12,350 research outputs found

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Towards a 20m global building map from Sentinel-1 SAR Data

    Get PDF
    This study introduces a technique for automatically mapping built-up areas using synthetic aperture radar (SAR) backscattering intensity and interferometric multi-temporal coherence generated from Sentinel-1 data in the framework of the Copernicus program. The underlying hypothesis is that, in SAR images, built-up areas exhibit very high backscattering values that are coherent in time. Several particular characteristics of the Sentinel-1 satellite mission are put to good use, such as its high revisit time, the availability of dual-polarized data, and its small orbital tube. The newly developed algorithm is based on an adaptive parametric thresholding that first identifies pixels with high backscattering values in both VV and VH polarimetric channels. The interferometric SAR coherence is then used to reduce false alarms. These are caused by land cover classes (other than buildings) that are characterized by high backscattering values that are not coherent in time (e.g., certain types of vegetated areas). The algorithm was tested on Sentinel-1 Interferometric Wide Swath data from five different test sites located in semiarid and arid regions in the Mediterranean region and Northern Africa. The resulting building maps were compared with the Global Urban Footprint (GUF) derived from the TerraSAR-X mission data and, on average, a 92% agreement was obtained.Peer ReviewedPostprint (published version

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Extracting Physical and Environmental Information of Irish Roads Using Airborne and Mobile Sensors

    Get PDF
    Airborne sensors including LiDAR and digital cameras are now used extensively for capturing topographical information as these are often more economical and efficient as compared to the traditional photogrammetric and land surveying techniques. Data captured using airborne sensors can be used to extract 3D information important for, inter alia, city modelling, land use classification and urban planning. According to the EU noise directive (2002/49/EC), the National Road Authority (NRA) in Ireland is responsible for generating noise models for all roads which are used by more than 8,000 vehicles per day. Accordingly, the NRA has to cover approximately 4,000 km of road, 500m on each side. These noise models have to be updated every 5 years. Important inputs to noise model are digital terrain model (DTM), 3D building data, road width, road centre line, ground surface type and noise barriers. The objective of this research was to extract these objects and topographical information using nationally available datasets acquired from the Ordnance Survey of Ireland (OSI). The OSI uses ALS50-II LiDAR and ADS40 digital sensors for capturing ground information. Both sensors rely on direct georeferencing, minimizing the need for ground control points. Before exploiting the complementary nature of both datasets for information extraction, their planimetric and vertical accuracies were evaluated using independent ground control points. A new method was also developed for registration in case of any mismatch. DSMs from LiDAR and aerial images were used to find common points to determine the parameters of 2D conformal transformation. The developed method was also evaluated by the EuroSDR in a project which involved a number of partners. These measures were taken to ensure that the inputs to the noise model were of acceptable accuracy as recommended in the report (Assessment of Exposure to Noise, 2006) by the European Working Group. A combination of image classification techniques was used to extract information by the fusion of LiDAR and aerial images. The developed method has two phases, viz. object classification and object reconstruction. Buildings and vegetation were classified based on Normalized Difference Vegetation Index (NDVI) and a normalized digital surface model (nDSM). Holes in building segments were filled by object-oriented multiresolution segmentation. Vegetation that remained amongst buildings was classified using cues obtained from LiDAR. The short comings there in were overcome by developing an additional classification cue using multiple returns. The building extents were extracted and assigned a single height value generated from LiDAR nDSM. The extracted height was verified against the ground truth data acquired using terrestrial survey techniques. Vegetation was further classified into three categories, viz. trees, hedges and tree clusters based on shape parameter (for hedges) and distance from neighbouring trees (for clusters). The ground was classified into three surface types i.e. roads and parking area, exposed surface and grass. This was done using LiDAR intensity, NDVI and nDSM. Mobile Laser Scanning (MLS) data was used to extract walls and purpose built noise barriers, since these objects were not extractable from the available airborne sensor data. Principal Component Analysis (PCA) was used to filter points belonging to such objects. A line was then fitted to these points using robust least square fitting. The developed object extraction method was tested objectively in two independent areas namely the Test Area-1 and the Test Area-2. The results were thoroughly investigated by three different accuracy assessment methods using the OSI vector data. The acceptance of any developed method for commercial applications requires completeness and correctness values of 85% and 70% respectively. Accuracy measures obtained using the developed method of object extraction recommend its applicability for noise modellin

    Deep learning for studying urban water bodies´ spatio-temporal transformation: a study of Chittagong City, Bangladesh

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesWater has been playing a key role in human life since the dawn of civilization. It is an integral part of our lives. In recent years, water bodies specially, urban water bodies are in a poor state due to climate change and rapid urban expansion. Though some cities have become aware of this poor state of water bodies, many cities around the world are not contemplating this issue. Because less research has been conducted on water bodies than other land covers in urban areas like built-up. Besides, many advanced algorithms are currently being utilized in different fields, but in terms of water body study, these advancements are still missing. That is why this study aims at investigating the spatio-temporal changes in urban water bodies in Chittagong city using deep learning and freely available Landsat data. Looking at the significance of the study, firstly, as this study has adopted two different deep learning (DL) models and evaluated the performance, the findings can help to understand the suitability of applying deep learning algorithms to extract information from mid to low resolution imagery like Landsat. Secondly, this work will help us to understand why the conservation of the existing water bodies is so important. Finally, this study will encourage further research in the field of deep learning and water bodies by opening the door for monitoring other environmental resources

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri

    Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL

    Get PDF
    Fragmented ecosystems of the desiccated Aral Sea seek answers to the profound local hydrologically- and water-related problems. Particularly, in the Small Aral Sea Basin (SASB), these problems are associated with low precipitation, increased temperature, land use and evapotranspiration (ET) changes. Here, the utility of high-resolution satellite dataset is employed to model the growing season dynamic of near-surface fluxes controlled by the advective effects of desert and oasis ecosystems in the SASB. This study adapted and applied the sensible heat flux calibration mechanism of Surface Energy Balance Algorithm for Land (SEBAL) to 16 clear-sky Landsat 7 ETM+ dataset, following a guided automatic pixels search from surface temperature T-s and Normalized Difference Vegetation Index NDVI (). Results were comprehensively validated with flux components and actual ET (ETa) outputs of Eddy Covariance (EC) and Meteorological Station (KZL) observations located in the desert and oasis, respectively. Compared with the original SEBAL, a noteworthy enhancement of flux estimations was achieved as follows: - desert ecosystem ETa R-2 = 0.94; oasis ecosystem ETa R-2 = 0.98 (P < 0.05). The improvement uncovered the exact land use contributions to ETa variability, with average estimates ranging from 1.24 mm to 6.98 mm . Additionally, instantaneous ET to NDVI (ETins-NDVI) ratio indicated that desert and oasis consumptive water use vary significantly with time of the season. This study indicates the possibility of continuous daily ET monitoring with considerable implications for improving water resources decision support over complex data-scarce drylands

    Improved Narrow Water Extraction Using a Morphological Linear Enhancement Technique

    Get PDF
    An improved water extraction method using a morphological linear enhancement technique is proposed to improve the delineation of narrow water features for the modified normalized difference water index (MNDWI) derived from remote sensing images. This method introduces a morphological white top-hat (WTH) transforming operation on the MNDWI to extract multi-scale and multidirectional differential morphological profiles and constructs a morphological narrow water index (MNWI). The MNWI can effectively enhance the local contrast of linear objects, allowing narrow water bodies to be easily separated from mountain shadows and other features. Furthermore, to accurately delineate surface water bodies, a dual-threshold segmentation method was also developed by combining an empirical threshold segmentation with the MNDWI for wide water bodies and an automatic threshold segmentation with the MNWI for narrow water bodies. This method was validated using three experimental datasets, which were taken from two different Landsat images. Our results demonstrate that narrow water bodies can be sufficiently identified, with an overall accuracy of over 90%. Most narrow streams or rivers keep a continuous shape in space, and the boundaries of the water bodies are accurately delineated as compared with the MNDWI method. Finally, the proposed method was used to extract the entire inland surface water of Fujian province, China
    corecore