
 

 

Deep Learning for Studying Urban Water 
Bodies' Spatio-temporal Transformation:  
A Study of Chittagong City, Bangladesh  

Muhammad Esmat Enan 



   
 

  
Deep Learning for Studying Urban Water Bodies' 

Spatio-temporal Transformation: 
A Study of Chittagong City, Bangladesh 

 

 
 
 

Supervised by 

Filiberto Pla Bañón, PhD 
Professor, Institute of New Imaging Technologies (INIT) 

Universitat Jaume I (UJI) 
Castellon de la Plana, Spain 

 
 
 
 

Co-supervised by 
 

Rubén Fernández Beltrán, PhD 
Institute of New Imaging Technologies (INIT) 

Universitat Jaume I (UJI) 
Castellon de la Plana, Spain 

 
 
 
 

Co-supervised by 
 

Mário Silvio Rochinha de Andrade Caetano, PhD 
Associate Professor, Nova Information Management School 

Universidade Nova de Lisboa (UNL) 
Lisbon, Portugal 

 
 
 
 
 

Date of Submission 

February 21, 2021



 

 

 
 
 
 
 
 
 

DEDICATED TO  
MY PARTENTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

i 
 

 
 
 
 

ACKNOWLEDGEMENT 
 
In the successful completion of this thesis, I thank the creator Allah Subhanahu Wa 
Ta'ala  (Alhamdulillah). Then, I like to express my heartiest reverence to my 
honorable thesis supervisor Prof. Dr. Filiberto Pla Bañón for his scholastic 
guidance, encouragement, and providing suitable space to conduct the study in this 
pandemic situation. 
 
Similarly, I am thankful to my co-supervisor, Dr. Rubén Fernández Beltrán for his 
continuous supervision, mental assistance, and constructive criticism throughout the 
study period. My heartiest gratitude goes to my co-supervisor,  Prof. Dr. Mário 
Silvio Rochinha de Andrade Caetano for his valuable feedbacks and suggestions on 
thesis progress. I am feeling lucky for having all of them on my supervisory board. 
 
I am also grateful to Shimul Sarker, Shakhawat Hossain Shoel, and Obidur Rahman for 

helping me to have the required auxiliary data for this study. I am specially thankful to 
the Erasmus Mundus Program for financing my entire journey of this MSc 
program. Besides, I grateful to GeoTech Family for giving me some wonderful 
memories to cherish for a lifetime. 
 
Finally, I would like to extend my heartfelt thanks to all the members of my family, 
including my parents, wife, and all the hard-working brothers and sisters, whose 
dedication gave me moral support and made it possible to carry out the research. 
 
 
 
Muhammad Esmat Enan 
February, 2021 
 
 
 
 
 
 
 
 
 
 



 

ii 
 

ABSTRACT 
 

Water has been playing a key role in human life since the dawn of civilization. It is an 
integral part of our lives. In recent years, water bodies specially, urban water bodies 
are in a poor state due to climate change and rapid urban expansion. Though some 
cities have become aware of this poor state of water bodies, many cities around the 
world are not contemplating this issue. Because less research has been conducted on 
water bodies than other land covers in urban areas like built-up. Besides, many 
advanced algorithms are currently being utilized in different fields, but in terms of 
water body study, these advancements are still missing. That is why this study aims at 
investigating the spatio-temporal changes in urban water bodies in Chittagong city 
using deep learning and freely available Landsat data. Looking at the significance of 
the study, firstly, as this study has adopted two different deep learning (DL) models 
and evaluated the performance, the findings can help to understand the suitability of 
applying deep learning algorithms to extract information from mid to low resolution 
imagery like Landsat. Secondly, this work will help us to understand why the 
conservation of the existing water bodies is so important. Finally, this study will 
encourage further research in the field of deep learning and water bodies by opening 
the door for monitoring other environmental resources. 
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1.1 Background of the Study   

   
Water is a basic requirement for sustaining the existence of all living organisms 
(Sharma et al., 2017). In urban areas, water bodies have higher evaporation rates than 
areas with green coverage (Mostafa  and Manteghi, 2019). Therefore, water spaces 
play a key role to create cooling islands in urban areas, which results in the variation 
in temperature of the contiguous environment (Sun and Chen, 2012; Hathway and 
Sharples, 2012). Water bodies are always colder than the overlying air during the day 
time in warm weather (Gross, 2017; Broadbent et al., 2017) thus, urban water bodies 
can mitigate the temperature of the urban environment by reducing their energy taking 
tendency (Manteghi et al., 2016).   
 
Most water bodies worldwide suffer from problems of contamination and invasion by 
manufacturing, urban and agricultural production. Urban population, agriculture, and 
industry are demanding increment of  freshwater day by day. (Bogdanets and Vlaev, 
2015). Likewise, the urban population also wants more land for housing, 
infrastructure growth and other purposes, which eventually stresses the water bodies. 
(Neelakantan  and Ramakrishnan, 2017). It is said, urban growth is one of the main 
drivers of land cover transition, which has a significant effect on adjacent 
environment (Mostafa and Manteghi, 2019). Earth's surface transition to urban 
application showing the major shifts in global land use and land cover (Weng & 
Yang, 2004; Manteghi et al., 2015). We are altering water bodies by changing land 
use and land cover. The effects of this change depend on certain factors, such as the 
urban center's size, existing water bodies, city's historical and natural setting, etc. 
Although different scientific literature has shown the ecological effects of urban 
development on aquatic environments with approaches to restoration and problem 
mitigation (Hughes et al., 2014), we cannot see any practical utilization of these 
approaches. As a result, urban water bodies are being converted into other land 
covers, and water-related problems are becoming more prevalent in urban areas. 
 
The accessibility of big data, advances in algorithms and rapid expansion in 
computing have led us to the powerful concept of ML in recent decades. ML 
algorithms are being used for various purposes, including the classification, 
regression, clustering, or reduction of complexity of big data, particularly high-
dimensional input data processing (Schmidt et al., 2019). ML is a method of 
automatic learning that takes place by analyzing large datasets. By estimating 
mathematical functions, it learns to link one or more inputs to one or more outputs to 
predict a set of new data (Di Franco  and Santurro, 2020; Jordan and Mitchell 2015); 
hence, this technique can be assessed to monitor water-related problems based 
satellite data. 
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1.2 Research Gap and Motivation   
 
Throughout the world, the land cover type that has been mostly influenced by natural 
and human activates is water body. Encroachment, land use alteration, uncontrolled 
urbanization, and climate change are some of the factors that are trigging this 
influence. Most the these factors are driven by human  i.e. most of the water bodies 
are being influenced by anthropogenic activities. Problems associated with urban 
water bodies are almost common throughout the world. Therefore, various 
conservation initiatives are being observed to protecting existing water bodies all over 
the world.  
 
In Bangladesh, pollution is the major problem associated with urban water bodies 
because of which most of the water bodies become unusable. In most of the cities of 
this country, uncontrolled urbanization area converting water bodies into the built-up 
area/ constructed land. Different studies have reported that the second largest city of 
this country (Chittagong) is experiencing the same situation. In this city,  water bodies 
are turning into constructed areas to provide housing for the city's growing 
population. In addition, factories located in and around the city are influencing urban 
water bodies both directly and indirectly. 
 

Nowadays, to monitor the spatio-temporal changes in urban water bodies, modern 
technologies like; Geographical Information Systems (GIS), Remote sensing (RS) are 
very popular (Denning, 1993; Jeton &Smith,1993). Before that, studies like water 
resource modeling required some time-consuming steps (Tsihrintzis et al., 1996). 
Earth observatory satellite like Landsat provides opportunities to monitor changes in 
urban water bodies by offering  mid to low resolution multi-spectral data Apart from 
modern technologies and remotely sensed data, advanced algorithms are also essential 
to monitor not only urban water bodies but also other environmental resources. CNN 
and DNN have recently shown the superiority of deep learning algorithms over 
conventional image classification algorithms as they can learn from multi-level 
representation. (Cai et al., 2018).  
 
It is said, at present, studies on water body are less available than those of built-up, 
green landscape, and .other land covers (Yang et al., 2015). In addition, we can see 
the application of DL in different fields but, this technique is still to be utilized in 
urban water research specially, to check the spatio-temporal changes. So this study 
has been undertaken to fulfill this gap. 
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1.3 Aim, Objectives and Research Questions 
 

The study aims to find out the spatio-temporal changes in urban water bodies in 
Chittagong city using DL. There are two specific objectives of the study which are 
given below: 

1. To find out the changing trend in urban water bodies in the study area from 
2000 to 2020. 
 

2. To simulate the scenario (area coverage) of the urban water bodies in the study 
area for 2040. 

In order to fulfill these objectives, the study has tried to search for the possible 
answers to the following questions. 

 Based on past and present records, what is the general trend of changes in 
urban water bodies ? 

 This question shows the changing pattern of water bodies in the study area 
from 2000 to 2020. 
 

 What will be the future scenario of the urban water bodies in that area?  

 This question discloses the upcoming condition of the water bodies in the 
city. 

From the objectives and research questions it is clear that the main focus of this study 
is on changes in water bodies; but, in the result section, we are going to present the 
discussion on both water and non-water bodies. The reason is, without considering 
both water and non-water land cover, we cannot find out the changing scenario in the 
water bodies properly. If we remove non-water bodies from all the figures, it will 
create an empty space on the maps, logically which is not true. On the other hand, the 
presence of non-water parts in the figures without discussion will raise a question. In 
addition, our models (CNN and ANN) are also predicting two classless; a) water 
bodies and b) non-water bodies. So, we are going to discuss both water bodies and 
non-water bodies, given all these concerns. A summary of the notions of water bodies 
and non-water bodies in this study is shown in Table 1.1. 
 

Table 1.1: Specification of water bodies and non-water bodies 
Classification Types Specification 
Water bodies River, wetland (permanent and seasonal),  

canal, stream, sea, low-land, marshy land, 
etc. 

Non-water bodies Others (e.g. residential area, commercial 
area, crop filed, bare land) 
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1.4  Significance of the Study   
 

As it is mentioned in the research gap section, there have been limited studies on 
urban water bodies at both local and global scales; therefore, it is a timely and 
unavoidable research. At the LS (local scale), this work will highlight the changing 
scenario and the future status of urban water bodies in Chittagong. As a result, it will 
be easier to understand, why these water bodies need to be brought under 
conservation practice. At the NS (national scale), this work will be an example of how 
modern technology, such as deep learning, can be used to monitor environmental 
problems. Besides, methodology followed in this study will open the door to monitor 
other environmental issues. In addition, at the GS (global scale), this work will fill the 
absence of the application of deep learning in urban water body change monitoring. 
Finally, the study will also try to disclose whether DL is capable of monitoring 
environmental problems from low to mid resolution data like Landsat. 
 
 

1.5 Chapter  Overview  
 

The thesis report is organized into six chapters. Each chapter contains in detail 
discussion about the different parts of the study. 
 
Chapter 1 consists of a background, research gap, motivation, aim, objectives, 
research questions, and the significance of the research. 
 
Chapter 2 represents the literature review and theoretical aspects, where; water bodies 
and their importance, popular techniques of studying spatio-temporal changes in 
water bodies, deep learning, artificial neural network, and selection of base 
architecture for the study are illustrated. 
 
Chapter 3 is providing information about the study area and datasets used in this 
study. 
 
Chapter 4 depicts the whole methodological workflow of the study in detail.  
 
Chapter 5 includes the model performance, classification outputs, change analysis. 
Besides, this chapter also discloses the future condition of urban water bodies and 
their interaction with non-water bodies.  
 
Finally, the closing chapter (chapter 6) consists of the conclusion and future directions 
of the current study.
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2.1 Introduction 
 
This chapter is showing the theoretical basement of this study. Definition of urban
water bodies, their roles, d
models of this study have been discussed
every single component are also placed here.

2.2 Urban Water body and Its Importance

 
In general, water body refers to the part of the earth's surface that is covered with 
water. So, urban water bodies can be de
covered with water. This landscape can be natural or 
temporary.  
 
As an integral part of the ecology, one of the major functionalities of the urban water 
bodies is to support wildlife. 
beauty of an urban area. In a riverine city, urban water bodies play vital roles to 
connect different parts of that city. 
 

Figure 2.1: Significance of water bodies in urban areas
 

Geographically, some urban water bod
political relationship between the two countries. 
intimately involved with a city
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CHAPTER  2: LITERATURE REVIEW AND THEORETICAL ASPECTS

7 

This chapter is showing the theoretical basement of this study. Definition of urban
, their roles, different components of CNN, ANN, and the

models of this study have been discussed here in detail. Besides, the functionalities of 
every single component are also placed here. 

Urban Water body and Its Importance 

refers to the part of the earth's surface that is covered with 
So, urban water bodies can be defined as the part of the urban 

his landscape can be natural or artificial, permanent or 

f the ecology, one of the major functionalities of the urban water 
bodies is to support wildlife. Water bodies also contribute to the economy and scenic 

of an urban area. In a riverine city, urban water bodies play vital roles to 
arts of that city.  

 
Significance of water bodies in urban areas 

Geographically, some urban water bodies play a significant role to establish the 
political relationship between the two countries. In addition, Water bodies
intimately involved with a city because they play a key role in its growth and 

Importance 
of urban 

water bodies

Ecological

Economic

Aesthetic
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permanent or 

f the ecology, one of the major functionalities of the urban water 
o the economy and scenic 

of an urban area. In a riverine city, urban water bodies play vital roles to 

 

establish the 
Water bodies are 

because they play a key role in its growth and 
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maintenance. Water functions are not limited to domestic boundaries and waste 
discharge, as it also plays a vital role in ecology. (Milosevic and Winker, 2015). 
 

2.3 Popular Techniques of Studying Spatio-temporal 
Changes  
 
There are several techniques to explore the Spatio-temporal changes in water bodies 
from remotely sensed data. Two dominating techniques are image classification and 
index application. 
 
Image classification can be either supervised or unsupervised. Unsupervised 
classification method does not require prior knowledge, while supervised 
classification needs real understanding of the land cover in the study area (Thompson 
and Mikhail, 1976; Ismail et al., 2009). Examples  of supervised algorithms include: 
maximum likelihood classification, minimum distance classification, mahalanobis 
distance classification, etc (50 North, 2017). Similarly, K-means, ISODATA are 
commonly used unsupervised algorithms (GIS Geography, 2021). 
 
The two most popular indices to identify the spatio-temporal changes in water bodies 
are  NDWI and  MNDWI. 
 
The water features captured in NDWI involve false positives from constructed areas; 
therefore, a revised water index was developed. The new index can capture the water 
surface by minimizing errors from constructed land, forest, and soil (Ullah and Enan, 
2016; Xu, 2006).  Mathematically  two indices can be shown as follow: 
 
   NDWI = (GREEN– NIR) / (GREEN + NIR)                     2.1 
     
   MNDWI = (GREEN –MIR) / (GREEN + MIR)                 2.2    

 
       

Now, let's assume we want to calculate NDWI using  Landsat 8 imagery. We need  
band 3 (GREEN ) and band 5 (NIR); hence, the equation would be  
 

NDWI = (B3– B5) / (B3+ B5)                                                 2.3 
 

 

Similarly, to calculate MNDWI from the same satellite imagery, we need band 3 
(GREEN) and band 6 (MIR). This can be expressed as follow: 
 

MNDWI = (B3– B6) / (B3+ B6)                                               2.4 
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2.4 Deep Learning and CNN 
 
DL is a versatile ML subfield that solves a number of tasks, including image analysis, 
computer vision, signal processing, and speech recognition(LeCun et al., 2015). DL 
has the ability to automatically learn internal image representation from actual 
image at different levels, which is very helpful in classifying images and detecting 
objects. O'Mahony et al., (2019).  
 
Over past years, a lot of scientific experiments have been applying DL for satellite 
imagery processing (Zhang., et al, 2015; Zhang., et al, 2016). DL proved to be 
capable of processing and extracting different land covers both form optical and radar 
images (Chen et al., 2014;  Mnih and Hinton, 2010; Geng et al., 2015). One of the 
commonly used DL models is the Convolutional Neural Network (CNN) which has 
been widely utilized for different purposes including handwriting recognition from 
binary images (Ciresan et al., 2010), classification of hyperspectral, MRI, and multi-
spectral data (Meszlény et al., 2017; Chen., et al 2014), learning from videos 
(Mobahi, 2009), crop classification (Ji et al., 2018) etc. 
 
 

2.5 Selection of Base Architecture 
 
The architecture ( Figure 2.2 )  was selected as the guideline of the study, which was 
presented by Ji et al., (2018). Apart from input and output layer, this architecture 
contains convolution layer, pooling layer, and fully connected layer. 
 

 
 

Figure 2.2: Selected 2D CNN architecture  
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Some commonly used components of CNN are discussed below. 
 

 

 2.5.1 The Convolution Layer: As CNN's main building block, 
convolution layers are applied to extract different features from imagery with the 
process learned by the network. More precisely, It is a method in which a small 
number or kernel matrix is passed over the image and interpreted depending on values 
from the image's filtered block. In this whole process the value is extracted  based on 
following formula (Ganegedara,  2018). 
 

ℎ , = ∑   ∑   𝑤 , 𝑥 ,             2.5      

Here,  

m = width and height of window/kernel 

h = output of convolution, 

x = inputs  

w= convolution kernel/window 

To summarize, it can be said, a convolution layer applies the filters of specific 
dimension  to perform convolution operations for scanning the input image. 
 

 2.5.2 Pooling Layer: This layer produces a new set of pooled feature maps 
from each feature map independently. It is a function that aims to minimize the 
quantity of the representations in order to progressively lessen the number of network 
parameters and computational complexity. This process includes the selection of a 
pooling operation similar to a filter adapted to feature map. The aspect of the 
feature map filter is bigger than the filter of the pooling operation (Pokharna, 
2016;Geeksforgeeks, 2019). 
 
Let's assume we have a feature map with height= y, width = x , and number of 
channels= c, now, after applying the pooling layer we will get an output with the 
following dimension:  
 
 

 
(𝑦 − 𝑓 + 1)

𝑠
×

(𝑥 − 𝑓 + 1)

𝑠
× 𝑐                                                       2.6 

Where,  
f =  is size of filter and 
s = is stride length 
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Two types of pooling operations exist: a) max-pooling and b) average-pooling. 
(Brownlee, 2019).  
 

Table 2.1: Difference between max and average pooling 
Categories Max-pooling Average-pooling 
Purposes Mmaximum value is selected by each 

pooling process when filtering 
Each pooling operation averages 
the while filtering 

Remarks • Protects identified features 
• Very popular 

• Reduces feature map 
• Mostly utilized in LeNet 

Source: (Amidi, Amidi n.d.) 
 

 2.5.3 Dense or Fully Connected Layer: The dense or fully-connected 
layer is utilized to combine all the learned features of different convolution kernels to 
have a holistic image by building a global representation from the network ( Singh, 
n.d.). So, in a neural network, the FC layer refers to a stage or a layer where each 
activation unit of next layer is linked to all inputs from previous layer. Generally, after 
adding multiple convolutions and pooling layers, the FC layer is installed at the end of 
the network..  
 

 2.5.4 Dropout Layer: This layer is associated with the technique of 
temporarily stopping the contribution of some randomly selected neurons to the 
activation function. So, the selected neurons are not considered for a particular pass  
(whether it is a forward pass or backward pass). 
 
 

 2.5.5 Flatten Layer: A flattening layer executes a function to convert the 
feature map to a one-dimensional array. More precisely, this process can flatten the 
output of the convolution layers into a single feature vector by putting all the pixel 
data in one line. The flatten output is connected to the final classification or fully-
connected layer for further processing. 
 

 2.5.6 Batch Normalization: In a deep neural network, this technique is 
applied to combat the internal covariate shift problem by normalizing the inputs of 
each layer. This technique has the power of stabilizing the learning process and can 
reduce the number of epochs to train a DNN (Peccia, 2018). To calculate normalized 
activations,  this technique relies on the fowling formula (MathWorks. n.d.). 
.   

𝑥
^

=
𝑥 − 𝜇

𝜎 + 𝜖
                                                                                           2.7 

  
μ

B
  = mini-batch and every input channel's mean 

σ2B =  mini-batch and every input channel's variance 
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ϵ = numerical stabilization of parameters 
  
 

2.5.7 Activation Function: The activation function is a node that helps 
to determine if the neuron will be triggered or not. Different types of activation 
functions exist. In this adopted architecture ReLU activation function was used. It is a 
popular activation function used in CNN. The biggest advantage of this function is 
that, it does not activate all neurons simultaneously; hence it is faster than other 
activation functions. 
 

 
 

Figure 2.3: Different activation function  (Source: Udofia, 2018).  

 
 

2.6 Training 
 
Generally, the training phase of CNN includes the forward propagation or forward 
pass, loss optimization, and back-propagation, etc. All these are discussed below. 
 
 

2.6.1 Forward propagation: It refers to the process of calculating and storing 
intermediate variables from the input layer to the output layer accordingly, where 
inputs are fed through the neural network consisting of several convolutions, pooling, 
and fully connected layers (Dive into Deep Learning, n.d.). 
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2.6.2 Loss Optimization: Neural network outputs are tuned by changing the 
parameters' value such as weights, and the optimization is the function which carries 
out this task. There are several optimization algorithms for example; Root Mean 
Square Propagation (RMSProp), Adaptive Moment Estimation (Adam), Stochastic 
Gradient Descent (SGD) with momentum. Loss functions are helpful to train a neural 
network, and there are different types of loss function such as Regressive loss 
functions Classification loss functions, Embedding loss functions (Verma, 2019).  
 

2.6.3 Back propagation: This is a technique of calculating the gradient of neural 
network parameters. More precisely, this method traverses the network in reverse 
order, from the end (output) to start (input) maintaining the chain rule from calculus 
(Dive into Deep Learning, n.d.). 
 
 

2.6.4 Parameters and Hyper-parameters: In a model parameters refer to the 
features (such as weight and bias) that a model updates through forward and back-
propagation. Whereas, hyper-parameters refer to the properties of the models that are 
fixed during the training phase. So, model parameters include the process of 
estimation that is done from the data automatically; whereas, hyper-parameters 
estimation is done manually to help the parameter`s estimation process (Brownlee, 
2017). Based on role, we can divide the hyper-parameters into two categories: a) to 
determine the structure of a network (e. g. kernel size), b) to determine the training 
stage of a network (e. g. maximum epoch). 
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2.7 Modified Architecture Adopted in this Study 
 
The selected model (Figure 2.2) was modified until getting the desired result. The 
major difference between the base model and the modified one is the pooling layer. 
There is no pooling layer in the modified model, and the reason is, instead of 
decreasing the representations' quantity to lessen the parameter's quantity and 
computations of the network, this study used the dropout layer directly. This 
technique not only helps in regularization (over the fitting problem) but also  can stop 
the contribution of some randomly selected neurons temporarily; thus, it helps to 
reduce the computations in the network as well, and the process becomes faster. 
Besides, the modified model shows consistency in kernel size of the convolution 
layers. 
 

 
Figure 2.4: Modified CNN architecture adopted in this study 
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2.8 Artificial Neural Network 
 
ANN is a highly powerful data processing tools. Till now, different types of Neural 
Networks (NNs) has been proposed, where the most common things are: the neurons, 
the link among the neurons, and the base algorithm for learning (Malik, 2005). ANN 
can be addressed as an interconnected group of nodes, like a network of neurons in a 
brain. So, it is a computational model inspired by animal’s brains that are capable of 
pattern recognition. ANNs can be presented as interconnected neurons with the power 
of computing values from inputs by taking information through the network. The key 
benefit of the ANN is that the propagation of information in the neurons and the 
processing of information are conducted simultaneously (Udapa et al., 1997). An 
ANN is programmed through a learning method for a particular reason, for 
example; classification of data.  When a specific component of the network collapses, 
its will continue without any difficulty. No doubt that ANN is gaining popularity for 
predicting the results about certain parameters. It can be applied for predicting 
response parameters from process parameters once trained properly (Mhatre et al., 
2015). 
 

2.9 ANN Architecture Adopted in the Study 
 
Like a typical ANN architecture, this architecture also has three main stages, and 
those are a) input layer, b) hidden layer, and c) output layer. It should be mentioned 
that this architecture was adopted based on the Python environment used in 
MOLUSCE 3.0.13.  

 

 
Figure 2.5: ANN skeleton adopted in this study 
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 2.9.1 Input Layer: It receives input values of the attributes for each 
observation. The number of nodes in this layer equals the number explanatory 
variables. 
 

 2.9.2 Hidden Layer: Between the input and output layers, this layer is 
placed. In this layer, weights (values) are applied to the input and then transform those 
weighted values in a non-linear pattern through an activation function to the output. In 
a neural network, there may have one or more hidden layers. 
 

  2.9.3 Output Layer: This layer receives connections from hidden layers 
and responsible to produce the final outcome. In a neural network, there must have 
one output layer. To understand the whole process of the model, let's assume we have 
a satellite image of 800 pixels; so, we will have 800 neurons in the input layer. These 
neurons will be connected to the next layer (hidden layer) through the channels. Each 
channel has a numerical value known as weight. Inputs of the first layer are multiplied 
to the corresponding weight, and their sum is transferred to the hidden layer as input, 
where each neuron is associated with a value called bias. This bias is then added to 
the input sum. This entire process can be expressed as; 
 

(𝑋 ⋅ 𝑊 + 𝑋 ⋅ 𝑊 + … … . + 𝑋 . 𝑊 ) + 𝐵1                                           2.8 
 

Here, 
X= value of the neurons in the input layer 
W= weighted value 
B= bias value 
 
These neurons then send the data to the next layer through an activation function over 
the channel. This process is known as forwarding propagation In this case, in the 
output layer, the neuron with the highest value predicts the result, and this result is 
nothing but the probability. As we know, a neural network may predict wrong a 
backward propagation works to adjust the weights. So in most cases, these forward 
and backward propagations work as a cycle until the network can predict most of the 
results correctly. 
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3.1 Introduction 
 
This chapter is representing the discussion about the selected study area, like the 
location and some features of the study area. Besides, a description of the used dataset 
with collection sources has also been shown here. 

 

3.2 Study Area Profile   
 

 
Figure 3.1: Study area's absolute location  

 

Chittagong City is situated in the southeastern edge of Bangladesh. The absolute 
location of the city is 22.13° and 22.28° north to 91.45° and  91.54° east (Ahmed and  
Dewan, 2017). There has a tropical monsoon climate in this region, with hot and 
humid summers and slightly cold winters. The summer's maximum temperature is 
32.3 °C, while the winter's minimum temperature is 13 °C. Annual rainfall in this 
area, on the other hand, ranges from 2400 to 3000 mm (BMD, 2013; Hassan and 
Nazem, 2015). As the second-largest metropolitan city in Bangladesh, Chittagong is a 
commercially very important city (Roy and Saha, 2016). It is known as the city for 



 
export and import. The prime position of th
center, attracting massive influx of foreign investment into garment industry, ship 
breaking industry, and oil refinery operations. 
percent of the large-scale industries of

Figure 3.2: Population in Chittagong m

 
 
At the national level, it shares 19.7 percent of the urban population with 30 percent of 
the GDP (BBS 2011). Chittagong is also a 
several bio-geographical divisions
put the city under the stress 
environmental problems (Hussain et al., 2016), 
one of the common ones. 
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The prime position of the port has made it an important economic 
center, attracting massive influx of foreign investment into garment industry, ship 
breaking industry, and oil refinery operations. (Hussain et al., 2016). The city owns 40 

scale industries of the country (BBS, 2013).   

Population in Chittagong metropolitan area (Source: Macrotrends LLC, n.d. )

 

At the national level, it shares 19.7 percent of the urban population with 30 percent of 
Chittagong is also a biodiversity hotspot at the crossroads of 

geographical divisions (Islam, 2009). Recently, land-use alterations have 
put the city under the stress of experiencing numerous economic, societal, and 

ems (Hussain et al., 2016), where the water-related problem is 
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3.3 Datasets Utilized   
 

Including vector and raster data, different datasets were used in this study. All of them 
are presented below. 
 

 3.3.1 Landsat-5: With the MSS and TM sensors, this mission was launched on 
March 1, 1984. Before decommissioned on June 5, 2013, it set a Guinness World 
Record by providing earth imagining data for 29 years (USGS, n.d.). 
 
In 1992 and 1999, respectively, the procurement of Landsat 5 MSS data for the US 
and worldwide was halted. From June 2012 to January 2013, restricted acquisitions 
were reported (Earth Observation System. n.d.). 
 

Table 3.1: Landsat 5 (MSS) band`s properties  
Band  Specification Wavelength (μm) Spatial Resolution (m) 

1 Visible Green 0.5 - 0.6 60 

2 Visible Red 0.6 - 0.7 60 
3 NIR 0.7 - 0.8 60 
4 NIR 0.8 - 1.1 60 

 
On Landsat 4 and Landsat 5, the Landsat TM sensor was adjusted to create images 
consisting of seven bands. (6 spectral bands and 1 thermal band) (Earth Observation 
System. n.d.). 
 

Table 3.2: Landsat 5 (TM) band`s properties  
Band  Specification Wavelength (μm) Spatial Resolution (m) 

1 Visible Blue 0.45 - 0.52 30 
2 Visible Green 0.52 - 0.60 30 
3 Visible Red 0.63 - 0.69 30 
4 NIR 0.76 - 0.90 30 
5 SWIR 1 1.55 - 1.75 30 
6 Thermal 10.40 - 12.50 120 
7 SWIR 2 2.08 - 2.35 30 
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3.3.2 Landsat-8: Landsat 8 mission was incorporated on February 11, 2013 
with the OLI and TIRS Sensor instruments (USGS. n.d.). TIRS collects images with 
100 m spatial resolution. The key purposes of this sensor are to obtain the attributes of 
surface temperature and to examine the heat and humidity transfer methods industries, 
such as agriculture and water management. The main advantage of both TIRS and 
OLI instruments is that they can scan along the spacecraft track; hence, the 
radiometric distortions less occur than the transverse scanning instruments of previous 
Landsat satellites (Earth Observation System. n.d.). 
 
 

Table 3.3: Landsat 8 band`s properties 
Band  Specification Wavelength (μm) Spatial Resolution (m) 

1 Coastal 0.43 - 0.45 30 
2 Blue 0.45 - 0.51 30 
3 Green 0.53 - 0.59 30 
4 Red 0.63 - 0.67 30 

5 NIR 0.85 - 0.88 30 
6 SWIR 1 1.57 - 1.65 30 
7 SWIR 2 2.11 - 2.29 30 
8 Pan 0.50 - 0.68 15 
9 Cirrus 1.36 - 1.38 30 

10 TIRS 1 10.60 - 11.19 30 (100) 
11 TIRS 2 11.50 - 12.51 30 (100) 
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3.3.3 Other Data Sets: Apart from satellite image, some auxiliary data also used 
in this study, which are 
 a. Major road network 
 b. Rainfall 
 c. Temperature 
 d. DEM (ASTER) 
 e. Ground truth data 
 

 

Figure 3.3: Different variables used in this study a)  temperature, b) rainfall, c) 
distance to road, d) distance to railway, and e) DEM 

 
Here, a short description of the temperature data, DEM and ground truth data is 
discussed in detail. 
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Capturing Temperature Data: Temperature is one of the main auxiliary data or 
variables in this study. To extract this temperature data, remotely sensed thermal 
bands were used. At first, to convert image values from DN to radiance following two 
equations were applied respectively (USGS, n.d.).  
 

𝐿 =
𝐿𝑀𝐴𝑋 − 𝐿𝑀𝐼𝑁

𝑄𝐶𝐴𝐿𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁
∗ (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁                3.1 

 
Here: 
Lλ =  Sensor aperture's spectral radiance  
QCAL = DN value of quantized calibrated pixel  
LMINλ = Scaled spectral radiance in terms of QCALMIN 
LMAXλ = Scaled spectral radiance in terms of QCALMAX  
QCALMIN = Value of mini quantized calibrated pixel  
QCALMAX = Value of max quantized calibrated pixel value  
 

Lʎ=ML*Qcal+AL                                                                                                              3.2 

 
Lλ = Spectral radiance  
ML = Multiplicative scaling factor  
AL = Additive scaling factor   
Qcal = Value of pixel at level 1 (DN) 
 
After that, to convert the outputs of the previous two equations into temperature 
(Kelvin) following formula was applied.  
 

𝑇 =
 ( )

+1                                                                             3.3 

 
T =  Brightness temperature at the top of the atmosphere 
Lλ = Spectral radiance At the top of the atmosphere 
K1 = Constant value for band-specific thermal conversion   
K2 = Constant value for band-specific thermal conversion constant  
 
Finally, the extracted temperature data was converted to degree Celsius by subtracting 
273.15 from the outputs. 
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DEM (ASTER):  The first ASTER edition was published in June 2009. It was 
created using stereo-pair images captured  by the ASTER instrument (Jet Propulsion 
Laboratory. n.d.). Coverage of ASTER GDEM extends from 83 ° n to 83 ° s latitude, 
with 99 percent of the landmass of Earth. In 2019 ASTER GDEM-iii was released, 
which includes additional stereo-pairs. To increase accuracy (both horizontal and 
vertical) and spatial resolution refined production algorithm was applied. Moreover, 
the GeoTIFF format and the same tile structure as V1 and V22 are available in the 
ASTER GDEM V3 (Jet Propulsion Laboratory. n.d.). Considering the updated 
facilities, in this study, ASTER GDEM V3 was used.  
 
 
 
Ground Truth Data: To check the accuracy of the outputs, ground truth data were 
collected from different sources. Most of these data were prepared by other 
researchers to carry out different scientific studies.These data required some pr-
processing. In this study, all types of water features were categorized as the water 
body in general, but in-ground truth data, there were open water bodies, surface water 
bodies, lowlands, etc. So, to compare with the outputs of this study, all the water 
features were merged into a single class. 
 

Table 3.4:  Different datasets used in this study 
Serial Specification Types Resolution (m) Sources 
1 Landsat 5 & 8 Raster 30  USGS 
2 Temperature Raster 30 Landsat 5 & 8 
3 Rainfall Excel - BMD 
4 Major Roads Vector - GPAD 
5 Railway Vector - GPAD 
6 DEM Raster 30 NASA Earth data 
7 Ground truth Data Vector - Different sources 
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4.1 Introduction  

 
This chapter is discussing about the whole methodological flow of the study. For 
analytical purposes, the study workflow can be divided as a) before data analysis, b) 
during data analysis,  and c) after data analysis. All these three phases are presented 
below with appropriate discussion. 
 

4.2 Before Data analysis 
 
 Literature Review and Identifying Research Goals: The study started with 
a literature survey focusing on the research theme i.e. urban water bodies and deep 
learning. Based on the literature survey, some research goals (objectives) were set as 
the basement of the study. These objectives have not only fulfilled the research gap 
but also help to step forward to study urban water bodies using modern technologies 
like deep learning. 
 
 Data Collection: The major data of this study was satellite imagery. All the 
satellite images were collected from the USGS Earth Explorer website. Data were 
captured for the years 1996 (for training and testing the CNN model), 2000, 
2005,2010,2015, and 2020 ( for identifying spatio-temporal changes in water bodies). 
Depending on the seasonal variation, the water level in natural reservoirs varies in 
Bangladesh; therefor, February was considered as the most suitable month to study 
urban water bodies, As the water level in this month is more stable than in others. 
Besides, some auxiliary data also collected from different sources. 
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Data pre-processing: Under the data pre-processing section following tasks were 
done 

 
Figure 4.1: Steps followed in image processing and data preparation 

 
  Initial Layer stacking: Initial band combination or layer stacking was 
done using three bands (band 6,5,1 for Landsat 8  and 5,4,3 for Landsat 5). Here, a 
question may arise, why this band combination was selected? The answer is simple as 
the question. Even though this band combination is suitable for vegetation health 
monitoring, the water features are also very vibrant than in other band combinations. 
The reason  can be better understood by looking at the Figure 4.2, which is following 
the same band combination (5,4,3). 
 
 
  Image Correction: Here two types of radiometric corrections were 
done to all initially stacked layers, those are haze reduction and noise reduction. The 
purpose of these corrections was to improve the interpretability and the quality of the 
data. The radiation observed by the sensor may be impacted by different factors like 
solar azimuth; thus, satellite recorded energy may differ from the original energy 
transmitted from the surface. To overlook this problem or to achieve the true ground 
radiance or reflectance values, radiometric correction is very effective ( Humboldt 
State University, 2013).  
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Figure 4.2: Result of image pre-processing a) before image correction, b) after image 
correction 

 
   
 
 Preparing Other Data: Apart from satellite imagery, other data like major 
roads, railway, elevation, temperature, and rainfall data were prepared depending on 
the nature of the data and the technique required to process those data. For example, 
to maintain the extent of the data (columns, rows=518,912 and cell size=30 x30), we 
need an equal number of cells in each raster, and for this, the Kriging interpolation 
method was applied. To calculate the missing or unmeasured value, this method 
weights the existing or measured values based on the search radius defined by the 
user.  
 
The formula of this method can be expressed as follow (ArcGIS for Desktop n.d.): 

𝑧∗(𝑥 ) =   𝜆 𝑧(𝑥 )                                                                 4.1 

Here: 
z * (x0) = Calculated value at x0; 
 z(xi) = Observed values at xi;  
N = Size of the sample  
 λi = Weights for xi 
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In this study Universal  Krignig Model was applied, mathematically which can be 
shown as follow (ArcGIS for Desktop n.d.): 
 
 

𝑍(𝑠) = 𝜇(𝑠) + 𝜀(𝑠)                                                              4.2 
Where,  
𝜇(𝑠)=deterministic component    
𝜀(𝑠)=stochastic component  
   
  Preparing Final Composite Image: All the final campsite layer were 
consist of 5 bands, where first 3 bands were satellite images (band 6,5,1 for Landsat 8  
and 5,4,3 for Landsat 5), and the other two were processed raster (temperature and 
rainfall). 
 
 

4.3 During Data Analysis 
 
This phase mainly includes the adoption of the architectures. As it is mentioned 
earlier in this study, mainly two architectures (CNN and ANN) were adopted which 
are shown in (Chapter Two); however, this study modified the CNN architecture. The 
modified version of the architecture is Figure 2.4.  
 
 

4.3.1 Adopting the CNN Architecture 
  
 4.3.1.1 Training the Network: The prediction level of a network largely 
depends on the input dataset. For training and testing purposes, we used 2-
dimensional composite image (5 bands)  and corresponding water body binary layer. 
The binary layer was created from ground-truth data. Both composite image and 
binary image were used to produce training and testing dataset based on 5 x 5 kernel 
or window size; thus, we got 18643 image chips.  Following the tradition, the data 
was divided into two parts, training data, and testing data. This training and testing 
split is done to evaluate the performance of a model. Here, the training and testing 
proportion are 80:20. More specifically, 80% of the data was used for training the 
network and 20% for validating or testing the network. 
 
To train the classification network image chips and corresponding ground-truth binary 
were used as the input. A model may produce outputs with a negative value or greater 
than one to overlook this problem a softmax function was used. This function 
identifies probability distributions in the potential outcomes. Following that, log loss 
was calculated with the help of ground-truth labels. The log loss function predicts the 
output of a classification model with a value varying from 0 to1. When prediction 



CHAPTER  4 : METHODOLOGICAL WORKFLOW 
  
 

30 
 

likelihood diverges from the ground-truth data, the log loss value becomes high. 
Based on a backward propagation process, this log loss calculation is then used to 
update the network with the help of Stochastic Gradient Descent with momentum. 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.3: Stages followed in training the classification network. 

 
 4.3.1.2 Experimental Settings: Based on Python 3.0 environment, the 
experiment was run on a server which has Intel® Core ™ i7-1165G7 Processor, 16 
GB DDR-4 RAM, 512 GB PCIe® NVMe ™ M.2 SSD Hard Drive, and NVIDIA® 
GeForce® MX450 Graphics. 
 
For training and testing purposes, we used 1996 data, but we did not consider that 
output (water bodies in 1996) for change detection.  Using the model, we tried to 
show the changes from the 2000 to 2020 lassification result. 
 
One of the most common problems of a neural network is failing to memorize the 
training data; consequently, a network produces poor predictions or outputs. This 
situation is commonly known as an over-fitting problem. To adopt our model with this 
problem,  we used post-training validation with the test data. 
 
The model was trained using Stochastic Gradient Descent with momentum where the 
hyperparameter, like momentum were fixed 0.9. Other parameters are shown in 
Table. To set these parameters we followed the study conducted by Zhang et al., 
(2018). 
 
 Epoch: In a neural network, epoch refers to a process by which the entire 
dataset is passed through the forward and backward to complete a cycle. A neural 
network usually needs more than a few epochs to be trained. In this study, the 
maximum number of the epoch was terminated to 25. 
 
 Learning Rate: It is a changeable hyperparameter having a small positive 
value (ranged from 0.00 to1.0). This learning rate determines the speed of a model's 
adaptation to the problem. In this study, the learning rate was fixed to 0.1. 
 

Backward 
propagation 

Composite 
image chips 

Ground-truth 
labels 

CNN model Softmax 
function 

Predicted outputs 
(water, non-water) 

Log loss 
calculation 

Parameter update 
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 Mini-batch size: It can be defined as the variant of gradient descent algorithm 
that can divide training datasets into several small batches. These small batches then 
can be used for calculating the error and coefficient value of the model. In this study, 
the tested mini-batch was fixed to 100. 
 

Table 4.1: Hyper-parameter set for the CNN model 
Hyper-parameters Values 
Epochs -Limit  25 

Momentum  0.9 

Weight Decay/L2 Regularization 0.00005 
Learning Rate 0.1 

Mini-batch Size 100 

 

It should be noted, based on the mentioned experimental setting, the only experiment 
that we have conducted here focused on the classification of Landsat images (with or 
without auxiliary data) to detect the changes in water bodies. 
 
4.3.1.3 Network Performance Evaluation: Model performance was assessed based 
on the overall accuracy technique. Generally, overall accuracy is calculated based on 
the following formula (Google Developers n.d.): 
 

𝑂𝐴 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
                                      4.3 

 
But for binary classification, accuracy can be assessed in terms of positive and 
negative predictions as follow (Google Developers n.d.): 
 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                  4.4 

 
Here, TP = True Positives, TN = True Negatives, FP = False Positives, and FN = 
False Negatives. 
 
Assessing the Influence of Auxiliary Data: Apart from spectral bands, our input image 
had two processed raster or auxiliary data (temperature and rainfall). To identify the 
influence of auxiliary data on model performance or classification outputs, we had to 
test the model with and without auxiliary data. In this case, input data without 
auxiliary data produced output with a bit higher accuracy than with auxiliary data. 
Therefore, in the final classification, we used composite images without auxiliary data 
as input.   
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4.3.1.4  Post-classification Accuracy Assessment: As the accuracy level at the 
testing stage was satisfactory, we considered the architecture fit with the best 
hyperparameter and was selected for final classification. The final classification 
outputs were assessed both quantitatively and qualitatively. 
 
Quantitative Accuracy Assessment: The quantitative assessment was done using 
precision and recall and F1 score calculation. Descriptions of these calculations are 
given below. 
 
Precision: It refers to the ratio between the number of correctly classified positive 
samples to the total number of positive samples (either correctly or incorrectly). The 
degree of precision is high when the model maximizes the true positive classification 
and minimizes the false positive classification. The equation to calculate precision 
level is as follow (Brownlee,  2020): 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
                                  4.5 

 
Recall: It can be defined as the ratio between the number of positive samples correctly 
classified as positive to the total number of observations. The recall is concerned with 
how the positive samples are classified. The higher recall value means more positive 
samples detected. Recall can be classified using the following formula (Brownlee, 
2020: 
 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑓𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
                                      4.6    

 
F1 score: The F1-score is calculated based on the combination of the model's accuracy 
and recall, and it considers both false positive and false negative values (Brownlee,  
2020). 
 

𝐹1 = 2 ×
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙 
                                                                  4.7 

  

Qualitative Accuracy Assessment: Post-classification qualitative assessment was done 
using the swipe and flicker tool in ArcGIS. By overlaying the ground-truth labels, 
these tools allow the visual interpretation of the classification results.   
 
 
 
 



CHAPTER  4 : METHODOLOGICAL WORKFLOW 
  
 

33 
 

 
 
4.3.2 Adopting the ANN Architecture: Before simulating water bodies for 2040, the 
model was validated by producing output for 2020 using classified data (water and 
non-water data) for 2000 and 2010. Besides classified water and non-water data, some 
variables like DEM, road network, and railway data were also utilized. To predict the 
outputs for 2020,  different parameters were fixed, which are shown in Table 4.2. 
 

Table 4.2 : Parameters set to configure ANN model 

Parameters Value 
Window size 5x5 
Learning rate 0.10 
Maximum iteration 1000 
Hidden layers 10 
Momentum 0.05 

 
At the validation stage, the overall accuracy level was about 97%. Since this accuracy 
level was high, the model was considered the best fit for simulating output for 2040. 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.4: Methodological workflow of simulating water bodies for 2040 
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4.4 After Data Analysis 
 
 4.4.1 Change Detection: This part was done in ArcGIS. To understand 
the change detection process, let's assume we have classified images for 2000 and 
2005. We want to identify the changes in water bodies within these five years. First, 
we need to intersect both images. In the intersected image, we will get the classified 
data (water, non-water) for both 2000 and 2005 in different columns. Let's think data 
column for 2000 = classified_00 and  for 2005= classified_05. Now, we need to make 
a new column to identify the transition between these two columns ( 2000 and 2005). 
Using field calculator's python environment, we can run the following code:  
"classified_00"+ "to"+ classified_05". This simple code will fill the new column by 
combining both classified_00  and classified_05 data (e.g. non-water to water). Using 
this newly generated data column, we can easily identify the changes in both water 
and non-water bodies and can also calculate the quantity of transited area. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4.5: Methodology followed in change detection  
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 4.4.2 Data Visualization: After change detection, all the findings were 
visualized with necessary tables, charts, and maps using data presentation platforms 
like ArcGIS 10.3, Tableau 19.4.368.0, and Microsoft Word and Excel 2007. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: Methodological work flow of the study at glance
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5.1 Introduction 
 
This chapter is showing the findings of the study including the performance and 
outputs of the model (water and non-water bodies in different years), changes in water 
and non-water bodies from 2000 to 2020, the simulation of the water non-water for 
2040, and interaction between water and non-water from 2020 to 2040. 

 
5.2 Performance Evaluation and Classification Results 
 
    5.2.1 Influence of Auxiliary Data: Auxiliary data might influence the accuracy 
level of the model. From this belief, the model was also tested with only three spectral 
bands (band 6,5,1 for Landsat 8  and 5,4,3 for Landsat 5). The result revealed that the 
auxiliary data have some influence on the accuracy level of the model. The model can 
predict the result with 93% accuracy without any auxiliary data, but with auxiliary 
data, this percentage is slightly lower (92.28%), as shown in Figure 5.1. For this 
reason, to find out the changes in water bodies from 2000 to 2040, we relied on the 
composite image without auxiliary data.   
 

 
Figure 5.1 : Influence of auxiliary data on model performance 
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5.2.2 Accuracy with Different Kernel Size: Although the results discussed in this 
chapter based on kernel size 3 x 3, the model applied in this study was tested with 
different kernel sizes. The other two kernels were 5 x 5 and 7 x 7. 
 

Table 5.1: Accuracy level of CNN model for different years 
Time Kernel Size 

 
Precision Recall F1 

2000 3 x 3 0.90 0.94 0.92 
5 x 5 0.88 0.90 0.89 
7 x 7 0.85 0.90 0.86 

2005 3 x 3 0.90 0.94 0.91 
5 x 5 0.88 0.90 0.89 
7 x 7 0.85 0.90 0.86 

2010 3 x 3 0.93 0.94 0.94 
5 x 5 0.87 0.90 0.89 
7 x 7 0.86 0.92 0.89 

2015 3 x 3 0.92 0.95 0.94 
5 x 5 0.87 0.88 0.88 
7 x 7 0.86 0.92 0.89 

2020 3 x 3 0.93 0.94 0.93 
5 x 5 0.89 0.92 0.90 
7 x 7 0.88 0.92 0.90 

 
So, a question may arise why 3 x 3 kernel was selected to explore the Spatio-temporal 
changes in urban water bodies? 
 
Looking at the Figure 5.2, we can easily understand, in all three categories (precision, 
recall, and F1), 3x3 kernel produced the most accurate result for all the years. The 
accuracy level of the prediction was  ≥ 0.9. For example, for the year 2010, the 
precision, recall, and F1 scores with kernel 3x3 were 0.93, 0.94, and 0.94 accordingly. 
In that year, these scores with kernel 5x5 were 0.87, 0.90, and 0.89, respectively.  
From the graphical comparison, we can say, to extract information for mid to low-
resolution satellite imagery, 3 x 3 kernel would be the best choice.   
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Figure 5.2: Performance of the model with different kernel sizes  
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5.2.3 Classification Outputs (Water and Non-water bodies): Analysis of this 
section has been done based on the outputs of the CNN model for different years.  
 
Looking at the results, we can see, water bodies in Chittagong did not experience 
major changes between 2000 and 2020, but some changes are noticeable each year.  
 

Table 5.2: Area coverage of water and non-water bodies in the selected time frame. 
Year Water bodies (sq. km) Non-water  bodies (sq. km) Total Area (sq. km) 
2000 27.498 168.582 196.080 

2005 28.561 167.519 196.080 

2010 29.468 166.611 196.080 

2015 28.877 167.203 196.080 

2020 26.389 169.691 196.080 

 
During the study period, non-water bodies were always higher than that of water 
bodies. The lowest non-water bodies (166.611 sq km) and the highest water bodies  
(29.468 sq km) were in 2010. On the other hand, the highest non-water bodies were 
recorded (169.691 sq km) in 2010, when water bodies were 26.389 sq km. 
 
In 2000 and 2005, water bodies in the same place were between 27 to 28 sq km, but in 
2015 the figure was around 29 sq km. Similarly, non-water bodies in the years were 
around 167 to 168 sq km. 
 

 
 

Figure 5.3: Water and non-water bodies in Chittagong (2000 - 2020) 
a) 2000, b) 2005, c) 2010, d) 2015, and e) 2020 
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Figure 5.4 is showing the percentage of area coverage by water and non-water 
landscapes in different years. It is understandable from the figure water bodies were 
much less than non-water bodies in all the selected years. Although there was a hint of 
a slight increment in water bodies from 2000 to 2010, this increment was only in open 
water bodies i.e. inland water bodies did not experience dramatic change. 
 
 

 
 

Figure 5.4: Percentage-wise area coverage of water and non-water bodies 
 (2000 - 2020) 
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5.3 Post-classification Change Detection (2000 -2020) 
 
Now based on water non-water interaction, we will try to see at what rate these water 
bodies had changed and where those changes took place. If we look at the overall 
scenario (2000 to 2020), we can see that water bodies have increased by about 1.00 sq 
km from 2000 to 2010. On the other hand, between 2010 and 2015, water bodies 
decreased by about 0.60 sq km. Similarly, from 2015 to 2020, about 2.5 sq km of 
water bodies were replaced by other land covers.  
 

 
 

Figure 5.5: Trend of changes in urban water bodies in Chittagong city 
 (2000 - 2020) 

  
Moving on to the interaction between water bodies and non-water bodies from 2000 
to 2005, we can see there was no change in the 164,780 sq km non-water bodies 
within these five years, the same result recorded for 24,799 sq km water bodies. 
During this period, 3.780 sq km non- water bodies converted to water bodies and 
2.721 sq km of water bodies changed to non-water bodies. 
 
Table 5.3: Quantitative Interaction between water and non-water (2000- 2020) 
Time 2000-2005 2005-2010 2010-2015 2015-2020 

Non-water 164.780 163.281 165.694 164.792 

Non-water  to  Water 3.780 4.237 2.046 2.345 

Water  to  Non-water 2.721 3.341 2.637 4.904 

Water 24.799 25.220 25.703 24.039 

Total Area (sq km) 196.080 196.080 196.080 196.080 
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The picture of the interaction from 2005 to 2010 depicts, like previous 5 years, there 
had no change in 163.281 sq km of non-water bodies and 25.220 sq km of water 
bodies. The rate of transition from non-water bodies to water bodies was a little 
higher than the previous phase, which was 2.161 %of the total area. The percentage of 
water bodies to non-water bodies was 1.704 % of the study area. 
 
 

 
 

Figure 5.6: Comparison of water non-water interaction for different years 
 
 

 
Five years later (2010 to 2015), almost the same quantity of water bodies and non-
water bodies exchanged area. That means, the quantity of change from water bodies 
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Figure 5.7: Places of water and non-water interaction (2000 to 2020) 
 
Within the last 5 years of change ( 2015 to 2020) the areas that have been converted 
from non-water bodies to water bodies was less than that of areas changed from water 
bodies to non-water bodies. 
 
Within this time, there was no change in 164.792 sq km of non-water bodies, like  
24.039 sq km water bodies. 
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5.4 Water and Non-water Simulation for 2040: 
 

 
 

Figure 5.8: Simulated water and non-water bodies for the year 2040 
 
By 2040 water bodies in this city will increase slightly, but the quantity will be very 
little which will be only one sq km greater than that of 2020. It should be noted that 
most of the changes will be organized in and around the river and sea. These changes 
might be resulted from the increment in water level by climate change or the 
extinction of dunes in the river.  
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Figure 5.9: Changes in urban water bodies in Chittagong city (2020 - 2040). Boolean 
map of changes (left), interaction map of water bodies and non- water bodies (right) 

 
Now,  if we look at this change from 2020, we can see that about 4.00 sq km of non-
water bodies will be changed to water bodies (nearly 2% of the study area). Likewise, 
3.022 sq km of the water bodies will be replaced by non-water bodies. Looking at the 
constant areas, there will be no change in about 165.392 sq km non- water bodies and 
23.807 water bodies. 
 

Table 5.4: Interaction between water bodies and non- water (2020 - 2040) 
Time Area (sq. km) % 

Non-water - Non-water 165.392 84.349 

Non-water - Water 3.859 1.968 

Water - Non-water 3.022 1.541 

Water - Water 23.807 12.141 

 196.080 100 
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6.2 Future Works    
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6.1 Conclusion   
 
Water bodies have a much lower conversion tendency in Chittagong than in Dhaka 
city, although it is the second-largest city and the commercial hub in Bangladesh. 
There has not been much dramatic change in the entire study period, but as the city's 
population continues to grow, it will not take long for this to have a Dhaka-like 
situation. Several studies have proven that the city of Chittagong is suffering from 
various environmental problems, including water pollution, Which plays a major role 
in the transformation and disappearance of these urban water bodies. Industrial 
pollution, in particular, is making urban water bodies unusable. As a result, the 
number of water bodies is decreasing day by day, and the land-use scenario is 
changing drastically. In a city, when the construction land expands, the number of 
heat island also increase. These heat islands ultimately change the climate of the 
whole city and make the city uninhabitable. So, to secure the existence of the city and 
its population, it is high time to take the initiative to conserve existing water bodies. 
This conservation practice requires strict enforcement of existing laws as well as 
necessary amendments to the law. In addition to the administration, the general 
public, who are residents of this city should be aware of these issues. To make them 
aware, this type of scientific study results should be presented to them so that they can 
see and understand the present situation of these water bodies and what is waiting for 
the future.  
 
DL is such a powerful tool that can be adopted to observe changes not only in water 
bodies but also in other natural resources as well. Lastly, it is not right to think that we 
should always have high-resolution data for environmental resource monitoring. This 
study has proved that DL is highly capable of extracting information from low-
resolution data as well. 
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6.2 Future Works    
 
The application of deep learning has already been observed in various fields. It is 
gaining popularity over conventional methods in extracting information from satellite 
imagery. Applying the deep learning skeleton used in this study, we can explore the 
environmental problems in more detail. For example, one can take this study a step 
further by looking at some of the dominant lands uses that are directly and indirectly 
driving this change. Besides, If a researcher wants, he or she can compare this method 
with the conventional methods ( e.g. indices ) to see which one is more effective. The 
accuracy level of this study is indeed very satisfactory, but its further increment is 
possible, which will largely depend on the spatial resolution of the data.  
 
Finally, for further utilization, this model can be modified to make a more complex 
One. For instance, a researcher can build a hybrid model by combining this 2D CNN 
model with a 3D CNN model, which might help in monitoring the environmental 
problems in a more precise way. 
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