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Fragmented ecosystems of the desiccated Aral Sea seek answers to the profound local
hydrologically- and water-related problems. Particularly, in the Small Aral Sea Basin
(SASB), these problems are associated with low precipitation, increased temperature,
land use and evapotranspiration (ET) changes. Here, the utility of high-resolution satellite
dataset is employed to model the growing season dynamic of near-surface fluxes con-
trolled by the advective effects of desert and oasis ecosystems in the SASB. This study
adapted and applied the sensible heat flux calibration mechanism of Surface Energy
Balance Algorithm for Land (SEBAL) to 16 clear-sky Landsat 7 ETM+ dataset, follow-
ing a guided automatic pixels search from surface temperature Ts and Normalized
Difference Vegetation Index NDVI (Tshot=NDVI ;Tscold=NDVI ). Results were comprehensively
validated with flux components and actual ET (ETa) outputs of Eddy Covariance (EC)
and Meteorological Station (KZL) observations located in the desert and oasis, respec-
tively. Compared with the original SEBAL, a noteworthy enhancement of flux estima-
tions was achieved as follows: – desert ecosystem ETa ! R2 = 0.94; oasis ecosystem
ETa ! R2 = 0.98 (P < 0.05). The improvement uncovered the exact land use contribu-
tions to ETa variability, with average estimates ranging from 1.24 mm d�1to 6.98 mm
d�1. Additionally, instantaneous ET to NDVI (ETins-NDVI) ratio indicated that desert
and oasis consumptive water use vary significantly with time of the season. This study
indicates the possibility of continuous daily ET monitoring with considerable implica-
tions for improving water resources decision support over complex data-scarce drylands.

Keywords: evapotranspiration; Landsat 7 ETM+; SEBAL; Small Aral Sea Basin-
SASB; oasis-desert ecosystem

1. Introduction

The effective thermal vapor flux-induced processes in the atmosphere often influence the
dominant water and heat budgets in drylands. Generally, this mechanism is controlled by
evapotranspiration (ET) dynamics, a key operational component of the mass-energy transfer.
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ET effects account for the over 65% of the precipitation that disappears into the atmosphere
and reaches up to 90% in drylands where water scarcity recurrently threatens agricultural
productivity (Kong et al. 2018; Yan et al. 2018). Moreover, climate variability, such as
extreme temperature anomaly often intensifies the ET effects. Because ET is directly related
to temperature trends and other complex factors that are anthropogenically induced, includ-
ing urbanization (Wang et al. 2016; Jiang andWeng 2017; Nistor et al. 2017). Therefore, it is
imperative to account for both past and present landscape evaporative demand, which is
essential for ecosystem improvement, agrometeorological services and for developing
efficient water management strategies (Yang et al. 2014). Nevertheless, due to regional
inhomogeneity, the accurate estimation of actual ET (ETa) is considered a challenging task,
particularly in data-scarce regions burdened with little or no regular weather observations.
For instance, the Small Aral Sea basin (SASB) is made up of several fragmented ecosystems.
The SABS falls short of regular ET information due to sparse long-term ground-based
weather observations. Moreover, field-scale ET methods that use weather station data are
spatially insufficient to precisely account for regional ETestimates; thereby constraining the
direct and continuous measurement of ETa in the area.

Notwithstanding the constraints posed by the paucity of ground-based weather observa-
tions in arid Central Asia, ETa information is continuously being required for efficient
management of water resources for agrometeorological services and policy formulation.
This is because of the shrinking of the Aral Sea (AS), which is a well-known crisis. The
problem resulted in lake disintegration that left its fragments at risk of environmental
vulnerability, including increasing temperature, anthropogenically induced oasis expansions,
desertification and cropland abandonment (Micklin, Aladin, and Plotnikov 2014; Micklin
2016; Singh et al. 2018). On top of that, climate anomalies continue to cause alterations of
land surface processes and anomalous change in the albedo, which affects the surface
radiation balance (Meng et al. 2017). Signifying that, surface temperature (Ts) is a crucial
variable in the estimation of ETand surfacemoisture (Jiang andWeng 2017). The situation is
typical of the oasis-desert ecosystem, and particularly critical of inland watersheds, where
changes in Ts respond inversely to the advective effect of surface fluxes controlled by the
region’s high evaporative fractions (Song et al. 2016). Unfortunately, not so much is known
about oasis-desert effects on near-surface and vapor fluxes, notably, the contributions of
different land use to ETa changes in the SASB.

Some studies have reported on the evolving effect of oases-desert interactions, but
have mostly focused on upper atmospheric circulation impacts using regional/global
circulation models (Li et al. 2011b; Zhang et al. 2017). Singh et al. (2018) studied the
shrinking South Aral Sea using datasets from spaceborne missions and reported on the
inconsistency and underestimation of ET by altimetry observation and the MOD16
global ET project, respectively. Likewise, Conrad et al. (2007) employed a surface
energy balance (SEB) algorithm to examine crop-water usage in Central Asia using
coarse resolution data. However, no specific information on near-surface and vapor
fluxes exist for the fragmented north Aral Sea, its basin landscapes, or its interface
between lake-oasis-desert ecosystems. There is a need to improve our knowledge of
these issues.

Here, we employed an effective way to estimate ETa accurately, given that
Remote Sensing (RS) offers a set of robust computational algorithms, with decades
of reliable evidence in deriving ET distribution across space (Gowda et al. 2008;
Karimi and Bastiaanssen 2015; Sur et al. 2015). Various kinds of remote sensing of
ET algorithms and their advancements towards accurate prediction and up-scaling of
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ET estimates have been recognized (Wang and Dickinson 2012). The Surface Energy
Balance Algorithm for Land (SEBAL) (Bastiaanssen, Menenti, and Holtslag 1998a)
has consistently been applied to different climatic zones and has demonstrated
exceedingly reliable (Mutiga, Su, and Woldai 2010; Lee and Kim 2016; Yang et al.
2018). In recent times, the calibration and application processes of SEBAL and its
variant – METRIC (Mapping EvapoTranspiration at High Resolution with
Internalized Calibration) can be highly automated (Biggs, Marshall, and Messina
2016; Bhattarai et al. 2017, 2019). Such that development of improved ET model
optimization frameworks and robust RS tools raises the awareness of their capabil-
ities to rapidly overcome the tedious practical constraints in endmember pixel selec-
tion required for model calibration, even in heterogeneous regions (see, for example,
Owusu 2017; Bhattarai and Liu 2019; Jaafar and Ahmad 2019). When integrated with
in situ climatic data, SEBAL can effectively partition available surface energy, from
which evaporative fractions required for obtaining ETa estimates are derived
(Bastiaanssen, Menenti, and Holtslag 1998a; Bastiaanssen et al. 1998b; Allen et al.
2011). Also, with high-resolution datasets, such as the ASTER (15 m, 16-day) and
Landsat (30 m, 60 m, 16-day) products, SEBAL can upscale the satellite overpass
time instantaneous evaporative fraction to daily, seasonal or annual ETa estimates
(Hong, Hendrickx, and Borchers 2009; Grosso et al. 2018; Yang et al. 2018).

The skill of SEBAL includes the computation of ETa at each pixel, and over large
areas with minimal in situ data, especially where ground measurements are unavailable.
Further details of SEBAL, its improvements and evaluation have been extensively
documented (Bhattarai et al. 2017; Biggs, Marshall, and Messina 2016; Kong et al.
2018; Long and Singh 2010; Wang and Dickinson 2012; Karimi and Bastiaanssen 2015).
Generally, the accuracy level of SEBAL as shown in previous studies indicate that it is
a robust tool for mapping ETa at varying spatiotemporal scales and is very effective for,
at least, one growing season ET estimation (Allen et al. 2001, 2011; Grosso et al. 2018;
Gowda et al. 2008). Above all, SEBAL has high potentiality for excellent predictions for
arid and semi-arid regions (see, for example, Bastiaanssen et al. 2005; Yang et al. 2018;
Al Zayed et al. 2016).

Errors in SEBAL model calibration can be reduced through careful manual or
automated end member pixel selection required for model parametrization, improved
iteration of model implementation, especially, over highly heterogenous terrains
(Timmermans et al. 2007). The improved end member pixels selection is not entirely
new in the use of SEB to estimate ET. Most researchers tend to use different input
variables, and or selection criteria that are based on random pixel search due to regional
variability (Choi et al. 2009; Biggs, Marshall, and Messina 2016; Bhattarai et al. 2017).
Likewise, others have based their evaluation on the expert calibrated pixels of Albedo (α)
and Normalized Difference Vegetation Index (NDVI) (Silva Oliveira et al. 2018) and Ts
(Lee and Kim 2016) with the pixel of the same variable used for calibrating the SEB
models. This study purposefully validated ET produced from the automated calibration
with the SEBAL model calibration-based ET estimates for the SASB. So, the automatic
pixel selection may be considered a domain-specific approach that helps reduce uncer-
tainty, saves time and optimize ET simulations beyond research purposes.

Therefore, as a contributive effort in the study area, the aim here is to assess the
robustness of the SEBAL model to generate ET information for a region with high potential
for agrometeorological services, yet, less of ground-based observations. Moreover,
a growing season ET response to canopy density and water stress conditions in the
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ecosystems were examined. The specific objectives include: (1) the estimation of near-
surface fluxes and ETa using both the original and automatically calibrated SEBAL; (2)
accuracy evaluation of the near-surface fluxes and ETa outputs with available ground-based
observations; (3) the quantification of a growing season contribution to ETa variability in the
oasis and desert ecosystems.

2. Material and methods

2.1 Study area

SASB is situated within fragmented ecosystems of the desiccated Aral Sea (Lat.
45.04° to 47.01°N and Long. 59.97° to 63.08°E). The basin consists of an inland
lake, an evolving oasis-desert ecosystem, and is traversed by the delta of Syr Darya
River which supports the expansion of the oasis (Figure 1). The climate is arid and
continental. Average lowest temperatures fluctuate between −1.4°C and 4°C (late
August-February), while highest temperatures (~ 30°C) are experienced in July-
early August (Kostianoy and Kosarev 2010). Annual precipitation ranges between
125 mm −160 mm, while net average evaporation is 960 mm – 1546 mm (Li et al.
2011a; Micklin, Aladin, and Plotnikov 2014). Height of the study validation sites
ranges between 50–75 m a.s.l. The area is drained by the Syr Darya River,
a snowmelt-dominated basin with scarce hydrological stations and ground observation
data. This river originates from the Tianshan mountains and empties in the Small
Aral Sea (SAS). However, the water budget of SAS became unstable after 1960 due
to the intensive unsustainable distribution of river runoff to increase irrigation farm-
ing, which contributes to its gradual shrinkage (Kostianoy and Kosarev 2010). The
decline in the average discharge into the SAS from river runoff (from 8.5Km3 in
1994 to 5–6 km3 in 2014) made it possible to observe net water outflow, which is
about 2 to 3 km3 (Micklin, Aladin, and Plotnikov 2014). This has dramatically
impacted the surrounding oasis-desert environment such that, as heating of surface
water progressed, sea surface salinity grows with distance from the river mouths
where it was low; and then between July and August, a halocline tends to form in the
surface layer which coincides with the thermocline to intercept vertical mixing
(Kostianoy and Kosarev 2010). This mechanism indirectly increases the lake eva-
poration rates, likewise ET within the surrounding oasis-desert ecosystem.

2.2 Data and preprocessing

2.2.1 Land use cover

A suitable reference landcover product, originally classified into 24 categories, was
accessed for this study. Through field validation using existing topographic sheets
(1:1,000,000) and total station GPS, high-resolution (30 m) land use land cover (LULC)
maps for different years, including 2012, were generated by the Remote Sensing and GIS
application Laboratory of Xinjiang Institute of Ecology and Geography (XIEG), Chinese
Academy of Sciences (Figure 1b). The 2012 land use land cover map maintains a ranked
classification structure, which includes 6 classes and 25 subclasses. This map has been
effectively used in other studies (For example, Zhang et al. 2017). Based on the United
States Geological Survey (USGS) classification, we reclassified the 2012 LULC map into
five classes, following oasis-desert cover types in the study area. The classes are oasis
(irrigated farmlands), oasis (non-irrigated and arable fallow land), desert (bare surfaces and
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sand), grasslands (desert-grasslands) and water bodies (rivers, lakes, wetlands) (Figure 1b).
The new landcover map was used to mask out the various land cover ETa in order to
determine basin landscape evaporative demand within the oasis and desert ecosystems.

Figure 1. (a) Digital elevation model of Central Asia acquired by Shuttle Radar Topography
Mission; (b) Landsat 7 ETM + footprint of 2012 land cover marked by black dotted lines, and
showing validation sites within the small Aral Sea Basin as indicated by the red dotted lines. The
Delta-dominated oasis with patches of desert grassland is well-drained by the river Syr Darya
tributaries traversing the SASB. Basin size ET maps were produced from the automated SEBAL
modeled ETa. However, land use ETa and ETins-NDVI ratio estimates were extracted from within
450 m2 of each validation station fetch area. The Eddy Covariance-EC flux station (red dot)
(situated in desert-grassland, within the basin) and KZL meteorological station (situated in the
oasis, within the basin) were the exact locations used for energy flux components (EC) and KZL
site ETa validations.
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2.2.2 Landsat 7 ETM +

This study utilized 16 high-resolution Landsat 7 ETM + (GeoTIFF) images, made available
by USGS at no cost. The ETM+ instrument has a 16 days revisit with a scene coverage of
185 km x 170 km. The spatial resolution on the visible bands is 30 × 30 m, while the thermal
bands are 60 × 60 m. The thermal bands were resampled into 30 m for distribution purposes.
Through established ground control points (GCPs), the Landsat 7 ETM+ datasets were
terrain-corrected to provide high radiometric and geometric accuracy. However, since our
study area required, at least, a full scene coverage to capture experiment sites (Figure 1), the
SLC-off (scan line corrector off) scenes had to be corrected with the focal analysis technique.
The ETM+ sensor is an improved instrument that guarantees a better-quality geometric
calibration accuracy, reduced noise and reliable spectral information. With these features,
confidence is built that mapping ET with Landsat 7 ETM + provides accurate estimates.
Details are presented in Table 1.

The obtained images were of clear-sky, representing various days of the year (DOY)
spanning through the growing season of 2012–02 April to 27 October. All the 16 images fall
on the same row (028), but different paths (159,160,161). The adjacent image scene paths 159
(1 image) and 161 (5 images) to the scene on the centre of the study site (160) weremerged and
cropped to ensure spatially precise ET estimates, reduce uncertainty in monthly ET estimates
and seasonal effects. The advantage is, considering the ETM+ sensor revisit time (16-day),
there was the possibility to generate accurate ET estimates that are reliable given the potential
provision of more images within a month. The satellite overpass time of each image, at their
exact local timewas put to consideration in themodel calibration (Table 1). To generate SEBAL
input variables (surface albedo and emissivity – α, vegetation and soil indices – NDVI, Leaf
Area Index (LAI), Soil Adjusted Vegetation Index (SAVI), surface emissivity – ε, and surface
temperature – Ts), the spectral radiance (Lλ;Wm�2sr μm) and reflectivity (ρλ;Wm�2sr μm)
were computed using the calibration coefficient from the Landsat 7 ETM+ image visible bands
(1–5, 7) and the thermal band (6) as elucidated in (Allen et al. 2002; Landsat Handbook 2007)
and with the following equations:

Lλ ¼ Gain x DNð Þ þ Bias (1)

ρλ ¼
π� Lλ

ESUNλ � cosθs�dr
(2)

Ts ¼ K2

In εNBK1
K1

� �
þ 1

(3)

Where, DN stands for digital number, ESUNλ represents average solar exoatmospheric
irradiance ðWm�2sr μm), and θ represents solar angle of occurrence at 90° – β which is
the angle of solar elevation. The inverse form of sun relative distance of the earth is
denoted by dr;while K1 and K2 equals 666.09, 1282.71, respectively (Allen et al. 2002).
Ts was retrieved from thermal band with high gain; then, the ratio of the reflected
radiation flux was converted to surface reflectance. Also, because NDVI has proven
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a satisfactory indicator in detecting inherent land use consumptive water use and canopy
conductance (Gao et al. 2014; Gong et al. 2017; Boegh et al. 1999), the automatically
calibrated NDVI and ETins were evaluated to show underlying evaporative demand of
oasis-desert ecosystem during the growing season (Section 3.5).

2.2.3 Meteorological observation and actual ET measurements

ET was measured by using data obtained from an Eddy Covariance system (EC) and
a meteorological (KZL) Station (Table 1). The EC system was installed on April 2012 in
desert grassland, 23 km from the nearest coast of the SAS and 10 km from the nearest
ecovillage – Zhanakurylys. It monitored energy fluxes, momentum, CO2 and H2O. A 10 Hz
quick response sonic anemometer-3D was attached 2 m high to record mean quantities of
vertically and laterally fluctuating wind speed and air temperature values. During the period
of observation, the head of the sonic anemometer often pointed northeast following the
prevailing wind direction, with ranges from 0.1–11.8m s−1. Based on this, with consideration
of the height of equipment at zero-plane displacement and height of canopy (1/2 m), the flux
fetch area was determined (~ 450 m). Previous studies considered slightly larger than this
footprint for mapping and validating near-surface vapor fluxes (Jiménez Bello et al. 2015;
Madugundu et al. 2017). Other measurements recorded include, precipitation, humidity,
downwellingandupwellingshortwaveandlongwave radiation and flux density of photo-
synthetically active radiation (PAR). Also, the EC system was calibrated to measure G,
soil moisture content at depths of 0.20, 0.40, 0.60 and 0.80 m. A half-hourly data logger
(CR500, Campbell Sci. Inc., Logan, UT) was installed to automatically store (10 Hz) all the
readings (averages) in *.ghg file format (Li et al. 2014). Additional climate information was
accessed from the Kazalinks meteorological station (KZL) (Table 1). The KZL station was
not calibrated to observe energy flux components of ground heat, sensible heat and latent
heat (G, H, and LE). A sensitivity analysis, involving correction of energy balance mis-
closure was performed on the measured flux elements (Rn, G, H, and LE), using the energy
balance closure ratio EBR ¼ ½ LEþ Hð Þ=ðRn � Gsoil)]. Figure 2 shows the coefficient of
determination (R2 = 0.92), reasonable slope (0.77) and intercept (44.18 W m−2) for half-
hourly energy balance closure for the growing season of 2012, indicating a strong correlation
of turbulent sensible heat to available energy at the EC station.

These data sets are considered the explanatory variables to ET. Therefore, they served as
ancillary inputs for SEBAL implementation and apportioning of the surface energy budget.
Then, following equation (4), at every half-hour, energy balance residual was derived and
transformed using vaporized water constant (2.45 MJ mm−1) to divide LE (MJ m−2 per
half hour) (Allen et al. 2006; He et al. 2017). From these estimates, daily and monthly ET
distribution were derived for all land cover types, including the water bodies. The daily and
cumulative monthly ET estimates were used for SEBAL validation and mapping season
distribution of ETa across the oasis-desert ecosystem.

2.3 SEBAL, adjustment and implementation for actual ET measurements

The theory and formulation of the SEBAL model have already been elaborated and is
extensively documented (Bastiaanssen, Menenti, and Holtslag 1998a; Timmermans et al.
2007; Allen et al. 2011). It requires a skilful identification and selection of cold surface and
dry surface pixels; for the computation of instantaneous net radiation, soil heat and sensible
heat fluxes from which λET – Evapotranspiration is derived, as expressed in equation 4:
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λET;LE ¼ Rn � G� H (4)

The coefficient of LE of vaporization (~ J kg−2) is denoted by λ. The expression of ET is
in mm, while all the four flux components – LE, H;G;Rn are in W m−2. These variables
then serve as inputs used by land surface energy balance models to accurately compute
ETa from the evaporative fraction [λET /(Rn – G)] (Bastiaanssen et al. 2005) after
partitioning the major energy components following eqns. 5–8:

Rn ¼ 1� αð ÞS# þ L# � L"
� �� 1� εð ÞL# (5)

S# ¼ Gsc � cos θ � dr � τsw (6)

L# ¼ 1:08ð�In tswð Þ0:265Þ � σT4
a (7)

L" ¼ εσT4
S (8)

where α, ε; L#; L"; S# represent surface albedo, surface emissivity, downward long-
wave radiation (Wm�2Þ, ascending longwave radiation (Wm�2Þ, and descending
shortwave radiation (Wm�2Þ, respectively. The solar constant Gsc ¼ 1367(Wm�2Þ,
τsw represent the single pathway transmissivity ½τsw ¼ 0:75þ 2þ 10�5 � Z a:s:l:ð Þ�,
σ = 5:67x10�8Wm�2K�4(Stefan-Boltzmann constant), and Ta represent air tempera-
ture at the meteorological sites. Here, the parameterization scheme of S# accounts for
the entire oasis-desert ecosystem in this study because the incident of shortwave

Figure 2. Turbulent heat flux relationship with available energy at the EC station. (The 1:1 red
dotted line indicates a reasonable agreement based on the fitting linear model).
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fluctuates disproportionately with topography such as water level and land surface
azimuth (Long and Singh 2010). In sparse vegetation, soil evaporation plays a crucial
role in total ETa for desert surfaces and watered bodies. As such, SEBAL considers
water-heat exchange from G as a part of Rn, such that the estimated fragment is the
inverse of the albedo, Ts and NDVI for vegetation surface, using equation 9:

G ¼ Rn 0:0038þ 0:0074αð Þ Ts � 273:15ð Þ 1� 0:98NDVI4
� �

(9)

Where Ts is expressed in °C and NDVI is the variance between the red and near infrared
bands of Landsat 7 ETM+. Therefore, to reduce uncertainty, we adjusted the endmember
pixels for SEBAL calibration through a guided automated in-depth search, as against the
manual random selection of representative pixel candidates, used for investigating the
advection effect of oasis-desert ecosystem ETa in one growing season. Unlike in the original
SEBAL, coldandhotpixelsselection used for computing H in this study was driven by
automatic computation of radiometric surface temperature based on NDVI, Ts and or albedo,
under clear sky condition. Specifically, cold pixels, represented by Ts [Cold/Wet]/NDVI
surface portion of the Syr Darya delta (about 5% of the Landsat clipped portion) were sorted
out from the most lush, well-watered irrigated surface around the KZL station. The hot
pixels, represented by Ts [hot]/NDVI (about 15 to 20% of the clipped portion) were selected
from desert and desert grassland cover around the EC station. Note that the hot pixel
selection was dependent on the particular day of the season, because of the low NDVI
rates associated with dry surfaces despite their high Ts (Figure 3).

The period of investigation hardly experienced rainfall, so, representative Ts of
hot pixels were regularly adjusted during the calibration process, especially in the
peak of summer (late June to late July). This helped to reduce the uncertainty
associated with variations in vegetation wetness, stomatal conductance or intrinsic
error variance in image digital numbers. Lastly, a guided visual inspection of selected
candidates was carried out after each automation to ensure that selected pixels
correctly fall within the appropriate land cover types. This criterion conforms with
the selection procedure prescribed for METRIC, which maintains a similar

Figure 3. Improved performance of frequency distribution histograms showing automatic pixels
selection of (a1) Ts[hot] pixels, (a2) NDVI [dry] pixels, and (b2) Ts[cold] pixels and (b2) NDVI
[wet] pixels. Figure 3 (a1 and a2) represents an ideal selection in desert grassland, while (b1 and b2)
is a representation for pixel selection in the oasis (irrigated arable land) within the Syr Darya delta,
indicating improved model calibration.
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parameterization scheme with SEBAL (Allen et al. 2013). However, following the
original SEBAL formulation (Bastiaanssen, Menenti, and Holtslag 1998a), the man-
ual pixel selection was carried out to validate the automated pixel calibration. These
pixels were identified manually based on expert judgement on the image
(Bastiaanssen et al. 2005). For our study area, hottest pixels are located in the bare
surfaces of dried desert grassland while the cold surface pixels were identified from
the irrigated oasis and arable lands – wet surfaces. Thus, a0andb0were calculated as
follows (equ. 10–11):

a0 ¼ rah hot

ρhotcp
� Rn hot � Ghot

Tshot=NDVI � Tscold=NDVI
(10)

b0 ¼ rah hot

ρhot�cp
� ðRn hot � GhotÞTs cold

Tshot=NDVI � Tscold=NDVI
(11)

where rah hot, ρhot, Rn hot and Ghot; represent heat transfer arising from aerodynamic
resistance from the pixel with driest surface, air density from pixel with driest surface,
the instantaneous Rn and G fluxes for the driest pixels, respectively. The linear regression
coefficients are represented by a0 and b0. Tshot=NDVIandTscold=NDVI signify pixels with the
driest and wettest land surface temperature. Then, the convergence of a0 and b0was
reached after repeated iteration before calculating H. The complication with H lies
with dT and rah, in that both are initially unknown. Therefore, an iterative parameteriza-
tion procedure based on the Monnin-Obukhov Similarity formulation (Brutsaert 1999)
was applied concurrently to equations 12–13. In this way, the assumption that dT is
linearly related with Ts(Bastiaanssen, Menenti, and Holtslag 1998a) is clarified, as
automated coefficients a0 and b0 were used to drive the iterative process after dT was
approximated for each pixel of the clipped Landsat 7 ETM+ images, based on a direct
relationship between dT and Ts, i.e., dT = a0 þ b0x Ts. Therefore, calculating H in the
form (Equ. 12–14) explains the updraft across the different surfaces and to neutralize any
unavailable surface resistance mechanism (e.g., aerodynamic temperature) associated
with the original model framework.

H ¼ ρcp
dT
rah

¼ a0Ts þ b0ð Þ
rah

(12)

u� ¼ ku200

In 200
Z0m

� �
� ψm � Z 200ð Þ

h i (13)

rah ¼ 1

ku� In
Z2

Z1

� �
� ψh Z2ð Þ þ ψh Z1ð Þ

� 	
(14)

Where ρ is the density of air Kgm�3
� �

, cprepresent the definite heat capacity of air at
a pressure constant of1004JKg�1 K�1, dT denote altitudinal surface temperature variations
amongst ½Z1 0:1mð ÞandZ2ð2mÞ�. Frictional velocity and Von Karman’s constant are
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denoted by u* ms�1
� �

K 0:41ð Þ; while the improvement factors of momentum and sensible
heat transfer are represented by ψmand ψh, respectively (Long and Singh 2010). Then,
Instantaneous ET; signified by the ratio of LE flux is then made available [λE/(Rn – G)]. It
is assumed constant throughout the day, and was then derived and transformed (W m – 2

to mm d – 1) based on equation 15:

ET24 SEBAL ¼ 86; 400� EFins � Rn24ð Þ=λv (15)

where daily ET is ET24; and 86,400 is time conversion of seconds in a day. The day-to-
day LE of vaporization λvð Þ is computed as a mean of daily air temperature. Given that
daily net radiation ðRn24Þis the main variable used for estimating the magnitude of ET,
season ET was estimated from the day-to-day ET output of SEBAL following equa-
tion 16:

ET24 period ¼
Xn

i¼m
EFinsð Þ � ETr period

� �
 �
(16)

where EFins is the daily instantaneous evaporative fraction of period i, ETr period is the
reference ETr period (i.e., ETo or ETr) representing the overall ETr from the observation
for the understudied period m to n (Allen et al. 2002). So, season ETa (ET24 periodÞ was
derived by cumulatively adding daily ETa grids of the growing season – April to
October 2012 (Cuenca, Ciotti, and Hagimoto 2013; Al Zayed et al. 2016). SEBAL
model implementation, which includes the initial Landsat 7 data preprocessing and
iterative processes required for the derivation of energy flux components, model input
variables and the automatic selection of “cold” and “hot” pixels were performed in
RStudio software (R2018 Inc., Boston, MA, USA, 2015).

2.4 Data analysis and model validation

The SEBALauto-modeled surface and vapor fluxes estimates were evaluated with the ground-
basedmeasurements at each site using determination coefficient (R2) and the trend line of the
coefficient (slope). The Root Mean Square Error (RMSE), with the Mean Absolute
Deviation (MAE), were statistically applied to determine the accuracy of the modeled land
surface fluxes (Ortega-Farias and López-Olivari 2010). RMSE indicates the degree of error
in the units of the observed and modeled constituents, where 0indicates a perfect fit, while
MAE determines the deviation of the prediction accuracy.

3. Results and discussion

3.1 Validation of energy flux components

The simulated instantaneous energy flux components estimated from both the SEBAL
and SEBALauto-modeled fluxes, at the corresponding local time with satellite overpass,
were linearly compared with EC flux estimates. Figure 4 shows the performance of the
simulated parameters (Rn, G, H and LE) over the study sites. Most of the points on the
scatter plots that fall above, and or, are distant from the threshold (1:1), show some form
of overestimation. Also, this explains the uncertainty in that particular model perfor-
mance, especially with (a, c) of the original SEBAL.
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The comparison was done for the DOY matching with data availability. Therefore, it
should be noted that the energy flux comparison was performed for only the EC flux
station because the weather station was not calibrated to observe flux elements –
G;HandLE: Due to the heterogenity and arid nature of the sites, Rn was observed to
range from 400 to 500 Wm�2. This is a common phenomenon in most drylands, as some
studies have reported Rn of over 500 Wm�2 in semi-arid and reaching 790 Wm�2 for arid
land (Mira et al. 2016). Figure 4 presents a reasonably correlated output of all the flux
components for the EC experiment site, as indicated by the red dotted 1:1 line. However,
in comparison, some dissimilarities are revealed in the evaluation of some of the flux
components, despite the high coefficients of determination obtained.

The R2 for Rn was 0.95 for SEBAL compared to 0.89 of the SEBALauto-modeled Rn
(Figure 4a and e). Likewise, the RMSE and MAE are 58.92 Wm�2 and 58.64 Wm�2 for
SEBAL Rn, 8.10 Wm�2 and 6.87 Wm�2 for SEBALauto-modeled Rn. SEBAL overesti-
mated Rn (50. 82m�2) with a mean absolute deviation of 51.77Wm�2, as shown by 1:1 line
in Figure 4(a). The disparities in estimated Rn by the original SEBAL can be simplified by
overestimation in other flux components. Similarly, previous studies had reported that
systematic overestimation, and or underestimation of heat fluxes can be associated with
SEBAL when there is no distinct variation in Ts of dry and wet pixels surfaces of the
understudied area (Kong et al. 2018; Tang et al. 2013). Hence, a justifiable reason for the
model adjustment in this study. As evidenced in the model calibration output plot, Ts[hot]
and NDVI pixels of DOY 180 receiving the highest Rn in the growing season (Figure 4),
indicated the representing Ts [Hot] pixels with high albedo in summer of DOY 180
maintained a corresponding spatial variation with land cover with low NDVI of < 0.15
(Figure 4 (b1)). Suggesting that the ratio of G to Rn vary disproportionately in terms of
regional advection, and is capable of increasing latent heat by doubling the available energy
(Allen et al. 2011). Given that Rn determines the availability of energy for other flux
components and is the primary driver of ET, our study ensured that all the flux components
were validated as a “proper ratio proportion” above the evaporative surface on cloud-free
days to reduce uncertainty.

Figure 4. (a-d) Represent the relationship between original SEBAL and EC observed estimates,
while (e-h) represent the SEBALauto-modeled fluxes against the EC observed estimates.
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G is usually the smallest among all energy flux components, especially over bare desert
surfaces (Cuenca, Ciotti, and Hagimoto 2013), however, may tend to return high estimated
values. In our experiment, G range from 90 Wm�2to 175 Wm�2. The R2 was 0.84 and 0.90
for original SEBAL and the SEBALauto-modeled G, with RMSE of 12.09 Wm�2and 7.74
Wm�2, respectively. Figure 4 (b and f) show that the mean absolute error difference was 4.08
Wm�2. Not so much significant variation is shown between the SEBAL and SEBALauto-
modeled G flux; however, the line of best fit clearly shows a reduced error with the
SEBALauto-modeled G flux. This is revealed in the increased slope of 0.73 (SEBAL) to 0.94
(SEBALauto-modeled). Figure 4 (c and g) show that the R2 for H is 0.78 and 0.81 for SEBAL
and the SEBALauto-modeled, respectively. The RMSE of 48.29 Wm�2for SEBAL, and
19.81 Wm�2for the SEBALauto-modeled H, indicating an overestimation of H by 23.07
Wm�2as revealed by the MAE and the 1:1 line. Table 2 presents the detailed statistics of
evaluation for all flux components.

For SEBAL LE, measurements such as R2, RMSE and MAE are 0.93, 11.39 Wm�2

and 10.33 Wm�2, respectively. The obtained values for the same measurement para-
meters for the SEBALauto-modeled LE are 0.98, 9.35 Wm�2and 8.89 Wm�2, respec-
tively. These may suggest a near perfect correlation with the observed, however, SEBAL
model deviation of 2.04 Wm�2and prediction error of 1.44 Wm�2was indicated, with
a slope difference of 0.33 (Table 2). Most of the scatter in Figure 4 (d) did not fit
perfectly as those in Figure 4 (h). Note that remote sensing surface energy balance LE
estimation depends mostly on available energy and evaporative fraction. Therefore, the
accurate estimation of SEBAL and the SEBALauto-modeled LE relied heavily on the
accuracy of Rn which can be influenced by daytime insolation, air temperature, and
probably surface emissivity (NDVI) (Allen et al. 2013). Based on the overall agreements
and stability of the adjusted pixel selection, the SEBALauto-modeled SEBAL is more
skilful at partitioning all energy flux components in the oasis-desert ecosystem.

Table 2. Performance of SEBALauto-modeled energy flux components as indicated by the
coefficient of determination (R2), slope, RMSE and MAE at the EC site.

SEBAL
(W m−2)

SEBALauto-Modeled
(W m−2)

Fluxes/
Parameters Rn G H LE Rn G H LE

R2 0.95 0.84 0.78 0.93 0.89 0.90 0.81 0.98
RSME 58.91 12.09 48.29 11.39 8.10 7.74 19.81 9.35
MAE 58.64 10.48 45.75 10.33 6.87 6.42 22.68 8.89
Slope 0.89 0.73 0.90 0.69 0.94 0.94 0.93 1.02

Note that differences in computed and ground-observed sensible heat flux can be affected by weather variability at
each time of the season of investigation, because saturated soil conditions can contribute to uncertainty in H. Also, it
could arise from a limited range of Ts between hot and cold pixels used in the iterative computation of H (Cuenca,
Ciotti, and Hagimoto 2013). However, as shown in the histograms of representative automated anchor pixels
illustrated in Figure 3, which conforms with the general rule of pixel calibration – dry pixel from a dry surface and
a wet pixel from irrigated or shallow water (Allen et al. 2013; Tang et al. 2013). Even, when the spatial scale effect
about the domain size during pixel calibration is insignificant, the comparative scale of H can reduce uncertainty
with LE. As seen in Figure 4 (d and h), the compared latent heat of SEBALauto-modeled and original SEBAL
separately showed good agreement with EC system observation.
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3.2 Validation of daily eta estimates with the ground-based measurements

SEBALauto-modeled daily ET was validated by using the standardized EC and the
meteorological station ET estimates (Figure 5).

In comparison, the SEBALauto-modeled ET significantly (P < 0.05) returned high
precision values for desert and oasis as shown by the coefficient of determination
(0.94 against 0.40, 0.98 against 0.88) with low model prediction accuracy values,
based on RMSE (0.16 mm d�1 against 0.48 mm d�1, 0.38 mm d�1 against 0.91
mm d�1) and MAE (0.10 mm d�1 against 0.35 mm d�1, 0.28 mm d�1 against 0.72
mm d�1). Figure 6 shows the time scale of ETa intra-season variability over the
understudied growing season. A strong agreement is exhibited for the SEBALauto-
modeled daily ETa as compared with the SEBAL model, in both stations (EC and
KZL). In general, SEBAL underestimated daily ETa for the understudied growing
season within the validation footprint (Figure 6).

Daily actual ETa in both sites ranges from 0.00 mm d�1 to 6.89 mm d�1 for the
understudied growing season. The highest ETa was observed on DOY 180 in the desert,
and DOY 189 in the oasis, which marked the peak of summer-warmth. The day with the
lowest ETa in both sites was observed on DOY 301 (Figure 6). Note that ETa estimates

Figure 5. Comparison of high resolution derived daily ETa estimates between ETa observation
estimates at both the EC and KZL sites. (a-b) represent the validation at the EC flux site (desert
grassland) while (c-d) is the validation at the KZL site (oasis).

GIScience & Remote Sensing 15



for the sampled days in this study may vary with those estimated from empirical water
balance models for the entire Aral Sea basin (Micklin, Aladin, and Plotnikov 2014). This
is explained by the inhomogeneity of the land surfaces in the region (Meng et al. 2017).
In other words, daily ETa estimates across land cover types in the study area vary
significantly.

3.3 Dynamics of daily eta according to land use types across the SASB

3.3.1 EC site (desert ecosystem)

As earlier established, the retrieved ETa from the automated SEBAL model differs
appreciably at both sites, according to land use types. At the EC site, on DOY 180,
the highest ETa values correspond to water bodies of the sampled portion of the SAS and
the lake Kamyshlybas (Figure 1). This is followed by patches of Oasis (irrigated, non-
irrigated arable and farmlands) located near these waterbodies (Figures 7 and 9). Note the
difference in DOY with highest ETa for the validation fetch area and across the basin
(Figures 6 and 7).

Figure 6. A model comparison of daily actual ET estimates between ground-based observation
and SEBAL estimates within a 450 m2 station observation fetch area.

Figure 7. Growing season daily ETa over different land cover types (a) EC site and (b) KZL site.
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Figure 8. Daily mean estimates of ETa at the (a) EC site and (b) KZL site.

Figure 9. Spatial distribution of daily ETa across the SASB based on SEBALauto simulation.
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3.3.2 KZL site (oasis ecosystem)

Also, in the Delta-dominated oasis site of the SASB, the highest ETa corresponded with
waterbodies on DOY 189. Next to water bodies are the irrigated land cover types on
DOY 205, followed by non-irrigated land on DOY 196, grasslands on DOY 205 and
desert surfaces on DOY 164 (Figure 7b). The dynamics of ETa in the Oasis differ
significantly from the pattern in the desert ecosystem. This can be attributed to the well-
watered oasis environment that is well drained by the Syr Darya river almost throughout
the year (Micklin, Aladin, and Plotnikov 2014); accounting for the high agrometeorolo-
gical potential of this section of the basin for crop cultivation.

Desert grasslands recorded high ETa estimates on DOY 196 which was still in
Summer of the growing season. Previous studies have shown that normal transpiration
occurs with well-vegetated areas around the Aral Sea basin, including the Small Aral Sea
(Micklin, Aladin, and Plotnikov 2014; Li et al. 2011a). Which means, daily ETa in the
SASB increases with vegetation growth despite the low soil moisture induced by
encroaching desert sands and will recede as vegetation decreases during summer and
harvest periods. Therefore, the lowest ETa values match with desert ecosystems and other
bare surfaces, due to lower fractional vegetation cover and reduced soil moisture content.
Figure 8 shows the daily estimated average ETa values for each land cover type within
the oasis and desert ecosystems.

Despite the DOY in the growing season, the average estimates of ETa in open or
bare desert surfaces were 1.24 mm d�1, while in desert grasslands land cover, the
average ETa estimate was 2.61 mm d�1. Average ETa of 3.64 mm d�1 and 4.31 mm d�1

were retrieved from the non-irrigated oasis and irrigated oasis, respectively; thereby
indicating a difference of about 0.67 mm d�1. As noted earlier, sea surface evaporation
consumes the largest, with about 6.98 mm d�1 in water bodies located within the desert
ecosystems (Figure 8a). Average estimates of ETa in the open desert surface was 1.34
mm d�1 while in the desert grasslands it was 2.89 mm d�1. Non-irrigated oasis also
maintained an average mean ETa of 3.86 mm d�1, while irrigated oasis recorded 4.54
mm d�1. Evaporation rate in the open water surfaces is about 5.89 mm d�1 in the oasis
ecosystem (Figure 8b). In both sites, land use ETa estimates vary due to the different
ecosystem types and the dominant land use activities. Though energy transfer and
conversion largely depend on sensible heat exchange, however, for the period under-
studied, desert ecosystems have the lowest energy conversion rates than other land
covers. During winter of the same period, energy transfer was generally low in all land
cover types in both ecosystems, due to reduced incoming shortwave trapped by high
humidity. Therefore, amounting to short Rn which could not produce enough energy for
other flux components. Therefore, the air temperature was comparatively low, and the
ice liquefaction process over glacier surfaces truncated heat transfer from DOY 269 to
DOY 301.

3.4 Spatial variability of daily and monthly eta over the SASB

The spatial pattern of ETa over the growing season are varied and complex. Fundamentally,
the growing season starts from late March-May to late September – early October (Spring-
Summer-Autumn). Figure 9 illustrates the daily spatial distribution of the SEBALauto-model
derived ETa, spanning through the entire growing season over the SASB. The beginning of
the growing season is signified by a relatively even distribution of daily ETa as indicated by
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the lush green background on DOY 93 (Figure 9) in both oasis and desert-grassland
ecosystem and across the entire basin. On this day, ETa was 1.51 mm d�1 and 4.01
mm d�1 for desert and oasis, respectively.

In Spring, April and early May, waterbodies maintained the highest ET rates while
the irrigated oasis and arable lands situated beside water bodies constituted the second
largest transpiring landscape. Note that SEBAL parametrization was initially designed
for land (arable). However, the strong positive correlation between ETa and Epan in
a previous study proves it is reliable, for at least, basin-size waterbodies (Conrad et al.
2007). The evaporating waterbodies include the east part of the SAS (top left of the
basin-Figure 9), small inland lakes (e.g., lake Kamyshlybas located north of the basin)
and the Syr Darya run-off channel which empties into the small Aral Sea. The run-off
supports the growth of oasis and conversion of deserts through expanding irrigation
activities within the basin. Daily variations of ETa spanning through the growing season
at the different sites may appear similar with some DOY (Figure 9). Nevertheless,
towards the south of the basin are clear evidence of reduced evaporative fraction
represented by brown desert covers on DOY 109 and DOY 125. Actual ET rates for
these days range from 1.49 mm d�1 to 1.79 mm d�1, respectively. Again, note that the
highest ETa rates are associated with waterbodies, fluctuating between 6.69 mm d�1 and
8.1 mm d�1, with peaks in July -August (11.7 mmd�1).

Summer gradually sets in from mid-May, and sometimes, extends to August. These
periods are marked by high ETa rates in the region. DOY 141 revealed that transpiration
occurs more in the Oasis (irrigated and arable lands), and partly in the grasslands as
indicated by the concentration of green vegetative cover in the delta of Syr Darya river,
with patches of scattered green cover across the basin (Figure 9). ETa rate for this day
increased to 5 mmd�1 in the Oasis but reduced to 1 mmd�1 in the desert areas. The ETa
variability can be attributed to the irrigation concertation practices on Oasis crops (Li
et al. 2014) while extreme climate conditions of low precipitation and high summer
temperature, saline and alkaline soils are responsible for the reduced ETa rates in the
desert ecosystem (Li et al. 2011a). Also, on days of the year 157, 164 and 180 in June,
high ETa rates appear concentrated in the oasis than in the surrounding deserts. During
this period of the growing season, and also in July (DOY 189, 196 and 205) oasis crop
fields receive more irrigated water, which increases soil texture and crop water holding
capacity. Thereby enhancing root water uptake, resulting in more soil evaporation and
plant transpiration, with less significant effect in the desert grassland and other bare
surfaces. Daily ETa rates for the days in June range from 4.07 to 6.28 mm d�1 in the
Oasis, and 1.46 mm d�1 to 2.46 mm d�1 in the desert ecosystem; but are much higher in
July-August, oasis: 6.41 to 6.77 mm d�1, and lower in the desert: 0.90 mm d�1 to 1.74
mm d�1. These results are somewhat different from a comparable basin experiment
performed by Conrad et al. (2007) in Khorezm oblast (located in the lower reaches of
the Amur Darya river) within the larger Aral Sea basin. Their study shows that early in
July, ETa is usually low (1.04 mm), unlike in the SASB. This may have resulted from
weak transpiration of less irrigated crops; however, during intense irrigation stages (late
June – September), ETa rates are high in Summer (Conrad et al. 2007).

Figure 10 shows the SEBALauto derived monthly ETa and season ETa spatial dis-
tribution across the SASB. There exists substantial evidence of basin-scale variations and
regional gradients of monthly ETa with north-southward decreasing trends. Monthly ETa
was generally low in the south than in the north of the understudied basin, whereas

GIScience & Remote Sensing 19



comparatively high estimates were concentrated in the delta dominated oasis, due to the
Syr Darya run-off into the upper (small) Aral Sea. However, in September and October,
there was a clear indication of low ETa distribution. Suggesting that the spatial distribu-
tion of monthly ETa correlates strongly with season timing, especially in Autumn and
Winter. Note that August was omitted because of inconsistent Landsat footprint paths
earlier discussed in section 2.2.2. For this reason, spatially distributed daily (DOY 228
and 244) and aggregated monthly ETa for August were excluded but was captured in the
daily ETa validation, and therefore, their ETa rates were captured in the season ET
estimation (Figure 10b). The SEBALauto-modeled monthly ETa indicates uniformly
average ETa estimates in April with relatively low estimates toward the SAS lake-
surrounded desert grasslands in the north. In May, ETa distribution was moderately
high around waterbodies and oasis but was low in the desert south of the basin.
Precipitation is generally low in this region but may have been evident in April and
May (Micklin, Aladin, and Plotnikov 2014). In Summer (June-July), irrigation activities
were intensified, with high NDVI. Therefore, while the desert areas appeared completely
dry with low soil moisture content, crop-fields and well-watered lands were contributing
the most to high ETa estimates.

In June, higher ETa values were associated with waterbodies, while in July both oasis
and waterbodies maintain high ETa. Mid-July has the highest ETa rates in this basin, as
indicated by summer ETins (Figure 11).

This is due to the supporting Syr Darya run-off, that is consistent almost throughout
the year, unlike the ephemeral Amur Darya river (Micklin, Aladin, and Plotnikov 2014).
Secondly, the rates of increased irrigation activities and expanding oasis during this
period also influenced ETa rates. In August, the ETa reduced due to harvest and low
vegetation index. September and October are considered as winter months with truncated
Rn which weakens heat transfer that produces low energy and the slow melting process
of glaciers and low air temperature.

Figure 10b shows the season ETa cumulatively calculated for DOY 93–301 from the
SEBALauto simulation. The growing season ETa for land surfaces ranges between 658 –
< 850 mm. The value represents the total seasonal water use for the understudied basin,
but with significantly high values from the open water bodies of the SAS, inner lakes and
Syr Darya run-off. An earlier study conducted within the region, in Khorezm, estimated

Figure 10. (a) Monthly spatial distribution of ETa variability, and (b) season ETa distribution
across the Small Aral Sea Basin based on SEBALauto simulation.
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season ETa values to be larger than 1200mm (Conrad et al. 2007). Nevertheless, overall
pan evaporation for the area could reach up to 1546 mm, which is higher than the total
annual precipitation (Li et al. 2011a). Following the Land cover classes (Figure 1b), the
season ET distribution indicate that irrigated oasis consumes and transpires more water
than other land cover types, beside waterbodies. While desert land cover consumes less
water during the growing season (Figure 10b). Otherwise, the total season ETa for the
SASB could reach up to 1135 mm with the inclusion of evaporation from water bodies
(Figure 10b). Here, we see that high-resolution Landsat 7 ETM+ simulation is a reliable
approach for extracting land cover water consumption rates, and even beyond in-between
seasonal timescale in the heterogeneous SASB.

3.5 ET response to canopy density and water stress conditions in the desert and oasis
ecosystems

A comparative assessment of vegetation photosynthetic response, evident in the analogous
NDVI-ETins relationship in the oasis-desert ecosystem is shown in Figure 11. The SEB
approach applied to the flora component suggests a linear relationship of Ts change between
vegetation and canopy air stream, which also controls transpiration (Boegh et al. 1999).
However, due to the gradual onset of winter snow, canopy conductance from the slope
coefficient of the NDVI-ETins relationship indicated low stomatal sensitivity to atmospheric-
vapor pressure shortage between DOY 285–301. As a result, surface transpiration was
truncated in late-autumn at the KZL site during those DOY (Figure 11). Which means that
the water stress situation in the oasis-desert ecosystem is instead, conditioned more by
energy availability than stomatal conductance.

Nevertheless, in the SASB, ETins fluctuates with increasing (decreasing) NDVI
trends and is directly proportional to canopy density (Li et al. 2011a). Though the region
recurrently experiences warming, however, most parts have been greening. Over 55% of
the study region has experienced significant variations in the rate of change in NDVI

Figure 11. The daily pattern of landscape evaporative demand based on NDVI and ETins in the
desert and oasis ecosystems of the SASB. The demarcated black dash lines indicate the high and
low variability of ETins -NDVI ratio. The black circled line in the Autumn at the KZL site indicate
the interception of transpiration by a peculiar local winter advection effect.
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(Yuan et al. 2017). The strength of ETins trends strongly correlates with NDVI trends to
infer on the influence of warming by rising surface air temperature in the SASB.
Therefore, terrestrial vapor fluxes in semi-arid and arid areas are primarily influenced
by plant transpiration upon the availability of energy.

Despite that NDVI trends can suppress temperature effects due to alterations of
surface energy (late-Autumn in Oasis, Figure 12), landscape greenness still plays an
important function in the intensification of terrestrial ET. In the desert ecosystem
(Spring – DOY 93, 109, 125 and 141), NDVI ratio was < 0.25, while the rates of
ETins were generally higher than this estimate. However, in the oasis ecosystem, for the
same period, NDVI rates were much higher than those of the desert ecosystem (0.32 <
0.44), with corresponding ETins range (0.60 mm h−1–0.72 mm h−1). Therefore, desert and
oasis consumptive water use varies significantly with the time of the season but are much
higher in summer than in other periods (Figure 11). However, the evaporative demand in
oasis remains higher than in the desert ecosystem. Most importantly, regarding spatial
dynamics, the growing season spatial variation of modeled ETins to NDVI ratio show that
surface heterogeneity at both sites contrast but contribute distinctly to basin-wide
evaporative demand.

The varying impact of land use activities at a specific time of the season significantly
determines the surface area ecological changes that control transpiration rates. Similarly, the
sensitivity of localized climate to vegetation variations, as typified by NDVI in dry regions
does have an enormous impact on dryland water resources (Jiang, Liang, and Yuan 2015).
For instance, between DOY 93 – DOY 141 (mid- to late-spring) at both sites, precipitation
was still evident and was signified by a negative correlation with Ts. However, a peculiar
pattern was observed on DOY 125, which revealed the ET-induced cooling effect in the
desert ecosystem than in the Oasis (Figure 12). This resulted because additional energy
dissipated via ETins was less than the energy absorbed by albedo.

Our finding agrees with the postulations of Yuan et al. (2017), that when the quantity
of absorbed energy by albedo exceed dissipation through evapotranspiration; a heating
effect is likely to manifest. This hypothesis contrast with the observation on DOY 125 in
the desert ecosystem but are valid for other days of the year (Figure 12). Another critical
finding was exhibited in October, particularly on DOY 301. Desert landscapes were
superficially covered with winter snow, to erroneously present high spatially distributed
ET or ETins-NDVI ratio (Figure 12). However, Figure 11 shows the accurate representa-
tion of NDVI and ETins on DOY 301 of the growing season for desert ecosystem
(NDVI – 0.11 and ETins– 0.31 mm h−1) and oasis ecosystem (NDVI – 0.37 and ETins–
0.303 mm h−1). This gives the reason for the seemingly different spatial distribution of
ETins in different times of the growing season as illustrated by the daily spatial distribu-
tion maps (Figures 9, 10 and 12).

3.6 Uncertainties

The automated calibration of Landsat 7 ETM+ endmember pixels in SEBAL comparatively
produced high accuracies (R2) for energy fluxes and ETa in this study (Table 2, Figure 5).
However, it is unlikely that the complexity of the region will guarantee consistent application
in other parts of the larger Aral Sea basin with higher elevations. This problem can be
handled by correcting for the lapsed difference in Ts, which if left uncorrected, can result in
orographic effects (Allen et al. 2001). Secondly, the use of coarse resolution datasets or
poorly corrected energy balance closure may amount to a varying degree of discrepancies.
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Thirdly, though the study area lacks adequate observational data, and that the study was
based on a comprehensive mapping of a growing season surface energy and vapor fluxes,
however, inter-seasonal comparison beyond one growing season may provide a better
assessment of the model to guide future research. Note that ETa variability over land cover
types across the basin may appear somewhat similar (differ) in some instances because the
validation was performed within a 450 m 2 flux system and meteorological station fetch
areas, and not for all part of the basin. Therefore, error sources in ET estimation can arise
from numerous factors and may require further investigation. For instance, limitation in the
relationship between Rn and soil moisture content in winter can result in erroneous predictive
models (Mallick et al. 2018).

4 Conclusion

This article demonstrates the reliability of high-resolution satellite-driven surface energy
balance modeling of surface energy fluxes across a heterogenous basin, even with the
paucity of observational data. Also, the study improves on the estimation of vapor flux
by characterizing the role of different land use types to ET variability in the SASB. First,
the accuracy range for the energy balance ratio was reasonable (77 to 100%). Then, the
meteorological and flux tower validations returned high accuracies (high R2, low RMSE
and low MAE), indicating that the automated SEBAL model is more stable and capable
of predicting surface energy and vapor fluxes over the complex SASB. The responses of
ET to land use types differ characteristically in desert and oasis ecosystems. Beside water
bodies (particularly, SAS), irrigated oasis accounted for the highest ET rates, and was
heightened in summer due to intensive irrigation practices; while desert grasslands
correspond to low ET rates across the growing season. Apart from limited precipitation
and the general increase in surface air temperature, other controlling factors of ET

Figure 12. Daily spatial variations of ETins response to vegetation index and landscape evapora-
tive demand at both sites. (a) show the pattern in the EC flux fetch area, while (b) shows the pattern
in the KZL station fetch area. The EC site is relatively dominated by desert grassland while the
KZL site consists mostly of irrigated and non-irrigated arable land cover.
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variability in the SASB include ET-induced oasis-desert effects arising from increased
land use activities, mainly, irrigation expansion towards desert areas. Second is the north-
south directional effects of vegetation changes on local temperature gradients, which
occasionally leads to decreased temperature due to increased ET rates (mainly in the
oasis), and vice versa (in the desert). Moreover, the ETins-NDVI ratio indicates that ET
changes strongly correlates with canopy density across the entire basin, but with uncer-
tainties in late-autumn and winter. In other words, inadequate observation data con-
strained the accurate estimation of ET rates in Winter (November to March); hence, the
limitation of the study. Future studies can explore and evaluate the potential of an only
satellite-based derivation of ET information, which has proven reliable over similar
areas, to complement gaps in ground observation data. Particularly, long-term assessment
is needful to further describe the impacts of extreme climatic events on interseasonal and
interannual ET responses to future land process dynamics in the Aral Sea basin. Finally,
this study provides the essential ET framework and baseline information for SASB that
may be useful for such long-term studies that will guide in agrometeorological services
and sustainable management of water resources in arid regions.

Highlights

● A comprehensive investigation of a growing season dynamics of near-surface and
vapor fluxes is presented.

● ETa variability over land cover types vary significantly and are primarily influ-
enced by dominant advection effects in the oasis and desert ecosystems

● Extra energy dissipated by ETins was less than the energy absorbed by albedo in
SASB

● ET in SASB is directly proportional to canopy density
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