. Unlike the results shown in Fig. 4.31, it shows that each bin other than the large one at the

end has some hits in it, corresponding to approximately 5.21 ps per bin. The large final bin still

exists.
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Figure 4.33: Linear code density test with ones-encoder. Bin 0 is 447ps.

4.4.3.5 Parallel Summed Delay Lines

Fig. 4.34 shows the whole-system histogram when the ones-encoder outputs of four offset delay

lines are summed together. Worthy of note in this diagram is that the maximum bin number is

quadruple that of a single delay line (as we are summing four delay lines) and that the large bins

present in the previous tests no longer exist. This shows that offsetting the delay lines to overlap

the high-resolution regions with the low resolution regions and then creating an equivalent

coding line was effective in improving the overall resolution to match that of the high-resolution

regions, which was 5.21 ps.
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Figure 4.34: Code density test with four offset delay lines. Bins 0 and 1 are 710ps and 106ps
respectively.

4.4.4 Discussion

Similarly to the results seen on the DSP48A1 blocks, the DSP48E1 blocks suffer from both

missing bins and large non-linearities when used with a priority encoder. As we can be sure that

the outputs are monotonically increasing, we can instead use a ones-encoder (see Section 4.4.1.3),

and this removes the issue of missing bins. This creates a delay line with a large delay of (on

average) 308 ps, with the other 245 ps rest of the delay split between 47 bins for an average of

5.21 ps per bin.

To sub-divide these large bins, an equivalent coding line [37] can be created by summing

together the outputs of multiple DSP delay lines. As the large bin is many times larger than the

average bin or the standard deviation, we cannot rely on natural drift due to process variation,
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and so must insert delays to offset the DSP delay lines relative to each other. This is done by

inserting varying numbers of CARRY4 chains before the delay lines to form the correct delay

duration.

Once four DSP delay lines have been successively offset by a quarter of the duration of a delay

line each, their outputs are summed to form an equivalent coding line (ECL) of 2557 bins length.

This ECL has a max bin size of 27.04 ps and a cubic mean bin size of 5.25 ps, with the first two

bins discarded due to system offsets (which can be compensated for). 5.25 ps is an acceptable

resolution for the quantity of logic (9% of the system’s DSP blocks) required to implement it and

so this can be considered a successful implementation. Further testing revealed that the system’s

maximum bin size can be dropped to 22.35 ps with a cubic mean of 3.70 ps using 18% of the

system’s DSP blocks.

While there is no documentation on the internals of the DSP block, the order and pattern

present in the order of bins transitioning suggests a three-level carry-lookahead adder is present.

Fig. 4.35 shows the presumed internals of the DSP48E1 post-adder, with modified full-adders

(FA) that generate the sum (si|i = [0..47]), propagate (pi|i = [0..47]) and generate (g i|i = [0..47])

bits from the two (or three) data inputs (xi, yi, zi|i = [0..47]) and carry in (ci|i = [0..47]). The

first-level carry propagators (second column) control carry propagation between groups of four

full-adders, the second-level carry propagators (third column) control blocks of four first-level

carry-propagators (and thus 16 full-adders), and finally a third-level carry propagator (fourth

column) controls three second-level carry propagators and generates the output carry. Due to the

hierarchical nature of the design, the delay from the carry input to some blocks in the middle

may be significantly longer than the delay from the carry input to the carry output (or other

blocks later in the chain). This in turn produces the out-of-order transitioning observed in the

output of a DSP block.
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Carry Look-Ahead Operation

The operation of the carry lookahead (CLA) structure is defined by the propagation and generation

signals. The propagate (p) signal is set high when a bit of the adder would propagate a carry bit

from input to output (the sum of the input bits is one, so a carry in would cause a carry out); the

generate (g) signal is set high when a bit of the adder generates a carry bit (the sum of the input

bits is greater than one so the carry bit is always active), and neither signal is high when a bit of

the adder would delete a carry (the sum of the input bits is zero, so a carry is absorbed and the

carry out is always zero).

The CLA structure takes the propagate signals, generate signals, and carry in as its inputs,

then generates intermediate carry signals, a propagate signal and a generate signal as its outputs.

The intermediate carry signal at position i is calculated as (4.5), where S is the look-ahead factor

(with a value of four in this example). This equation is often unrolled to reduce the length of the

critical path (e.g., as in (4.6)). The output propagate signal pp j is defined as the logical AND of

all the propagate bits (4.7), while the generate is defined as the presence of a generate in the

inputs which is propagated to the output (4.8).

ci =

 g i−1 ∨ (pi−1 ∧ ci−1), i mod S ̸= 0

ci = cin, i mod S = 0
(4.5)

c3 = g2 ∨ (g1 ∧ p2)

∨ (g0 ∧ p1 ∧ p2)

∨ (cin ∧ p0 ∧ p1 ∧ p2)

(4.6)

pp j =
S−1∧
k=0

pS× j+k (4.7)

gg i =
S−1∨
k=0

(
gS× j+k ∧

S−1∧
m=k+1

pS× j+m

)
(4.8)

cc2 = gg1 ∨ (gg0 ∧ pp1)∨ (cin ∧ pp0 ∧ pp1) (4.9)

Higher levels of the CLA structure operate the same as the lower levels. For example, the cc1

signal is calculated as in (4.9).
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4.4.5 Conclusion

In conclusion, the DSP blocks present in the Artix-7 Series FPGAs are highly non-linear (more

than half the delay is contained within a single bin) and suffer from out-of-order bins (which

show up as missing bins with a priority encoder). By introducing a ones-encoder to convert the

output code, the out-of-order bins were rectified, and by offsetting four parallel delay lines (9%

DSP resources), the large bins were sub-divided through the equivalent coding line method. This

produced a 5.25 ps bin resolution with 27.04 ps max bin size and doubling the number of parallel

delay lines to eight (18% DSP resources) produced 3.70 ps resolution with a 22.35 ps maximum

bin size.

4.5 Temperature Characterisation

4.5.1 System Design and Methodology

As in the previous sections, a DSP delay line was configured on a Xilinx Artix 7 200t FPGA

(Digilent Nexys Video development board) to propagate a signal through the post-adder operating

without the P register enabled. This allows the carry signal to propagate between DSP blocks

asynchronously, with the output of the adder being sampled by attached registers on the positive

edge of the system clock. The number of bins which have transitioned from a zero to a one will

indicate how far the carry bit propagated through the post-adder chain in the DSP blocks, which

can then be related to the time between the trigger signal and the edge of the system clock.

By determining the time between the edges and the system clock, as well as counting system

clock periods, we can determine the difference in time between two trigger signals. Conversely, if

we know the time between two trigger signals transitioning, then we can determine the variability

of the measurement and therefore the precision of the device. Given some pairs of measurements

from two channels (channel one and channel two, channel numbers are arbitrary) which relate

to a known time difference between two channels, the channel offset T2−1 and channel-to-

channel variance V ar(T2−1) can be calculated. The SSP is defined as the standard deviation of

measurements on a single channel, which can be approximated as
√

V ar(T2−1)/2=σ2−1/
p

2.

The input signal was a single 100 kHz, 3.3 V (0 V - 3.3 V) square wave produced by a
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BK Precision 4054B 30 MHz function generator. The clock of the function generator is again

asynchronous to the TDC core (supplied by a 100 MHz MEMS oscillator). 261865 tags were

collected, ∼130932 from each channel. A diagram of this can be seen in Fig. 4.36.
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Digilent Nexys Video
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Serialiser

FTDI
DPTI

Signal Generator
BK Precision 4054B

100kHz Square
3.3V V  , 0V V   
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FPGA

Channel
Arbitrater

Encoder

EncoderHeat
Source

on off

B

C
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Figure 4.36: Block diagram of test setup.

Temperature characterisation was performed by correlating the measured temperature on-

chip with the calibration results once the chip had reached equilibrium. The equilibrium point

was adjusted by influencing the ambient temperature and supply of air via a variety of resistive

heating elements and axial fans. The on-chip temperature diode, available via the XADC system

monitor [155], was used to determine chip temperature. Once the chip had reached an equilibrium

temperature while data was being collected (since data collection increased chip power and thus

influenced the equilibrium point), the data to be used for calibration and characterisation was

then collected and stored to the PC. Once the data was stored, the source of ambient heat/air was

then adjusted to a new value and the system left to reach equilibrium again.

Temperature monitoring was performed by implementing a Xilinx Microblaze soft-core on the

FPGA fabric (away from the TDC core to avoid interference with the delay line) and connecting

this to the XADC system monitor and a UART transceiver via an AXI4 bus. Xilinx’s Vitis SDK was

used to write code for the Microblaze core and load binaries onto the core, and PuTTY was used

to monitor the serial output for the temperature result. The code used was a minor modification

to the XADC polled printf example (removing any unneeded components, looping the code, and
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introducing a 0.5 s delay between samples) provided by Xilinx.

With the various ambient heat and air sources, the measured temperature equilibriums were:

1. 32.7° C (source A, no heating).

2. 40.8° C (ambient / no source).

3. 46.3° C (source A, temperature 1).

4. 60.2° C (source A, temperature 2).

5. 81.8° C (source B, temperature 1).

6. 101° C (source B, temperature 2).

It is noted that the uppermost temperature is beyond the rated temperature of this device

(0° C to 85° C for commercial-grade devices). This is performed intentionally in the knowledge

that very few manufacturers use different designs for their high-temperature-rated chips, and

instead simply bin existing silicon into groups that are either capable or not capable of operating

within specification at those temperatures. Some manufacturers do not perform any binning

at all and simply charge more for chips with higher ratings. Therefore, it is unlikely that the

chip will completely stop working at this temperature, as shown in our results, although the

performance is not guaranteed to be within design specifications as per Xilinx’s datasheets.

4.5.2 Results

4.5.2.1 Resolution, SSP & Offset

Over the 68.3° C temperature range, the SSP varied by 8.23 ps. Specifically, at 32.7° C, the SSP

was 60.66868 ps, while at 101° C, the SSP was 52.43871 ps. This is a gradient of -0.1205 ps/° C,

i.e., the precision increases (SSP drops) by 120.5 fs for every 1° C increase in temperature. The

full table of results and graph can be seen in Table 4.3 and Fig. 4.37 respectively.
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Figure 4.37: SSP plotted v.s. temperature.
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Figure 4.38: Channel offset plotted v.s. temperature.

Conversely, the channel offset increased as the temperature increased. At 32.7° C, the channel

offset was calculated to be 831.909 ps, while at 101° C the offset was 889.320 ps, a difference of

57.411 ps and a gradient of 0.8406 ps/° C, i.e., the channel offset increases by 840.6 fs for every

160



4.5. TEMPERATURE CHARACTERISATION

1° C increase in temperature. Again, the full table of results and graph can be seen in Table 4.3

and Fig. 4.38 respectively.

The resolution is calculated as the cubic mean of the bin widths (4.10), where τi is the width

of bin i and N is the total number of bins, to help with comparison to our other papers, as well as

the equivalent bin width described in [39]. The resolution at various temperatures is shown in

Table 4.3. Histograms of the bin sizes have also been calculated. The histograms for 32.7° C and

101° C (limited to the range 0 ps to 50 ps for readability) can be seen in Fig. 4.39 and Fig. 4.40

respectively, while Fig. 4.41 shows the variation in cubic mean resolution with temperature. Note

that the histograms omit the 19 ultrawide bins (bin 0 of each DSP) to show the relevant bins on a

reasonable scale. The average bin size on a per-DSP basis can be seen in Fig. 4.42 and Fig. 4.43.

Bin zero relative to the start of each DSP block can be seen to constitute the majority of the delay,

at 250 ps to 300 ps, while the majority of the bins (4th to 43rd) have a delay below 10 ps. The

gradient of the resolution is -3.8877 ps over 68.3° C, or -56.9 fs/° C.

Res =
(∑

(τ3
i )

N

) 1
3

(4.10)
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Figure 4.39: Bin width histogram for channel 1, 32.7° C.
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Figure 4.40: Bin width histogram for channel 1, 101° C.
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Figure 4.41: Variation in resolution (cubic mean bin width) with temperature.
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Figure 4.42: Per-DSP bin size, 32.7° C.
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Figure 4.43: Per-DSP bin size, 101° C.
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Temperature
(°C)

Cubic Mean
Resolution

(ps)

Equivalent
Width (ps)

[39]

Offset
(ps)

SSP (ps) DNL
(LSB)

INL
(LSB)

Notes

32.7 71.875 184.2 831.909 60.669 -1 / +3.99 -5.64 /
+4.05

Source A, No
heating

40.8 71.160 181.5 838.089 59.654 -1 / +4.03 -5.73 /
+3.44

Ambient / No
source

46.3 70.897 180.5 840.816 59.239 -1 / +4.01 -5.75 /
+3.13

Source A,
Temperature 1

60.2 70.030 177.1 851.040 57.462 -1 / +3.98 -5.82 /
+2.20

Source A,
Temperature 2

81.8 69.196 174.0 862.560 55.001 -1 / +3.92 -6.04 /
+0.904

Source B,
Temperature 1

101 67.987 169.4 889.320 52.439 -1 / +3.87 -6.28 / +0 Source B,
Temperature 2

Table 4.3: Characterisation results at various temperatures.

4.5.2.2 DNL & INL

The DNL and INL were calculated relative to the Least-Significant Bit (LSB) of the DSP delay

line, which is defined as the cubic mean of the bin widths (i.e., the resolution). For the DNL, the

size of each bin is divided by the LSB size to give the step size in LSB, and the ideal step size of

1 LSB is subtracted to give the DNL. For a zero-width bin, this would give a DNL of -1, and for a

bin twice the normal size, this would give a DNL of +1.

Due to the distribution of bin sizes (and the presence of the ’ultrawide’ bins between DSP

blocks), the majority of the bins are more than an order of magnitude smaller than the resolution

of the TDC (−1< DNL < 0.9), with one in 48 bins (19 in total) being very large (approximately 4x

the resolution). As a result, most bins sit at the positive and negative limits of the DNL, with

very few in the middle.

The INL is similarly unfortunate. Due to the ultrawide bins which occupy ∼55% of the time a

signal spends inside a DSP (the smaller bins account for just ∼45% of the total time spent inside

the DSP), the INL varies by a significant amount per each DSP cycle.

As the temperature rises, we see each bin get smaller relative to the clock period, resulting in

the INL dropping down to more negative values. The slack in the delay line is being picked up by

bin 912, which is an ’ultrawide’ bin (bin 0 of DSP block 20). At 32.7° C, bin 912 picks up a slack of

just 16.5 ps before reaching the clock period of 10 ns, whereas at 101° C, bin 912 picks up a slack
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of 297.9 ps to reach the end of the clock period. The INL graphs for 32.7° C, 60.2° C and 101° C

are Fig. 4.44, Fig. 4.45 and Fig. 4.46 respectively.
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Figure 4.44: INL graph at 32.7° C.
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Figure 4.45: INL graph at 60.2° C.
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Figure 4.46: INL graph at 101° C.

4.5.3 Discussion

Consistently across all graphs, an improvement in bin size has been demonstrated, which is

surprising given that transistors, MOSFETs and metal routing tend to slow down as the temper-

ature increases above ∼200 K. There is also an increase in the leakage at higher temperatures,

so maybe this is allowing a partial charging of internal nodes which results in a faster transition

when the trigger signal arrives.

Alternatively, given that sum nodes in the adder are specifically being discharged (and then

inverted to give the thermometer code) while the carry nodes are being charged, perhaps the

temperature dependence of the P-type MOSFETs is more significant than the N-type MOSFETs,

resulting in a stronger N-type compared to the P-type and therefore increasing the discharge

speed compared to the charge speed. This could be tested in future work by testing for the

falling edge of the trigger (charging of sum, discharging of carry) and observing the temperature

correlation in that scenario.

It was also notable how the bin sizes become more even at higher temperatures. Compared

to Fig. 4.39 (32.7° C), Fig. 4.40 (101° C) shows less ’ultrasmall’ (< 1 ps) bins (225 compared to

280) and more small bins (210 compared to 180 at 1-2 ps). It can also be observed that there are
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still significant quantities of bins up to 25 ps, whereas the quantity of bins drops off by 20 ps at

32.7° C. Despite this, we see an improvement in resolution, SSP and INL at higher temperatures

due to the much shorter ’ultrawide’ bins.

Considering the speculation we made on the architecture of the post-adder in [10], a possible

suggestion for the increase in resolution and SSP (numerical decrease) could be that the sizes of

the small bins are increasing at a faster rate than the sizes of the ultrawide bins, due to the small

bins being dominated by transistor delay and the large bins being dominated by wire propagation

delay.

If we assume that our speculations about the presence of a carry-propagation system are

correct, then the carry is bypassing most of the post-adder’s carry chain and spending a long time

between DSPs. While the carry is travelling to the next DSP, most of the internal carry bits flip,

causing time bins to form which do not impact the delay of the ultrawide bin.

As part of the ultrawide bin’s delay is being masked off by the small bins, an increase in the

size of the small bins relative to the ultrawide bins will cause a greater portion of the ultrawide

bin to be masked off, resulting in better DNL and INL performance as well as better resolution

and precision (due to less uncertainty from the ultrawide bin, which is the dominating factor).

The increase in channel offset as the temperature rises is as expected. The routing delay will

increase as the temperature increases, and therefore a longer route will increase more than a

shorter route. As a result, a positive offset will become more positive (magnitude increase) and a

negative offset will become more negative (magnitude increase). As the offset between channels

one and two is positive (channel two outputs higher average values than channel one), a positive

coefficient was both expected and observed.

4.5.4 Conclusion

In conclusion, we have characterised the tapped delay lines implemented in DSP blocks, which

were presented in our previous work, with respect to temperature. We measured the resolution,

channel offset, single-shot precision, differential non-linearity, and integral non-linearity at

multiple different temperatures and observed the effects of temperature on these metrics.

We observed an increase in the channel offset of 840.6 fs/° C, an improvement in the SSP
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of -120.5 fs/° C (smaller values are better), a resolution improvement of -56.9 fs/° C and more

moderate DNL and INL ranges (DNL range: from 4.99 to 4.87 and INL range: from 9.69 to 6.28

as the temperature increased from 32.7° C to 101° C).

We suggested some possible causes for the improvements in SSP, resolution and INL despite

expectations of these metrics worsening. In particular, the speculations made in the previous

section provide a simple and robust explanation for the observed temperature effects, and thus

our confidence in their validity is improved.

4.6 Conclusion

In this section, DSP blocks have been extensively investigated and tested as possible targets

for high resolution delay generation in TDC delay lines. First, we looked at the post-adders

of DSP48A1 blocks on Xilinx Spartan 6 devices, and observed that, while the average delay

specifications were promising, there were large non-linearities in the output code which made a

single DSP delay line ineffective in isolation.

Then, we looked at the DSP48E1 adders on Xilinx Artix 7 devices and observed similar

non-linearities to the DSP48A1 blocks. However, with a ones-encoder to capture the out-of-order

bins and Equivalent Coding Line (ECL) techniques combining four parallel staggered delay lines,

we were able to achieve 5.25 ps resolution on the DSP blocks using just 10% of the FPGA fabric

(slices).

Finally, we fully characterised the DSP delay line with respect to resolution, Single-Shot

Precision (SSP), Differential Non-Linearity (DNL) and Integral Non-Linearity (INL). We also

determined the sensitivity of this characterisation with respect to temperature. Surprisingly,

some of these characteristics improved with an increase in temperature due to a reduction in

the size of the Ultra-Wide Bins (UWBs), which appears to be an interaction between the highly

non-linear carry architecture of the DSP post-adder and the temperature scaling of wires and

logic in semiconductors.

In the next chapter, we will explore the application of wave union techniques to the DSP delay

lines developed here.
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5.1 Introduction

Until recently, the highest single-quantiser (excluding averaging or equivalent coding lines

[37, 156]) resolutions achieved in FPGAs have been achieved through the wave union method on

carry chains [55, 157–159]. The previous chapter [10] showed how Digital Signal Processing (DSP)

blocks can be used to improve the resolution for a simple delay line (single edge quantisation),

and achieved 5.25 ps cubic mean resolution [11] within 10% of the FPGA’s resources per channel

but required four parallel delay lines (quantisers) to cover large bins. In this chapter, we will

combine the high-resolution DSP blocks with the area-efficient wave union method, with the aim

of achieving greater resolution in a lower area footprint. Temperature characterisation will also

be performed over a 60°C temperature difference.
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Figure 5.1: Diagram showing the idea to be explored in this chapter. We wish to use the wave
union technique with DSP blocks to reduce area while maintaining high resolution.

5.2 DSP blocks

As shown in Chapter 4, our previous papers [10, 11] and other works on DSP blocks [154], modern

FPGAs are starting to integrate more complex hard-wired IP (Intellectual Property) blocks into

their designs to utilise the number of gates available on modern process nodes more efficiently.

One type of block, the DSP block (e.g., DSP48A1, DSP48E1), contains a 48-bit adder (Fig. 5.2),

and these can be cascaded to form large adder chains. As the average delay from carry in (CIN)

to carry out (COUT) is 690 ps on an Artix-7 DSP48E1 (800 ps for the Spartan-6 DSP48A1), there

is an average of 14.4 ps delay for each element, faster than the multiplexers in the CARRY4

elements used in most FPGA designs. This delay mainly consists of one large bin of 200-300 ps

and multiple smaller bins of ∼5 ps, with the size of the large bin attributed to higher quantities

of logic and significantly more clock skew between DSP blocks. However, when encoded with a

priority encoder, the bins are missing [10] (bubbles appeared at the output), and this was found

to be due to bins transitioning out-of-order [11].

The configuration of DSP blocks as delay lines is described in Chapter 4.
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5.3 Wave Union Methods

Wave union methods are a relatively new advancement in TDC design, first appearing in [1], then

later in [55, 160, 161]. This method promises to provide the same level of speed-up as multiple

parallel delay lines, but without requiring additional delay line elements and calibration logic (to

calibrate the extra delay lines). Rather than duplicating the delay line and all its decode logic,

the wave union method instead replaces the first delay element of the delay line with a Finite

Step Response (FSR) or Infinite Step Response (ISR) pulse injector. The FSR or ISR generates

multiple edges with known relative delays from a single trigger signal and feeds these into the

delay line.

The theory of operation for a wave-union TDC is demonstrated in Fig. 5.3. Given a non-linear

delay line (no modern TDC has a linear delay line due to process variations and uneven load),

there will be some elements (bins) of the delay line which are small and generate a high resolution
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(locally) and some elements (bins) which are large and generate a low resolution (locally). With

only a single edge propagating through the delay line, the overall resolution will be degraded by

the large bins.

Previous methods (Averaging and Equivalent Coding Line) solved this by introducing multiple

parallel delay lines where one delay line would have its edge propagating through a large bin

while other delay lines would have their edges propagating through small bins. When combining

the outputs from each delay line, the small bins take precedence, and the large bin does not

degrade delay line resolution.

With the wave union method, instead of multiple parallel delay lines, a pulse injector is

introduced to the start of the delay line, which generates pulses with some time delay (bin

difference) between them. These edges will all propagate through the same delay line, but while

some edges are in large bins, others are in small bins. The decoder obtains quantisations of each

edge and combines them with precedence given to the edges in smaller bins. This masks the low

resolution of the large bins and therefore the resolution is not degraded by these large bins.

Calibration only needs to be performed for a single delay line, reducing area usage, and each

of the edges will appear in the delay line in a different position, dependent on its delay from the

first edge and the time of the trigger signal. During the calibration phase, we can determine the

relative delay, and so we can extract multiple estimates of the trigger time, as in (5.1). The set Ts

is the set of estimates of the trigger time, with cardinality N, and T is the estimate of the trigger

time T based on Ts. Ti is the estimated time of edge i, without edge delay compensation (the

‘raw’ calibrated value) and Ti− j is the delay from edge i to edge j. A diagram of this operation is

shown in Fig. 5.4. The time at which different edges arrive at the same bin will vary depending

on the delay between the edges. By performing code density calibration, we can determine the

delay between edges and therefore only calibrate for a single edge and adjust the calibration

values according to the edge delay.

Ts = {∀i : Ti +T1−i} (5.1)

T =
∑N

i=1 Ts[i]
N

(5.2)
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As with any other averaging method, the resolution scales with the inverse square of the

number of samples. However, adding another sample is significantly less expensive in a wave

union TDC than in a standard delay line as samples are gained simply by adding more stages to

the pulse injector. Wave union methods on carry chains have been shown to reach SSPs as low as

3 ps in previous papers [157].

5.4 Combination of the Wave Union Method and DSPs

There are two possible architectures for combining the wave union method with DSPs. The first is

to take a simple pulse injector implemented in carry chains or look-up tables (LUTs) and attach

it to the front of a DSP delay line. This has the advantage of being a simpler implementation

but has two drawbacks: it requires significantly more carry chain or LUT elements (due to each

element being smaller than a DSP block) and has a low-resolution period at the start of the delay

line where there is not a sufficient quantity of edges in the delay line to obtain a high-resolution

result. Additionally, the LUT method results in poor geometry (LUTs cascade horizontally, DSPs

cascade vertically, resulting an L-shaped delay line).

The second architecture involves implementing the pulse injector in DSP elements, resulting

in a more complex implementation but allowing optimal resolution at the start of the delay line.

Due to the more optimal resolution in the initial stages, we chose the second architecture.

To implement the pulse injector in DSP, we require a DSP block configuration that exhibits

the following properties:

• When the trigger is asserted, the output must start toggling from 0 to 1, starting at the

position the trigger was input and propagating through to the carry output.

• When the carry input toggles, this should also result in the outputs toggling. This must

continue to occur every time the carry input toggles.

• Due to the out-of-order toggling of the bins and subsequent requirement for a ones-encoder,

there must be a full DSP delay (> 690 ps) between adjacent edges.
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• Before the trigger has toggled, and after all the edges have propagated through the delay

line, the delay line should enter a stable state (not still be oscillating). This requirement

only specifies that the delay line must settle if given a sufficient period of time, not that

there is a limit to the minimum time provided (thus there are no impacts on dead time).

• On the deassertion of the trigger, the delay line should settle to the same state it had before

the assertion of the trigger.

To help us achieve this, the following are open to adjustment:

• It is guaranteed that the carry input will not toggle before the trigger has arrived at the

delay line.

• We can choose the initial value of the carry, and this can be guaranteed before the trigger

arrives.
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• Any set of operations inside the DSP block can be used.

• If a configuration can be found which exhibits these properties, but requires signals to be

inverted, we can subsequently invert them again in the decoding process or in the DSP

itself (there are input and output inverters available).

• We can use different configurations for alternate DSPs, should this be required.

The configuration we found that satisfies these properties splits the DSP configurations into

three categories:

1. Inverting configurations, which cause the edges to be inserted into the delay line (and have

the trigger signal connected to them).

2. Non-inverting configurations, which propagate the carry input to the carry output but do

not introduce another edge. The configuration of these will change depending on the index

of the first edge that will pass through them (and hence the idle-state value of the output).

3. Propagating configurations, which occur after the pulse injector and consist of most of the

delay line. They will all have the same configuration and start in the zero state (all outputs

0).

These configurations are connected by their carry-cascade input/output pins (dedicated routes

between adjacent DSP blocks) as shown in Fig. 5.6. Fig. 5.6() shows the theoretical implementation

of the delay line, with the trigger connected to each inverting element to generate the pulse

train, and all other elements being propagation elements that provide a high-resolution delay.

However, due to the operation of the carry in the DSP48E1 blocks, the actual configuration is

more complex (Fig. 5.6(a)). Due to the nature of the carry, every other inverting DSP block (those

with even indices), as well as the following propagators, must have their outputs inverted to

create a ‘correct’ output code.

5.4.1 Inverting Configuration

For the inverting configurations, the DSP blocks are set up to calculate trigger + 0xFFFF FFFF FFFF

+ 0xFFFF FFFF FFFF + carry (see Fig. 5.7()), with the output optionally inverted depending on
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the stage of the FSR pulse. The initial state has the carry input as a 1, with a trigger of 0. This

results in the computation of (248 −1)+ (248 −1)+1+0, which has a carry output of 1 and a sum

output of 248 −1=0xFFFF FFFF FFFF. It can be seen that the carry output is the same as the

input, the sum output bits are all the same, and that a small adjustment to the trigger will cause

a carry cascade.

When the trigger arrives, the sum will roll round from 249 −1 to 249, causing the bits at the

sum output to successively toggle. Furthermore, the carry out, which is equivalent to bit 48 (bits

0 to 47 are the sum output) will toggle (deassert), propagating this inversion to the next DSP in

the chain. When the carry input deasserts, as would happen when the edge from the previous

inverting DSP reaches the current inverting DSP, the output will return to 249 −1, causing all

the output bits to successively toggle, including the carry out, which propagates the received edge

to the next DSP. As the carry input continues to toggle, the output bits and carry output will

continue to toggle.

At the sum output, without any modification, the initial state would leave all bits from the

FSR set to 1. This is not suitable in situations where the trigger and clock signal are close

together, as the pulses will not leave the FSR before the clock signal registers them, resulting in

poor resolution. To fix this, the output is inverted on even-indexed subsections of the FSR, which

results in a signal that starts with edges already present, held in place adjacent to the inverting

DSPs.

5.4.2 Non-inverting Configuration

For the non-inverting configuration, the DSP is set to calculate 0xFFFF FFFF FFFF + carry (see

Fig. 5.7(a)). As seen from the inverting configuration, the initial carry input has a value of 1,

causing a sum output of 0 with a carry output of 1 (output value of 248). When the carry input

deasserts due to a preceding inverting DSP, the output bits will assert and the carry output will

follow the carry input, and the opposite will happen when the carry input asserts. Contrary to the

inverting DSPs, the outputs of odd-indexed non-inverting DSPs are inverted so that the output

pattern will match that of the preceding inverting DSP, resulting in the final state being an all-1

state.
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5.4.3 Propagating Configuration

The propagating configuration is similar to the non-inverting configuration, calculating

0xFFFF FFFF FFFF + carry. However, unlike the non-inverting configuration, there are no

inverting DSPs between the propagating DSPs, and their initial states should all be 0, so none of

them have their outputs inverted. In the initial state, they all have a carry input of 1 (from the

inverting and propagating DSPs), with a carry output of 1, resulting in a sum output of 0. When

the carry input deasserts on the first propagating DSP, the edge will propagate through that DSP

to the next one and eventually to the end of the delay line. Any assertion of the carry input will

similarly propagate, even if the previous deassertion has not yet reached the end of the delay

line. The final state will be an all-1 state due to a carry input of 0.

5.4.4 Configuration variables

To perform the operations described above, three configuration variables need to be set on the

DSP blocks: ALUMODE, OPMODE and CARRYINSEL [4]. In addition, data must be provided to

the inputs of the DSP (A, B, C and D). In all DSP blocks except the first one, CARRYINSEL is

set to two, which propagates the carry output from the previous DSP block to the carry input

of the current DSP block. For the first DSP block (at the start of the wave union launcher),

CARRYINSEL is set to zero, which inputs a carry from the fabric, and the carry input is set to

one.

ALUMODE is set to either zero or two on all DSP blocks. When ALUMODE is two, the

adder operates normally on (calculates the sum of) the X, Y, Z and CIN (carry in) inputs, then

the output is inverted before leaving the DSP block. When ALUMODE is zero, the output is

not inverted. For the first inverting DSP in the chain (1a, even index), ALUMODE is two. For

the subsequent non-inverting DSPs (2a, even index) before the next inverting DSP (1b), the

ALUMODE is zero. Then, for the next inverting DSP (1b, odd index), ALUMODE is zero and the

subsequent non-inverting DSPs (2b, odd index) before the next inverting DSP (1a again), the

ALUMODE is two. In other words, the ALUMODE is two for the 1a and 2b configurations, and

zero for the 2a and 1b configurations. For the delay line subsection (2c), the ALUMODE is always

zero.
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The OPMODE configuration bits change the source of the X, Y and Z inputs to the post-adder.

The two configurations of interest are when OPMODE is 0x3B (inverting configurations, 1a and

1b) and 0x08 (non-inverting and propagating configurations, 2a, 2b and 2c). With OPMODE as

0x08, the lowest two bits which control the X input are zero, resulting in the X input being set to

zero. The next two bits which control the Y input are one and zero, resulting in the Y input being

set to 0xFFFF FFFF FFFF (248-1). The final three bits are zero, resulting in the Z input being set

to zero. This configures the DSP block to add 0xFFFF FFFF FFFF to the input carry.

When OPMODE is 0x3B (011 1011), the lowest two bits are one, resulting in the X input

forwarding the concatenated A and B inputs, which are in turn set to 0xFFFF FFFF FFFF.

The next two bits are again one and zero, resulting in the Y input being 0xFFFF FFFF FFFF.

Finally, the upper three bits are zero and two ones, resulting in the Z input forwarding the

C input. The C input is all-zero except for the LSB, which is connected to the trigger and is

therefore used to start the wave union launcher. This configures the wave union launcher to add

248 +248 + trigger+carry in, which inverts the signal relative to the previous DSP block.

5.4.5 Decoding

The decoding of the output bus is not a trivial task. Unlike a carry-chain-based delay line,

the bins do not switch in order, meaning the standard technique of performing an exclusive-or

(XOR) between adjacent (or close) bins then iteratively picking up and masking off the detected

transitions is not feasible. Similarly, applying a ones-encoder to the entire delay line, as in the

previous sections, is also unsuitable, as the ones-encoder does not detect edges or their position

in the delay line, only the number of ones. Ideally, due to the excessively large bin at the end of

each delay line, we would be able to guarantee that an entire delay line will have switched before

the subsequent DSP has any bits toggle. Therefore, we would be able to perform a ones-encoding

per-DSP, and then use standard edge detection logic between DSPs, with the caveat that the 48

least-significant bits are already encoded.

However, due to the carry-lookahead logic present in the DSP’s post-adder, the code spreads

itself over multiple bins. Therefore, to decode this pattern correctly, we first need to rearrange

the bins near the transitions. To do this, we iterate over the codes with a modified bubble sort
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which redistributes bits towards the nearest edge. This results in a clean edge which can then be

decoded as originally intended.

With this scheme, we cannot have a new edge enter a DSP before the previous edge has

left the DSP, as the ones-encoder cannot distinguish between a positive edge at the half-way

point with a negative edge at the start, and a positive edge at the end with a negative edge at

the half-way point. Providing we satisfy this requirement (leave a suitable time delay between

successive edges), we can then detect edges in the output codes from the ones-encoder. Observing

three adjacent ones-encoders (- is “Don’t care”), there are four possible scenarios for the output:

1. (48,0,-): There is a positive edge in the final bin of the first DSP. This results in an all-1

outputs for the first DSP and an all-0 outputs for the second and third DSPs.

2. (0,48,-): There is a negative edge in the final bin of the first DSP. This is the inverse of (1).

3. (48,N,0): There is a positive edge in bin N of the second DSP. This results in an all-1 output

for DSP 1, an output of N for DSP 2, and an all-0 output for DSP 3.

4. (0,N,48): There is a negative edge in bin 48-N of the second DSP. This is the inverse of (3).

Conversion is applied by iterating through the DSPs from end to start while remembering the

expected output. If the current bin is not the same as the expected value (the first expected value

is 0), then there is an edge at position (48× i+|48− expected−N|), where i is the index of the DSP

with the edge. For example, if the converter encounters 0, 12, 48 (LSB on right) with i = 3 when

observing the ’12’, then the edge position will be 48×3+|48−0−12| = 144+36= 180. However, if

it encounters 48, 12, 0, then the edge position will be 48×3+|0−0−12| = 144+12= 156.

In a realistic system, the first edge will propagate through approximately 18 DSPs during

a 10 ns clock period (the TDC clock was 100 MHz from the onboard MEMS [Micro Electro-

Mechanical System] oscillator). With the addition of a realistic number of edges to test the system

(3 for this example), each of which requires at least three DSPs to maintain an edge-to-edge delay

greater than a single DSP, there will be >27 DSPs present in the system. Each requires six bits

for its ones-encoder, resulting in at least 162 bits for the fine code (28 DSPs spanning 168 bits

were used in actuality).
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Three DSP blocks are required for each edge due to the length of the bubbles caused by the

Carry Look-Ahead (CLA) structure. A bubble may span up to an entire DSP block in length and

will be present at every edge. In the worst-case scenario, a bubble will start at bit 24 of DSP i,

running to bit 23 of DSP i+1, and another bubble will start at bit 24 of DSPi−k and run to bit

23 of DSP i−k+1. For the case k = 2, DSP i−k+1 is DSP i−1. As both DSPs i and i−1 have

bubbles in them, there is no completely empty or completely full group of 48 to distinguish one

bubble from the other (the bubbles have merged). Therefore, we require at least k = 3 (three DSP

blocks per edge) to ensure decodability of the wave union TDC.

5.4.6 Compression

Due to the large number of bits per time tag (168), the continuous repetition rate of the system is

severely reduced due to the output bus being speed-limited. However, compression is relatively

easy for this system. As we know that the edges are approximately three DSP delays apart, we

can encode the difference between adjacent edges using seven or eight bits. Once this has been

encoded, the only other information required is the position of the first or last bin. This can be

encoded by dividing the delay line into four or eight chunks (for nine or eight bits bin proximity,

respectively), then outputting the chunk where the first bin is located and the distance from the

start of the chunk to the first bin.

For example, if the delay line had 1344 bins (28 DSPs), and the edges were in bins 486,

586 and 686, the output would be “010-1001 0110-0110 0100-0110 0100” (2-150-100-100). The

meaning of this is:

1. The first bin is in chunk two (“010”), which starts at bin 336, and is 150 (“1001 0110”) ahead

of that (bin 486).

2. The second bin is 100 (“0110 0100”) forward of the first bin (bin 586).

3. The third bin is 100 (“0110 0100”) forward of the second bin (bin 686).

This encoding only takes 27 bits, rather than the 168 bits originally required, effectively sextu-

pling the bus-limited repetition rate. Further analysis may yield stronger compression schemes

and further increase compression ratios.
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5.5 Test Setup

To test this system, we implemented the wave union DSPs on an Artix-7 200T FPGA (xc7a200tsbg484-

1, “Digilent Nexys Video”). Two quantisation channels were instantiated, both being fed by the

same input from off-chip. The channels were then multiplexed on to a 60 MHz 8-bit parallel

bus (Digilent DPTI) and output to a PC via custom command-line software for calibration and

edge quantisation. The calibration and edge quantisation could be performed on-chip [162],

but this is not required to test the system. The input was driven by a BK Precision 4054B

signal generator using a 100 kHz, 50% duty cycle signal generator, operating at “LVCMOS33”

voltages (3.3Vpk−pk, 1.65Vof f ). Without a compressor, the maximum sustained output rate is

2.85 Mevents/s, while the maximum burst rate is 50 Mevents/s on each channel (<= 2 clock

cycles per channel) for up to 195 events. With a compressor as detailed in the compression

subsection, the sustained output rate would be 17.77 Mevents/s and the burst rate would be the

same (50 Mevent/s) for up to 1213 events. The test setup is illustrated in Fig. 5.8.

261865 tags were collected, ∼130932 from each channel in the normal mode of operation. The

first 90% of the tags were used to calibrate the two TDC channels, while pairs of the remaining

10% with the same coarse count were used to determine the Single-Shot Precision (SSP). The SSP

is the standard deviation of a single measurement, but we are measuring it by calculating the

standard deviation of the difference between the two channels, so we must divide the calculated

standard deviation by
p

2 to determine the SSP.

The time difference between the channels was calculated by individually calibrating each

edge’s progression through the delay line with a code density test, then taking the calibrated

offsets and performing a weighted average, with the weight applied to each sample equivalent

to the reciprocal of the calculated bin width. With this method, the small (high-resolution) bins

have a much larger impact on the result than the large (low-resolution) bins. For comparison,

an unweighted average was also calculated. However, it gave worse results in all metrics except

temperature dependency, and so is not quoted except during the temperature characterisation.

These experiments were repeated both at ambient temperature and with the supplement

of heated air from a hot-air rework station (Yihua 968DA+, resistive heating element with an
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axial fan blowing heated air over the FPGA’s passive heatsink parallel to the PCB) to perform

temperature characterisation. The on-chip temperature diode and XADC (Xilinx Analog-to-Digital

Converter) were used to determine the temperature of the chip for a given airflow, and the TDC

run simultaneously to collect data at that temperature. At each temperature, the TDC was

calibrated as well as tested. Five temperatures were sampled: 39.1°C (ambient, no heated air),

54.2°C, 71.9°C, 85.8°C and 99.6°C. This form of temperature characterisation is quite basic and it

would be better to perform these tests in a temperature-controlled chamber if possible.

5.6 Results

Once the results were collated and post-processed, the Cumulative Density Functions (CDFs)

related to each edge, bin widths, and edge-to-edge differences were calculated. The CDF of the

TDC can be observed in Fig. 5.9. This shows the expected pattern of output codes, with highly

accurate linear regions where the DSP delay line is operating as intended, as well as sudden

vertical (time-domain) jumps, which demonstrate the excessively large bin at the end of each

DSP. Notably, it can be observed that, for any given time offset (observing along a horizontal line

of equivalence in the y axis), at least one DSP is in its high-accuracy linear region. This is what

enables the sub-dividing of the large bins - as one or two edges are travelling through a large bin,

the other edge(s) are in the linear region providing accurate quantisation.

The bin widths can be observed in Fig. 5.10. It can be seen that most of the bins have a width

in the region of 0.5 ps to 30 ps (10−3 ns to 3×10−2 ns), while a few bins are larger than this, (some

reaching as high as 500 ps). However, due to the observation from Fig. 5.9 that at least one of

the three edges is in the high-resolution region, this large non-linearity can be subdivided using

the equivalent coding line method. For this reason, a weighted average was used to prioritise

information from the high-resolution bins and de-prioritise low-resolution bins. If it were not the

case that at least one edge was always in the high-resolution region, this could be remedied by

adding more edges or adjusting the delay of the FSR injector to become asynchronous with the

DSP delay.

Fig. 5.11 shows histograms of the measured time differences between two channels (the
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Figure 5.9: Calibration and DNL/INL graph for the wave union method.
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Figure 5.10: Histogram of bin widths for the wave union method. Note the logarithmic x axis.
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Channel-to-Channel Difference Histogram, 1 Edge (no wave union)
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Figure 5.11: Histogram of channel differences (precision) for one edge, three edges, five edges and
seven edges. There are three DSPs of delay per edge.
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same signal is introduced to both channels and quantised, giving a sample of the channel offset).

These histograms provide graphical representations of the precision and accuracy of the TDC

(the mean of the histogram is the accuracy, the spread is the precision). There are four graphs,

corresponding to implementations with a single edge (no wave union method), three edges, five

edges and seven edges (the edge number is odd due to implementation details, not a theoretical

limitation). As the channel offset and spread of the time differences is significantly different

between the four implementations, the scale on the x axis varies significantly.

The histogram for a single edge (no wave union method) shows a large spread of data, with

a standard deviation (double-shot precision) of 84.32 ps (52.65 ps SSP) and significant peaks

up to 290 ps away from the mean due to ultra-wide bins at the boundary of DSP blocks. This is

massively improved by introducing the wave union technique with three edges, which drops the

standard deviation to 19.23 ps (13.60 ps SSP) and exhibits no significant peaks more than 40 ps

from the mean. This is due to edges in their high-resolution region sub-dividing the ultra-large

bins encountered by other edges, resulting in the TDC always operating in a high-resolution

region. In terms of area, a single edge requires 22 DSP blocks (2.97% of the FPGA) per channel,

three edges require 28 DSP blocks (6 extra in the FSR injector, 3.78% of the FPGA) per channel,

and the parallel implementation in [11] required 74 DSP blocks (10% of the FPGA) per channel

for a cubic mean resolution of 5.25 ps.

With five edges, the standard deviation experiences a small improvement to 16.25 ps (11.49 ps

SSP). This is because the extra edges are further sub-dividing the available bins to improve the

resolution and thus reduce quantisation error. This requires another six DSP blocks (0.81% of

the FPGA) per channel for two extra edges compared with 18 DSP blocks (2.43% of the FPGA)

per chain in the parallel implementation.

When seven edges are introduced, the standard deviation degrades to 35.85 ps (25.35 ps

SSP) rather than improving. This runs contrary to expectations, as it would be expected that the

precision would improve with more edges. However, as stated in [163], uncertainties in routing

delay (the σ2
CY element) and DSP block PVT variations become a dominant factor at higher

edge quantities due to the extensive routing required to distribute signals to the delay line and

pulse injector. Experimental adjustment of the placement of the TDC channels confirmed this, as
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placing the TDC further from the input pins significantly impacted precision (up to three times

the SSP). This explanation also accounts for the poor improvement in performance between three

and five edges (the expected precision would be 8.16 ps without any other sources of imprecision).

Therefore, we have determined that five edges provide optimal precision in our design,

although three edges may be desirable for the reduced area. Clock jitter (∼1 ps for the given

oscillator) is not a component of the error expressed here, as all samples were taken with identical

coarse counts (same clock period), but would be a small contributing factor if larger ranges were

measured.

The DSP48E1 blocks were swapped out for CARRY4 blocks to compare the performance

between the two delay elements. Without a pulse injector, the CARRY4 implementation performed

much better, with an SSP of 9.31 ps (compared to the DSP’s 52.65 ps SSP). When moving to

three edges, the gap closed somewhat, with the CARRY4 implementation achieving 5.64 ps SSP

(compared to the DSP’s 13.60 ps). Thus, a wave-union DSP implementation with a 3-edge pulse

injector is a good substitute for a CARRY4 delay line without any pulse injection. Due to running

calibration on a PC with floating-point arithmetic, the calibrated INL is equivalent to half the

DNL at any point in the delay line (since the centre of each bin coincides with the calibration

look-up). If the calibration were on-chip, the INL would be slightly worse (most likely using

a 1.25 ps LSB). The INL that would be achieved with average delay calibration (significantly

worse) is graphed in Fig. 5.9 along with the Differential Non-Linearity (DNL). The minimums and

maximums for DNL and INL are −3.71/+72.28 ps (DNL), −179.58/+280.75 ps (INL, uncalibrated)

and −1.86/+36.14 ps (INL, calibrated) respectively.

When combining the edges together with the weighted averaging (WAV) method, the tempera-

ture characterisation (Fig. 5.12) revealed a 4 ps SSP penalty over the 60°C characterisation range.

Specifically, the SSP was 13.50 ps at ambient temperatures (39.1°C Tdiode) and 17.53 ps at 99.6°C

Tdiode. Comparatively, when using unweighted averaging, the accuracy only varied by 1.3 ps over

the 60°C temperature range, but the unweighted average (AV) gave significantly worse results

overall, varying from 30.67 ps SSP at 39.1°C Tdiode(ambient) to 31.98 ps at 99.6°C Tdiode. This

suggests that the temperature is more significantly affecting the small bins separated by logic

elements (XOR, AND, MUX etc.) than the large bins separated by wire delay (between DSPs).
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Figure 5.12: SSP vs Temperature characterisation.

A tabulated summary of the comparison between the different DSP delay line architectures is

shown as Table 5.1. For all delay line methodologies, the pairing with a coarse counter of arbitrary

size allows the range to be effectively infinite, however, the fine part of the delay line is sized

according to the system clock, which is 10 ns for all architectures demonstrated in this section.

The Effective Number of Bits (ENOB) is therefore the binary log of the clock period divided by

the equivalent width of the bins (
p

12 times the SSP), as in (5.3). For the Delay Line, DSP Delay

Line and 4x Parallel DSP, the output code is 64 bits, with 18 or 20 bits assigned to the fine count

and channel identifier, resulting in a 44 or 46 bit coarse counter, with a system clock of 10 ns. For

the Wave Union designs, the coarse counter is up to 64 bits long, with a system clock of 10 ns.

ENOB= log2

(
Tclk

σ
p

12

)
(5.3)
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Table 5.1: Performance of various TDC implementations. N/A: Not Available.

Author Delay
Elements

Edges
per

Chain

SSP/ps Fine
ENOB

INL/ps Fine
Range/ns
(Coarse)

Area

Wu 2008 [1]
(Type-A)

Intel LAB 3 25 4.89 N/A 2.56 1621 LE (20%
Cyclone II

EP2C8T144C6)

Bayer 2011 [55] Xilinx
CARRY4

2 9 6.50 N/A 2.82
(164 µs)

N/A
(Virtex 4 LX40)

Szplet 2013
[37]

Xilinx
CARRY4

1 6 5.94 22 1.28
(17.18 s)

13.44 mm2

(Spartan 6 SLX75)

Szplet 2016
[156]

Xilinx
CARRY4

1 4.5 4.50 23 0.352
(4400 s)

42.19 mm2

(Kintex 7 150T)

Szplet 2016
[164]

Xilinx
CARRY4

6 6 4.97 33.93 0.650
(2s)

N/A (Spartan 6)

Wang 2016
[165]

Xilinx
CARRY8

2 9.5 5.93 N/A 2 N/A (Kintex Ultra-
scale 40T)

Wang 2019
[157]

Xilinx
CARRY4

8 3 7.44 88 1.805 1.98% LUTs
(Kintex 7 325T)

Lusardi 2019
[166]

Xilinx
CARRY4

2 12.5 5.79 8 2.4
(157 µs)

7010 LUTs
(Artix 7 200T)

Tancock 2019
[11]

Xilinx
DSP48E1

1 N/A
(5.25 ps

cubic
mean)

9.10 N/A 10 10% DSPs
(Artix 7 200T)

Kwiatkowski
2020 [158]

Xilinx
CARRY4

4 3.3 6.97 55.2 1.43 N/A (Kintex 7)

Xie 2020 [159] Xilinx
CARRY8

2 3.03 7.57 6.14 2 1.75% CLBs (Kin-
tex Ultrascale 40T)

Zhu 2020 [167] Xilinx
CARRY4 +
DSP48E1

1 3.4 8.4 49.4 4 152 DSP, 2306 Slice
(5.43%, 3.04%,
Virtex 7 485T)

Tancock 2021
[12]

Xilinx
DSP48E1

1 52.56 5.78 296 10 2.97% DSPs
(Artix 7 200T)

Zhu 2021 [168] Xilinx
CARRY4 +
DSP48E1

1 2.2 7.77 92.5 1.67
(7.16 s)

72 DSP, 2288 Slice
(2.57%, 3.01%,
Virtex 7 485T)

This Work
(Delay Line*)

Xilinx
CARRY4

1 13.16 7.78 N/A 10 1.58% Slices
(Artix 7 200T)

This Work
(Wave Union*)

Xilinx
CARRY4

3 7.98 8.50 26.2 10 2.46% Slices
(Artix 7 200T)

This Work
(WU-DSP)

Xilinx
DSP48E1

3 13.60 7.73 36.15 10 3.78% DSPs
(Artix 7 200T)

This Work
(WU-DSP)

Xilinx
DSP48E1

5 11.49 7.97 19.46 10 10% DSPs
(Artix 7 200T)

* Implemented for comparison.

192



5.7. CONCLUSION

Figure 5.13: Intel DSP Block internals [3]. The ‘scanin’ and ‘scanout’ ports are highlighted.
Registers with dashed borders are systolic (optional).

5.7 Conclusion

In conclusion, we have adapted the wave union method to utilise the DSP blocks present in Xilinx

FPGAs. This was achieved using the DSP blocks’ built-in 48-bit adders configured to invert the

outputs successively when the carry input or trigger input changed, propagating this toggle to the

output. We also suggested a method of compressing the output code to quadruple the bus-limited

data rate. While the system was able to obtain five edges with the same area cost as the previous

section at four edges, or nine edges with 64% of the area cost of our previous paper at eight edges,
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the benefits of further increasing the number of edges is minimal.

We performed a two-channel difference test and the performance of the wave union DSP

with three edges was on par with a delay line of CARRY4 elements, demonstrating that wave

union methods on DSPs are a viable alternative to carry-chain delay lines, allowing for higher

channel quantities in multichannel systems or making general-purpose logic available to other

applications. Modest gains were made with five edges, though neither outperformed a three-

edge wave union on CARRY4 blocks. Temperature characterisation showed a small but not

insignificant variation over a 60° C temperature range, to the extent that large temperature

changes would require a recalibration for optimal accuracy.

The scheme we have demonstrated is applicable to any Xilinx FPGA from the Spartan-6 series

onwards, which covers most of the FPGA market and all Xilinx devices available for non-legacy

applications (some older devices are still available to meet the demands of older customers).

Given the theoretical basis of the scheme, it could be easily adapted to any device with a large

fixed-function adder with asynchronous carry propagation between adder units (i.e., no required

register between one adder and the next). For example, the second largest FPGA manufacturer,

Intel (formerly Altera), has a DSP block with very little resemblance to the Xilinx DSP block.

However, the lowermost bit can be cascaded between the ‘scanin’ and ‘scanout’ ports (Fig. 5.13),

and this bit can then proceed to trigger the carry cascade in the post-adder.
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BUBBLE CORRECTION

6.1 Abstract

B
ubble detection and correction logic is vital in modern data capture devices to solve

bubbles in the output thermometer codes due to non-linearities in the scale causing

negative bin widths. Previous bubble correction techniques are either unsuitable for

short pulse widths and multiple registration (ones-encoder) or have a very short range (all other

methods). In this chapter, we propose a hardware technique to detect and correct bubbles up to

the length of the pulse width while preserving position information using a hybrid between the

ones-encoder and a single stage of a modified insertion sort. This design was shown to meet timing

on a Xilinx Artix-7 FPGA at 100 MHz or above using only 13% of the device, demonstrating

hardware-viability. The design is also fully pipelined to demonstrate high bandwidths. The

limitations of the algorithm are stated and some possible improvements are suggested.

6.2 Introduction

Process, Voltage and Temperature (PVT) variations in modern Analog-to-Digital Converters

(ADCs) and Time-to-Digital Converters (TDCs) are increasing, mainly attributed to the shrinking
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process node and higher resolution of these devices. This results in larger non-linearities in the

output codes of these devices, eventually causing negative-width output bins (lower-valued codes

that occur at a higher input value than higher-valued codes). To correct for these disturbances,

many bubble detection and correction techniques have been developed [119, 169–173].

However, these techniques all have a very limited scope. The ones-encoder (also known as

a population counter) method [170] is intolerant of short pulse widths or double registration,

as it does not provide any information about the position of the edge, just the number of ones.

In a system where we can guarantee that the lowest bits will not transition on large input

values (single-registration, long pulse width), this is equivalent to the position of the leading edge

with all bubbles removed. However, for techniques such as double-registration, the sliding scale

technique (in some cases) and wave-union TDCs, the later introduction of 0s into the output code

results in the ones-encoder failing to differentiate between ones at lower positions and ones at

higher positions.

Techniques other than the ones-encoder such as the N-bit NAND technique [171], multiplexer

technique [172], Butterfly sorting technique [173] and Stepped-Up Tree Encoder (SUTE) [119]

are all very limited in their range and do not scale effectively with the size of the bubble. This

is suitable for simple converter architectures such as carry chains (in an FPGA TDC) [174] and

resistor ladders (in an ADC) [169], but less useful for more complicated architectures such as

2-D comparative encoders [143] or, as we discovered, in the case of DSP delay lines [11]. These

encoders may have prohibitively large bubbles (96 bins in the case of DSP delay lines) due to

complex architectural forwarding techniques (e.g., carry look-ahead adders) for techniques other

than the ones-encoder.

We used a ones-encoder in section 4.4 on DSP delay lines, but to implement the wave-union

technique on the DSP delay lines in chapter 5, we needed a long-range bubble correction technique

that preserved edge position. This is because the task of decoding bubbles was significantly more

complex with wave-union TDCs due to the long bubbles and multiple edges.

To this end, we suggest a two-stage bubble-correction algorithm consisting of a local ones-

encoder to produce partial codes and then a hybrid between a single stage of an insertion sort

and a bin-packing algorithm which can separate the ones and zeros around the edge.
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Figure 6.1: N-bit NAND bubble corrector.
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Figure 6.2: Multiplexer bubble corrector.

The rest of this chapter will be structured as follows: Section 6.3 will describe the algorithm to

be implemented on the FPGA, Section 6.5 will describe the implementation details, including the

pipelining of the core loop to achieve 100 MHz, zero-dead-time operation, Section 6.6 will show

the results of the algorithm operating on captured codes from our DSP delay line, Section 6.7
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Figure 6.3: Butterfly bubble corrector.

will describe the limitations and extensibility of the algorithm and Section 6.8 will conclude the

chapter.

6.3 Algorithm

The proposed algorithm consists of two components: a local ones-encoder stage and a global

bin-packing stage. The local ones-encoder stage solves highly out-of-order codes within a defined

range to produce monotonically increasing minicodes, while the global bin-packing stage solves

for the case of ones bleeding from one local encoder to the next.

Stage 1. The Local Ones-Encoder

The first stage is to implement a ones-encoder that is no longer than half a pulse width. Imple-

mentations of ones-encoders are already well documented, with perhaps the most common and

efficient method being the Wallace-tree encoder [169], so they will not be discussed here. The

choice of ones encoder makes no difference to the performance of the TDC, but is dependent on
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Figure 6.4: Data input from code generator to the ones-encoders then to the bin packer.

the architecture of the device (FPGA architecture, ASIC node etc.) and will impact area and

power utilisation. For our purpose, the natural delineation of ones-encoders came from the 48-bin

boundary between DSP blocks, but any moderate size is acceptable.

A larger ones-encoder is preferable, as the second stage of the algorithm requires as many

cycles latency as there are local ones-encoders. However, if the ones-encoders contain more

than half the bins in a minimum-sized pulse, there is no guarantee that there will be a full

ones-encoder between two edges, which is required for correct operation of the algorithm, hence

the maximum size limitation. In our work on DSP delay lines and the wave union technique, the

size of the FSR pulse injector [1] was chosen to be longer than three ones-encoders large.

Stage 2. The Global Bin-Packer

The global bin packer algorithm is a hybrid between a bin packing algorithm and an insertion

sort. The kernel of the algorithm takes the data, two pointers (upper and lower) and the expected

state of the bins immediately before the lower pointer, then decides on the best distribution of

199



CHAPTER 6. BUBBLE CORRECTION

Kernel

en[1]

clk
clk

data_in /
144

0 /
6

48 /
6

1

/
6

N/C

DFF
valid_in D

clk

ready_in

occupied[1]
Q

en

Daux_in
enen[1]

Kernel

en[2]

clk/
144

/
6

/
6

2

/
6

N/C

DFF
D

occupied[2]
Q

en

D
aux[1]

Q

enen[2]

Kernel

en[3]

clk/
144

/
6

/
6

3

/
6

N/C
/

6 /
6 /

144

DFF
D

occupied[3]
Q

en

D
aux[2]

Q
aux[3]

Q

enen[3]

Kernel

en[N-1]

clk/
144

/
6

/
6

N-1

/
6

N/C

DFF
D

occupied[N-1]
Q

en

ready_out

D
aux[N-2] aux[N-1]

Q aux_out
enen[N-1]

data_out
N/C
N/C

valid_out

Figure 6.5: Block diagram of the bin packer top level.

data between these bins (and one other ‘overflow’ bin) to push ones and zeros towards the correct

side of the edge. It also decides on the correct next values of the pointers.

If this kernel were iterated N2 − N times, with a reset of the pointers every N iterations

(where N is the number of ones-encoders), then the algorithm would be guaranteed to compress

a bubble of any size, in a similar fashion to an insertion or bubble sort. However, to keep runtime

and logic requirements sensible, we suggest only performing N iterations, meaning the algorithm

can only compress bubbles that span two ones-encoders. This is because the algorithm cannot

move in reverse, and so when the expected value is 1s the algorithm cannot pull ones more than

two minicodes away to the current location. With the fully pipelined kernel described later, this

results in a runtime of 2N clock cycles.

Looking at the kernel in detail, we see that the action depends on the expected value of the

bins just below the lower pointer. If 0s are expected, then we are expecting a 0→ 1 transition in

the future, so we will attempt to push ones forward. Therefore, if the two codes pointed at by the

upper and lower pointers have values X and Y respectively, we will attempt to put X+Y in upper

code (originally contained Y). If X +Y is greater than the maximum output of a ones-encoder

(MAX ), then we will put the maximum value in the upper code and put X +Y −MAX in the

code below the upper code. We set the lower code to 0 unless it is adjacent to the upper code and
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X +Y > MAX . This can be seen in Figure 6.6.

Figure 6.6: Diagram showing how the kernel pushes ones forward.

On the other hand, if the expected value of the bins below the lower pointer is 1, then we wish

to pull ones back towards the transition (pushing 0s forward). In this case, min(X +Y , MAX )

goes into the lower pointer, 0 goes into the upper pointer unless X +Y > MAX and the codes are

adjacent, and X +Y −MAX goes into the bin above the lower bin if X +Y > MAX . This can be

seen in Figure 6.7.

Figure 6.7: Diagram showing how the kernel pulls ones backward.

The expected value for the next iteration of the kernel is also calculated. If the expected value

of the bins is 0 and the upper code is MAX , or the expected value of the bins is 1 and the upper
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code is 0, then the expected value is switched from 0 to 1 and 1 to 0 respectively, otherwise it

remains the same. This can be seen in Figure 6.8.
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Figure 6.8: Diagram showing how the expected value changes as the algorithm iterates through
the codes.

As for the next locations to look at, we define that the upper pointer must increment by 1

each iteration of the kernel, resulting in a tightly bounded runtime of N iterations. The lower

pointer is dependent on the values of the codes. If the upper code is 0 or MAX, the lower pointer

skips forward to the current value of the upper pointer (one below the next value of the upper

pointer). If the expected value of the bins is 0s, the lower pointer will be successively emptying

bins as it goes, so the lower pointer will increment by one each iteration. If the expected value

of the bins is 1s, then the lower pointer will stay at the current location to receive ones pushed

back by the upper pointer, except if the code it points to ‘fills up’ (reaches a value of MAX and

starts overflowing to the next bin), at which point it will move forward by 1. This can be seen in

Figure 6.9.

6.4 Proof of Correctness (Algorithm)

The proof of correctness for our algorithm will follow that of the bubble sort or insertion sort,

but with the fundamental operation (swapping elements in bubble sort) replaced with a bit

rearrangement.
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Figure 6.9: Diagram showing the advancement of the ‘base’ and ‘skip’ pointers. Skip always
advances, while base advances if the current bin is full.

6.4.1 Bit Rearrangement

First, let us look at the bit rearrangement. Bit rearrangement will be an identity function (input

= output) if the minicode pointed to by the lower pointer (X) is equal to 0 or MAX, or the minicode

pointed to by the upper pointer (Y) is equal to the opposite of the expected value (EX P = 0 and

Y = MAX or EX P = MAX and Y = 0). This covers the following three cases:

1. X is 0 (hence EXP must be 0); we are in a low region of our signal and there are no bits to

shuffle forward to the next edge.

2. X is MAX (hence EXP must be MAX); we are in a high region of our signal and there is no

space to shuffle bits back.

3. X is not 0 or MAX (covered by the other two cases) and Y is the opposite of EXP; we have

encountered a ’solid’ edge (no visible bubble) and nothing needs to be done (except inverting

EXP).

If none of these three cases are true, we can be sure that:
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1. Our lower pointer has high or low bits in it to push forward or pull back into respectively,

depending on the value of EXP.

a) If EX P = 0, then we have bits in X which can be pushed forward to Y.

b) If EX P = MAX , then we have space in X where we can pull bits from Y back to.

2. Our upper pointer is not full of the opposite edge type.

a) If EX P = 0, then Y is not full (Y ! = MAX ) hence there must be space to insert bits

from X.

b) If EX P = MAX , then Y is not empty (Y != 0) hence there must be bits to insert into X.

If the bit arrangement is not an identity function, then we know our data is of form

{..., Z∗,EX P, X , Z+?, ..., Z+?,Y , MAX −EX P, Z∗, ...}, where:

• Z is a random number from 1 to MAX-1 (each instance is random).

– Z0 is a random number from 0 to MAX-1.

– ZN is a random number from 1 to MAX.

– Z* is a random number from 0 to MAX.

– Z+ is a random number from 1 to MAX-1 or EXP.

– Z- is a random number from 1 to MAX-1 or MAX-EXP.

• EX P is the expected value (either 0 or MAX).

• MAX −EX P is the opposite of the expected value.

• Q? is a possible element equal to Q. In our case this shows the sequence could have any

number of Z+s between X and Y.

– From no Z+s (X and Y adjacent, upper = lower+1)

– To many Z+s (X and Y far apart, upper = lower+k for some large k).

• ... is a number of elements that match those either side.

204



6.4. PROOF OF CORRECTNESS (ALGORITHM)

– ..., Z means any number of Z elements leading up to a Z.

– Z, ... means any number of Z elements trailing after a Z.

– Z, ..., Z means any number of Z elements between two Zs.

– Z?, ...Z means any number of Z elements before a Z (note here this allows for X , Z?, ..., Z

since X , ..., Z is ambiguous).

– Z, ..., Z? means any number of Z elements after a Z (note this allows for Z, ..., Z?,Y

since Z, ...,Y is ambiguous).

– Z?, ..., Z? means any number of Z elements (note this allows X , Z?, ..., Z?,Y since

X , ...,Y does not imply the intermediate elements are Zs).

Given this, we can observe the effect of the bit rearrangement.

6.4.1.1 EX P = 0 case

If EX P = 0, then we calculate Y ′ = X +Y and X ′ = X +Y − MAX . If Y ′ > MAX , then Y be-

comes MAX and X becomes X’. If Y ′ <= MAX , then Y becomes Y’ and X becomes 0. Our

data now looks like ..., Z∗,0,0, Z+?, ..., Z+?,Y ′, MAX , ... in the case that Y ′ <= MAX , otherwise

..., Z∗,0, X ′, Z+?, ..., Z+?, MAX , MAX , ....

If Y ′ <= MAX , then the bubble has been shrunk by at least 1 minicode, since the earliest one

will be in the first Z+? or the Y’. If Y ′ > MAX , then we have also shrunk the bubble, but in the

other direction. The presence of the Z+? elements is problematic, but this will be solved by the

iteration.

6.4.1.2 EX P = MAX case

If EX P = MAX , we calculate Y’ and X’ as before. If Y ′ > MAX , then X becomes MAX and W (=

element after X) becomes X’. Y becomes 0. If Y’ <= MAX, then X becomes Y’ and Y becomes 0 (W

is also 0). Our data now looks like ..., Z∗, MAX ,Y ′, Z+?, ..., Z+?,0, Z∗, ... or

..., Z∗, MAX , MAX , X ′, Z+?, ..., Z+?,0, Z∗, .... In both cases, the element at Y has been zeroed,

with the excess going to X or W. Again, the issue of the intermediate Z+ elements is problematic

(perhaps more so given that one is overwritten), but this will be solved by the iteration.
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6.4.2 Iteration

As we have seen in the bit rearrangement section, we can shrink a bubble using logic which

moves bits from one minicode to another. The question remains, then, how this can be applied

repeatedly to fully eliminate bubbles, and this is where the iteration rules are applied.

The initial condition of the algorithm is EX P = MAX (the signal is expected to be high at the

LSB of the delay line, we are looking for a high to low transition), with the code being X ,Y , Z+, ....

There are no Z+ elements between X and Y as they are adjacent. From here, iteration is performed

as follows:

• If Y = EX P, move X to the location of Y and move Y forward by one. The code now looks

like Z+,EX P = X ,Y , Z+, ... (note: Z+,EX P is bubble-free, EXP is MAX).

• If Y = MAX−EX P, move X to the location of Y, move Y forward by one and invert EXP. The

code now looks like Z+, MAX −EX P = X ,Y , Z+, ... (note: Z+, MAX −EX P is bubble-free,

MAX-EXP is zero).

• If X = EX P, move X and Y forward by one. The code now looks like EX P, X ,Y , Z+, ... (note:

EXP is MAX).

• If X = MAX −EX P, move X and Y forward by one and invert EXP. The code now looks like

MAX −EX P, X ,Y , Z+, ... (note: MAX-EXP is zero).

• If none of the above, move Y forward by one.

– If Y ′ > MAX , move X forward by one. The code now looks like MAX ,Y ′−MAX =
X ,Y , Z+, ....

– If Y ′ <= MAX , the code now looks like Y ′ = X ,0,Y , Z+, ....

As can be observed from the possibilities shown here, the only time the size of the bubble

grows is when Y advances and X does not. This only happens when Y ′ < MAX , resulting in zeros

occurring between X and Y. Therefore, if EX P = MAX and we start with Y being one ahead of

X, we can guarantee that the only thing between X and Y will be zeros. Looking back to the bit

rearrangement section, we highlighted the issue of the Z+ being overwritten when advancing
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with EX P = MAX . However, if (∀Z+), (Z+= 0), then there is no issue with overwriting bits (no

bits are disappearing).

We can reach the end of the current edge either by X = MAX −EX P or Y = MAX −EX P,

with EX P = MAX . Other than in the most basic case where EXP is inverted on the first iteration,

any minicode that X is pointing to was previously pointed to by Y and therefore would have

already shown the end of an edge and triggered the Y = MAX −EX P case. Therefore, other than

the first iteration (where Y is exactly one ahead of X), the end of an edge is always detected by

Y = MAX −EX P and the distance between X and Y becomes one. Therefore, we can guarantee

that the form of the delay line when inverting EXP is ..., MAX , Z+?, X = 0,Y , Z+, ... (note: no

bubble before the X).

Now considering the EX P = 0 case (currently looking for a low to high transition), and

knowing that the initial state will be ..., Z+?, X = 0,Y , Z+, ..., we can consider the loop again:

• If Y = EX P, move X to the location of Y and move Y forward by one. The new code looks

like ..., Z+?,0?, ...,0, X = 0,Y , Z+, .... No bubble is present so far.

• If Y = MAX −EX P, move X to the location of Y, move Y forward by one and invert EXP.

The new code looks like ..., Z+?,0?, ...,0, X = MAX ,Y , Z+, .... No bubble present.

• If X = EX P, move X and Y forward by one. The new code looks like ..., Z+?,0?, ...,0, X ,Y , Z+, ....

Again, no bubble is present.

• If X = MAX −EX P, move X and Y forward by one. The new code looks like

..., Z+?,0?, ...,0, MAX , X ,Y , Z+, .... Note that this cannot occur on the first iteration as X = 0

from previously.

• If none of the above, move Y forward by one.

– If Y ′ <= MAX , move X forward by one. The code now looks like ..., Z+,0, ...,0, X ,Y ′ =
Y , Z+, .... The bubble has been eliminated so far.

– If Y ′ > MAX , the code now looks like ..., Z+,0, ...,0?, X = Y −MAX , MAX ,Y , Z+, ....

The space in between the X and Y has increased, but only a MAX is included.
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Similar to the EX P = MAX case, there is only one scenario where the space between X and

Y can increase, and in that case the minicodes between X and Y are filled with MAX , meaning

the bubble size cannot exceed one minicode within the minicodes observed so far (everything

before X is zero, everything after X is MAX). The only scenario where EXP is inverted and we

return to the EX P = MAX case is when Y = MAX −EX P = MAX . Here, we’ve observed one of

the barrier minicodes that signals we’ve reached the end of an edge, and so we move X to the

current location of Y (X = MAX now) and Y forward by 1. This results in the distance between X

and Y being reset to zero with no Z+ elements between them, restoring the ideal state from the

start.

Because the iteration rules allow the algorithm to retain a “clean” state where the elements

between X and Y can only be MAX −EX P and reset the distance back to one when EXP is

inverted, the issues we determined with the bit rearrangement step are no longer a problem: the

bubble is fully reduced to a single minicode, and no bits are dropped due to being overwritten.

Therefore, the correctness of the algorithm has been proven, provided sufficient iteration for Y to

reach the end of the code.

By observation, Y is always moved forward by one. Therefore, Y will reach the end of the code

after N −1 iterations, where N is the number of minicodes per code. After N −1 iterations, the

bubble will be corrected.

6.5 Implementation

The ones-encoder and bin-packer were implemented in hardware. For simplicity, a binary tree

adder was used for the ones-encoder (rather than the more efficient but more complicated

Wallace-tree). The bin-packer was implemented as two modules, the bin_pack_block module

which implemented the kernel of the bin-packer, and the bin_pack module which implemented

the N-iteration loop in the form of an auto-generated pipeline of bin_pack_block modules. This

can be seen in Fig. 6.5, where the bin_pack_block modules are denoted as ‘Kernel’ and connections

to the bin_pack_block module are shown in Fig. 6.10b.

The bin_pack_block modules take in the data vector (data_in), the upper and lower pointers
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Figure 6.10: (a) Function of a BMERGE block. (b) Pin arrangement on one of the Kernel blocks.

(skip_in and base_in respectively), the expected value of bins (exp_in), an enable signal, an

active-high reset (not shown) and a clock signal. The modules output the modified data vector

(data_out), the new values of the upper and lower pointers (skip_out and base_out) and the new

expected value of the bins (exp_out).

As the value of skip_out is always one higher than skip_in, the skip_in value is hard-coded by

the bin_pack module for better logic synthesis.

The bin_pack module manages the movement of data through the pipeline using the occupied,

aux and en signals. The occupied signal is a D-type Flip-Flop (DFF) which signals whether

there is valid data at a particular position in the pipeline. The en signal determines whether a

particular pipeline stage forwards the data to the next stage and is derived from the occupied

and en values from the next stage. The aux signal allows auxiliary data to be carried in lock-step

with the data to be processed, such as channel or acquisition time information (in our work on

DSP delay lines, this was the value of the TDC coarse counter).
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Figure 6.11: Schematic for the kernel, with extra pipeline registers.

The internals of the bin_pack_block module can be seen in Fig. 6.11. The module can be

roughly split into three parts: a data extraction part, a data selection part, and a data insertion

part.

The extraction part is on the left, before the optional flip-flop stage. This part extracts data

from the data_in vector according to the values of base_in and skip_in. If we call the data selected

by base_in ‘data_base’ and the data selected by skip_ in ‘data_skip’, then the algorithm also

calculates data_base + data_skip and data_base + data_skip - MAX (MAX = 48 in our work). It

also calculates the expected value of the delay line before base_in from the 1 bit signal exp_in.

This data is then optionally registered by a stage of D-type Flip-Flops (DFFs). Doing this cuts

the critical path in half, resulting in significantly higher clock speeds (not quite double, as there

is overhead from the flip-flop and net fanout).

The next part is the data selection part, where several multiplexers select the correct data to
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insert into the output data vector. This corresponds to several if statements in the source code.

The conditions for the data selection are computed near the bottom diagram using the equality

and less than operators, then some gates to combine the results. The outputs of the gates serve as

the select inputs to the multiplexers, with the data to be inserted on each branch of the condition

as the data inputs. Similar selections also occur for the exp_in and base_in signals.

The final part is data insertion. Here, the data selected earlier is inserted into the output data

vector, overwriting a group of six bits. This is accomplished using the BMERGE block (Fig. 6.10a),

which takes an offset at the S input and some data at the I input. The Q output vector has the bit

values of I[5:0] at bit locations Q[S+5:S], while the rest of the bits are the same as the D input

vector.

The outputs of the BMERGE blocks are cascaded and the final one is registered before leaving

the module. The base_out and exp_out signals simply register the selected data without any

merging. As skip_out is always skip_in + 1, the logic is very simple here.

By splitting the internals of the kernel into two stages, one which looks-up the required data

from the input vector and calculates the required sums (X +Y and X +Y −MAX ), and another

which selectively writes to the output vector, we were able to significantly reduce the latency and

hence improve the clock frequency. The source code of the implementation can be found at [175].

6.6 In-Situ Results

The design was instantiated with typical parameters for our use case: 24 codes, each six bits wide

with a maximum value of 48 (due to each code relating to a DSP block). This results in 144-bit

input and output vectors.

With a single clock cycle kernel (the series of registers in the centre of Fig. 6.11 removed),

the design takes 11 ns cycle-to-cycle on an Artix-7 FPGA (with aggressive optimisation settings),

meaning it would not reach the target 100 MHz clock frequency. With a two-cycle kernel, the

cycle-to-cycle latency was reduced to 7.668 ns, which could achieve a 130 MHz clock frequency if

required.

The area utilisation on the XC7A200T chip used for this work was 13% of the slice LUTs (Look-
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Up Tables) and 3.1% of the slice FFs, which is not small, but given that the logic is outputting

144 bits of data at 100 MHz (14.4 Gbit/s), this is well above the speed of most interfaces, and so

reducing the depth of the pipeline (requiring more dead-time) is entirely possible to reduce area

utilisation.

Due to non-optimal packing of logic, the number of slices occupied is 21% of the total. However,

if the FPGA was pressed for space, the implementation tools would fill the gaps with other logic

or the design’s floorplan would be more tightly compressed, at the expense of timing efficiency.

The addition of the bubble corrector to our wave union design (Chapter 5) improved the DNL

from 188 LSBs to 14.5 LSBs, a 13x improvement. Without the bubble corrector, our bubbles could

extend for 2 DSP blocks (96 bins, 940 ps) length, while the result with the bubble corrector was

accurate to a single bin.

Table 6.1: Sample corrections applied by the bubble corrector to the DSP wave union TDC.

Time (cycle) State

0-13 0, 0, 0, 1, 48, 0, 1, 47, 48, 48

14-end 0, 0, 0, 1, 48, 0, 0, 48, 48, 48

0-5 0, 0, 1, 43, 48, 0, 12, 40, 48, 48

6-13 0, 0, 0, 44, 48, 0, 12, 40, 48, 48

14-end 0, 0, 0, 44, 48, 0, 4, 48, 48, 48

0-7 0, 0, 48, 37, 13, 0, 44, 48, 48, 48

8-end 0, 0, 48, 48, 2, 0, 44, 48, 48, 48

6.7 Limitations and Extensibility

Our design does have some significant limitations. One of the most significant is that there must

always be at least one full ones-encoder between two edges, placing an upper limit on the size of

the ones-encoders of half the pulse width (so that, regardless of the phase relationship between

the pulse and ones-encoders, there will always be a full code).

Significant margin must also be added on top of this to ensure that the assorted ones and

zeros around the edge do not spill into the guaranteed bin. In our application, nominally three

codes (i.e., three DSP blocks) between edges was sufficient to ensure a full bin between each edge.
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In addition, with only N iterations, the algorithm can only guarantee to deal with bubbles

of two ones-encoders width. If the bubble can extend further than this (i.e., split itself over

3+ consecutive codes), more iterations of the algorithm are required to deal with the 0 → 1

transition case. 2N iterations are sufficient for bubbles split over three codes, 3N for four codes,

etc. Repeating the algorithm for more cycles is a sufficiently simple process.

In the future, it may be appropriate to investigate operating the algorithm in two directions

(top to bottom, bottom to top), requiring 2N iterations. We see that when pulling bins back

(1→ 0 transitions), the algorithm perfectly retrieves all 1s regardless of the bubble length. When

iterating in the other direction, 1→ 0 and 0→ 1 transitions swap, so these two directions should

be sufficient to fix all bubbles, regardless of size.

This is somewhat similar to the bubble and insertion sort, where moving data from one end to

the other is efficient but moving data in the other direction is not. Two-way bubble and insertion

sorts solve this problem, and the same can be said here.

If the number of edges and maximum edge length were known in advance, then an alteration

to the algorithm could be applied where it alternates between finding the next edge in the delay

line and compressing the bubbles around that edge. For very long delay lines or low numbers

of edges (edges are relatively sparse, or all clustered in a small area), this could significantly

improve the runtime of the algorithm, and is suggested for future work.

6.8 Conclusion

In this chapter, we proposed a hardware bubble correction algorithm capable of dealing with very

large bubbles in a priority code while maintaining position information, making it suitable for

multiple registration and short pulse width applications. This makes it ideal for implementing

wave union TDCs with highly non-linear delay lines.

The algorithm was implemented on an Artix-7 200T FPGA and utilised 13% of the LUTs and

3.1% of the registers. It achieved a worst-case cycle-to-cycle latency of 11 ns with a single-cycle

kernel and 7.668 ns when fully pipelined (with a two-cycle kernel), allowing for a theoretical

maximum frequency of 130 MHz. This was performed with 24 codes, each six bits wide, with a
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maximum value per-code of 48, meaning it was capable of processing 144 bits per cycle at the

target speed of 100 MHz (14.4 Gb/s) or higher.

We have highlighted the limitations of the algorithm, including the requirement for a full

ones-encoder between each edge, which provides an upper bound for the size of a code. This was

shown to constrain the runtime and area of the algorithm. Methods were suggested to improve

the range of the bubble compression, if required.
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A.1 Abstract

O
ne of the most common techniques for high-resolution time measurement (at the

expense of repetition rate) is the Vernier TDC, consisting of two delay lines with a

small delay difference that can be used to quantify time difference at sub-gate-delay

resolutions. Other TDC architectures have shown compatibility with multi-chain measurement

techniques such as multi-chain averaging and equivalent coding lines, but this has not yet been

demonstrated with Vernier TDCs. In this section, we adapt multi-chain measurement to the

Vernier architecture using a multiple-start scheme with a pre-offset. Using Cadence Design

Systems’ GPDK 180 nm simulation, we demonstrate a two-chain Vernier TDC with an LSB of

12.5 ps, half that of an equivalent single-chain Vernier TDC (25 ps), showing that the resolution

may be able to be doubled in an Equivalent Coding Line scheme. A Monte-Carlo simulation is

run to observe the variation between devices, and it is confirmed that the variation in the sizes

of the initial offset is sufficiently small (±1.58 ps) for this scheme to work on semi-real devices.

Future work would use a more realistic PDK, increase the number of chains, optimise the Vernier

elements to use less silicon and power and add calibration, binary decoding, and readout.
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A.2 Introduction

Time-to-Digital Converters (TDCs) are important components in frequency locking, rangefinding

and nuclear applications [8, 40, 176]. Depending on the application, the acceptable trade-off

between resolution, repetition rate and cost will change. For many imaging systems, the aim is to

achieve a high resolution and low area or power (cost), at the expense of a lower repetition rate

(which is acceptable due to the relatively low rates at which events can occur). For these systems,

Vernier TDCs (VTDCs), Pulse Shrinking TDCs (PS-TDCs) and Successive Approximation TDCs

(SA-TDCs) are ideal candidates as they have much lower repetition rates but much higher

resolutions for a given area.

Of these, the Vernier TDC [177] is the simplest to implement, consisting of two delay lines

with slightly different delays per element. The two events (start, stop) are inserted into these

delay lines, with the former (start) put in the delay line with the longer delay, and the latter

(stop) put in the delay line with the shorter delay. Due to the difference in delays between the

two delay lines, the stop pulse will ‘catch up’ with and ‘overtake’ the start pulse. Discriminator

elements in the Vernier TDC determine whether the start or stop pulse arrived at their position

first, and this generates a thermometer code according to the time delay between start and stop.

For two delays, T f and Ts, where T f < Ts, each stage of the Vernier TDC will decrease the delay

between the start and stop signals by Ts −T f , which is therefore the resolution.

Other TDC techniques such as Flash TDCs, Counter (Coarse) TDCs and Gated Ring Oscilla-

tor TDCs (GRO-TDCs) have all benefitted from multi-chain techniques [37, 178, 179]. In these

schemes, multiple parallel sets of delay elements characterise the same signal simultaneously,

occasionally with a pre-applied offset which varies per-chain. The individual per-chain measure-

ments are individually decoded and then combined using a scheme such as Equivalent Coding

Line (ECL) or multi-chain averaging. The differences in the quantisations by the different delay

elements are exploited by the combination scheme to provide higher resolution.

However, until now, multi-chain techniques have not been applied to Vernier TDCs. Therefore,

in this chapter, we will demonstrate a scheme to apply multi-chain techniques to Vernier TDCs.

In Section A.3, we describe the design of the multi-chain Vernier TDC. Then, in Section A.4 we
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describe how we tested the TDC core and present the results in Section A.5. Finally, we conclude

and suggest future work in Section A.6.

A.3 System Design

A.3.1 Overview

To demonstrate multi-chain techniques on Vernier delay lines, we determined that we would need

to implement the core of the TDC up to the point of generating a thermometer code output. For

this, we would need the Vernier delay elements, discriminators, and an initial offset to stagger

the chains relative to each other. For the Vernier delay elements, CMOS inverters with varying

channel lengths were chosen as they are simple, reliable, and relatively performant. For the

discriminators, sense amplifiers were chosen as D-type flip-flops are much more sensitive to

metastability conditions, have larger blackout times and have greater individual variation. As for

the initial offset, Vernier elements with varying channel lengths were once again chosen as the

most reliable option, considering that they could be scaled relative to the Vernier elements to

maintain specific relative performance.

A.3.2 PDK

To test our implementation, we made use of Cadence Design Systems’ [180] GPDK 180 nm

process. This process was chosen due to its simplicity and lack of non-disclosure agreements,

while still being semi-realistic. With a gate length of 180 nm, the performance of the TDC cannot

be expected to compete with modern TDC designs on smaller process nodes. However, it is

sufficient to demonstrate the concept of multi-chain Vernier TDC operation, which is the main

purpose of this chapter.

A.3.3 Discriminators

As time sensitivity is an important metric for discriminators in TDCs, using a more advanced

discriminator often causes significant improvements in linearity and resolution. Therefore,

instead of using a flip-flop as a discriminator, we opted for a discriminator based on a sense
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amplifier as described in [181]. These discriminators offer smaller metastability periods and less

variance in blackout times compared to flip-flops, which is preferable for time-sensitive circuits.

The circuit schematic can be seen in Fig. A.1.

A.3.4 Vernier Elements

Once the discriminator was built, design could proceed to the Vernier element. This element

should implement a very small number of taps of the delay line (one or two) and be capable of

chaining with other elements.

Inverters I0 to I5 in Fig. A.2 implement the main Vernier delay chain. I0, I2, I3 and I5 are

sized at NMOS=1u/260n and PMOS=2u/260n, while I1 and I4 are sized at NMOS=1u/180n and

PMOS=2u/180n. The difference in channel lengths between the start chains (I0, I2, I3, I5) and

the stop chain (I1, I4) cause the start signal to propagate slower than the stop signal and thus

causes the two signals to converge, eventually changing the order of signals incident at the sense

amplifiers and creating an edge in the thermometer code output at the corresponding position.

I6 through to I9 are discriminators (sense amplifiers) to determine whether the start or stop

signal reaches the tap first. If the start signal reaches first, it outputs a logic high (‘1’), else it

outputs a logic low (‘0’).

The sense amplifiers are triggered by a low-to-high transition, so for half the taps (outputs

of I0 through I2), the polarity of the signal in the VDL is opposite to the value required by the

discriminators. This is fixed using the inverters I10 through I12. I10 and I12 are sized with

NMOS=1u/180n and PMOS=2u/180n, while I11 has double the width to account for driving two

sense amplifier inputs. However, if I3 through I5 were to drive the sense amplifiers directly, the

fanout would be much higher for even-numbered taps (due to the greater quantity of transistors in

a sense amplifier) than odd numbered taps, degrading the linearity of the TDC. To counteract this,

two inverters (I13-I18, with I13-I14 being double-sized) were added to each of I3-I5, disconnecting

the sense amplifier load from the delay line. With this, the load at each tap in the delay line is

always two inverters, each of them the same size as the inverter driving them.

The outputs of the Vernier elements are two bits of quantisation per chain in the delay line

(d0, d1), one chain output for the stop signal and one chain output per start signal to allow
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Figure A.1: Sense amplifier used as a discriminator in the TDC core. Cell name ‘sense’. The ‘inv’
cell is a simple CMOS inverter.

multiple Vernier elements to be cascaded.

A.3.5 Initial Time Offset

Once the Vernier element was complete, building the entire delay line was as simple as cascading

several Vernier elements. However, to obtain multi-chain performance benefits, an offset between

the initial start signals needs to be formed. For this purpose, the cluster of inverters on the left of

Fig. A.5 was introduced. The inverters are implemented as pairs to avoid changing the polarity

of the signal and to ensure the input drive strength is equal. The first inverter in each pair is

always NMOS=1u/180n and PMOS=2u/180n, which decouples the next stage from the input and

normalises the drive strength of the signal. The second inverter in each pair has a length of

180n for the stop channel and first start channel, with the length slightly longer (220n) on the

second start channel. This reduces the drive strength and increases the input and output node
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Figure A.2: Vernier element used in the TDC core. Implements two taps of the Vernier delay line.
The top and bottom chains are ‘start’ chains, while the middle chain is the ‘stop’ chain.

capacitance slightly, causing a relative delay half the resolution of the single-channel equivalent

Vernier delay line
((

Tslow −T f ast
)
/2

)
.

Figure A.3: Testbench used to confirm correct operation of the TDC.
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Figure A.4: Parameters of the 16 element two-chain Vernier delay line. st = start chains, sp =
stop chain, of = offset transistors on second start chain, Ln = Length of NMOS transistors, Lp =
Length of PMOS trnasistors.

Figure A.5: Vernier delay line for 16 taps.
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A.4 Test Methodology

A.4.1 Testbench

To test the TDC core, a testbench was created for simulation by Cadence’s Virtuoso tool. The

supply rail Vcc was supplied with 1.8 V via a DC voltage source. The two input pins, start and

stop, were fed by square wave generators (vpulse) with a 10 ns period, 5 ns pulse width, 100 ps

rise/fall times, 1.8 V on-voltage and 0 V (relative to the system ground) off-voltage. The delay for

the start signal was set at 1 ns and the delay for the stop signal was set at 1.1 ns, 100ps retarded

compared to the start signal. All output signals were connected to 1 fF loads for measurement.

This is all shown in Fig. A.3

A.4.2 Model Parameters

The Cadence simulation was set up for the GPDK 180 nm “reference” process node distributed

by Cadence Design Systems. The simulations were performed at a temperature of 27° C with,

where not otherwise specified, the width of PMOS transistors being 2 um, the width of NMOS

transistors being 1 um, and the length of all transistors being 180 nm. Particular exceptions

to this were the length of transistors in the ‘stop’ chain, which were 160 nm in length, and the

length of the transistors which were used to offset the second start channel compared to the first,

which were 220 nm in length. This is shown in Fig. A.4.

A.4.3 Typical Mean and Sweeps

The first simulation to be run was a typical mean simulation, to determine the average case

performance and configure model parameters correctly. A 20 ns transient simulation was set up

with the delay between the start and stop signals measured at each tap in the delay line (see

Fig. A.6).

A.4.4 Monte-Carlo Analysis

Once the typical mean was shown to be operating correctly, a Monte-Carlo simulation was set

up to determine the variability in the design. A 200-point Monte-Carlo simulation was set up,
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Figure A.6: Expressions used to determine the tap delays. delXY = Delay tap X of chain Y. Notice
how two start channel taps (/I0/stshX<0> and /I0/stshX<1>) map to the same stop channel tap
(/I0/spshX).

with variation in the entire delay line design being considered (not in the temperature or voltage

source).

A.5 Results

A.5.1 Typical Mean and Sweeps

The results of the typical mean simulation can be seen in Fig. A.7. We see that the phase difference

between the two signals inverts between delay taps ‘del31’, the eighth tap, and ‘del40’, the ninth

tap. With some variability, this shows that there is approximately 12.5 ps between each tap in

the combined delay line, compared to approximately 25 ps between each tap in each individual

delay line, an optimal 2x improvement for two delay lines. Presuming that an accurate initial

offset delay could be set up, this scheme could be extended to significantly more chains for further

improvements.

One of the most significant challenges when implementing the TDC was maintaining the

difference between the start chains. Even a slight mismatch between the load on the start

and stop chains resulted in a drift in the LSB size which severely degraded TDC linearity and

therefore performance. To counteract this, the aforementioned inverters were put in at every

output of the delay line to normalise the load. However, a more appropriate solution would be to
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Figure A.7: Delays of the Vernier taps under typical mean scenarios. delXY = Delay tap X of
chain Y.

size the delay chain elements to account for the difference. This would require significantly more

effort and is not required to demonstrate multi-chain techniques on Vernier delay lines, so it was

not implemented in this chapter.

A.5.2 Monte-Carlo

The Monte-Carlo simulation results can be observed in Fig. A.8. We see that over the course of 17

taps in the delay line, the length can vary from 175.1 ps (89.62 ps to -85.44 ps) to 245.6 ps (92.78 ps

to -152.8 ps). This would correspond to an LSB varying from 10.30 ps to 14.45 ps. However, this

could be minimised using delay-locked loop techniques to calibrate the length to a known value

(e.g., 15 ps) using an external reference and current-starving transistors. The standard deviation

also increases by 800 ps per stage of the delay line due to the lack of calibration.
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Figure A.8: Delays of the Vernier taps under a Monte Carlo simulation.

A.6 Conclusion

In this chapter, we have demonstrated that it may be possibile to implement multi-chain tech-

niques such as multi-chain averaging and equivalent coding lines on a Vernier TDC. Using a

common stop chain and multiple start chains on Cadence’s GPDK 180 nm process, we were

able to create differential offsets at the start of the chains to stagger the transition time of the

start chains and hence sub-divide the fundamental resolution of the Vernier TDC. Variance in

transistor sizes was shown to cause a ±1.58 ps variability for the initial 12.5 ps differential offset

on a native Vernier resolution of 25 ps, well within tolerances for multi-chain techniques. Without

calibration, the LSB was shown to vary between 10.30 ps and 14.45 ps, with the average being

12.5 ps. This could be improved using the delay-locked loop techniques present in most Vernier

TDCs to normalise the resolution to, e.g., 15 ps.

Our implementation of the Vernier delay line was not particularly efficient, focusing more on

ensuring accuracy than chip area or power. For that purpose, we used an excessive quantity of

inverters to decouple components from each other when it would have been sufficient to tune the

sizes of the elements to match propagation delays. Our implementation also demonstrated only
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the TDC core and its proximal components; a real TDC would likely implement calibration and a

thermometer-to-binary decoder in addition, but this is not directly attached to the TDC core and

so would not impact performance.

Future work on this topic could take the demonstrated multi-chain technique, implement

it on a more realistic PDK, extend it to four or more chains, and implement it in a full TDC

core with calibration, delay-locked loop techniques, data decoding and read-out. It could then be

manufactured on a real process node to demonstrate the viability in silicon. Of particular interest

would be attempting to determine the limit to the resolution in the differential offsets at the start

of the delay line and the correlation between the delays in parallel chains, since this determines

the maximum gain that can be obtained from the multi-chain method.
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B.1 Multi-Channel TDCs

A paper on multi-stop TDCs for photonics applications was published alongside the main author,

Ekin Arabul [17]. I was mainly responsible for the data readout and dual-sampling aspects of

this paper.

B.2 Machine Vision

I have co-authored three papers relating to machine vision. [182] is a paper on real-time stere-

ovision on an unmanned (autonomous) airborne vehicle (UAV). [183] is a related paper on

ground object tracking using templates on the same UAV platform. [184] is a paper on the use of

stereovision for real-time road surface estimation in autonomous vehicles.

B.3 E-Learning

I have authored four papers related to the teaching and learning of Engineering. In [185],

we discuss the challenges associated with project handover for long-running projects between

Masters students, as well as the techniques we use to enable these projects and quickly induct
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new students. [186] goes into more detail on how students are prepared for the final-year project,

including the resources we prepare beforehand to create a working base environment for the

students to develop their project in.

[187] describes a real-time feedback tool for use in lectures to assist lecturers in determining

engagement and understanding without interrupting the flow of the lecture. [188] extends this

by suggesting a machine learning system that can digest student feedback and behaviours to

determine engagement and understanding directly, without requiring the interpretation of the

lecturer. This provides at-a-glance feedback on the progress of the lecture and allows the lecturer

to dynamically adapt the lecture to better involve and motivate the students.

228



A
P

P
E

N
D

I
X

C
INSTANTIATION OF DSP BLOCKS

C.1 DSP48A1 Blocks in VHDL

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4 use std.textio.all;

5 use ieee.std_logic_textio.all;

6

7 library unisim;

8 use unisim.vcomponents.all;

9

10 entity DSP_DL is

11 port (

12 trigger : in std_logic;

13 code : out std_logic_vector(20*48-1 downto 0);

14 clk : in std_logic

15 );
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16

17 end entity;

18 --A, B and D will be set to 0 so they don't affect anything.

19 --C will be set to 0xFFFF FFFF FFFF to enable full propagation of the carry

bit.,→

20 --C Reg wil be bypassed

21 --Z mux will be set to act on C input.

22 --X mux will be set to act on 0 input.

23 --Carry cascade cmux will be set to CARRYIN input.

24 --CYI reg will be bypassed.

25 --CYO reg will be bypassed.

26 --P reg will be used to register DL state.

27 --CARRYOUT will be connected to next CARRYIN.

28

29 --OPMODE:

30 --[1:0] 0 for outputting zeros

31 --[3:2] 3 for using the C port

32 -- [4] X (use 0)

33 -- [5] X (use 0)

34 -- [6] X (use 0)

35 -- [7] 0 for addition

36

37 --Clock Enables (CEx)

38 --CEP: 1 for enabling clock on PREG

39 --Others: 0

40

41 --Resets (RSTx):

42 -- None used?

43
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44 architecture primitive of DSP_DL is

45 signal carrys : std_logic_vector(20 downto 0);

46 begin

47

48

49 carrys(0) <= '0';

50

51 carry48: DSP48A1

52 generic map (

53 A0REG => 0,

54 A1REG => 0,

55 B0REG => 0,

56 B1REG => 0,

57 CARRYINREG => 0,

58 CARRYINSEL => "OPMODE5",

59 CARRYOUTREG => 0,

60 CREG => 0,

61 DREG => 0,

62 MREG => 0,

63 OPMODEREG => 0,

64 PREG => 1,

65 RSTTYPE => "ASYNC"

66 ) port map (

67 BCOUT => open,

68 PCOUT => open,

69 CARRYOUT => carrys(1),

70 CARRYOUTF => open,

71 M => open,

72 P => code(47 downto 0),
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73 PCIN => X"0000_0000_0000",

74 CLK => clk,

75 OPMODE => "00001111",

76 A => "00" & X"0000",

77 B => "0" & X"0000" & trigger,

78 C => X"FFFF_FFFF_FFFF",

79 CARRYIN => carrys(0),

80 D => "00" & X"0000",

81 CEA => '0',

82 CEB => '0',

83 CEC => '0',

84 CECARRYIN => '0',

85 CED => '0',

86 CEM => '0',

87 CEOPMODE => '0',

88 CEP => '1',

89 RSTA => '0',

90 RSTB => '0',

91 RSTC => '0',

92 RSTCARRYIN => '0',

93 RSTD => '0',

94 RSTM => '0',

95 RSTOPMODE => '0',

96 RSTP => '0'

97 );

98

99 gen_dsps : for i in 1 to 19 generate

100 carry48: DSP48A1

101 generic map (
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102 A0REG => 0,

103 A1REG => 0,

104 B0REG => 0,

105 B1REG => 0,

106 CARRYINREG => 0,

107 CARRYINSEL => "CARRYIN",

108 CARRYOUTREG => 0,

109 CREG => 0,

110 DREG => 0,

111 MREG => 0,

112 OPMODEREG => 0,

113 PREG => 1,

114 RSTTYPE => "ASYNC"

115 ) port map (

116 BCOUT => open,

117 PCOUT => open,

118 CARRYOUT => carrys(i+1),

119 CARRYOUTF => open,

120 M => open,

121 P => code((48*(i+1))-1 downto 48*i),

122 PCIN => X"0000_0000_0000",

123 CLK => clk,

124 OPMODE => "00001100",

125 A => "00" & X"0000",

126 B => "00" & X"0000",

127 C => X"FFFF_FFFF_FFFF",

128 CARRYIN => carrys(i),

129 D => "00" & X"0000",

130 CEA => '0',
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131 CEB => '0',

132 CEC => '0',

133 CECARRYIN => '0',

134 CED => '0',

135 CEM => '0',

136 CEOPMODE => '0',

137 CEP => '1',

138 RSTA => '0',

139 RSTB => '0',

140 RSTC => '0',

141 RSTCARRYIN => '0',

142 RSTD => '0',

143 RSTM => '0',

144 RSTOPMODE => '0',

145 RSTP => '0'

146 );

147 end generate;

148 end architecture primitive;

C.2 DSP48E1 Blocks in SystemVerilog

1 `timescale 1ns / 1ps

2 //////////////////////////////////////////////////////////////////////////////////

3 // Company:

4 // Engineer:

5 //

6 // Create Date: 17.07.2017 15:18:57

7 // Design Name:

8 // Module Name: dl
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9 // Project Name:

10 // Target Devices:

11 // Tool Versions:

12 // Description:

13 //

14 // Dependencies:

15 //

16 // Revision:

17 // Revision 0.01 - File Created

18 // Additional Comments:

19 //

20 //////////////////////////////////////////////////////////////////////////////////

21

22

23 module semifine_dl #(

24 parameter L_SEMIFINE = 9,

25 parameter L_FINE = 6,

26 parameter SEMIFINE = 2 ** L_SEMIFINE,

27 parameter FINE = 2 ** L_FINE

28 ) (

29 input wire clk ,

30 input wire trigger ,

31 output wire [SEMIFINE-1:0] semifine,

32 output wire [ FINE-1:0] fine ,

33 output wire valid

34 );

35

36 reg[SEMIFINE-1:0] r_sline_0 = 0, r_sline_1 = 0;

37 reg r_valid = 0 ;
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38 reg r_trig_0 = 0, r_trig_1 = 0;

39

40 assign semifine = r_sline_1;

41 assign valid = r_valid;

42

43 always @ (posedge clk) begin

44 r_trig_1 <= r_trig_0;

45 r_trig_0 <= trigger;

46 r_valid <= r_trig_0 & !r_trig_1;

47 r_sline_1 <= ~r_sline_0;

48 r_sline_0 <= semifine_line;

49 end

50

51 //Semifine components.

52 wire[SEMIFINE-1:0] semifine_line;

53 wire[SEMIFINE-1:0] cascade_carries;

54

55 DSP48E1 #(

56 // Feature Control Attributes: Data Path Selection

57 .A_INPUT ("DIRECT" ), // Selects A input source, "DIRECT"

(A port) or "CASCADE" (ACIN port),→

58 .B_INPUT ("DIRECT" ), // Selects B input source, "DIRECT"

(B port) or "CASCADE" (BCIN port),→

59 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE or

FALSE),→

60 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

61 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48", "TWO24",

"FOUR12"),→
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62 // Pattern Detector Attributes: Pattern Detection Configuration

63 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→

64 .MASK (48'hffffffffffff), // 48-bit mask value for pattern

detect (1=ignore),→

65 .PATTERN (48'h000000000000), // 48-bit pattern match for pattern

detect,→

66 .SEL_MASK ("MASK" ), // "C", "MASK", "ROUNDING_MODE1",

"ROUNDING_MODE2",→

67 .SEL_PATTERN ("PATTERN" ), // Select pattern value ("PATTERN"

or "C"),→

68 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect ("PATDET"

or "NO_PATDET"),→

69 // Register Control Attributes: Pipeline Register Configuration

70 .ACASCREG (0 ), // Number of pipeline stages between

A/ACIN and ACOUT (0, 1 or 2),→

71 .ADREG (0 ), // Number of pipeline stages for

pre-adder (0 or 1),→

72 .ALUMODEREG (0 ), // Number of pipeline stages for

ALUMODE (0 or 1),→

73 .AREG (0 ), // Number of pipeline stages for A

(0, 1 or 2),→

74 .BCASCREG (0 ), // Number of pipeline stages between

B/BCIN and BCOUT (0, 1 or 2),→

75 .BREG (0 ), // Number of pipeline stages for B

(0, 1 or 2),→

76 .CARRYINREG (0 ), // Number of pipeline stages for

CARRYIN (0 or 1),→
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77 .CARRYINSELREG (0 ), // Number of pipeline stages for

CARRYINSEL (0 or 1),→

78 .CREG (0 ), // Number of pipeline stages for C

(0 or 1),→

79 .DREG (0 ), // Number of pipeline stages for D

(0 or 1),→

80 .INMODEREG (0 ), // Number of pipeline stages for

INMODE (0 or 1),→

81 .MREG (0 ), // Number of multiplier pipeline

stages (0 or 1),→

82 .OPMODEREG (0 ), // Number of pipeline stages for

OPMODE (0 or 1),→

83 .PREG (0 ) // Number of pipeline stages for P

(0 or 1),→

84 ) DSP48E1_head (

85 // Cascade: 30-bit (each) output: Cascade Ports

86 //.ACOUT (ACOUT ), // 30-bit output: A port cascade output

87 //.BCOUT (BCOUT ), // 18-bit output: B port cascade output

88 .CARRYCASCOUT (cascade_carries[0] ), // 1-bit output: Cascade carry

output,→

89 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign cascade

output,→

90 //.PCOUT ( ), // 48-bit output: Cascade output

91 // Control: 1-bit (each) output: Control Inputs/Status Bits

92 //.OVERFLOW (OVERFLOW ), // 1-bit output: Overflow in

add/acc output,→

93 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output: Pattern bar

detect output,→
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94 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output: Pattern detect

output,→

95 //.UNDERFLOW (UNDERFLOW ), // 1-bit output: Underflow in

add/acc output,→

96 // Data: 4-bit (each) output: Data Ports

97 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

98 .P (semifine_line[0 +: 48]), // 48-bit output: Primary data

output,→

99 // Cascade: 30-bit (each) input: Cascade Ports

100 .ACIN (0 ), // 30-bit input: A cascade data

input,→

101 .BCIN (0 ), // 18-bit input: B cascade input

102 .CARRYCASCIN (0 ), // 1-bit input: Cascade carry

input,→

103 .MULTSIGNIN (0 ), // 1-bit input: Multiplier sign

input,→

104 .PCIN (0 ), // 48-bit input: P cascade input

105 // Control: 4-bit (each) input: Control Inputs/Status Bits

106 .ALUMODE (4'h0 ), // 4-bit input: ALU control input

107 .CARRYINSEL (3'h0 ), // 3-bit input: Carry select input

108 .CLK (clk ), // 1-bit input: Clock input

109 .INMODE (4'h0 ), // 5-bit input: INMODE control

input,→

110 .OPMODE (7'h08 ), // 7-bit input: Operation mode

input,→

111 // Data: 30-bit (each) input: Data Ports

112 .A (0 ), // 30-bit input: A data input

113 .B (0 ), // 18-bit input: B data input

114 .C (0 ), // 48-bit input: C data input
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115 .CARRYIN (trigger ), // 1-bit input: Carry input signal

116 .D (0 ), // 25-bit input: D data input

117 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

118 .CEA1 (0 ), // 1-bit input: Clock enable input

for 1st stage AREG,→

119 .CEA2 (0 ), // 1-bit input: Clock enable input

for 2nd stage AREG,→

120 .CEAD (0 ), // 1-bit input: Clock enable input

for ADREG,→

121 .CEALUMODE (0 ), // 1-bit input: Clock enable input

for ALUMODE,→

122 .CEB1 (0 ), // 1-bit input: Clock enable input

for 1st stage BREG,→

123 .CEB2 (0 ), // 1-bit input: Clock enable input

for 2nd stage BREG,→

124 .CEC (0 ), // 1-bit input: Clock enable input

for CREG,→

125 .CECARRYIN (0 ), // 1-bit input: Clock enable input

for CARRYINREG,→

126 .CECTRL (0 ), // 1-bit input: Clock enable input

for OPMODEREG and CARRYINSELREG,→

127 .CED (0 ), // 1-bit input: Clock enable input

for DREG,→

128 .CEINMODE (0 ), // 1-bit input: Clock enable input

for INMODEREG,→

129 .CEM (0 ), // 1-bit input: Clock enable input

for MREG,→

130 .CEP (0 ), // 1-bit input: Clock enable input

for PREG,→
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131 .RSTA (0 ), // 1-bit input: Reset input for

AREG,→

132 .RSTALLCARRYIN(0 ), // 1-bit input: Reset input for

CARRYINREG,→

133 .RSTALUMODE (0 ), // 1-bit input: Reset input for

ALUMODEREG,→

134 .RSTB (0 ), // 1-bit input: Reset input for

BREG,→

135 .RSTC (0 ), // 1-bit input: Reset input for

CREG,→

136 .RSTCTRL (0 ), // 1-bit input: Reset input for

OPMODEREG and CARRYINSELREG,→

137 .RSTD (0 ), // 1-bit input: Reset input for

DREG and ADREG,→

138 .RSTINMODE (0 ), // 1-bit input: Reset input for

INMODEREG,→

139 .RSTM (0 ), // 1-bit input: Reset input for

MREG,→

140 .RSTP (0 ) // 1-bit input: Reset input for

PREG,→

141 );

142

143 genvar g1;

144 generate

145 for(g1 = 1; g1 < SEMIFINE/48; g1 = g1 + 1) begin : gen_semifines

146 DSP48E1 #(

147 // Feature Control Attributes: Data Path Selection

148 .A_INPUT ("DIRECT" ), // Selects A input source,

"DIRECT" (A port) or "CASCADE" (ACIN port),→
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149 .B_INPUT ("DIRECT" ), // Selects B input source,

"DIRECT" (B port) or "CASCADE" (BCIN port),→

150 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE or

FALSE),→

151 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

152 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48",

"TWO24", "FOUR12"),→

153 // Pattern Detector Attributes: Pattern Detection Configuration

154 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→

155 .MASK (48'hffffffffffff), // 48-bit mask value for pattern

detect (1=ignore),→

156 .PATTERN (48'h000000000000), // 48-bit pattern match for

pattern detect,→

157 .SEL_MASK ("MASK" ), // "C", "MASK",

"ROUNDING_MODE1", "ROUNDING_MODE2",→

158 .SEL_PATTERN ("PATTERN" ), // Select pattern value

("PATTERN" or "C"),→

159 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect

("PATDET" or "NO_PATDET"),→

160 // Register Control Attributes: Pipeline Register Configuration

161 .ACASCREG (0 ), // Number of pipeline stages

between A/ACIN and ACOUT (0, 1 or 2),→

162 .ADREG (0 ), // Number of pipeline stages for

pre-adder (0 or 1),→

163 .ALUMODEREG (0 ), // Number of pipeline stages for

ALUMODE (0 or 1),→
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164 .AREG (0 ), // Number of pipeline stages for

A (0, 1 or 2),→

165 .BCASCREG (0 ), // Number of pipeline stages

between B/BCIN and BCOUT (0, 1 or 2),→

166 .BREG (0 ), // Number of pipeline stages for

B (0, 1 or 2),→

167 .CARRYINREG (0 ), // Number of pipeline stages for

CARRYIN (0 or 1),→

168 .CARRYINSELREG (0 ), // Number of pipeline stages for

CARRYINSEL (0 or 1),→

169 .CREG (0 ), // Number of pipeline stages for

C (0 or 1),→

170 .DREG (0 ), // Number of pipeline stages for

D (0 or 1),→

171 .INMODEREG (0 ), // Number of pipeline stages for

INMODE (0 or 1),→

172 .MREG (0 ), // Number of multiplier pipeline

stages (0 or 1),→

173 .OPMODEREG (0 ), // Number of pipeline stages for

OPMODE (0 or 1),→

174 .PREG (0 ) // Number of pipeline stages for

P (0 or 1),→

175 ) DSP48E1_tail (

176 // Cascade: 30-bit (each) output: Cascade Ports

177 //.ACOUT (ACOUT ), // 30-bit output: A port cascade

output,→

178 //.BCOUT (BCOUT ), // 18-bit output: B port cascade

output,→
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179 .CARRYCASCOUT (cascade_carries[g1] ), // 1-bit output: Cascade

carry output,→

180 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign

cascade output,→

181 //.PCOUT ( ), // 48-bit output: Cascade output

182 // Control: 1-bit (each) output: Control Inputs/Status Bits

183 //.OVERFLOW (OVERFLOW ), // 1-bit output:

Overflow in add/acc output,→

184 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output: Pattern

bar detect output,→

185 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output: Pattern

detect output,→

186 //.UNDERFLOW (UNDERFLOW ), // 1-bit output:

Underflow in add/acc output,→

187 // Data: 4-bit (each) output: Data Ports

188 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

189 .P (semifine_line[g1*48 +: 48]), // 48-bit output: Primary

data output,→

190 // Cascade: 30-bit (each) input: Cascade Ports

191 .ACIN (0 ), // 30-bit input: A cascade

data input,→

192 .BCIN (0 ), // 18-bit input: B cascade

input,→

193 .CARRYCASCIN (cascade_carries[g1-1] ), // 1-bit input: Cascade

carry input,→

194 .MULTSIGNIN (0 ), // 1-bit input: Multiplier

sign input,→

195 .PCIN (0 ), // 48-bit input: P cascade

input,→
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196 // Control: 4-bit (each) input: Control Inputs/Status Bits

197 .ALUMODE (4'h0 ), // 4-bit input: ALU control

input,→

198 .CARRYINSEL (3'h2 ), // 3-bit input: Carry

select input,→

199 .CLK (clk ), // 1-bit input: Clock

input,→

200 .INMODE (4'h0 ), // 5-bit input: INMODE

control input,→

201 .OPMODE (7'h08 ), // 7-bit input: Operation

mode input,→

202 // Data: 30-bit (each) input: Data Ports

203 .A (0 ), // 30-bit input: A data

input,→

204 .B (0 ), // 18-bit input: B data

input,→

205 .C (0 ), // 48-bit input: C data

input,→

206 .CARRYIN (0 ), // 1-bit input: Carry input

signal,→

207 .D (0 ), // 25-bit input: D data

input,→

208 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

209 .CEA1 (0 ), // 1-bit input: Clock

enable input for 1st stage AREG,→

210 .CEA2 (0 ), // 1-bit input: Clock

enable input for 2nd stage AREG,→

211 .CEAD (0 ), // 1-bit input: Clock

enable input for ADREG,→
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212 .CEALUMODE (0 ), // 1-bit input: Clock

enable input for ALUMODE,→

213 .CEB1 (0 ), // 1-bit input: Clock

enable input for 1st stage BREG,→

214 .CEB2 (0 ), // 1-bit input: Clock

enable input for 2nd stage BREG,→

215 .CEC (0 ), // 1-bit input: Clock

enable input for CREG,→

216 .CECARRYIN (0 ), // 1-bit input: Clock

enable input for CARRYINREG,→

217 .CECTRL (0 ), // 1-bit input: Clock

enable input for OPMODEREG and CARRYINSELREG,→

218 .CED (0 ), // 1-bit input: Clock

enable input for DREG,→

219 .CEINMODE (0 ), // 1-bit input: Clock

enable input for INMODEREG,→

220 .CEM (0 ), // 1-bit input: Clock

enable input for MREG,→

221 .CEP (0 ), // 1-bit input: Clock

enable input for PREG,→

222 .RSTA (0 ), // 1-bit input: Reset input

for AREG,→

223 .RSTALLCARRYIN(0 ), // 1-bit input: Reset input

for CARRYINREG,→

224 .RSTALUMODE (0 ), // 1-bit input: Reset input

for ALUMODEREG,→

225 .RSTB (0 ), // 1-bit input: Reset input

for BREG,→
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226 .RSTC (0 ), // 1-bit input: Reset input

for CREG,→

227 .RSTCTRL (0 ), // 1-bit input: Reset input

for OPMODEREG and CARRYINSELREG,→

228 .RSTD (0 ), // 1-bit input: Reset input

for DREG and ADREG,→

229 .RSTINMODE (0 ), // 1-bit input: Reset input

for INMODEREG,→

230 .RSTM (0 ), // 1-bit input: Reset input

for MREG,→

231 .RSTP (0 ) // 1-bit input: Reset input

for PREG,→

232 );

233 end // gen_semifines

234 endgenerate

235

236

237 endmodule // dl

C.3 DSP48E1 Wave Union in SystemVerilog

C.3.1 Pulse Injector

1 `timescale 1ns / 1ps

2

3 module dsp_inj #(

4 parameter W_HEAD = 2 ,

5 parameter L_HEAD = 3 ,

6 parameter S_HEAD = 48 ,

7 parameter A_HEAD = L_HEAD * W_HEAD,
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8 parameter HEAD = A_HEAD * S_HEAD,

9 parameter FIRST_ALU = 4'h2 ,

10 parameter INV_HEAD_ALU = 4'h2 ,

11 parameter PROP_HEAD_ALU = 4'h2

12 ) (

13 input wire clk ,

14 input wire trigger ,

15 output wire [HEAD-1:0] line ,

16 output wire pulse

17 );

18

19 wire[A_HEAD-1:0] cascade_carries;

20 assign pulse = cascade_carries[A_HEAD-1];

21

22 genvar g2;

23 genvar g3;

24

25 generate

26 for(g2 = 0; g2 < L_HEAD; g2 += 1) begin : gen_head

27 if(g2 == 0) begin : first_dsp48

28 DSP48E1 #(

29 // Feature Control Attributes: Data Path Selection

30 .A_INPUT ("DIRECT" ), // Selects A input source,

"DIRECT" (A port) or "CASCADE" (ACIN port),→

31 .B_INPUT ("DIRECT" ), // Selects B input source,

"DIRECT" (B port) or "CASCADE" (BCIN port),→

32 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE

or FALSE),→
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33 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

34 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48",

"TWO24", "FOUR12"),→

35 // Pattern Detector Attributes: Pattern Detection Configuration

36 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→

37 .MASK (48'hffffffffffff), // 48-bit mask value for

pattern detect (1=ignore),→

38 .PATTERN (48'h000000000000), // 48-bit pattern match for

pattern detect,→

39 .SEL_MASK ("MASK" ), // "C", "MASK",

"ROUNDING_MODE1", "ROUNDING_MODE2",→

40 .SEL_PATTERN ("PATTERN" ), // Select pattern value

("PATTERN" or "C"),→

41 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect

("PATDET" or "NO_PATDET"),→

42 // Register Control Attributes: Pipeline Register Configuration

43 .ACASCREG (0 ), // Number of pipeline stages

between A/ACIN and ACOUT (0, 1 or 2),→

44 .ADREG (0 ), // Number of pipeline stages

for pre-adder (0 or 1),→

45 .ALUMODEREG (0 ), // Number of pipeline stages

for ALUMODE (0 or 1),→

46 .AREG (0 ), // Number of pipeline stages

for A (0, 1 or 2),→

47 .BCASCREG (0 ), // Number of pipeline stages

between B/BCIN and BCOUT (0, 1 or 2),→
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48 .BREG (0 ), // Number of pipeline stages

for B (0, 1 or 2),→

49 .CARRYINREG (0 ), // Number of pipeline stages

for CARRYIN (0 or 1),→

50 .CARRYINSELREG (1 ), // Number of pipeline stages

for CARRYINSEL (0 or 1),→

51 .CREG (0 ), // Number of pipeline stages

for C (0 or 1),→

52 .DREG (0 ), // Number of pipeline stages

for D (0 or 1),→

53 .INMODEREG (0 ), // Number of pipeline stages

for INMODE (0 or 1),→

54 .MREG (0 ), // Number of multiplier

pipeline stages (0 or 1),→

55 .OPMODEREG (1 ), // Number of pipeline stages

for OPMODE (0 or 1),→

56 .PREG (0 ) // Number of pipeline stages

for P (0 or 1),→

57 ) DSP48E1_first (

58 // Cascade: 30-bit (each) output: Cascade Ports

59 //.ACOUT (ACOUT ), // 30-bit output: A port cascade

output,→

60 //.BCOUT (BCOUT ), // 18-bit output: B port cascade

output,→

61 .CARRYCASCOUT (cascade_carries[0]), // 1-bit output: Cascade carry

output,→

62 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign

cascade output,→

63 //.PCOUT ( ), // 48-bit output: Cascade output
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64 // Control: 1-bit (each) output: Control Inputs/Status Bits

65 //.OVERFLOW (OVERFLOW ), // 1-bit output: Overflow

in add/acc output,→

66 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output: Pattern

bar detect output,→

67 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output: Pattern

detect output,→

68 //.UNDERFLOW (UNDERFLOW ), // 1-bit output: Underflow

in add/acc output,→

69 // Data: 4-bit (each) output: Data Ports

70 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

71 .P (line[0 +: S_HEAD] ), // 48-bit output: Primary data

output,→

72 // Cascade: 30-bit (each) input: Cascade Ports

73 .ACIN (0 ), // 30-bit input: A cascade data

input,→

74 .BCIN (0 ), // 18-bit input: B cascade input

75 .CARRYCASCIN (0 ), // 1-bit input: Cascade carry

input,→

76 .MULTSIGNIN (0 ), // 1-bit input: Multiplier sign

input,→

77 .PCIN (0 ), // 48-bit input: P cascade input

78 // Control: 4-bit (each) input: Control Inputs/Status Bits

79 .ALUMODE (FIRST_ALU ), // 4-bit input: ALU control

input,→

80 .CARRYINSEL (3'h0 ), // 3-bit input: Carry select

input,→

81 .CLK (clk ), // 1-bit input: Clock input
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82 .INMODE (5'h0 ), // 5-bit input: INMODE control

input,→

83 .OPMODE (7'h3B ), // 7-bit input: Operation mode

input,→

84 // Data: 30-bit (each) input: Data Ports

85 .A (30'h3FFFFFFF ), // 30-bit input: A data input

86 .B (18'h3FFFF ), // 18-bit input: B data input

87 .C ({47'h0,trigger} ), // 48-bit input: C data input

88 .CARRYIN (1 ), // 1-bit input: Carry input

signal,→

89 .D (0 ), // 25-bit input: D data input

90 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

91 .CEA1 (0 ), // 1-bit input: Clock enable

input for 1st stage AREG,→

92 .CEA2 (0 ), // 1-bit input: Clock enable

input for 2nd stage AREG,→

93 .CEAD (0 ), // 1-bit input: Clock enable

input for ADREG,→

94 .CEALUMODE (0 ), // 1-bit input: Clock enable

input for ALUMODE,→

95 .CEB1 (0 ), // 1-bit input: Clock enable

input for 1st stage BREG,→

96 .CEB2 (0 ), // 1-bit input: Clock enable

input for 2nd stage BREG,→

97 .CEC (0 ), // 1-bit input: Clock enable

input for CREG,→

98 .CECARRYIN (0 ), // 1-bit input: Clock enable

input for CARRYINREG,→
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99 .CECTRL (1 ), // 1-bit input: Clock enable

input for OPMODEREG and CARRYINSELREG,→

100 .CED (0 ), // 1-bit input: Clock enable

input for DREG,→

101 .CEINMODE (0 ), // 1-bit input: Clock enable

input for INMODEREG,→

102 .CEM (0 ), // 1-bit input: Clock enable

input for MREG,→

103 .CEP (0 ), // 1-bit input: Clock enable

input for PREG,→

104 .RSTA (0 ), // 1-bit input: Reset input for

AREG,→

105 .RSTALLCARRYIN(0 ), // 1-bit input: Reset input for

CARRYINREG,→

106 .RSTALUMODE (0 ), // 1-bit input: Reset input for

ALUMODEREG,→

107 .RSTB (0 ), // 1-bit input: Reset input for

BREG,→

108 .RSTC (0 ), // 1-bit input: Reset input for

CREG,→

109 .RSTCTRL (0 ), // 1-bit input: Reset input for

OPMODEREG and CARRYINSELREG,→

110 .RSTD (0 ), // 1-bit input: Reset input for

DREG and ADREG,→

111 .RSTINMODE (0 ), // 1-bit input: Reset input for

INMODEREG,→

112 .RSTM (0 ), // 1-bit input: Reset input for

MREG,→
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113 .RSTP (0 ) // 1-bit input: Reset input for

PREG,→

114 );

115 end // first_dsp48

116 else begin : other_dsp48s

117 DSP48E1 #(

118 // Feature Control Attributes: Data Path Selection

119 .A_INPUT ("DIRECT" ), // Selects A input source,

"DIRECT" (A port) or "CASCADE" (ACIN port),→

120 .B_INPUT ("DIRECT" ), // Selects B input source,

"DIRECT" (B port) or "CASCADE" (BCIN port),→

121 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE

or FALSE),→

122 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

123 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48",

"TWO24", "FOUR12"),→

124 // Pattern Detector Attributes: Pattern Detection Configuration

125 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→

126 .MASK (48'hffffffffffff), // 48-bit mask value for

pattern detect (1=ignore),→

127 .PATTERN (48'h000000000000), // 48-bit pattern match for

pattern detect,→

128 .SEL_MASK ("MASK" ), // "C", "MASK",

"ROUNDING_MODE1", "ROUNDING_MODE2",→

129 .SEL_PATTERN ("PATTERN" ), // Select pattern value

("PATTERN" or "C"),→
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130 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect

("PATDET" or "NO_PATDET"),→

131 // Register Control Attributes: Pipeline Register Configuration

132 .ACASCREG (0 ), // Number of pipeline stages

between A/ACIN and ACOUT (0, 1 or 2),→

133 .ADREG (0 ), // Number of pipeline stages

for pre-adder (0 or 1),→

134 .ALUMODEREG (0 ), // Number of pipeline stages

for ALUMODE (0 or 1),→

135 .AREG (0 ), // Number of pipeline stages

for A (0, 1 or 2),→

136 .BCASCREG (0 ), // Number of pipeline stages

between B/BCIN and BCOUT (0, 1 or 2),→

137 .BREG (0 ), // Number of pipeline stages

for B (0, 1 or 2),→

138 .CARRYINREG (0 ), // Number of pipeline stages

for CARRYIN (0 or 1),→

139 .CARRYINSELREG (1 ), // Number of pipeline stages

for CARRYINSEL (0 or 1),→

140 .CREG (0 ), // Number of pipeline stages

for C (0 or 1),→

141 .DREG (0 ), // Number of pipeline stages

for D (0 or 1),→

142 .INMODEREG (0 ), // Number of pipeline stages

for INMODE (0 or 1),→

143 .MREG (0 ), // Number of multiplier

pipeline stages (0 or 1),→

144 .OPMODEREG (1 ), // Number of pipeline stages

for OPMODE (0 or 1),→
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145 .PREG (0 ) // Number of pipeline stages

for P (0 or 1),→

146 ) DSP48E1_inv_head (

147 // Cascade: 30-bit (each) output: Cascade Ports

148 //.ACOUT (ACOUT ), // 30-bit output: A port cascade

output,→

149 //.BCOUT (BCOUT ), // 18-bit output: B port cascade

output,→

150 .CARRYCASCOUT (cascade_carries[g2*W_HEAD] ), // 1-bit output:

Cascade carry output,→

151 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign

cascade output,→

152 //.PCOUT ( ), // 48-bit output: Cascade output

153 // Control: 1-bit (each) output: Control Inputs/Status Bits

154 //.OVERFLOW (OVERFLOW ), // 1-bit output: Overflow

in add/acc output,→

155 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output: Pattern

bar detect output,→

156 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output: Pattern

detect output,→

157 //.UNDERFLOW (UNDERFLOW ), // 1-bit output: Underflow

in add/acc output,→

158 // Data: 4-bit (each) output: Data Ports

159 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

160 .P (line[g2*W_HEAD*S_HEAD +: S_HEAD]), // 48-bit output:

Primary data output,→

161 // Cascade: 30-bit (each) input: Cascade Ports

162 .ACIN (0 ), // 30-bit input: A

cascade data input,→
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163 .BCIN (0 ), // 18-bit input: B

cascade input,→

164 .CARRYCASCIN (cascade_carries[g2*W_HEAD-1] ), // 1-bit input:

Cascade carry input,→

165 .MULTSIGNIN (0 ), // 1-bit input:

Multiplier sign input,→

166 .PCIN (0 ), // 48-bit input: P

cascade input,→

167 // Control: 4-bit (each) input: Control Inputs/Status Bits

168 .ALUMODE ((g2[0])?4'h0:INV_HEAD_ALU ), // 4-bit input: ALU

control input,→

169 .CARRYINSEL (3'h2 ), // 3-bit input:

Carry select input,→

170 .CLK (clk ), // 1-bit input:

Clock input,→

171 .INMODE (5'h0 ), // 5-bit input:

INMODE control input,→

172 .OPMODE (7'h3B ), // 7-bit input:

Operation mode input,→

173 // Data: 30-bit (each) input: Data Ports

174 .A (30'h3FFFFFFF ), // 30-bit input: A

data input,→

175 .B (18'h3FFFF ), // 18-bit input: B

data input,→

176 .C ({47'h0,trigger} ), // 48-bit input: C

data input,→

177 .CARRYIN (0 ), // 1-bit input:

Carry input signal,→
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178 .D (0 ), // 25-bit input: D

data input,→

179 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

180 .CEA1 (0 ), // 1-bit input:

Clock enable input for 1st stage AREG,→

181 .CEA2 (0 ), // 1-bit input:

Clock enable input for 2nd stage AREG,→

182 .CEAD (0 ), // 1-bit input:

Clock enable input for ADREG,→

183 .CEALUMODE (0 ), // 1-bit input:

Clock enable input for ALUMODE,→

184 .CEB1 (0 ), // 1-bit input:

Clock enable input for 1st stage BREG,→

185 .CEB2 (0 ), // 1-bit input:

Clock enable input for 2nd stage BREG,→

186 .CEC (0 ), // 1-bit input:

Clock enable input for CREG,→

187 .CECARRYIN (0 ), // 1-bit input:

Clock enable input for CARRYINREG,→

188 .CECTRL (1 ), // 1-bit input:

Clock enable input for OPMODEREG and CARRYINSELREG,→

189 .CED (0 ), // 1-bit input:

Clock enable input for DREG,→

190 .CEINMODE (0 ), // 1-bit input:

Clock enable input for INMODEREG,→

191 .CEM (0 ), // 1-bit input:

Clock enable input for MREG,→

192 .CEP (0 ), // 1-bit input:

Clock enable input for PREG,→
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193 .RSTA (0 ), // 1-bit input:

Reset input for AREG,→

194 .RSTALLCARRYIN(0 ), // 1-bit input:

Reset input for CARRYINREG,→

195 .RSTALUMODE (0 ), // 1-bit input:

Reset input for ALUMODEREG,→

196 .RSTB (0 ), // 1-bit input:

Reset input for BREG,→

197 .RSTC (0 ), // 1-bit input:

Reset input for CREG,→

198 .RSTCTRL (0 ), // 1-bit input:

Reset input for OPMODEREG and CARRYINSELREG,→

199 .RSTD (0 ), // 1-bit input:

Reset input for DREG and ADREG,→

200 .RSTINMODE (0 ), // 1-bit input:

Reset input for INMODEREG,→

201 .RSTM (0 ), // 1-bit input:

Reset input for MREG,→

202 .RSTP (0 ) // 1-bit input:

Reset input for PREG,→

203 );

204 end // other_dsp48s

205 for(g3 = 1; g3 < W_HEAD; g3 += 1) begin : gen_head_prop

206 DSP48E1 #(

207 // Feature Control Attributes: Data Path Selection

208 .A_INPUT ("DIRECT" ), // Selects A input source,

"DIRECT" (A port) or "CASCADE" (ACIN port),→

209 .B_INPUT ("DIRECT" ), // Selects B input source,

"DIRECT" (B port) or "CASCADE" (BCIN port),→
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210 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE

or FALSE),→

211 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

212 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48",

"TWO24", "FOUR12"),→

213 // Pattern Detector Attributes: Pattern Detection Configuration

214 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→

215 .MASK (48'hffffffffffff), // 48-bit mask value for

pattern detect (1=ignore),→

216 .PATTERN (48'h000000000000), // 48-bit pattern match for

pattern detect,→

217 .SEL_MASK ("MASK" ), // "C", "MASK",

"ROUNDING_MODE1", "ROUNDING_MODE2",→

218 .SEL_PATTERN ("PATTERN" ), // Select pattern value

("PATTERN" or "C"),→

219 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect

("PATDET" or "NO_PATDET"),→

220 // Register Control Attributes: Pipeline Register Configuration

221 .ACASCREG (0 ), // Number of pipeline stages

between A/ACIN and ACOUT (0, 1 or 2),→

222 .ADREG (0 ), // Number of pipeline stages

for pre-adder (0 or 1),→

223 .ALUMODEREG (0 ), // Number of pipeline stages

for ALUMODE (0 or 1),→

224 .AREG (0 ), // Number of pipeline stages

for A (0, 1 or 2),→
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225 .BCASCREG (0 ), // Number of pipeline stages

between B/BCIN and BCOUT (0, 1 or 2),→

226 .BREG (0 ), // Number of pipeline stages

for B (0, 1 or 2),→

227 .CARRYINREG (0 ), // Number of pipeline stages

for CARRYIN (0 or 1),→

228 .CARRYINSELREG (1 ), // Number of pipeline stages

for CARRYINSEL (0 or 1),→

229 .CREG (0 ), // Number of pipeline stages

for C (0 or 1),→

230 .DREG (0 ), // Number of pipeline stages

for D (0 or 1),→

231 .INMODEREG (0 ), // Number of pipeline stages

for INMODE (0 or 1),→

232 .MREG (0 ), // Number of multiplier

pipeline stages (0 or 1),→

233 .OPMODEREG (1 ), // Number of pipeline stages

for OPMODE (0 or 1),→

234 .PREG (0 ) // Number of pipeline stages

for P (0 or 1),→

235 ) DSP48E1_prop_head (

236 // Cascade: 30-bit (each) output: Cascade Ports

237 //.ACOUT (ACOUT ), // 30-bit output: A port cascade

output,→

238 //.BCOUT (BCOUT ), // 18-bit output: B port cascade

output,→

239 .CARRYCASCOUT (cascade_carries[g2*W_HEAD + g3] ), // 1-bit

output: Cascade carry output,→
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240 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign

cascade output,→

241 //.PCOUT ( ), // 48-bit output: Cascade output

242 // Control: 1-bit (each) output: Control Inputs/Status Bits

243 //.OVERFLOW (OVERFLOW ), // 1-bit output: Overflow

in add/acc output,→

244 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output: Pattern

bar detect output,→

245 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output: Pattern

detect output,→

246 //.UNDERFLOW (UNDERFLOW ), // 1-bit output: Underflow

in add/acc output,→

247 // Data: 4-bit (each) output: Data Ports

248 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

249 .P (line[(g2*W_HEAD+g3)*S_HEAD +: S_HEAD]), // 48-bit

output: Primary data output,→

250 // Cascade: 30-bit (each) input: Cascade Ports

251 .ACIN (0 ), // 30-bit

input: A cascade data input,→

252 .BCIN (0 ), // 18-bit

input: B cascade input,→

253 .CARRYCASCIN (cascade_carries[g2*W_HEAD + g3-1] ), // 1-bit

input: Cascade carry input,→

254 .MULTSIGNIN (0 ), // 1-bit

input: Multiplier sign input,→

255 .PCIN (0 ), // 48-bit

input: P cascade input,→

256 // Control: 4-bit (each) input: Control Inputs/Status Bits
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257 .ALUMODE ((g2[0])?PROP_HEAD_ALU:4'h0 ), // 4-bit

input: ALU control input,→

258 .CARRYINSEL (3'h2 ), // 3-bit

input: Carry select input,→

259 .CLK (clk ), // 1-bit

input: Clock input,→

260 .INMODE (5'h0 ), // 5-bit

input: INMODE control input,→

261 .OPMODE (7'h08 ), // 7-bit

input: Operation mode input,→

262 // Data: 30-bit (each) input: Data Ports

263 .A (0 ), // 30-bit

input: A data input,→

264 .B (0 ), // 18-bit

input: B data input,→

265 .C (0 ), // 48-bit

input: C data input,→

266 .CARRYIN (0 ), // 1-bit

input: Carry input signal,→

267 .D (0 ), // 25-bit

input: D data input,→

268 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

269 .CEA1 (0 ), // 1-bit

input: Clock enable input for 1st stage AREG,→

270 .CEA2 (0 ), // 1-bit

input: Clock enable input for 2nd stage AREG,→

271 .CEAD (0 ), // 1-bit

input: Clock enable input for ADREG,→
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272 .CEALUMODE (0 ), // 1-bit

input: Clock enable input for ALUMODE,→

273 .CEB1 (0 ), // 1-bit

input: Clock enable input for 1st stage BREG,→

274 .CEB2 (0 ), // 1-bit

input: Clock enable input for 2nd stage BREG,→

275 .CEC (0 ), // 1-bit

input: Clock enable input for CREG,→

276 .CECARRYIN (0 ), // 1-bit

input: Clock enable input for CARRYINREG,→

277 .CECTRL (1 ), // 1-bit

input: Clock enable input for OPMODEREG and CARRYINSELREG,→

278 .CED (0 ), // 1-bit

input: Clock enable input for DREG,→

279 .CEINMODE (0 ), // 1-bit

input: Clock enable input for INMODEREG,→

280 .CEM (0 ), // 1-bit

input: Clock enable input for MREG,→

281 .CEP (0 ), // 1-bit

input: Clock enable input for PREG,→

282 .RSTA (0 ), // 1-bit

input: Reset input for AREG,→

283 .RSTALLCARRYIN(0 ), // 1-bit

input: Reset input for CARRYINREG,→

284 .RSTALUMODE (0 ), // 1-bit

input: Reset input for ALUMODEREG,→

285 .RSTB (0 ), // 1-bit

input: Reset input for BREG,→
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286 .RSTC (0 ), // 1-bit

input: Reset input for CREG,→

287 .RSTCTRL (0 ), // 1-bit

input: Reset input for OPMODEREG and CARRYINSELREG,→

288 .RSTD (0 ), // 1-bit

input: Reset input for DREG and ADREG,→

289 .RSTINMODE (0 ), // 1-bit

input: Reset input for INMODEREG,→

290 .RSTM (0 ), // 1-bit

input: Reset input for MREG,→

291 .RSTP (0 ) // 1-bit

input: Reset input for PREG,→

292 );

293 end // gen_head_prop

294 end // gen_head

295 endgenerate

296

297 endmodule // dsp_inj

C.3.2 Delay Line

1 `timescale 1ns / 1ps

2

3 module dsp_prop #(

4 parameter L_TAIL = 20 ,

5 parameter CASCIN = 0 ,

6 parameter S_TAIL = 48 ,

7 parameter TAIL = S_TAIL * L_TAIL,

8 parameter TAIL_ALU = 4'h0 ,

9 parameter LOC_NEXT = "DSP48_X0Y42"
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10 ) (

11 input wire clk ,

12 input wire pulse,

13 output wire [TAIL-1:0] line

14 );

15

16 wire[L_TAIL:0] cascade_carries;

17 assign cascade_carries[0] = pulse;

18

19 genvar g1;

20 generate

21 for(g1 = 0; g1 < L_TAIL; g1 = g1 + 1) begin : gen_tail

22 if(g1 == 0 && CASCIN == 0) begin : first_tail

23 (* LOC=LOC_NEXT, DONT_TOUCH="true" *)

24 DSP48E1 #(

25 // Feature Control Attributes: Data Path Selection

26 .A_INPUT ("DIRECT" ), // Selects A input source,

"DIRECT" (A port) or "CASCADE" (ACIN port),→

27 .B_INPUT ("DIRECT" ), // Selects B input source,

"DIRECT" (B port) or "CASCADE" (BCIN port),→

28 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE

or FALSE),→

29 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

30 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48",

"TWO24", "FOUR12"),→

31 // Pattern Detector Attributes: Pattern Detection Configuration

32 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→
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33 .MASK (48'hffffffffffff), // 48-bit mask value for

pattern detect (1=ignore),→

34 .PATTERN (48'h000000000000), // 48-bit pattern match for

pattern detect,→

35 .SEL_MASK ("MASK" ), // "C", "MASK",

"ROUNDING_MODE1", "ROUNDING_MODE2",→

36 .SEL_PATTERN ("PATTERN" ), // Select pattern value

("PATTERN" or "C"),→

37 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect

("PATDET" or "NO_PATDET"),→

38 // Register Control Attributes: Pipeline Register Configuration

39 .ACASCREG (0 ), // Number of pipeline stages

between A/ACIN and ACOUT (0, 1 or 2),→

40 .ADREG (0 ), // Number of pipeline stages

for pre-adder (0 or 1),→

41 .ALUMODEREG (0 ), // Number of pipeline stages

for ALUMODE (0 or 1),→

42 .AREG (0 ), // Number of pipeline stages

for A (0, 1 or 2),→

43 .BCASCREG (0 ), // Number of pipeline stages

between B/BCIN and BCOUT (0, 1 or 2),→

44 .BREG (0 ), // Number of pipeline stages

for B (0, 1 or 2),→

45 .CARRYINREG (0 ), // Number of pipeline stages

for CARRYIN (0 or 1),→

46 .CARRYINSELREG (1 ), // Number of pipeline stages

for CARRYINSEL (0 or 1),→

47 .CREG (0 ), // Number of pipeline stages

for C (0 or 1),→
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48 .DREG (0 ), // Number of pipeline stages

for D (0 or 1),→

49 .INMODEREG (0 ), // Number of pipeline stages

for INMODE (0 or 1),→

50 .MREG (0 ), // Number of multiplier

pipeline stages (0 or 1),→

51 .OPMODEREG (1 ), // Number of pipeline stages

for OPMODE (0 or 1),→

52 .PREG (0 ) // Number of pipeline stages

for P (0 or 1),→

53 ) DSP48E1_first (

54 // Cascade: 30-bit (each) output: Cascade Ports

55 //.ACOUT (ACOUT ), // 30-bit output: A port cascade

output,→

56 //.BCOUT (BCOUT ), // 18-bit output: B port cascade

output,→

57 .CARRYCASCOUT (cascade_carries[1]), // 1-bit output: Cascade carry

output,→

58 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign

cascade output,→

59 //.PCOUT ( ), // 48-bit output: Cascade output

60 // Control: 1-bit (each) output: Control Inputs/Status Bits

61 //.OVERFLOW (OVERFLOW ), // 1-bit output:

Overflow in add/acc output,→

62 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output:

Pattern bar detect output,→

63 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output:

Pattern detect output,→
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64 //.UNDERFLOW (UNDERFLOW ), // 1-bit output:

Underflow in add/acc output,→

65 // Data: 4-bit (each) output: Data Ports

66 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

67 .P (line[0 +: S_TAIL] ), // 48-bit output: Primary data

output,→

68 // Cascade: 30-bit (each) input: Cascade Ports

69 .ACIN (0 ), // 30-bit input: A cascade data

input,→

70 .BCIN (0 ), // 18-bit input: B cascade input

71 .CARRYCASCIN (0 ), // 1-bit input: Cascade carry

input,→

72 .MULTSIGNIN (0 ), // 1-bit input: Multiplier sign

input,→

73 .PCIN (0 ), // 48-bit input: P cascade input

74 // Control: 4-bit (each) input: Control Inputs/Status Bits

75 .ALUMODE (TAIL_ALU ), // 4-bit input: ALU control

input,→

76 .CARRYINSEL (3'h0 ), // 3-bit input: Carry select

input,→

77 .CLK (clk ), // 1-bit input: Clock input

78 .INMODE (5'h0 ), // 5-bit input: INMODE control

input,→

79 .OPMODE (7'h08 ), // 7-bit input: Operation mode

input,→

80 // Data: 30-bit (each) input: Data Ports

81 .A (0 ), // 30-bit input: A data input

82 .B (0 ), // 18-bit input: B data input

83 .C (0 ), // 48-bit input: C data input
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84 .CARRYIN (cascade_carries[0]), // 1-bit input: Carry input

signal,→

85 .D (0 ), // 25-bit input: D data input

86 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

87 .CEA1 (0 ), // 1-bit input: Clock enable

input for 1st stage AREG,→

88 .CEA2 (0 ), // 1-bit input: Clock enable

input for 2nd stage AREG,→

89 .CEAD (0 ), // 1-bit input: Clock enable

input for ADREG,→

90 .CEALUMODE (0 ), // 1-bit input: Clock enable

input for ALUMODE,→

91 .CEB1 (0 ), // 1-bit input: Clock enable

input for 1st stage BREG,→

92 .CEB2 (0 ), // 1-bit input: Clock enable

input for 2nd stage BREG,→

93 .CEC (0 ), // 1-bit input: Clock enable

input for CREG,→

94 .CECARRYIN (0 ), // 1-bit input: Clock enable

input for CARRYINREG,→

95 .CECTRL (1 ), // 1-bit input: Clock enable

input for OPMODEREG and CARRYINSELREG,→

96 .CED (0 ), // 1-bit input: Clock enable

input for DREG,→

97 .CEINMODE (0 ), // 1-bit input: Clock enable

input for INMODEREG,→

98 .CEM (0 ), // 1-bit input: Clock enable

input for MREG,→
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99 .CEP (0 ), // 1-bit input: Clock enable

input for PREG,→

100 .RSTA (0 ), // 1-bit input: Reset input for

AREG,→

101 .RSTALLCARRYIN(0 ), // 1-bit input: Reset input for

CARRYINREG,→

102 .RSTALUMODE (0 ), // 1-bit input: Reset input for

ALUMODEREG,→

103 .RSTB (0 ), // 1-bit input: Reset input for

BREG,→

104 .RSTC (0 ), // 1-bit input: Reset input for

CREG,→

105 .RSTCTRL (0 ), // 1-bit input: Reset input for

OPMODEREG and CARRYINSELREG,→

106 .RSTD (0 ), // 1-bit input: Reset input for

DREG and ADREG,→

107 .RSTINMODE (0 ), // 1-bit input: Reset input for

INMODEREG,→

108 .RSTM (0 ), // 1-bit input: Reset input for

MREG,→

109 .RSTP (0 ) // 1-bit input: Reset input for

PREG,→

110 );

111 end // first_tail

112 else begin : subsequent_tails

113 DSP48E1 #(

114 // Feature Control Attributes: Data Path Selection

115 .A_INPUT ("DIRECT" ), // Selects A input source,

"DIRECT" (A port) or "CASCADE" (ACIN port),→
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116 .B_INPUT ("DIRECT" ), // Selects B input source,

"DIRECT" (B port) or "CASCADE" (BCIN port),→

117 .USE_DPORT ("FALSE" ), // Select D port usage (TRUE

or FALSE),→

118 .USE_MULT ("NONE" ), // Select multiplier usage

("MULTIPLY", "DYNAMIC", or "NONE"),→

119 .USE_SIMD ("ONE48" ), // SIMD selection ("ONE48",

"TWO24", "FOUR12"),→

120 // Pattern Detector Attributes: Pattern Detection Configuration

121 .AUTORESET_PATDET ("NO_RESET" ), // "NO_RESET", "RESET_MATCH",

"RESET_NOT_MATCH",→

122 .MASK (48'hffffffffffff), // 48-bit mask value for

pattern detect (1=ignore),→

123 .PATTERN (48'h000000000000), // 48-bit pattern match for

pattern detect,→

124 .SEL_MASK ("MASK" ), // "C", "MASK",

"ROUNDING_MODE1", "ROUNDING_MODE2",→

125 .SEL_PATTERN ("PATTERN" ), // Select pattern value

("PATTERN" or "C"),→

126 .USE_PATTERN_DETECT("NO_PATDET" ), // Enable pattern detect

("PATDET" or "NO_PATDET"),→

127 // Register Control Attributes: Pipeline Register Configuration

128 .ACASCREG (0 ), // Number of pipeline stages

between A/ACIN and ACOUT (0, 1 or 2),→

129 .ADREG (0 ), // Number of pipeline stages

for pre-adder (0 or 1),→

130 .ALUMODEREG (0 ), // Number of pipeline stages

for ALUMODE (0 or 1),→
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131 .AREG (0 ), // Number of pipeline stages

for A (0, 1 or 2),→

132 .BCASCREG (0 ), // Number of pipeline stages

between B/BCIN and BCOUT (0, 1 or 2),→

133 .BREG (0 ), // Number of pipeline stages

for B (0, 1 or 2),→

134 .CARRYINREG (0 ), // Number of pipeline stages

for CARRYIN (0 or 1),→

135 .CARRYINSELREG (1 ), // Number of pipeline stages

for CARRYINSEL (0 or 1),→

136 .CREG (0 ), // Number of pipeline stages

for C (0 or 1),→

137 .DREG (0 ), // Number of pipeline stages

for D (0 or 1),→

138 .INMODEREG (0 ), // Number of pipeline stages

for INMODE (0 or 1),→

139 .MREG (0 ), // Number of multiplier

pipeline stages (0 or 1),→

140 .OPMODEREG (1 ), // Number of pipeline stages

for OPMODE (0 or 1),→

141 .PREG (0 ) // Number of pipeline stages

for P (0 or 1),→

142 ) DSP48E1_tail (

143 // Cascade: 30-bit (each) output: Cascade Ports

144 //.ACOUT (ACOUT ), // 30-bit output: A port cascade

output,→

145 //.BCOUT (BCOUT ), // 18-bit output: B port cascade

output,→
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146 .CARRYCASCOUT (cascade_carries[g1+1] ), // 1-bit output: Cascade

carry output,→

147 //.MULTSIGNOUT (MULTSIGNOUT ), // 1-bit output: Multiplier sign

cascade output,→

148 //.PCOUT ( ), // 48-bit output: Cascade output

149 // Control: 1-bit (each) output: Control Inputs/Status Bits

150 //.OVERFLOW (OVERFLOW ), // 1-bit output:

Overflow in add/acc output,→

151 //.PATTERNBDETECT(PATTERNBDETECT ), // 1-bit output:

Pattern bar detect output,→

152 //.PATTERNDETECT (PATTERNDETECT ), // 1-bit output:

Pattern detect output,→

153 //.UNDERFLOW (UNDERFLOW ), // 1-bit output:

Underflow in add/acc output,→

154 // Data: 4-bit (each) output: Data Ports

155 //.CARRYOUT (CARRYOUT ), // 4-bit output: Carry output

156 .P (line[g1*S_TAIL +: S_TAIL]), // 48-bit output: Primary

data output,→

157 // Cascade: 30-bit (each) input: Cascade Ports

158 .ACIN (0 ), // 30-bit input: A cascade

data input,→

159 .BCIN (0 ), // 18-bit input: B cascade

input,→

160 .CARRYCASCIN (cascade_carries[g1] ), // 1-bit input: Cascade

carry input,→

161 .MULTSIGNIN (0 ), // 1-bit input: Multiplier

sign input,→

162 .PCIN (0 ), // 48-bit input: P cascade

input,→
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163 // Control: 4-bit (each) input: Control Inputs/Status Bits

164 .ALUMODE (TAIL_ALU ), // 4-bit input: ALU

control input,→

165 .CARRYINSEL (3'h2 ), // 3-bit input: Carry

select input,→

166 .CLK (clk ), // 1-bit input: Clock

input,→

167 .INMODE (5'h0 ), // 5-bit input: INMODE

control input,→

168 .OPMODE (7'h08 ), // 7-bit input: Operation

mode input,→

169 // Data: 30-bit (each) input: Data Ports

170 .A (0 ), // 30-bit input: A data

input,→

171 .B (0 ), // 18-bit input: B data

input,→

172 .C (0 ), // 48-bit input: C data

input,→

173 .CARRYIN (0 ), // 1-bit input: Carry

input signal,→

174 .D (0 ), // 25-bit input: D data

input,→

175 // Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs

176 .CEA1 (0 ), // 1-bit input: Clock

enable input for 1st stage AREG,→

177 .CEA2 (0 ), // 1-bit input: Clock

enable input for 2nd stage AREG,→

178 .CEAD (0 ), // 1-bit input: Clock

enable input for ADREG,→
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179 .CEALUMODE (0 ), // 1-bit input: Clock

enable input for ALUMODE,→

180 .CEB1 (0 ), // 1-bit input: Clock

enable input for 1st stage BREG,→

181 .CEB2 (0 ), // 1-bit input: Clock

enable input for 2nd stage BREG,→

182 .CEC (0 ), // 1-bit input: Clock

enable input for CREG,→

183 .CECARRYIN (0 ), // 1-bit input: Clock

enable input for CARRYINREG,→

184 .CECTRL (1 ), // 1-bit input: Clock

enable input for OPMODEREG and CARRYINSELREG,→

185 .CED (0 ), // 1-bit input: Clock

enable input for DREG,→

186 .CEINMODE (0 ), // 1-bit input: Clock

enable input for INMODEREG,→

187 .CEM (0 ), // 1-bit input: Clock

enable input for MREG,→

188 .CEP (0 ), // 1-bit input: Clock

enable input for PREG,→

189 .RSTA (0 ), // 1-bit input: Reset

input for AREG,→

190 .RSTALLCARRYIN(0 ), // 1-bit input: Reset

input for CARRYINREG,→

191 .RSTALUMODE (0 ), // 1-bit input: Reset

input for ALUMODEREG,→

192 .RSTB (0 ), // 1-bit input: Reset

input for BREG,→
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193 .RSTC (0 ), // 1-bit input: Reset

input for CREG,→

194 .RSTCTRL (0 ), // 1-bit input: Reset

input for OPMODEREG and CARRYINSELREG,→

195 .RSTD (0 ), // 1-bit input: Reset

input for DREG and ADREG,→

196 .RSTINMODE (0 ), // 1-bit input: Reset

input for INMODEREG,→

197 .RSTM (0 ), // 1-bit input: Reset

input for MREG,→

198 .RSTP (0 ) // 1-bit input: Reset

input for PREG,→

199 );

200 end // subsequent_tails

201 end // gen_tail

202 endgenerate

203

204 endmodule
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