
 Very High 
Resolution (VHR) 
Satellite Imagery
Processing and Applications

Francisco Eugenio and Javier Marcello

www.mdpi.com/journal/remotesensing

Edited by

Printed Edition of the Special Issue Published in Remote Sensing

remote sensing  



Very High Resolution (VHR) Satellite
Imagery





Very High Resolution (VHR) Satellite
Imagery

Processing and Applications

Special Issue Editors

Francisco Eugenio

Javier Marcello

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editors

Francisco Eugenio

University of Las Palmas of Gran Canaria

(ULPGC)

Spain

Javier Marcello

University of Las Palmas of Gran Canaria

(ULPGC)

Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Remote Sensing (ISSN 2072-4292) from 2018 to 2019 (available at: https://www.mdpi.com/journal/

remotesensing/special issues/VHR Satellite Imagery).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-756-4 (Pbk)

ISBN 978-3-03921-757-1 (PDF)

Cover image courtesy of Francisco Eugenio and Javier Marcello.

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Very High Resolution (VHR) Satellite Imagery” . . . . . . . . . . . . . . . . . . . . . ix

Kui Jiang, Zhongyuan Wang, Peng Yi, Junjun Jiang, Jing Xiao and Yuan Yao

Deep Distillation Recursive Network for Remote Sensing Imagery Super-Resolution
Reprinted from: Remote Sensing 2018, 10, 1700, doi:10.3390/rs10111700 . . . . . . . . . . . . . . . 1

Yun Ren, Changren Zhu and Shunping Xiao

Deformable Faster R-CNN with Aggregating Multi-Layer Features for Partially Occluded
Object Detection in Optical Remote Sensing Images
Reprinted from: Remote Sensing 2018, 10, 1470, doi:10.3390/rs10091470 . . . . . . . . . . . . . . . 24

Yao Yao and Shixin Wang

Evaluating the Effects of Image Texture Analysis on Plastic Greenhouse Segments via
Recognition of the OSI-USI-ETA-CEI Pattern
Reprinted from: Remote Sensing 2019, 11, 231, doi:10.3390/rs11030231 . . . . . . . . . . . . . . . . 37

Wei Zhang, Ping Tang and Lijun Zhao

Remote Sensing Image Scene Classification Using CNN-CapsNet
Reprinted from: Remote Sensing 2019, 11, 494, doi:10.3390/rs11050494 . . . . . . . . . . . . . . . . 58

Melanie K. Vanderhoof and Clifton Burt

Applying High-Resolution Imagery to Evaluate Restoration-Induced Changes in Stream
Condition, Missouri River Headwaters Basin, Montana
Reprinted from: Remote Sensing 2018, 10, 913, doi:10.3390/rs10060913 . . . . . . . . . . . . . . . . 80

Javier Marcello, Francisco Eugenio, Javier Martı́n and Ferran Marqués

Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral and
Hyperspectral Imagery
Reprinted from: Remote Sensing 2018, 10, 1208, doi:10.3390/rs10081208 . . . . . . . . . . . . . . . 108

Wei Wu, Qiangzi Li, Yuan Zhang, Xin Du and Hongyan Wang

Two-Step Urban Water Index (TSUWI): A New Technique for High-Resolution Mapping of
Urban Surface Water
Reprinted from: Remote Sensing 2018, 10, 1704, doi:10.3390/rs10111704 . . . . . . . . . . . . . . . 129

George Marmorino and Wei Chen

Use of WorldView-2 Along-Track Stereo Imagery to Probe a Baltic Sea Algal Spiral
Reprinted from: Remote Sensing 2019, 11, 865, doi:10.3390/rs11070865 . . . . . . . . . . . . . . . . 150

Livia Piermattei, Mauro Marty, Wilfried Karel, Camillo Ressl, Markus Hollaus,

Christian Ginzler and Norbert Pfeifer

Impact of the Acquisition Geometry of Very High-Resolution Pléiades Imagery on the Accuracy
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Preface to ”Very High Resolution (VHR) Satellite

Imagery”

Nowadays, optical sensors provide multispectral and panchromatic imagery at much finer

spatial resolutions than in previous decades. Ikonos was the first commercial high-resolution satellite

sensor. Launched on September 24, 1999, it broke the one meter mark. Since then, Quickbird, Geoeye,

Pleiades, Kompsat, and many other very high resolution (VHR) satellites have been launched.

Another important milestone was the 2009 launch of WorldView-2, the first VHR satellite to

provide eight spectral channels in the visible to near-infrared range. On the other hand, very

high-resolution SAR finally became available in 2007 with the launch of the Italian Cosmo-Skymed

and German TerraSAR-X, both providing X band imagery at a 1-m resolution. Following these

innovations, the recent advances in sensor technology and algorithm development have enabled the

use of VHR remote sensing to quantitatively study the biophysical and biogeochemical processes

in coastal and inland waters. Apart from bodies of water, VHR can be fundamental for the

monitoring of complex land ecosystems for biodiversity conservation or precision agriculture for

the management of soils, crops and pests. In this context, recent very high resolution satellite

technologies and image processing algorithms present the opportunity to develop quantitative

techniques that have the potential to improve upon traditional techniques in terms of cost, mapping

fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and

tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes

and environment monitoring, etc. This book aims to collect new developments, methodologies, and

applications of very high resolution satellite data for remote sensing. The research works included in

this book present the most recent advances on all aspects of VHR satellite remote sensing, including

image preprocessing (super-resolution, atmospheric modeling, sunglint correction, feature extraction,

etc.), data fusion and integration of multiresolution and multiplatform data, image segmentation

and classification, change detection and multi-temporal analysis, vegetation monitoring in complex

ecosystems, precision agriculture, urban mapping, shallow waters monitoring, etc.

Francisco Eugenio, Javier Marcello
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Abstract: Deep convolutional neural networks (CNNs) have been widely used and achieved
state-of-the-art performance in many image or video processing and analysis tasks. In particular,
for image super-resolution (SR) processing, previous CNN-based methods have led to significant
improvements, when compared with shallow learning-based methods. However, previous CNN-based
algorithms with simple direct or skip connections are of poor performance when applied to
remote sensing satellite images SR. In this study, a simple but effective CNN framework, namely
deep distillation recursive network (DDRN), is presented for video satellite image SR. DDRN
includes a group of ultra-dense residual blocks (UDB), a multi-scale purification unit (MSPU),
and a reconstruction module. In particular, through the addition of rich interactive links in and
between multiple-path units in each UDB, features extracted from multiple parallel convolution layers
can be shared effectively. Compared with classical dense-connection-based models, DDRN possesses
the following main properties. (1) DDRN contains more linking nodes with the same convolution
layers. (2) A distillation and compensation mechanism, which performs feature distillation and
compensation in different stages of the network, is also constructed. In particular, the high-frequency
components lost during information propagation can be compensated in MSPU. (3) The final SR
image can benefit from the feature maps extracted from UDB and the compensated components
obtained from MSPU. Experiments on Kaggle Open Source Dataset and Jilin-1 video satellite images
illustrate that DDRN outperforms the conventional CNN-based baselines and some state-of-the-art
feature extraction approaches.

Keywords: remote sensing imagery; super-resolution; ultra-dense connection; feature distillation;
video satellite; compensation unit

1. Introduction

In recent years, remote sensing imaging technology is developing rapidly and provides extensive
applications, such as object matching and detection [1–4], land cover classification [5,6], assessment of urban
economic levels, resource exploration [7], etc. [8,9]. In these applications, high-quality or high-resolution
(HR) imageries are usually desired for remote sensing image analysis and processing procedure. The most
technologically advanced satellites are able to discern spatial within a squared meter on the Earth surface.
However, due to the high cost of launch and maintenance, the spatial resolution of these satellite imageries
in ordinary civilian applications is often low-resolution (LR). Therefore, it is very useful to construct HR
remote sensing images from existing LR observed images [10].

Remote Sens. 2018, 10, 1700; doi:10.3390/rs10111700 www.mdpi.com/journal/remotesensing1
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Compared with the general images, the quality of satellite imageries can be subject to additional
factors, such as ultra-distanced imaging, atmospheric disturbance, as well as relative motion. All these
factors can impair the spatial resolution or clarity of the satellite images, but video satellite imageries
are more severely affected due to the over-compression. More specifically, for the video satellite, since it
captures continuous dynamic video, in order to improve the temporal resolution, the optical imaging
system has to sacrifice spatial resolution. At present, the original data volume of the video satellite has
reached to the Gb/s level, but the channel transmission capacity of the spaceborne communication
system is only in Mb/s level. To adapt to the transmission capacity of the satellite channel, the video
acquisition system has to increase the compression ratio or reduce the spatial sampling resolution.
For example, taking the video imagery taken by “Jilin No. 1” launched in China in 2015 as an example,
although its frame rate reaches 25 fps, the resolution is only in 2048 × 960 pixels (equivalent to 1080P),
and hence the imagery looks very blurred. Therefore, the loss of high-frequency details caused by
excessive compression is a special concern for video satellite imagery SR.

To address the above mentioned problems, a series of SR techniques for the restoration of
HR remote sensing images have been proposed [10–14]. For example, Merino et al. proposed
the super-resolution with variable-pixel linear reconstruction algorithm, named SRVPLR [15],
which recombines a set of LR images in a linear nonuniform optimum manner. In [16], a hidden
Markov tree model is proposed to establish a prior model in the wavelet domain to regularize the
ill-conditioned problem for remote sensing image SR restoration. To fully use prior knowledge from
a given LR image, Gou et al. [17] presented a non-local pairwise dictionary learning (NPDL) based
model. In this model, the photometric, geometric, and feature information of the given LR image can
be considered to improve the quality of reconstruction.

However, these shallow learning-based frameworks, show poor reconstruction performance
when a high object resolution is required in practical applications. Recently, given the strength
of deep CNNs, many CNN-based methods have evolved to deal with complex tasks in various
applications [18–20], such as medical imaging, satellite imaging and video surveillance [21,22].
In particular, these effective architectures have achieved very good performance in general image
SR reconstruction. For example, Dong et al. [23] introduced a three-layer CNN into single image SR
(SISR) and achieved considerable improvement. Then, Kim et al. [24] proposed a residual network,
called VDSR by using adaptive gradient clipping and skip connection to alleviate training difficulty.
More recently, Sheng et al. [25] proposed the deep laplacian pyramid super-resolution network
(LapSRN) to reconstruct the sub-band residuals of HR images at multiple pyramid levels. In LapSRN,
a weight-sharing mechanism is implemented in the same structure, thus considerably reducing large
quantity of parameters. However, the incremental depth in a deep CNN framework causes loss of
information, thus weakening the continuity of information propagation. Moreover, these conventional
CNN-based or residual-learning-based structures fail to restore fine texture details with simply direct
or skip connections under complex imaging conditions. In particular, remote sensing satellite imageries
have a complicated degradation process, low ground object resolution, and weak textures, thus posing
considerable challenges for SR reconstruction.

Recently, Huang et al. [26] introduced the dense convolutional network (DenseNet) to strengthen
feature propagation and encourage feature reuse by connecting each layer to every other layer in
a feed-forward manner. Furthermore, in [27], the feature maps of each layer are propagated into all
subsequent layers, thus providing an effective method of combining the low- and high-level features to
boost reconstruction performance. Tai et al. [28] proposed memory blocks to build MemNet by heavily
using long-term dense connections in MemNet to recover more high-frequency information. Although
these methods can enforce information propagation by increasing nodes between layers with skip or
dense connections, the features are fused in the network with a concatenated manner and will lead to
large computational burden and high memory consumption.

Following the idea of sharing weights among recursive nodes, recursive learning networks have
been recently used to reduce redundancy parameters of the network. For example, Kim et al. [29]
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presented to use more layers to increase the receptive field of the network. It proposes a very deep
recursive layer to avoid excessive parameters. In addition, a skip-connection manner is used to
mitigate the training difficulty. Tai et al. [30] proposed a deep recursive residual network to address the
problems of model parameters and accuracy, which recursively learns the residual unit in a multi-path
model. More recently, Yang et al. [31] used the LR image and its edge map to infer sharp edge details
of an HR image during the recurrent recovery process. However, the simple-connection manner used
in these models [29,30] extremely limits the SR reconstruction performance.

In this study, a novel ultra-dense-connection manner is proposed to improve the reconstruction
performance along with recursive strategy to mitigate memory consumption. Compared with
the conventional skip- and dense-connection-based networks [24,26], the proposed UDB contains
approximately twice as many short and long paths as the conventional dense block given the same
convolution layers. Therefore, this will greatly enhance the representational power of the network.
In addition, parameters sharing strategy between UDBs can extremely release the memory burden.
We also find ferture distillation in different stages leads to better accuracy for deep SR networks.
Thus, we distill the feature maps by partly choosing output (with a special ratio) in different stages yet
retain its integrity. After getting feature maps in different UDBs, we aggregate these components for
gaining more abundant and efficient information in a multi-scale purification unit.

The strategy of feature distillation and compensation is obviously different from the knowledge
distillation in these studies [32,33]. They compacted deep networks by letting a small simple network
learn from a large complex network. In [34], the authors distilled a multi-model complex network
by retaining the necessary network knowledge while keeping close performance. In [35], Pintea et al.
showed substantially reduced parameters by recasting multiple residual layers in the large network
into a single recurrent simple layer. However, our proposed distillation and compensation strategy is
mainly used to compensate for the high-frequency details lost during information propagation rather
than model compression.

In summary, the main contributions of this work are as follows:

1. We propose a novel deep distillation recursive network DDRN for remote sensing satellite image
SR reconstruction in a convenient and effective end-to-end training manner.

2. We propose a novel multiple-path residual block UDB, which provides additional possibilities for
feature extraction through ultra-dense connections, quite agreeing with the uneven complexity of
image content.

3. We construct a distillation and compensation mechanism to compensate for the high-frequency
details lost during information propagation through the network with a special distillation ratio.

The remainder of this paper is organized as follows. In Section 2, we introduce previous works
on CNN-based SR reconstruction algorithms, particularly network structures for feature extraction.
Section 3 particularly presents the framework of the proposed DDRN. Section 4 individually presents
the design of each key module under the proposed DDRN framework in details, including UDB,
MSPU, resolution lifting, and loss function. Experimental results are given in Section 5, and the
conclusions of this study are given in Section 6.

2. Related Work

We briefly review previously related works on structure-efficient networks [25,29,36–38],
from which our network draws inspiration. These previous deep networks are committed to learning
fine detail textures by designing a sophisticated structure. In this section, we focus on recent skip- and
dense-connection-based methods.

Skip connection: A skip connection that directly connects input to output through an identity
map, as shown in Figure 1b, was pioneered for SISR by Kim et al. [24]. They proposed a 20-layer CNN
model known as VDSR. Instead of learning the actual pixel values, VDSR harnesses the global residual
learning paradigm to predict the differences between ground truth and bicubic interpolated image.

3
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This learning strategy makes the feature maps very sparse, enabling easy training and convergence.
Compared with the traditional methods [39–42], this learning strategy on the benchmark datasets
shows a significant superiority on reconstruction performance in terms of visual and quantitative
indicators. In addition, DRCN [29] constructes a recursive-supervision structure to alleviate the
difficulty in training a deep residual network further. Recently, Sheng et al. [25] proposed a deep
Laplacian pyramid super-resolution network (LapSRN) to reconstruct the sub-band residuals of HR
images at multiple pyramid levels with skip connection.

Figure 1. Frameworks of the CNN-based modules. (a) Flat-net (e.g., SRCNN [23] and FSRCNN [43]):
Direct connections are commonly used to learn the features. (b) Skip-net (e.g., VDSR [24]) : An identity
map with connecting input to the output is pioneered for SISR. (c) Dense-net (e.g., DenseNet [26] and
SRDenseNet [27]): The feature maps are directly passed from the preceding layers to the current layers
through the identity function with much richer connections. (d) UDB: Interacted multiple-path units
are embedded for extracting local feature maps with a richer ultra-dense connections. “C” and “ + ”
denote the concatenation and adding operation, respectively.

Dense connection: Enlightened by previous works, Huang et al. [26] recently represented an
intensive skip connection called dense connection. As shown in Figure 1c, the feature maps of
the current layer are connected to every subsequent layer in a feed-forward manner. With rich
local dense connections, the current layer can aggregate the information from all of the preceding
layers within the dense block for further selection and fusion. These strategies effectively address the
vanishing-gradient problem and enhance information propagation, thus strengthening the feature
expression and boosting the convergence. Subsequently, Tong et al. [27] proposed an enhancement
version called SRDenseNet. In SRDenseNet, the feature maps obtained from each dense block are
propagated into the deconvolution layers to reconstruct SR images, providing an effective way to
combine the low-level and high-level features, which further boosts the reconstruction performance.
In addition, the dense skip connections in the network enable short paths to be built directly linking
to the output from each layer, thus mitigating the vanishing-gradient problem. While considering
the research on feature extraction and fusion, the earlier work of Gao et al. [38] is also noteworthy.
They proposed a technique called multi-scale dense network for resource-efficient image classification.
Their main idea is to train multiple classifiers in different stages using a two-dimensional multi-scale
architecture, enabling them to preserve the coarse-and-fine level features all throughout the network.

Ultra-dense connection: These above mentioned strategies have been proven effective in addressing
vanishing-gradient problem, guaranteeing accurate feature extraction and fusion. However, the directly
concatenated operation on all layers in previous works [27,38] have led to high memory consumption
and computation burden. In addition, conventional dense-connection-based networks have to construct
a deeper network the more the skip paths required. Moreover, the increasing computational burden
and memory consumption are unacceptable.

As shown in Figure 1d, on the basis of the dense network [26], we propose a multiple-path residual
block called UDB. Compared with conventional skip or dense networks [24,26,27,29], UDB contains
richer short and long paths with the same convolution layers. In particular, given the multiple-path
units and transition layer, the feature channels becomes shallower, extremely reducing the parameters
and decreasing the computational burden and memory consumption.

4
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3. Network Architecture

As shown in Figure 2, the proposed model is a deep recursive neural network that can be roughly
partitioned into three substructures, namely, local feature extraction and fusion, feature distillation,
and feature compensation and SR reconstruction. Except for the upsampling operation, motivated by
previous works on SISR [24,25,27,43], the entire process of local feature extraction and fusion is in the
LR space. ILR and ISR are considered the LR input and HR output of the proposed DDRN, respectively.
Fi and Bj refer to the output in the ith layer and the jth block, respectively. In this work, the LR RGB
images are directly fed into the network and processed with the initial convolutional layers (two layers
with 3 × 3 kernel) to extract features as follows:

F1 = H(ILR), (1)

F2 = H(F1), (2)

where H(·) denotes the convolution operation. F1 and F2 represent the shallow feature maps extracted
through the initial convolutional layers, served as the input of the UDB. Moreover, the proposed
residual block UDB is used as a basic module for local feature extraction in DDRN. For each
UDB, the information cannot only be shared among layers and multiple-path units but also be
used as the input for the subsequent residual blocks with ultra-dense connections. These strategies
enforce information propagation and lead to fine feature expression by combining the multi-scale
coarse-and-fine features in different stages. The operation can be defined as follows:

Bi = Hblock,i(Bi−1) + Bi−1, (3)

where Hblock,i denotes the entire convolution operation in the ith UDB and Bi−1 refers to the extracted
feature maps from the (i − 1)th UDB. As shown in Figure 1, compared with the conventional
CNN-based modules [24–26,29,30], whose commonly used residual block contains the simply direct
or skip connections between layers, the proposed UDB module is composed of several interactive
multiple-path units and parametric rectified linear units (PReLU). The dedicated architecture for UDB
enjoys more linking paths in the same layers and provides more possibilities for feature extraction
than do these previous strategies, thus matching the uneven content complexity of remote sensing
imagery. Specifically, the simple links are adapted to smooth areas, whereas complex connections are
suited for high-frequency texture details.

……

Figure 2. Outline of the proposed deep distillation recursive network (DDRN). The red distillation
symbol followed the UDB represents the distillation operation with a special distilled ratio of α.

According to previous SISR algorithms [24,27,29,30], the output of the current stage is directly
transmitted to the next stage. Then the final residual maps are obtained at the top layer for SR
reconstruction. However, information loss is inevitable during its propagation in the network,
thereby weakening the continuity of information propagation. Previous works add a set of nodes to
shorten the transmission distance, thus boosting information propagation and reducing information
loss during propagation, so-called skip connections [24,29]. However, increasing the nodes between
the input and the output cannot only deepen the network but also increase computational burden
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and memory consumption. Differently, we facilitate information propagation with the multiple-path
residual module UDB. Furthermore, we also present a distillation and compensation strategy for
fine feature expression by compensating for extra-high-frequency details. As shown in Figure 3,
unlike the traditional network, whose output in each block is directly transmitted to the subsequent
part, our proposed method can adaptively distill and preserve the feature maps by partly choosing
information from the current output yet retain its integrety. Then, these feature maps collected from
different stages are aggregated and purified in MSPU to infer and compensate for the high-frequency
details before the reconstruction operation.

Figure 3. The distillation and compensation mechanism. The red components indicate that the distilled
feature maps Bi × α in current UDB are adaptively preserved. α denotes the distillation ratio for current
UDB output Bi. MSPU refers to the further purification operation.

In this study, we denote the preserved part from Bi as the distillation unit (DU) with the ratio of α.
At the same time, Bi is used as the input to the subsequent residual block for further extraction.
This process can be formulated as follows:

DUi = S(Bi, α), (4)

where α refers to the distillation ratio, which indicates that the feature maps in each stage with the ratio
of α will be distilled and preserved. In our experiments, we set α to {0.0, 0.125, 0.25, 0.5}. S(·) represents the
distillation operation, and DUi denotes the distilled information from the ith residual block Bi.

In addition, the reserved feature maps DUi in different stages are aggregated through
a concatenation operation, and then they are fed into the purified unit MSPU, where the HR components
lost in the previous blocks are reactivated as a compensation for SR reconstruction. In Equation (5),
HC(·) denotes the concatenation operation adopted to collect the distillation information and M(·) refers
to the MSPU. Through the distillation and compensation mechanism, the high-frequency components
compensated from MSPU can further promote reconstruction performance.

P = M(HC(DU0, · · · , DUi, · · · , DUn)), (5)

At the end of the network, the feature maps extracted from the top UDB and the compensated
high-frequency details purified from MSPU are combined to infer and restore the HR components by
a transition layer with 3 × 3 kernel. Then, a sub-pixel upsampling operation is used to project these
features into HR space to obtain the residual image. The detailed operation is expressed as follows:

ISR = PS(HS(Dn, P)) + IB, (6)

where Dn and P represent the feature maps extracted from the top UDB and the compensated details
from MSPU, respectively. HS denotes a transition function that contains a 3 × 3 convolution layer
to fuse features and infer HR components, adaptively. IB refers to the bicubic interpolated image.
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PS(·) represents the reconstruction operation performing a sub-pixel amplification to obtain the HR
residual image in the ending part of the network.

4. Feature Extraction and Distillation

In this section, we present the design of each key module under our DDRN framework in details,
including UDB, MSPU, and Resolution Lifting.

4.1. Ultra-Dense Residual Block (UDB)

It is acknowledged that rich dense connections can promote feature expression [26,27].
Therefore, we design a dense connection module for feature extraction. In this study, a multiple-path
residual block UDB is constructed to enforce the correlation among layers and blocks with rich dense
connections. Compared with existing skip- or dense-connection-based methods, UDB considers diverse
short and long linking paths (the multiple-path structure) and exhibits effective information-sharing
capability among the layers. Therefore, our network provides additional possibilities for feature
extraction, quite agreeing with the uneven complexity of image content. More precisely, simple links
are adapted to smooth areas, whereas complex connections are suited for high-frequency texture
details. As shown in Figure 1d, UDB includes several interactive multiple-path units, which can
fuse the feature maps extracted from parallel multiple convolution paths. The information-sharing
mechanism aggregates features in different levels to ensure a rich feature representation further.
The function of the ith unit can be formulated as follows:

yi = HC([Fi,0(x0), Fi,1(x1), · · · , Fi,n(xn)]), (7)

si,n = H1(HC(yi, si−1,n)). (8)

Equations (7) and (8) formally show the operation process in a multiple-path unit. In Equation (7),
Fi,n(xn) and HC([Fi,0(x0), Fi,1(x1), · · · , Fi,n(xn)]) refer to the single convolution operation and the
feature congregation of multiple convolution layers in each unit, respectively. In Equation (8),
yi denotes feature concatenation in the current unit. si,n indicates the transition output in the nth path of
the ith unit, and si−1,n represents the output from the nth path of the (i − 1)th unit. Functionally, a group
of skip connections is used to enforce the correlation among the input and output feature maps,
where the transition layers represented as H1 are embedded to reduce feature channels with 1 × 1
convolution kernel.

Unlike skip- or dense-connection-based algorithms [26–28], the proposed multiple-path ultra-dense
connection block can simultaneously explore and infer local and global features. In particular, the feature
maps in the multiple-path unit cannot only be shared among the layers in the current unit through
aggregation and dense connections but also be used as the input of other units with skip connections.
Given the simplicity, effectiveness, and robustness of this strategy, local features can be well expressed
through numerous short and long paths. Furthermore, owing to the effective structure for feature
extraction in UDB, the network can become shallow in the channels but wide for the convolution paths,
which extremely reduces the parameters and simultaneously boosts the reconstruction performance.

4.2. Multi-Scale Purification Unit (MSPU)

In [44], the authors focused on channels and proposed a novel architectural unit termed
“squeeze-and-excitation” (SE) block to recalibrate channel-wise feature responses adaptively by
explicitly modeling the interdependencies between channels. The SE block can learn to use global
information to emphasise informative features and suppress less useful features selectively. This model
won the first place in the classification contest ILSVRC2017 [45].

In this study, we adopt the SE module because of its promising efficiency and efficacy. On the
basis of this finding, we propose an applicable module MSPU for information compensation. The basic
structure of MSPU building unit is illustrated in Figure 4. Contrary to the squeeze-and-excitation
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network (SEN) [44], the redundant residual connections between SE blocks used for features
transmission are removed. In addition, given that the full connection layer can destroy the internal
structure of the image, we therefore replace it with a 1 × 1 convolution layer. Moreover, we adopt
a robust activation function, e.g., parametric rectified linear unit (PReLU), to replace the previous
version rectified linear unit (ReLU).

On the basis of MSPU process, we further propose a distillation and compensation strategy to
compensate for lost details. By partially distilling the components from Bi with the distillation ratio
of α, as shown in Figure 3, we can obtain feature maps originating from UDB in different stages.
Then, these features are aggregated into MSPU to purify and gain more abundant and efficient information.
The extraction functions can be defined as follows:

MS = H(x), (9)

P = σ(H1(AP(MS)))× MS. (10)

In Equation (9), the input x denotes the concatenation of the distilled components in different
satges, equivalent to HC(DU0, · · · , DUi, · · · , DUn) in Equation (5), and H(·) represents a group of
convolutional operations (with 3 × 3 kernel) that is adopted to fuse the features distilled from different
levels. As expressed in Equation (10), AP denotes the global average pooling, H1 refers to the group of
transition layers that comprises the bottleneck structure, and σ represents the sigmoid function.

Figure 4. The Multi-scale feature purification unit (MSPU). The distillation components preserved
from the different stages are fused to obtain compensation information lost during the information
delivery. X denotes the matrix multiplication.

4.3. Resolution Lifting

To project a single LR image into HR space, the resolution of LR image must be increased to match
that of the HR image at a certain point. Osendorfer et al. [46] presented a computationally efficient
architecture for image SR by leveraging the fast approximate inference to increase the image resolution
in the middle of the network gradually. Another well-known approach can also achieve spatial
resolution enhancement by linear interpolation [23,24]. They obtained the same image resolution by
directly using the common bicubic interpolation before loading the dataset into the network.

In addition, the early work of Shi et al. [47] is noteworthy when considering the upsampling
operation. Contrary to authors of previous works, the researchers proposed an efficient sub-pixel
convolution layer to increase the image resolution only at the final layer, eliminating the need to
perform most of the SR operations in the large HR space. Compared with the transposed convolution
and bicubic interpolation, sub-pixel magnification [47] is actually a realignment of feature maps without
extra parameters, thus quite decreasing memory consumption and computational cost. These reasons
enable the network go deeper and be trained easily.

As expressed in Equation (11), PS is a shuffling operator that rearranges the elements of
a H × W × C · r2 tensor acquired in the top layer into a rH × rW × C tensor (where r is the
magnification factor of the network, and C refers to the feature channels of the input image).
Mathematically, the upsampling function can be expressed as follows:

PS(T)x,y,c = T�x/r�,�y/r�(mod(x, r), mod(y, r)), (11)
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where T indicates the output from the final layer with the size of W × H × Cr2, (x, y) denotes the
output pixel coordinate in the HR space, (x/r, y/r) represents the pixel area of r × r in the sub-pixel
space, and (mod(x, r), mod(y, r)) refers to the pixel coordinate in LR space. The Cr2 channels of each
pixel in the same location in the LR space is rearranged into a region of 1r × 1r × C, which corresponds
to a subblock in an HR image, and the feature image is rearranged into an HR image of rW × rH × C.

In this work, as in many CNN-based SISR methods [25,47,48], we adopt the sub-pixel upsampling
strategy to reconstruct the HR image at the top layer because of its promising efficiency and efficacy.

4.4. Loss Function

It is well known that SISR is an ill-posed problem whose solution from the reconstruction
constraint is not unique because of the insufficient number of LR images, ill-conditioned registration,
and unknown degradation process. In previous works, the loss function is commonly used to fit the real
target image by minimizing the distance between the reconstructed HR image and the ground truth.
The commonly used distance measurements include pixel-based l1-norm [25] and l2-norm [23,24,29],
and cosine distance based on feature level.

Most of the previous works [23,27,29] constrain the reconstruction image by minimizing the mean
squared error (MSE) or maximizing the peak signal to noise ratio (PSNR), which is a common measure
used to evaluate SR algorithms [49]. However, the capability of MSE to capture perceptually relevant
components, such as high-frequency texture details, is insufficient because they are defined on basis
of pixel-wise image differences [50]. For example, the previous works [23,29,43] use MSE loss as the
cost function and produce overly smooth reconstruction results that are inconsistent with human
vision. In [25,51], the authors proposed a novel optimal function charbonnier loss based on the l1-norm,
which can recover a large amount of realistic details, more faithful to the ground truth. In our work,
we therefore introduce the charbonnier penalty function to penalize the deviation of the prediction
from the residuals of ground truth. The loss function can be expressed as follows:

Loss(ISR, IHR, θ) = arg min
θ

∑ ρ(IHR − f (ILR, θ)), (12)

where θ denotes a set of model parameters to be optimized and ρ(x) =
√

x2 + ε2 represents the
charbonnier penalty function (a differentiable variant of l1-norm). We empirically set the compensation
parameter ε of 10−3. ISR and IHR refer to the predicted HR image and the ground truth.

5. Experimental Results and Analysis

In this section, first, we describe the experimental settings, including the data collection and
model parameters. Then, we assess the effect of the distillation ratio α and the network depth m on
the reconstruction performance. Subsequently, we compare our results with these state-of-the-art
techniques and provide a thorough analysis. We retrain the comparison algorithms with our training
dataset to ensure a fair comparison, including SRCNN [23] and VDSR [24]. Moreover, we directly
apply the original models [23–25] trained with general image datasets, as the anchors.

5.1. Data Collection

For general image SR, a large quantity of public training and assessing datasets, such as
DIV2K [52], BSD500 [53] and Yang291 [39], are used to evaluate the results. However, few available
datasets can be used as the training samples for satellite imagery SR because of the special requirements
of ground target resolution. We use two available satellite image datasets, namely, Kaggle Open Source
Dataset and Jilin-1 video satellite imagery, to train and evaluate the proposed DDRN method.

1. The first imagery dataset is the Kaggle Open Source Dataset (https://www.kaggle.com/c/
draper-satellite-image-chronology/data), which contains more than 1000 HR images of aerial
photographs captured in southern California. The photographs were taken from a plane and
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meant as a reasonable facsimile for satellite images. The images are grouped into five sets, each of
which having the same setId. Each scenario in a set contains five images captured on different
days (not necessarily at the same time each day). The images for each set cover approximately the
same area but are not exactly aligned. Images are named according to the convention (setId-day).
In this dataset, the scene has 3099× 2329 pixels and 324 different scenarios. A total of 1720 satellite
images cover agriculture, airplane, buildings, golf course, forest, freeway, parking lot, tennis
court, storage tanks, and harbor. In this study, 30 different categories are selected for the test
and 10 for the evaluation. Meanwhile, a total of 350 images are used for the training. Regarding
the training dataset, the entire images are cropped into many batches with 720 × 720 pixels,
but only the central area of the testing images with size of 720 × 720 pixels is cropped for testing
and evaluation.

2. The second satellite dataset is from Jilin-1 video satellite imagery. In 2015, the Changchun
Institute of Optics, Fine Mechanics, and Physics successfully launched the Jilin-1 video satellite
which had 1.12 m resolution. To cover the duration of video sequences, we select one for every
five frames from each video and crop the central part with the size of 480 × 204 as test samples.
We select several areas in different countries with certain typical surface coverage types, including
vegetation, harbor, and a variety of buildings as the test images.

5.2. Model Parameters and Experiment Setup

In our experiments, we use an NVIDIA GTX1080Ti GPU and an Intel I7-8700K CPU for training
and testing, respectively. Our model is implemented on TensorFlow with Python3 under Windows10,
CUDA8.0, and CUDNN5.1 systems. We mainly focus on the up-scaling factor of 4, which is usually
the most challenging case in image SR.

The original HR images are downsized by bicubic interpolation to generate LR images for training.
We augment the training patches by horizontal or vertical flipping and rotating 90◦. By following
the settings presented in [54], we send one batch consisting of 16 LR RGB patches with the size of
32 × 32 from the training datasets to our network each time. The learning rate is initialized to 10−3 for
all layers and halved for every 104 steps up to 10−5. In our model, each convolution layer contains
64 filters, followed by PReLU. We empirically set the distillation ratio α to {0.0, 0.125, 0.25, 0.5} and the
number of parallel convolution layers n in each multiple-path unit to 3. For the basic module DDRN,
the depth of UDB is 15. In our experiments, training a basic module consumes approximately 20 h
under the previously presented experimental settings.

5.3. Quantitative Indicators (QI)

Similar to many previous representative works [23,24,28,29], we also select two commonly used
evaluation metrics, i.e., PSNR and structural similarity (SSIM), to evaluate the model performance.
These evaluation metrics differ in terms of visual perception but involve reference images for
comparison. However, in real SR scenes, we have only LR images to be super-resolved, without the
corresponding HR reference image.Therefore, we need to introduce quantitative non-reference
image quality assessment methods. Quality with no reference (QNR) [55,56], generalized quality
with no reference (GQNR) [57] and average gradient (AG) [58] are commonly used image quality
evaluation algorithms without reference, which can reasonably assess the clarity of reconstructed image.
Nevertheless, QNR and GQNR are used for multispectral or hyperspectral images rather than ordinary
RGB images, which needs to calculate the spectral distortion index and spatial distortion index.
Thus, in this study, we propose to alternatively use AG for objective evaluation without reference.
This process can be expressed as follows:

G(x, y) = dx(i,j) + dy(i,j), (13)

dx(i,j) = I(i+1,j) − I(i,j), (14)

10



Remote Sens. 2018, 10, 1700

dy(i,j) = I(i,j+1) − I(i,j), (15)

where dx and dy refer to the horizontal and vertical gradients, respectively, and I(i,j) denotes the pixel
value corresponding to the coordinate of (i, j).

The indicator of the AG can reasonably assess image clarity because it sensitively reflects content
sharpness, detail contrast, and texture diversity. Generally, the larger the AG, the richer the details.
Thus, the AG can be used to evaluate the reconstruction quality of satellite imagery in real-world scenes,
such as Jilin-1 video satellite imageries.

5.4. Validation of the Ultra-Dense Residual Block

We examine the effectiveness of the proposed deep recursive CNN network DDRN and the
multiple-path UDB. Given that SRCNN [23] and VDSR [24] are the most representative and most
effective deep-learning-based SR methods, in our experiments, we retrain these two models by using
the same training datasets and label them as SRCNN∗ and VDSR∗. Figure 5 shows the comparison
results according to the iterations of DDRN, SRCNN, and VDSR. Comparatively, our DDRN
exhibits faster convergence and higher scores than do direct-connection-based SRCNN and
skip-connection-based VDSR. This superiority can be mainly attributed to the proposed multiple-path
ultra-dense connections which can readily capture local features. Thus, our framework significantly
boosts the SR efficacy of remote sensing imagery.

Figure 5. Training process for different models with the scale of 4. On the top, the blue line denotes the
convergence process of the basic module DDRN with depth of 15 while the green and the red lines
at the bottom refer to the VDSR and SRCNN. The competitive algorithms marked by * denote the
retrained versions with our dataset.

In Figure 6, we show the evaluation results of the proposed DDRN method and the comparison
algorithms on the Kaggle Open Source Dataset to verify the usefulness of the ultra-dense connections
strategy further. The test set contains 30 different scenarios, which are labeled 1 to 30 in Figure 6.
The figure shows that by using ultra-dense connections, we obtain better reconstruction results than
do the conventional CNN-based methods, i.e., SRCNN [23] and VDSR [24]. For the average PSNR,
our DDRN shows substantial improvements, surpassing VDSR by 0.92 dB, and SRCNN by 1.94 dB.
Similarly, SSIM is also considerably improved.
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Figure 6. The SR performance comparisons for 30 different scenarios (denoted by label) from
Kaggle Open Source Dataset. The competitive algorithms marked by * denote the retrained versions with
our dataset.

In summary, the proposed residual block UDB effectively captures realistic detail textures.
Although SRCNN and VDSR are effective, the well-designed deep recursive framework DDRN
is more suitable for satellite image SR reconstruction.

5.5. Influence of Parameters α and m

On the basis of the basic module DDRN, we implement a distillation and compensation
mechanism to compensate for the HR components lost during information propagation to infer
and restore more realistic high-frequency details. The improved model with MSPU embedment is
called DDRN+. In particular, a couple of comparison simulation experiments are conducted to analyze
the influences of (i) the hyperparameter α in Equation (4) for partial feature maps distillation and
preservation, (ii) the depth value m of UDB on the reconstruction performance.

We report the training process of the proposed DDRN+ with respect to different distillation ratios
to verify the necessity of the proposed distillation and compensation mechanism. When α is set to 0,
no components are distilled in the current stage, whereas MSPU does not function. Figure 7 shows
the comparison results of the training process under different distillation ratios. From the figure,
we learn that the proposed DDRN+ exhibits better training performance than the basic module DDRN.
In addition, we observe that, with an increase in the distillation ratio α, the module exhibits robust and
fast convergence. This result can be attributed to the increasing compensated high-frequency details
from the MSPU by an increased distillation ratio. However, we also observe that the performance
starts to decline when α is set to a large value, e.g., 0.5. This result can be mainly attributed to the
large distillation rate, which may result in information redundancy. In addition, excessive parameters
might lead to overfitting. All of these results indicate that the proposed distillation and compensation
mechanism show substantial improvements by compensating for high-frequency details. Therefore,
embedding MSPU into the basic module for satellite image SR reconstruction is an effective and
reliable choice.

In light of the observations in these previous works [26–28], fine features can be well inferred
from a deep CNN framework. Thus, we gradually increase the depth of the network by simply adding
the number of the UDB (i.e., m is set to 10, 15, 20, 25, 30, and 35). We assess the performance of different
values of m. In Figure 8, we show the training details of the proposed DDRN+ method with different
depths. When simply increasing the value of m to 30, the improvement gradually increases and
surpasses the basic module by approximately 0.22 dB in the scale of 4. By contrast, the performance
declines when we continue to increase m to 35 and the network exhibits slow convergence. This result
can be mainly attributed to the overfitting, and the convergence of the network becomes more difficult
in such a depth.
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Figure 7. Training process for different distillation ratios by the scale of 4. DDRN+ represents
the improved module with MSPU embedded at different ratios on the basis of the basic module.
In particular, DDRN denotes the improved module with the distillation ratio α of 0, which is actually
the basic module.

Figure 8. Training process for different depths of DDRN+ with scale of 4 and the distillation ratio α of
0.25. We set UDB number m to 10, 15, 20, 25, 30 and 35 while keeping other parameters consistent.

On the basis of the experiments, we can obtain the optimal distillation ratio α and UDB depth m
for satellite image SR reconstruction, which are set to 0.25 and 30, respectively.

5.6. Comparison Results with the State-of-the-Art

We compare our basic model DDRN and the improved version DDRN+ (α = 0.25, m = 30) with
other SISR algorithms, including Bicubic, SRCNN [23], VDSR [24], and LapSRN [25], by the scaling
factors of ×2, ×3, and ×4. The implementations of these anchor methods have been released online
and can thus be conducted on the same test datasets.

The reconstruction results obtained with above mentioned Kaggle Open Source Dataset for the
proposed approaches and the comparison methods are shown in Figure 9. We select several different
but representative scenarios (i.e., crossroads, factory, freeway, tennis court, and parking lot) to
produce a visual presentation. Experimentally, we crop these representative scenarios into a sub-batch
with the size of 120 × 120 pixels from each reconstructed SR image and compute PSNR and SSIM.
Notably, the proposed method DDRN and its improved version DDRN+ surpass these state-of-the-art
methods by a large margin. Moreover, the modules that we propose exhibit the most accurate and
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realistic image details from the visual effect. Most of the comparison methods produce noticeable
artifacts and blurred edges, whereas the proposed DDRN+ can recover sharper and clearer edges
because of successful feature extraction and fusion, more faithful to the ground truth. For example,
as shown in Figure 9, only our proposed modules restore the clear court boundary in the tennis court
scenario and the accurate and credible car outline in the four other scenarios. Therefore, all of the
proposed models exhibit solid performance improvements compared with the conventional direct- or
skip-connection-based algorithms [23–25].

Figure 9. The reconstruction results on Kaggle Open Source Dataset and by the scale of 4. We select
several different but representative scenarios, i.e., crossroads, factory, freeway, tennis court and parking
lot, and then crop them into small image batches in size of 120 × 120 for demonstration. Red and blue
indicate the best and the second best performance, respectively.

Objectively, Tables 1, 2 and 3 tabulate the detailed evaluating results in terms of PSNR, SSIM and
AG with the magnification scales of ×2, ×3, and ×4, respectively. From these records, we learn that raw
CNN-based or skip connection methods, such as SRCNN [23] and VDSR [24], exhibit lower scores than
do DDRN-based methods (i.e., in terms of PSNR, the proposed DDRN+ surpasses SRCNN and VDSR
retrained by approximately 2.16 and 1.14 dB with the scale of 4 in the first test dataset, respectively.).
Among these comparison methods, the basic module DDRN shows the best performances because of its
ultra-dense-connection-based effective framework for local spatial information extraction. In addition,
through the compensated high-frequency details obtained from the MSPU, the improved version
DDRN+ can produce fine detail textures. With regard to PSNR and SSIM, Figure 6 shows an more
intuitive result that the proposed modules outperform these state-of-the-art methods [23–25] by
a large margin. For the metric AG, the proposed DDRN and DDRN+ are also better than previous
works on average. In particular, in the comparison results shown in the three tables, our methods
exhibit remarkable advantages when the upsampling factor is large, as reported at the bottom of the
three tables. These results indicate the advantages of the proposed ultra-dense-connection manner in
modeling the relationship between LR and HR images with lager magnification factors.
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Another group of comparison experiments are conducted with the Jilin-1 satellite imagery to
illustrate the effectiveness and applicability of the proposed ultra-dense strategy and distillation and
compensation mechanism further. Compared with the first dataset Kaggle Open Source Dataset, the test
images obtained from Jilin-1 show lower quality (small ground objects and weak textures) but more
realistic satellite imagery characteristics. Unlike the images in the training dataset, the test images
have completely different imaging conditions, including ultra-high imaging distance, atmospheric
scattering, relative motion between satellite and moving ground targets, and compression distortion.
These severe imaging conditions pose substantial demands to SR networks.

With an operation similar to the previously presented preprocessing of the testing images,
we crop the test images with the size of 480 × 204. The reconstruction results obtained from our
proposed approaches and the comparison methods are shown in Figure 10. For the first and second
images, most of the comparison methods produce noticeable artifacts and blurred edges. By contrast,
the proposed DDRN and DDRN+ can recover sharp and clear edges because of fine feature expression
that is faithful to the ground truth. At the bottom of the figure, only our proposed modules can
reconstruct a clear outline of the warships and dock, whereas the other conventional methods fail to
restore the realistic details. These results further indicate the effectiveness of the proposed method.

Furthermore, we perform a set of realistic SR reconstruction experiments for the unknown real
degradation process (i.e., using the observed LR images instead of the downscaled LR images as input).
These test images are randomly selected from Jilin-1 satellite imagery using the same preprocessing
to acquire the test images with the size of 480 × 204. Then, the processed images used as the LR
input are directly transmitted to the network to obtain the reconstructed HR images. The comparison
results with other state-of-the-art algorithms are shown in Figure 11 (we show only one example due
to space constrains). Evidently, most of compared methods [23,24] produce noticeable artifacts and
blurred building outlines, whereas the proposed DDRN and DDRN+ yield better results with fewer
jagged lines and ringing artifacts. Instead of the commonly used evaluation metrics PSNR and SSIM
(because the original HR images are unavailable), we introduce the AG to measure the sharpness of
the SR results. As shown in Figure 11, the proposed modules DDRN and DDRN+ enjoy the second
and first highest AG scores, respectively. The results for real video satellite imagery indicate that
our model is more robust than the comparison methods in super-resolving the image with unknown
degradation process.

In brief, the SR reconstruction experiments on different test datasets and magnification scales
show the advantages of feature expression and indicate the robustness of our modules against images
of unknown degradation models.

Figure 10. Cont.
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Figure 10. The reconstruction results on Jilin-1 dataset with the scale of 4. We select several different but
representative scenarios, i.e., aircraft carrier, city suburb, and military harbour to make comparisons.
Red and blue indicate the best and the second best performance, respectively.

Figure 11. Cont.
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Figure 11. An example for the reconstruction results on Jilin-1 imagery by the scale of 4. The experiment
is performed with real low satellite images rather than simulation degradation. Red and blue
respectively indicate the first and the second best performance in terms of AG. Note that the enlarged
details are shown in the boxes on the bottom left and bottom right in each image.

6. Conclusions

In this study, we propose a simple but very effective technique for remote sensing image SR
reconstruction. In particular, we present a multiple-path UDB for local feature extraction and fusion.
Unlike in the conventional methods, rich dense connections between layers and units promote
information interaction and improve reutilization. In addition, we further promote feature expression
by advocating a distillation and compensation mechanism. The feature maps distilled from different
stages with a special distillation ratio α are aggregated to compensate for the high-frequency details
lost during information propagation in MSPU. Extensive experiments on the test datasets indicate that
the proposed DDRN and its improved version DDRN+ outperform existing state-of-the-art feature
extraction techniques, including conventional direct- and skip-connection-based methods. In particular,
when the image degradation model is unknown, the proposed algorithm can still obtain competitive
reconstruction results compared with the comparison algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

CNNs Convolutional neural networks

SR Super-resolution

SISR Single image super-resolution

LR Low resolution

HR High resolution

DDRN Deep distillation recursive network
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UDB Ultra-dense residual block

MSPU Multi-scale purification unit
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Abstract: The region-based convolutional networks have shown their remarkable ability for object
detection in optical remote sensing images. However, the standard CNNs are inherently limited
to model geometric transformations due to the fixed geometric structures in its building modules.
To address this, we introduce a new module named deformable convolution that is integrated into
the prevailing Faster R-CNN. By adding 2D offsets to the regular sampling grid in the standard
convolution, it learns the augmenting spatial sampling locations in the modules from target tasks
without additional supervision. In our work, a deformable Faster R-CNN is constructed by
substituting the standard convolution layer with a deformable convolution layer in the last network
stage. Besides, top-down and skip connections are adopted to produce a single high-level feature map
of a fine resolution, on which the predictions are to be made. To make the model robust to occlusion,
a simple yet effective data augmentation technique is proposed for training the convolutional neural
network. Experimental results show that our deformable Faster R-CNN improves the mean average
precision by a large margin on the SORSI and HRRS dataset.

Keywords: Deformable CNN; Faster R-CNN; data augmentation; occluded object detection

1. Introduction

Recently, Convolutional Neural Networks (CNNs) [1] have achieved flourishing success for visual
recognition tasks, such as image classification [2], semantic segmentation [3], and object detection [4].
With the powerful feature representation capability of Deep CNNs, object detection has witnessed
a quantum leap in the performance on benchmark datasets. Within the last five years, there have
been massive improvements on standard benchmarks such as PASCAL and COCO by the family
of region-based CNNs. However, little effort has been made towards occluded object detection in
optical remote sensing images. Besides, modeling geometric variations or transformations in the
scale of objects, pose, viewpoint, and part deformations is a key challenge in optical remote sensing
visual recognition.

Object detection in optical remote sensing images often suffers from several increasing challenges
including the large variations in the visual appearance of objects caused by viewpoint variation,
occlusion, resolution, background clutter, illumination, shadow, etc. In the past few decades, various
methods have been developed for the detection of different types of objects in satellite and aerial images,
such as buildings [5], storage tanks [6], vehicles [7], and airplanes [8]. In general, they can be divided
into four main categories: Template matching-based methods, knowledge-based methods, OBIA-based
methods, and machine learning-based methods. According to the selected template type, template
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matching-based methods could be further subdivided into two classes, as rigid template matching
and deformable template matching [5,9]. For knowledge-based object detection methods, there are
two kinds of the most widely used, which used prior knowledge involved geometric information
and context information [10–12]. In general, OBIA-based object detection methods include two steps:
Image segmentation and object classification [13]. With regard to machine learning-based methods,
three crucial steps, which include feature extraction, feature fusion dimension reduction, and classifier
training, play important roles in the performance of object detection. Many recent approaches have
formulated object detection as feature extraction and classification problems and have achieved
significant improvements.

With the prosperity and rapid development of CNNs, object detection tasks have been formulated
as feature extraction and classification problems, whose results have been shown to be promising with
the help of the powerful feature representation capability of advanced CNN architecture. Currently,
the most popularly CNN-based object detection algorithms could be roughly divided into two streams:
The region-based methods and the region-free methods. The region-based methods firstly generate
about 2000 category-independent region proposals for the input image, extract a fixed-length feature
vector from each proposal using a CNN, and then classify those regions and refine their spatial
locations. As a ground-breaking work, R-CNN [4] consists of three modules. The first module generates
category-independent region proposals that are fed into the second module. It is a large CNN to extract
a fixed-length feature vector from each region, while the third module is a set of class-specific linear
SVMs. Compared to traditional R-CNN and its accelerated version SPPnet [14], Fast R-CNN [15] trains
networks using a multi-task loss in a single training stage, which simplifies learning and tremendously
increases runtime efficiency. Merging the proposed RPN and Fast R-CNN into a single network
by sharing their convolutional features, Faster R-CNN [16] enables a unified, deep-learning-based
object detection system to run at near real-time frame rates. In contrast, the region-free methods
frame object detection as a regression problem and directly estimates the objects region, which truly
enables real-time detection. YOLO [17] is extremely fast because it utilizes a single convolutional
network to simultaneously predict bounding boxes and class probabilities directly from full images
in one evaluation. Using a single CNN as well, SSD [18] discretizes the output space of bounding
boxes into a set of default boxes over different aspect ratios and scales per feature map location.
Additionally, the network combines predictions from multiple feature maps with different resolutions
to naturally handle objects of various sizes, which improves the accuracy on high-speed detection.
What is noteworthy is that the above-mentioned CNN-based object detection algorithms are designed
somewhat specially for general object detection benchmarks, which is not suitable for object detection
in optical remote sensing images because the object instances occupy a minor portion of the image that
usually have the characteristic of small size in the optical remote sensing images. Furthermore, to deal
with the problem of small objects, some methods like Fast R-CNN and Faster R-CNN achieve this by
directly up-sampling the input image at the training phase or testing phase. It significantly increases
the memory usage and processing time.

However, CNNs are inherently limited to model geometric transformations shown in visual
appearance. The limitations derive from the fixed geometric structures of CNN modules: A convolution
operation samples the input feature map at fixed locations. As long as a standard CNN architecture
is adopted, the only method available to model geometric transformations are artificially generating
sufficient complete training samples with various deformations. As said by Cheng et al. [19], it is
problematic to directly use it for object detection in optical remote sensing images because it is difficult
to effectively handle the problem of object rotation variations. Rotation Invariant CNN (RICNN)
augments training objects by rotating them 360 degrees by a step of 10 degrees, which does not
actually solve the inherent limitation in CNN. The emergence of deformable convolution overcomes
the mapping limitations in CNN [20]. By adding 2D offsets to the regular convolution grid in the
standard convolution, deformable convolution sample features from flexible locations instead of
fixed locations, allowing for the free deformation of the sampling grid. In other words, deformable
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convolution refines standard convolution by adding learned offsets. The deformable convolution
modules can readily replace the convolution layer in standard CNN and form deformable ConvNet.
The spatial sampling locations in deformable convolution modules are augmented with additional
offsets, which are learned from data and driven by the target task. Deformable ConvNet is a simple,
efficient, deep, and end-to-end solution to model dense spatial transformations. We believe that it
is feasible and effective to learn dense spatial transformation in CNNs for object detection in optical
remote sensing images.

In this paper, we present a deformable Faster R-CNN with aggregating multi-layer features for
partially occluded object detection in optical remote sensing images. In other words, Deformable
ConvNet, embedded within Faster R-CNN, is introduced in the field of optical remote sensing for
object detection. The main contributions of this paper are summarized as follows:

� A unified deformable Faster R-CNN is introduced for object detection in optical remote sensing
images. Geometric variation modeling is completed within the deformable convolution layers.
Feature maps extracted by deformable ConvNet contain more information about various
geometric transformations.

� A modified backbone network is specially designed for small object to generate more abundant
feature maps with high semantic information at low layer. Therefore, a Transfer Connection
Block (TCB) adopting top-down and skip connections is presented to produce a single high-level
feature map of a fine resolution.

� A simple, yet effective, data augmentation technique named Random Covering is proposed for
training CNN. In training phase, it randomly selects a rectangle region in a region of interest and
covers its pixels with random values. Hence, we can obtain augmented training samples with
random levels of occlusion, which are fed into the model to enhance the generalization ability of
the CNN model.

The rest of this paper is organized as follows. Section 2 introduces the methodology of our
deformable Faster R-CNN with the transfer connection block. The last subsection of Section 2 proposes
the data augmentation technique, namely the Random Covering. Section 3 presents the datasets and
experimental settings. The results of our methodology and other approaches in the SORSI and HRRS
dataset are presented in Section 4, while Section 5 gives our conclusion and the future work.

2. Methodology

Figure 1 presents a roundup of our deformable Faster R-CNN with three transfer connection
blocks. Deformable Faster R-CNN is constructed by substituting the standard convolution layer
with a deformable convolution layer in the fifth network stage. The proposed network consists of
a deformable proposal network and a deformable object detection network, both of which share
a deformable backbone network with three transfer connection blocks for feature map generation.
More details are provided in the following content.
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Figure 1. Architecture of the deformable Faster CNN with three TCBs.

2.1. Deformable Convolution

While convolution in CNNs can be regarded as 3D spatial sampling, deformable convolution
operates on the 2D spatial domain and remains the same across the channel dimension. In general,
they are explained in 2D here. Extending the equations to 3D should be straightforward and omitted
for notation clarity.

A standard 2D convolution consists of two steps: (1) Sampling using a regular grid� over the
input feature map X; and (2) summation of sampled values weighted by W. The grid� defines the
convolution kernel by size and dilation. For example, � = {(−1,1),(−1,0), . . . ,(0,1),(1,1)} defines a
3 × 3 kernel with dilation 1. We can derive the standard convolution output of each position p0 on the
output feature map Y, according to the following formula:

Y(p0) = ∑
pi∈R

W(pi) · X(p0 + pi) (1)

In Dai et al. [20], deformable convolution was defined by augmenting the regular grid� with 2D
offsets {Δpi|i = 1, . . . , N}, where N = |R|. Then the deformable convolution output of each position
p0 on the output feature map Y can be formulized as follows:

Y(p0) = ∑
pi∈R

W(pi) · X(p0 + pi + Δpi) (2)

Obviously, the sampling is over the unfixed positions pi + Δpi of the input feature grid. As the
offset Δpi might be non-integer, Equation (2) is implemented by bilinear interpolation to obtain the
fractional position. As we know, the bilinear interpolation can be formulated as

X(p) = ∑
q

G(q, p) · X(q) (3)

where p denotes an arbitrarily fractional position (p = p0 + pi + Δpi for Equation (2)), q enumerates
four integral spatial positions nearest to the position p, and G(·, ·) indicates the bilinear interpolation
kernel. Note that G can be decomposed into two 1D kernels as

G = g(qx, px) · g
(
qy, py

)
(4)

where the 1D bilinear interpolation kernel is defined as g(a, b) = max(0, 1 − |a − b|).
As illustrated in Figure 2, the additional offsets are learned by adding a standard convolutional

layer branch whose convolution kernel is the same spatial resolution as the current convolutional
layer. Additionally, the output offset fields have the same spatial resolution with the input feature map.
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The output channel dimension is set at 2N to encode N 2D offset vectors. During training, both the
convolutional kernels for producing the output features and for generating offsets can be learned.
The gradients enforced on the deformable convolution layer can be back-propagated through the
bilinear operations in Equations (3) and (4).

Figure 2. Illustration of 3 × 3 deformable convolution.

2.2. Transfer Connection Block

Generally, the objects have the characteristics of small size in the optical remote sensing images.
The region-based methods consist of a region proposal network and an object detection network,
both of which share a backbone network to generate feature representation. However, we notice that
the feature maps of the shared network have a very large receptive field so that it can be hardly matched
to small objects. The semantic information in the high-layer is significant for feature representation [21].
Based on these two considerations, the transfer connection block is presented to combine high semantic
features from higher layers with fine details from lower layers, which is shown in Figure 3. To match
the dimensions between them, the de-convolution operation is used to enlarge the high-level feature
maps and sum them in the element-wise way. To be specific, the modified backbone network produces
feature maps through three TCBs, starting from the last layer of the backbone network, which has
high semantic information. Then the feature maps of the last layer are transmitted back to combine
bottom-up feature maps at middle layers by top-down and skip connections. The TCP is sequentially
embedded into the last three stages of the backbone network. By default, ResNet_50 is used to be the
backbone network [22].

Figure 3. The overview of the transfer connection block.

2.3. Random Covering

Occlusion caused by fog or cloud is a critical influencing factor on the generalization ability
of CNNs in optical remote sensing images. It is desirable to achieve invariance to various levels of
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occlusion. When some parts of an object are occluded, a strong detection model should recognize
its category and locate it from the overall object structure. However, the collected training samples
usually reveal limited variance in occlusion. In an extreme case when no occlusion happens in all the
training objects, the learned CNN model will work well on the testing images without occlusion. But it
may fail to recognize objects with partial occlusion because of the limited generalization ability of the
CNN model. While we can manually augment occluded images to the training data, this process is
costly and the levels of occlusion can be limited.

To address the occlusion problem and improve the generalization ability of CNNs, Random
Covering is introduced as a new data augmentation approach. This idea is inspired by another data
augmentation approach named Random Erasing [23]. In the training phase, Random Covering happens
with a certain probability. For an image I, within a mini-batch in the training phase, it is randomly
chosen to undergo either Random Covering with probability p, or kept unchanged with probability
1 − p. Random Covering randomly selects a rectangle region Irc in the image and adds random values
on these selected pixels. Assume the size of the image is W × H and its area is S = W × H. We randomly
initialize the area of the covering rectangle region to Src, where Src/S is in the range specified by
minimum sl and maximum sh. The aspect ratio rrc of covering rectangle region is randomly initialized
between r1 and r2. Then the size of covering region Irc is Hrc =

√
Src × rrc and Wrc =

√
Src/rrc. A point

p = (xrc, yrc) in the image I is randomly initialized as the center of the covering region Irc, where the
left-top location plu and the right-bottom location prb are

(
max

(
1, xrc − Wrc

2

)
, max

(
1, yrc − Hrc

2

))
and(

min
(

W, xrc +
Wrc

2

)
, min

(
H, yrc +

Hrc
2

))
. After selecting the covering region Irc, each pixel in Irc is

assigned to the weighted summation of the original pixel and a random value. The weight coefficient λ

is randomly initialized in a range specified by minimum λ1 and maximum λ2. The Random Covering
procedure is shown in Algorithm 1. In the case of object detection, we select covering region in the
bounding box of each object. If there are multiple objects in the image, Random Covering is applied on
each object separately.

Algorithm 1: Random Covering Procedure

Input: Input image I;
Area of image S = W × H;
Covering probability p;
Area ratio range sl and sh;
Aspect ratio range r1 and r2;
Weight coefficient range λ1 and λ2;

Output: Covering image I∗.
Initialization: p1←Rand(0, 1).
if p1 ≥ p then

I∗←I;
return I∗.

else

Src←Rand(sl , sh)× S;
rrc←Rand(r1, r2);
λ←Rand(λ1, λ2);
Hrc ←

√
Src × rrc , Wrc ←

√
Src/rrc ;

xrc ← Rand(1, W) , yrc ← Rand(1, H) ;

plu←
(

max
(

1, xrc − Wrc
2

)
, max

(
1, yrc − Hrc

2

))
;

prb←
(

min
(

W, xrc +
Wrc

2

)
, min

(
H, yrc +

Hrc
2

))
;

Irc←(plu, prb);
I(Irc)←λ · Rand(0, 1) + (1 − λ) · I(I∗);
I∗←I;
return I∗.

end
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3. Dataset and Experimental Settings

To evaluate and validate the effectiveness of deformable Faster R-CNN on the optical remote
sensing images, the datasets, experimental settings, and the corresponding evaluation metrics of the
experimental results are described in this section.

3.1. Evaluation Metrics

Here, we explain two universally agreed and widely applied standard measures for evaluating
the object detection methods, namely the Precision–Recall Curve (PRC) and Average Precision (AP).
The first evaluation metric is based on the overlapping area between detections and ground truth.
The Precision measures the fraction of detections that are true positives and the Recall measures the
fraction of positives that are correctly identified. Let TP, FP, and FN denote the number of true
positives, the number of false positives, and the number of false negatives, respectively. The Precision
and Recall can be formulated as:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

In an object-level evaluation, detections are recognized as TP if the area overlap ratio α between
detections and ground truth object exceeds a predefined threshold λ by the formula

α =
Area(detection ∩ ground_truth)
Area(detection ∪ ground_truth)

> λ (7)

where Area(detection ∩ ground_truth) denotes the intersection of the detection and ground truth and
Area(detection ∪ ground_truth) denotes their union. Otherwise they are considered as FP. In addition,
if several detections overlap with the same ground truth object, only one is considered as the true
positive and the others are considered as false positives.

The second evaluation metric called AP is based on the area under the PRC. The AP computes the
average value of Precision over the interval from Recall = 0 to Recall = 1. Mean AP (mAP) computes
the average value of AP over all object categories. AP and mAP are used as the quantitative indicators
in object detection. Typically, the higher the AP and mAP is, the better the detection performance,
and vice versa.

3.2. Dataset and Implementation Details

To evaluate the performance of deformable Faster R-CNN, we conduct experiments on various
optical remote sensing datasets. We chose three datasets, including the NWPU VHR-10 [24], SORSI [25],
and HRRS [26] datasets. The NWPU VHR-10 dataset is a 10-class geospatial object detection dataset
that contains a total of 650 annotated optical remote sensing images in the manner of VOC 2007.
The ratios of training, validation and testing dataset are set to 20%, 20%, and 60%, respectively. Then,
we randomly selected 130, 130, and 390 images to fill these three subsets, respectively. To make the
model more robust to various input object sizes and shapes, each training image is sampled by the
following options: (1) Using the original/flipped input image; and (2) rotating the input image by an
angle step of 18◦. The SORSI dataset contains only two categories: Ship and plane which includes
5922 optical remote sensing images—5216 images for ship and 706 images for plane. The numbers of
this dataset in different classes are highly imbalanced, which poses great challenges for model training.
To make a fair comparison, the SORSI dataset is randomly split into 80% for training, and 20% for
testing as well. Some samples of these three datasets are shown in Figure 4. Besides, a more challenging
occlusion dataset is collected by Qiu et al., which is available on https://github.com/QiuWhu/Data.
This dataset includes 47 images with total 184 airplanes, 105 airplanes of which are partially occluded
by cloud or hangar or truncated by image border.
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(a) Some examples in NWPU VHR-10 dataset 

 
(b) Some examples in SORSI dataset 

 
(c) Some examples in HRRS dataset 

Figure 4. Example images of NWPU VHR-10/SORSI/HRRS datasets.

Adopting the alternating training strategy in this paper, we trained and tested both RPN and Fast
R-CNN on images of a single scale based on Caffe [27] in all of the experiments. The images were
resized such that their shorter side is 608 pixels under the premise of ensuring the longer side less
than 1024 pixels. We used the pre-training model ResNet-50 to initialize the network. The deformable
Faster R-CNN is constructed by substituting the standard convolution layer with a deformable
convolution layer in the last three-network stage. For other newly added layers, we initialized the
parameters by drawing weights from a zero-mean Gaussian distribution with standard deviation of
0.01. Furthermore, it is easy for our method to adopt Online Hard Example Mining (OHEM) [28]
during training. Assuming N proposals per image generated by RPN, in the forward pass, we evaluate
the loss of all N proposals. Then we sort all RoIs (positive and negative) by loss and select B RoIs that
have the highest loss. Back-propagation [29] is performed based on the selected proposals.

For the NWPU VHR-10 dataset, we trained a total of 80 K iterations, with a learning rate of 10−3 for
the first 60 K iterations, 10−4 for the next 20 K iterations. The iteration was halved for the SORSI
datasets. Weight decay and momentum were 0.0005 and 0.9, respectively. For anchors, we adopted
three scales with box areas of 162, 402, and 1002 pixels, and an aspect ratio of 1:1, which were adjusted
for better coverage of the size distribution of our optical remote sensing dataset. At the RPN stage,
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we sampled a total of 256 anchors as a mini-batch for training (128 proposals for the Fast RCNN stage),
where the ratio of positive to negative samples was 1:1. The evaluation metric is AP of each object and
mAP with the Interception-of-Union (IoU) threshold set to 0.5. Non-Maximum Suppression (NMS)
is adopted to reduce redundancy on the proposal regions based on their box-classification scores.
The IoU threshold is fixed for NMS at 0.7. All experiments were performed on Intel i7-6700K CPU and
NVIDIA GTX1080 GPU.

4. Experimental Results and Discussion

4.1. Quantitative Evaluation of NWPU VHR-10 Dataset

To evaluate the proposed deformable Faster RCNN with TCB quantitatively, we compared it with
the AP values with four state-of-the-art CNN-based methods: (1) A rotation-invariant CNN (RICNN)
model which considers rotation-invariant information with a rotation-invariant layer and other
fine-tuned layers; (2) the SSD model with an input image size of 512 × 512 pixels; (3) the R-P-Faster
RCNN [30] object detection framework; and (4) deformable R-FCN with the aspect ratio constrained
NMS. The results of these methods all come out of the previous papers [31].

As shown in Table 1, the proposed deformable Faster RCNN with TCB, which is fine-tuned on the
ResNet-50 ImageNet pre-trained model, obtains the best mean AP value of 84.4% among all the object
detection methods. It also indicates that our deformable faster RCNN with TCB achieves the best
AP values for most classes, except baseball diamond, harbor, and bridge. In particular, the AP values
of small objects like vehicle increase more than other objects, which illustrate the good performance
of our methods for small object detection. This will be further verified through the results on the
SORSI dataset in the next subsection. Compared with the second best method of deformable R-FCN
with arcNMS, the AP values of seven objects are increased, including airplane (0.873 to 0.907), ship
(0.814 to 0.871), storage tank (0.636 to 0.705), tennis court (0.816 to 0.893), basketball court (0.741 to
0.873), Ground track field (0.903 to 0.972), and Vehicle (0.755 to 0.888). Figure 5 plots the PRCs of our
method over ten testing classes, respectively. The recall ratio evaluates the ability of detecting more
targets, while the precision evaluates the quality of detecting correct objects rather than containing
many false alarms. Obviously, the ground track field obtains the best performance, in comparison to
other objects adopting the proposed method.

Table 1. The AP values of the object detection methods on the NWPU VHR-10 dataset.

Method RICNN SSD
R-P-Faster

R-CNN

Deformable
R-FCN

(ResNet-101)
with arcNMS

Deformable
Faster RCNN
(ResNet-50)
with TCB

Airplane 0.884 0.957 0.904 0.873 0.907
Ship 0.773 0.829 0.75 0.814 0.871

Storage tank 0.853 0.856 0.444 0.636 0.705
Baseball diamond 0.881 0.966 0.899 0.904 0.895

Tennis court 0.408 0.821 0.79 0.816 0.893
Basketball court 0.585 0.856 0.776 0.741 0.873

Ground track field 0.867 0.582 0.877 0.903 0.972
Harbor 0.686 0.548 0.791 0.753 0.735
Bridge 0.615 0.419 0.682 0.714 0.699
Vehicle 0.711 0.756 0.732 0.755 0.888

mean AP 0.726 0.759 0.765 0.791 0.844
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Figure 5. Precision versus recall curve for the proposed method over the NWPU VHR-10 dataset.

4.2. Quantitative Evaluation of SORSI Dataset

To verify the performance on detecting small objects in optical remote sensing images, we conduct
experiments on the SORSI dataset, only including two categories: Plane and ship. Besides, the areas of
bounding boxes falling in the ship category dominate from 102 to 502 pixels while those in the plane
category possess from 502 to 1002 pixels. In other words, the ship has smaller scale than the plane,
which indicates that detecting ships is considerably more challenging. The results of the baseline
come from [25]. From Table 2, it can be seen that the AP value for ship grows by five percentage
points while adopting the TCB module, which manifests the TCB module, which is significant to
detect smaller object. Besides, AP values for ship and plane steadily improves by one percentage point
when deformable convolution layers are used. In addition, the final AP values for all objects have a
big improvement while adding the OHEM mechanism in the training phase, especially for the ship
category. This demonstrates that the TCB module works well with the OHEM mechanism for detecting
small objects.

Table 2. The results of modified Faster R-CNN on SORSI dataset.

Method Baseline
Faster RCNN

with TCB

Deformable
Faster RCNN

with TCB

Deformable
Faster RCNN

with TCB
(+OHEM)

plane 0.729 0.778 0.792 0.862
Ship 0.850 0.826 0.831 0.903

mean AP 0.789 0.802 0.812 0.883

4.3. Quantitative Evaluation of HRRS Dataset

To verify the effectiveness of the proposed Random Covering on the partial occlusion problem,
experiments are conducted on the HRRS dataset. This dataset only includes one category: Airplane.
This dataset includes 47 images with total 184 airplanes, 105 airplanes of which are partially occluded
by cloud or hangar or truncated by image border. Therefore, we only randomly cover the images,
which contain one airplane at least. First, we conduct an experiment on the SORSI dataset. It is
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surprising that the AP value for plane gets improvement by 0.4 percentage points while the AP value
for ship remains unchanged. This shows that the proposed Random Covering can work well on an
un-occluded dataset and improve the generalization ability of our model. Second, all the images of the
HRRS dataset are tested by the previous model. Figure 6 shows a comparison of PRC while the model
trains with or without Random Covering. In addition, we count up the number of true positives for
the partially occluded objects, as illustrated in the Table 3. The results indicate that both the AP value
and the TP increase by a large margin while adopting the Random Covering in the training phase.
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Figure 6. Precision versus recall curve for the HRRS dataset with/without RC.

Table 3. The AP and #TP on the HRRS dataset with or without RC.

Method with RC without RC

AP/#TP 0.901/96 0.758/77

5. Conclusions

In this paper, a unified deformable Faster R-CNN is introduced for modeling geometric variations
in optical remote sensing images. Besides, we presented a transfer connection block aggregating
multi-layer features to produce a single high-level feature map of a fine resolution, which is significant
for detecting small objects. To improve the generalization ability of the CNN model and address the
occlusion problem, we proposed a simple data augmentation approach named Random Covering,
which was used in the training phase. Experiments conducted on three datasets show the effectiveness
of our method. In the future work, we will focus on the balance between the TCB module and
the average running time per image, and the effect of deformable convolution in the feature
extraction network.
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Abstract: Compared to multispectral or panchromatic bands, fusion imagery contains both the
spectral content of the former and the spatial resolution of the latter. Even though the Estimation
of Scale Parameter (ESP), the ESP 2 tool, and some segmentation evaluation methods have been
introduced to simplify the choice of scale parameter (SP), shape, and compactness, many challenges
remain, including obtaining the natural border of plastic greenhouses (PGs) from a GaoFen-2 (GF-2)
fusion imagery, accelerating the progress of follow-up texture analysis, and accurately evaluating
over-segmentation and under-segmentation of PG segments in geographic object-based image
analysis. Considering the features of high-resolution images, the heterogeneity of fusion imagery
was compressed using texture analysis before calculating the optimal scale parameter in ESP 2 in
this study. As a result, we quantified the effects of image texture analysis, including increasing
averaging operator size (AOS) and decreasing greyscale quantization level (GQL) on PG segments
via recognition of a proposed Over-Segmentation Index (OSI)-Under-Segmentation Index (USI)-Error
Index of Total Area (ETA)-Composite Error Index (CEI) pattern. The proposed pattern can be used to
reasonably evaluate the quality of PG segments obtained from GF-2 fusion imagery and its derivative
images, showing that appropriate texture analysis can effectively change the heterogeneity of a fusion
image for better segmentation. The optimum setup of GQL and AOS are determined by comparing
CEI and visual analysis.

Keywords: texture analysis; multi-resolution segmentation (MRS); greenhouse extraction;
over-segmentation index (OSI); under-segmentation index (USI); error index of total area (ETA);
composite error index (CEI); GaoFen-2 (GF-2)

1. Introduction

Extracting plastic greenhouse (PG) segments from well-segmented high-resolution imagery is
a basic goal for many applications, such as area monitoring, production forecast, and the accurate
inversion of land surface temperature; and it is more effective than traditional manual drawing when
many samples have to be selected as the reference polygons in large-scale research.

Segmentation, its evaluation, and texture analysis are crucial steps in geographic object-based image
analysis (GEOBIA). According to 254 case studies in Ma et al. [1], 80.9% used eCognition (Trimble,
Munich, Germany) for segmentation, whereas the remaining segmentation software mainly includes
ENVI (Harris Geospatial Solutions, Inc., Broomfield, USA), SPRING (National Institute for Space Research,
São José dos Campos, Brazil) and ERDAS (Hexagon Geospatial, Madison, USA). Generally, objects can
be obtained via chessboard, quadtree-based, contrast split, contrast filter, multi-threshold, superpixel [2–5],
watershed [6,7], and multi-resolution segmentation (MRS) [8,9] in eCognition software [10], or the
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active contours (snakes) [11–13] method in MATLAB (MathWorks, Natick, USA). MRS is most widely
and successfully employed method under the context of remote sensing GEOBIA applications [14–18].
Even though thematic vector data can improve the quality of the segmentation [19], the decision of the
optimal value of scale parameter (SP), shape, and compactness in MRS is not easy, since the conventional
try-and-evaluate method [19,20] is too complicated, time consuming, and provides incomplete results.
Therefore, Estimation of Scale Parameter (ESP) and ESP 2 are methods that have been introduced to
calculate variance among segmentation results that are produced by the given shape, compactness,
and step-changing scale levels. ESP estimates the SP for MRS on single-layer image data or other continuous
data (e.g., digital surface models) semi-automatically [21], and ESP 2 can automatically obtain optimal
scale parameter (OSP) on multiple layers [22]. As an updated version, ESP 2 has been adopted to find
the specific scale levels for specific target objects [23], and is also employed to determine the optimal
parameters for extracting greenhouses from WorldView-2 and WorldView-3 multispectral imagery [17,18].
The segmentation results of GaoFen-2 (GF-2) multispectral and panchromatic fusion imagery based
on the ESP 2 tool still do not meet the requirements for the degree of over-segmentation and struggle
to delineate the natural boundary of PGs, which is an obstacle to fully using the panchromatic band.
Namely, over-segmentation and under-segmentation [14,24] are still two critical issues for PG segments,
which is called problem I.

The pixels of one class display some texture features that differ from other categories in
satellite imagery. To illustrate, textural information can be used as an additional band to improve
the object-oriented classification of urban areas in Quickbird imagery [25]; however, a similar
pixel-based maximum likelihood PG classification in Agüera et al.’s research [26] showed that the
inclusion of a band with texture information did not significantly improve the overwhelming majority
quality index values compared to those found when only multi-spectral bands were considered.
Another object-based work conducted by Hasituya et al. [27] showed that adding textural features
from medium-resolution imagery provides only limited improvement in accuracy, whereas spectral
features more significantly contribute to monitoring plastic-mulched farmland. Some researchers
treated the grey-level co-occurrence matrix (GLCM) [28] parameter values as available features of
separated objects for sample training [20,29]. However, these schemes were executed in a so-called
“black box” without a practical physical mechanism, so they are not easily reproducible for another
similar task. The recognition and use of texture information in eCognition is another formidable
time-consuming task [10], even if optimal SP, shape, and compactness are derived from ESP or ESP
2 based on initial fusion imagery. As an ancillary feature for mapping greenhouses, texture should be
further studied both in pixel-based and object-based extraction, which can be called problem II.

Purposive preprocessing operations based on pixel-level imagery are important prior to MRS.
Apart from frequently-used orthorectification, radiometric and atmospheric correction [18], and pan
sharpening, texture analysis of these images can also generate derivative input data, and then influence
the results of MRS. Thus, our first process involved compressing the heterogeneity of the fusion image by
different texture analysis to produce some derivative images, and then exploring what effects image texture
analysis would exert on PG segments. This led to our second idea that, in order to compare the accuracy of
different PG segments, a reliable evaluation system is indispensable, which can be called problem III.

Many evaluation methods have been proposed. Depending on whether a human evaluator
examines the segmented image visually or not, Zhang et al. [30] introduced a hierarchy of segmentation
evaluation methods and a survey of unsupervised methods. Zhang et al. [31], Gao et al. [32],
and Wang et al. [33] each proposed novel unsupervised methods respectively to evaluate the
segmentation quality; however, these methods still need supervised evaluation for verification.
Supervised evaluation [34–36], also known as relative evaluation [37], is a method used for comparing
the resulting segments against a manually-delineated reference polygons. For instance, Lucieer
et al. [38] quantified the uncertainty of segments by those with the largest overlapping area with
corresponding reference polygons. Möller et al. [39] and Clinton et al. [40] used the area of each
overlapping polygon partitioned by segments and reference polygons. Persello et al. [41] and
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Marpu et al. [24] used the largest area of overlapping polygons. Clinton et al. [40] also summarized
goodness, area-based, location-based, and combined measures that facilitate the identification of
optimal segmentation results relative to a training set. Marpu et al. [24] provided a detailed view
of the segmentation quality in respect to over- and under-segmentation compared with reference
polygons, which proved that MRS performs well under a reasonable SP. Liu et al. [42] proposed
three discrepancy indices—Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR),
and Euclidean Distance 2 (ED2)—to measure the discrepancy between the reference polygons and
the corresponding image segments. PSE, NSR and ED2 were used [43] and adopted by Aguilar
et al. [17] and Gao et al. [44] to evaluate the effects of different segmentation parameters on MRS,
and modified by Novelli et al. [45] to the evaluation of object-based greenhouse detection. Cai et
al. [46] presented four kinds of supervised measurement methods based on area, object number, feature
similarity, and distance to study the influence of different object characteristics on extraction accuracy.
With defined variables, the pros and cons of these supervised evaluation methods are discussed in
Section 3.4. of this paper, and more detailed reviews of accuracy assessment for object-based image
analysis can be found in Ye et al. [47] and Chen et al. [48].

The three main contributions of this study were: (1) to improve the PG segments derived from
eCognition, we tried a two texture analysis method that involved increasing AOS or decreasing GQL prior
to MRS; (2) to evaluate the quality of PG segments generated from different derivative images, we designed
a supervised evaluation pattern named the Over-Segmentation Index (OSI)-Under-Segmentation Index
(USI)-Error Index of Total Area (ETA)-Composite Error Index (CEI) based on pixel level and independent
from the number of manual delineated reference polygons; and (3) to prove the availability of the proposed
pattern, we compared it with several supervised evaluation methods theoretically, and contrasted it with
the PSE-NSR-ED2 method by numerical and visualized analysis.

The remainder of this paper is organized as follows: Section 2 introduces the study area and data
source, Section 3 explains the methodologies applied in the analysis, Section 4 outlines the effects of
image texture analysis on PG segments via recognition of the OSI-USI-ETA-CEI pattern and explains
our hypothesis, Section 5 discusses several key points and provides a comparison of our method with
some related methods, and Section 6 summarizes the conclusions.

2. Study Area and Data Sets

2.1. Study Area

This study was conducted in Shouguang City, Shandong Province, P.R.China, which is an
agricultural region called the "hometown of Chinese vegetable greenhouses" (Figure 1).

Figure 1. Location of the study area on a Red-Green-Blue GaoFen-2 image taken on 25 April 2016.
Coordinate system: WGS_1984_UTM_Zone_50N.
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The study area (36◦44′40”N and 118◦49′0”E) was chosen for these reasons: (a) greenhouses are
the main local production mode and are developing rapidly in Shouguang City; (b) even though the
greenhouses account for nearly half the area in the selected region, they are adjacent to various land
cover types such as water, trees, buildings with high reflectance, residences, and barren land, which
form a representative common image; and (c) both continuous and scattered greenhouse can be found
in the selected region.

2.2. GF-2 Data and Pretreatment

As shown in Figure 1, the GF-2 imagery selected in this study was acquired on April 25, 2016,
which is a high-yield period for greenhouse crops [49].

GF-2 is equipped with two high-resolution scanners with 1 m panchromatic and 4 m multispectral,
and was launched on August 19, 2014. GF-2 started imaging and transmitting data on August 21, 2014.
Table 1 introduces the payload parameters of the GF-2 satellite [50].

Table 1. Payload parameters of GF-2 satellite

Camera Band No.
Spectral

Range (μm)
Spatial

Resolution (m)
Swath Width

(km)
Side-Looking

Ability
Repetition

Cycle (Days)

Panchromatic 1 0.45–0.90 1

45 (2 Camera
Stitching with) ±35◦ 5

Multispectral

2 0.45–0.52

4
3 0.52–0.59
4 0.63–0.69
5 0.77–0.89

To take full advantage of both panchromatic and multispectral bands, the first pretreatment step is
Rational Polynomial Coefficients (RPC) orthorectification, and then image fusion. The Gram-Schmidt
Pan Sharpening method in ENVI 5.3 was adopted in this study, and the depth of the resulting fusion
image is 16 bits; thus, the greyscale quantization level (GQL) of the GF-2 fusion imagery is 65,536 (216).

The computer employed in the experiments had the following specification:

(1) Processor: Intel® Core™ i7-8700K CPU @ 3.70GHz (12 CPUs);
(2) Graphics adapter: NVIDIA® GeForce® GTX™ 1080 Ti, 11 GB;
(3) Memory: SAMSUNG® DDR4 2400MHz, 2 × 8 GB and SAMSUNG® DDR4 2400MHz, 2 × 16 GB;
(4) Hard disk: SAMSUNG® MZVLW256HEHP-000H1, 256 GB and Seagate® ST2000DM001-1ER164,

2 TB;
(5) Operating system: Microsoft® Windows® 10 Professional, 64-bit.

2.3. Reference Polygons and Field Validation

To verify extraction results, reference polygons were first manually delineated from the
GF-2 fusion image. Polygons that were hard to judge whether or not they represent greenhouses from
the image were validated or amended by field investigation. To illustrate, four verification points are
demonstrated in Figure 2. Three statistical parameters of the reference polygons were obtained in
ArcGIS 10.3 (Esri, Redlands, CA, USA): the number of reference polygons was 151, and the summation
area was 1,659,078 m2, and the total area of study area was 4,000,000 m2.
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(a) (b)

(c) (d)

Figure 2. Sketch map of field validation, reference polygons, and (a) abandoned greenhouse covered
with weeds and shrubs, (b) greenhouses with some pixels with high reflectance, (c) unsheathed
greenhouses, and (d) another shed used for storage, which is much taller than greenhouses.

3. Methodology

A flowchart of experiment design, methods, variables, and indicator system for the evaluation of
the effects of texture analysis on PG segments is shown in Figure 3.

Figure 3. Flowchart of experiment design, methods, variables, and indicator system.
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3.1. Texture Analysis

Texture is the visual effect caused by spatial variation in tonal quantity over relatively small
areas [51], among which the homogeneity and heterogeneity are a pair of coupled features.
Even though homogeneity is more frequently employed in texture analysis, we choses the concept of
heterogeneity to explain our method and enable understanding. The definition of heterogeneity refers
to the distinctly nonuniformity in composition or character (i.e. color, shape, size, texture, etc.)

PG can be more discernible in very high resolution satellite imageries such as Quickbird,
Worldview, and GF-2, whereas the heterogeneity is a nonnegligible obstacle when segmenting these
images based on GEOBIA. If the heterogeneity of a PG surface can be compressed, a better segmentation
result might be derived from the processed image. Considering the nature of heterogeneity in a digital
number image, image preprocessing that increases the average operator size (AOS) or decrease the
greyscale quantization level (GQL) is the method used to produce derivative images with different
heterogeneities in this study.

For an averaging operator [11], the template weighting functions are unity (such as 1/9 in AOS 3
× 3). The goal of averaging is to reduce noise, which is its foundation for compressing the heterogeneity.
Averaging is a low-pass filter, since it allows low spatial frequencies to be retained and to suppress
high frequency components. The size of an averaging operator is then equivalent to the reciprocal of
the bandwidth of the low-pass filter it implements. A larger template, say 11 × 11 or 13 × 13, will
remove more noise (high frequencies) but reduce the level of detail.

The GQL size is dependent on the maximum quantization level in a monochromatic image or
a single channel of a multichannel image. It can be decreased according to the assigned maximum
quantization level and a particular weighted combination of frequencies, which is a redistribution
of the greyscale value at each pixel, so that the values can be clustered in a certain range if they are
spread over a broad range. As long as GQL decreases, the heterogeneity of each band is compressed.

By increasing AOS or decreasing GQL, information of the pixel’s neighborhood can be effectively
used, preceding the MRS. To evaluate the effects of AOS and GQL on MRS segmentation, four increased
AOSs (3 × 3, 5 × 5, 7 × 7, and 9 × 9) and three decreased GQLs (128, 64, and 32) were adopted to
produce another 19 images based on the initial fusion imagery (GQL initial). Hence, there were 20 input
data that were used for segmentation, rather than merely evaluating the segmentation results from the
sole data source.

The 19 derivative images were also produced in ENVI 5.3, in which the co-occurrence measures
tool can simultaneously change the AOS and GQL of multi-bands among GQL initial, 64, and 32.
The derivative images of GQL 128 were produced using the stretch tool, and averaging operations on
GQL 128 were conducted using low pass convolution filters, since the co-occurrence measures tool
does not support the conversion between GQL initial and GQL 128.

3.2. MRS via ESP 2 Tool

MRS in eCognition is based on the Fractal Net Evolution Approach (FNEA) principle and is
widely used for segmentation. It is a region-growing process, and the optimization procedure starts
with single-image objects of one pixel and repeatedly merges them in pairs to larger units until an
upper threshold is not exceeded locally [8,17,18]. For this purpose, a scale parameter (SP) is proposed
to adjust the threshold calculation. Higher values of the scale parameter would result in larger image
objects, and smaller values result in smaller image objects. The basic goal of an optimization procedure
is to minimize the incorporated heterogeneity at each single merge [8]. If the resulting increase in
heterogeneity when fusing two adjacent objects exceeds a threshold determined by the SP, then no
further fusion occurs, and the segmentation stops [33]. The SP criteria are defined as a combination of
shape and color criteria (color = 1 − shape), whereas shape is interiorly divided as compactness and
smoothness criteria; thus, the three parameter values that must be set are SP, shape, and compactness.

ESP 2 is a generic tool for eCognition software that employs local variance (LV) to measure the
difference in the MRS under increment scales [22]. When the LV value at a given level (LVe) is equal
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to or lower than the value recorded at the previous level (LVe−1). The level e − 1 is then selected as
the OSP for segmentation. Based on this concept, ESP 2 can help derive the dependent SP, whereas
shape and compactness can be deduced from the try-and-error experiment within different assessment
systems [17,18], which recommend obtaining the SP parameter by fixing the compactness at 0.5 and
the testing shape values around 0.3.

Since this study focused on the effect of texture analysis on MRS, the uniform shape and
compactness were set to 0.3 and 0.5, respectively. Thus, the OSP was automatically calculated by the
ESP 2 tool with the algorithm parameters set as shown in Table 2. The Level 1 and its segments in the
exported results were adopted for the next step of analysis.

Table 2. Algorithm parameters and settings in the ESP 2 tool.

Parameter Value Parameter Value

Use of Hierarchy (0 = no; 1 = yes) 1 Starting scale_Level 3 10
Hierarchy: TopDown = 0 or BottomUp = 1? 1 Step size_Level 3 100

Starting scale_Level 1 10 Shape (between 0.1 and 0.9) 0.3
Step size_Level 1 1 Compactness (between 0.1 and 0.9) 0.5

Starting scale_Level 2 10 Produce LV Graph (0 = no; 1 = yes) 1
Step size_Level 2 10 Number of Loops 200

3.3. Extraction of PG Segments

As different derivative images required different samples, features, parameters, or threshold values
in automatic extraction, and ensuring good quality is difficult, the greenhouse objects in this study were
manually selected by artificial visual interpretation using the single select button on the manual editing
toolbar in eCognition 9.0, so that each segmentation object can be as precisely evaluated as possible.
Theoretically, manual extraction would have a maximum precision on the criterion of geometric accuracy,
but this is only credible for the criterion of the area, since, in other methods, the commission area also has a
probability of offsetting the omissions while the geometric error can only be accumulated.

The principle used to assign an object as a greenhouse is when the proportion of greenhouse
area is more than 60% [24] and the feature of other categories is negligible from visual analysis.
Otherwise, the object’s feature is deemed to be unusable to extract the greenhouse contained within,
which would be evaluated as omission error in follow-up work.

After exporting from eCognition 9.0, two statistical parameters of the extracted PG segments were
obtained in ArcGIS 10.3: number of PG segments and summation area.

3.4. Establishment of OSI-USI-ETA-CEI Pattern

3.4.1. Case Study and Variable Definition

To better understand the problems in PG segmentation, the definitions of variables, and the
establishment of OSI-USI-ETA-CEI pattern, five cases of PG segments that were extracted from initial
GF-2 fusion imagery and four derivative images are demonstrated in Figure 4, and all images were
segmented under their optimal scale parameter provided by the ESP 2 tool. Notably, these cases cannot
represent the segmentation quality of a whole image.

Without decreasing the GQL, the degree of over-segmentation of the PG segments that were extracted
from the initial GF-2 fusion imagery (Figure 4a) or images derived from the treatment of AOS 3 × 3
(Figure 4b) are much worse than those extracted from other derivative images (Figure 4c–e), since the
dark and the sunny sides of the PG in the two images are segmented as different parts, making it hard to
delineate the PGs’ boundaries, which is not convenient for subsequent feature recognition and extraction.

Apart from the number of PG segments, the number and area of the fragments (the smaller
polygons that are partitioned jointly by reference polygons and PG segments) are also need to be
explored in depth.
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(a) (b)

(c) (d)

(e)

Figure 4. (a) Reference polygon and PG segments resulting from initial GF-2 fusion imagery and
overlapping polygons, lost fragments, extra fragments, and derivative images resulting from the
treatment of (b) GQL initial and AOS 3 × 3, (c) GQL 128 and AOS 3 × 3, (d) GQL 64 and AOS 3 × 3,
and (e) GQL 32 and AOS 3 × 3.

To parameterize the relationship between the reference polygons and PG segments, four
quantity-based variables, seven area-based variables and their assemblies were defined in Table 3:
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Table 3. Four quantity-based variables, seven area-based variables and their assemblies.

Variable Definition

m total number of reference polygons

v total number of PG segments

n number of reference polygons that have no PG segments overlapping with them, n ≤ m

ux x-th number of corresponding segments found for one single reference geometry, x ∈ (0, m − n] [45]

ri i-th reference polygon of assembly R; R indicates the real area of PG, i ∈ (0, m]

sj j-th extracted PG segment of assembly S; S indicates the extraction area of PG, j ∈ (0, v]

ok k-th polygon of assembly O; O indicates the overlapping area between R and S, O = R ∩ S

bsh

h-th element of Biggest Segments (BS); BS is the assembly of PG segments representing the biggest
overlapping polygon within its corresponding reference polygon, indicating the total area of biggest

segments, BS ⊆ S

boh

h-th element of Biggest Overlaps (BO); BO is the assembly of overlapping polygons where each is
partitioned by every bsh and its corresponding reference polygon, indicating the total area of biggest

overlaps, BO ⊆ O

lfp
p-th element of Lost Fragments (LF); LF is the assembly of fragments where each is part of R and also
part of a segment that cannot represent PG (fragments in R but outside of O, which are shown in coral

red in Figure 4), LF indicates the total area of lost fragments [24]

efq
q-th element of Extra Fragments (EF); EF is the assembly of fragments where each is part of S but not
part of R itself (fragments in S but outside O, shown in dark green in Figure 4), EF indicates the total

area of extra fragments [24]

It is generally thought that a high-quality image segmentation should result in a minimum amount
of over- and under-segmentation, and different area-based or number-based indicators have been
designed based on selected samples and their corresponding reference polygons [14,24,39,41–43,45,52],
which we rewrote using variables defined above for comparison, as shown in Table 4.

Table 4. Different area-based or number-based indicators of over- and under-segmentation.

Year Reference Over-Segmentation Under-Segmentation

2002 Lucieer et al. [38] ri−bsh
ri

> 0 ri−bsh
ri

< 0
2007 Möller et al. [39] ok

ri

ok
sj

2010 Clinton et al. [40] 1 − ok
ri

1 − ok
sj

2010 Persello et al. [41] 1 − boh
ri

1 − boh
sj

2010 Marpu et al. [24] boh
ri

lfp
ri

,
ef q
ri

2012 Liu et al. [42] NSR = |m−v|
m PSE = EF

R

2016 Novelli et al. [45]
NSRnew =

|m−v−n×max(ux)|
m−n

PSEnew =
EF+n×max(ef q)

∑m−n
i=1 ri

Some feature similarity-based, location-based or distance-based [41,46] methods are available
for measuring the quality of segmentation, but these methods only work when segments have an
approximately one-to-one relationship with the reference polygons, whereas the segmentation results
of continuous greenhouses always have the relationship with the reference of poly-to-one.

The OSI-USI-ETA-CEI pattern is based on the reference polygons that were manually delineated
in Section 2.3. and the PG segments extracted in Section 3.3. The method is designed for evaluating
the segmentation quality of PG segments from images with different heterogeneities. In short, OSI
denotes the extent to which the number of PG segments may affect the USI and ETA, USI indicates the
absolute geometric error of PG segments, ETA indicates the discrepancy in the total area between PG
segments and reference polygons, and CEI indicates the composite error.
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3.4.2. Over-Segmentation Index (OSI)

Segmentation results that are over-segmented are more likely to cause omission and commission
errors in follow-up classification because the number and some feature values (like mean value)
of both the interested and non-interested objects that are over-segmented would range widely
compared with those that are not over-segmented. An extreme example of this is when an image
is segmented on the pixel level. Even though it is much easier to compare the number rather
than other feature values for two assemblies of polygons, indicators that compare the number of
reference polygons with segments [17,18,42–45] and that compare the area of a reference polygon with
its biggest corresponding segment [24,38,53] were both designed or applied in over-segmentation
analysis. However, these criteria are designed for pursuing perfect segmentation that is similar
to manually delineated reference polygons, which is not suitable for evaluating the segments of
continuous PGs since drawing those reference polygons is different from segmenting an image.
Reference polygons prefer to draw the outline of a single or continuous greenhouse rather than divide
pixels with different grey levels, whereas segmentation prefers the latter, especially when some pixels’
material or Bidirectional Reflectance Distribution Function (BRDF) varies significantly from their
surrounding pixels. To manually draw the outline of continuous greenhouses is so subjective that it is
hard to determine the size of a reference polygon as well as the total number of reference polygons,
i.e., no wonderful polygons can be used to define whether a segmentation is over-segmented or
not. A similar view was reported by Zhang et al. [30]. Thus, continuous greenhouse extraction in
high-resolution imagery does not require a similar segment number compared to the manual reference
polygons, nor accordant outlines or even skeletons (Figure 4). However, we should consider counting
the segment numbers in the initial fusion imagery as an effective reference to assess over-segmentation
instead, since the high heterogeneity among greenhouse pixels in an initial fusion image tends to
lead to the worst over-segmenting result compared with derivative images with lower heterogeneity.
Therefore, the segment numbers of the initial fusion imagery under its OSP using ESP 2 can be regarded
as ancillary data of reference polygons in Section 2.3. The ancillary data provides a numerical reference
and the manually delineated polygons provides a geometric reference.

Synthesizing the situation stated above, over-segmentation of PG segments is indicated by a new
OSI in this study, which is a relative value calculated by Equation (1):

OSI =
v
v1

(1)

where v denotes the number of extracted PG segments when the corresponding image is under the
optimal segmentation using ESP 2 tool, v1 denotes the number of PG segments extracted from the initial
GF-2 fusion image, and vt+1 denotes the number of PG segments extracted from the t-th derivative
image. A higher OSI indicates a larger error of over-segmentation.

3.4.3. Under-Segmentation Index (USI)

When an image is over-segmented, it is still possible to construct the object, but when an image is
under-segmented, the object may not be recovered [24]. Under-segmentation is more worthwhile to be
exactly evaluated.

From Figure 4, both lost and extra fragments are shown to have many members with very tiny
areas, and the boundaries of the reference polygons usually have fewer polylines than that of PG
segments. The number of lost and extra fragments are not only caused by geometric errors but also
changed by how we draw the outline of single or continuous greenhouses, so it is not appropriate to
neither count the number nor calculate the mean value of those fragments [24] when evaluating the
geometric errors of continuous greenhouses.

In general, the area of extra-segments are parts of under-segmentation error according to some
studies (Table 4), as the PG segments should slice those pixels that are not representing a PG.
However, lost fragments can be considered as a result of under-segmentation of those segments
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that do not contain enough PG pixels, i.e., the lost fragments can be regarded as the extra fragments of
another category (Figure 4). Therefore, it is necessary to adequately evaluate both the LF and EF error
rather than to consider only one and then combine the two errors into a single index (USI) to indicate
the intension of under-segmentation of PG segments. The theoretical value should range between zero
and one. The index can be calculated as:

USI =
LF + EF

R
(2)

where LF, EF, and R are the total area of lost fragments, extra fragments, and the real area of PG,
respectively. A higher USI indicates a larger under-segmentation error.

3.4.4. Error Index of Total Area (ETA)

Lost and extra fragments have an opposite influence on the final area of extraction even though
both directly contribute to the under-segmentation. Although area-based measures were discussed
in Clinton et al. [40] and some new measures based on area were designed after that [24,42,46],
these sample-based studies only focused on the proportion of the omission or commission area in
a segmentation, but the percentage of the difference in the total area between segmentation results
and corresponding reference polygons seems to be ignored, which should be fully considered when
evaluating the precision of the total area of extraction and the consequence of under-segmentation.
Thus, the Error Index of Total Area (ETA) can be used to indicate the discrepancy, which can be
calculated by:

ETA =
|S − R|

R
=

|EF − LF|
R

(3)

where S denotes the summation area of extracted PG segments when corresponding image is under the
optimal segmentation using the ESP 2 tool, S1 denotes the summation area of PG segments extracted
from the initial GF-2 fusion image, and St+1 denotes the summation area of PG segments extracted
from the t-th derivative image. A higher ETA value indicates a larger total area error.

3.4.5. Composite Error Index (CEI)

In general, the more the PG segments are over-segmented, the larger the omission and commission
error produced indirectly in automatic classification or extraction. Under-segmentation causes
geometric errors and directly leads to an area difference from the reference. Given this consideration,
a new CEI is presented in Equation (4) to consider the composite error of segmentation results when
comparing to a set of reference polygons:

CEI = λ × OSI + USI + ETA (4)

where λ is a possible weight used to rescale the value of quantity-based OSI so that the indicator will
not overwhelm the value of area-based USI and ETA; thus, the OSI multiplied by λ denotes the indirect
influence of the number of PG segments on extraction in CEI.

When omission or commission segments in an extraction are generated due to over-segmenting,
their geometric error and area difference from the real value (indicated by USI and ETA, respectively)
couple on the extraction. Thus, the value of λ in this study is defined as the sum of USI and ETA as:

λ = USI + ETA (5)

4. Results

4.1. Derivative Images with Different Heterogeneities

We provide two images (Figure 5) as examples to show the visual disparity of different
heterogeneities. Even though there is no significant difference at first sight, some subtle distinctions can
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be found from the white roof (in red frame), and the texture in image that derived from the treatment
of GQL 64 and AOS 3 × 3 is more distinct than in initial GF-2 fusion imagery. Details emerge in the
images as long as they are segmented (Figure 6).

(a) (b)

Figure 5. (a) Initial GF-2 fusion imagery; (b) image derived from the treatment of GQL 64 and AOS 3 × 3.

4.2. PG Segments in Images with Different Heterogeneities

Seven sets of PG segments are shown in Figure 6 as examples to demonstrate the visual disparity.
The number of PG segments extracted from initial fusion imagery is outdistancing the other situations
as well as reference polygons. Another significant difference is the number of segments of the white
roof (in red frame). In Figure 6a–c, the roof’s boundary is hard to distinguish from the thumbnails,
while the other examples are much better. The boundaries of the PG segments in Figure 6c,d are more
orderly both horizontally and vertically, which conforms to the outlines of the greenhouses, whereas
the segmentation results in Figure 6e–g irregularly delineate the greenhouses.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

(g)

Figure 6. (a) PG segments based on initial GF-2 fusion imagery; and derivative images as well as PG
segments resulting from the treatments of (b) GQL initial and AOS 3 × 3, (c) GQL 128 without an
averaging operator, (d) GQL 128 and AOS 3 × 3, (e) GQL 64 without an averaging operator, (f) GQL
64 and AOS 3 × 3, and (g) GQL 32 without an averaging operator.
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Apart from the examples in Figure 6, the indicator values of each set of PG segments that were
extracted from different images are shown in Table 5, while the summation area of reference polygons
(R) was 1,659,078 m2, and OSP is the optimal scale parameter calculated by the ESP 2 tool with fixed
shape of 0.3 and compactness of 0.5. We use DIF denotes the value of CEI of each set of PG segments
minus that of PG segments of the initial fusion imagery.

Table 5. Indicator values of each set of PG segments that were extracted from different images.

GQL AOS OSP v S (m2) LF (m2) EF (m2) OSI USI ETA CEI DIF

initial none 81 3007 1,690,287 86,211 117,420 1.000 0.123 0.019 0.283 0.000
3 × 3 103 1737 1,659,104 109,546 109,572 0.578 0.132 0.000 0.208 −0.075
5 × 5 161 711 1,733,075 89,339 163,336 0.236 0.152 0.045 0.243 −0.040
7 × 7 197 446 1,710,681 114,154 165,757 0.148 0.169 0.031 0.229 −0.054
9 × 9 151 507 1,693,593 122,930 157,805 0.169 0.169 0.021 0.222 −0.061

128 none 82 808 1,700,510 102,356 143,788 0.269 0.148 0.025 0.220 −0.063
3 × 3 94 561 1,660,182 128,221 129,325 0.187 0.155 0.001 0.185 −0.098
5 × 5 109 380 1,679,966 133,606 154,494 0.126 0.174 0.013 0.210 −0.073
7 × 7 100 400 1,689,608 123,859 154,389 0.133 0.168 0.018 0.211 −0.072
9 × 9 115 267 1,703,666 117,728 162,316 0.089 0.169 0.027 0.213 −0.070

64 none 50 457 1,781,987 87,601 210,510 0.152 0.180 0.074 0.292 0.009
3 × 3 56 352 1,796,653 90,983 228,558 0.117 0.193 0.083 0.308 0.025
5 × 5 64 255 1,827,083 83,023 251,028 0.085 0.201 0.101 0.328 0.045
7 × 7 67 250 1,870,392 72,295 283,609 0.083 0.215 0.127 0.370 0.087
9 × 9 82 171 1,903,843 81,584 326,349 0.057 0.246 0.148 0.416 0.133

32 none 31 821 1,738,822 103,795 183,539 0.273 0.173 0.048 0.282 −0.001
3 × 3 39 527 1,793,144 96,658 230,724 0.175 0.197 0.081 0.327 0.044
5 × 5 46 355 1,773,550 130,505 244,977 0.118 0.226 0.069 0.330 0.047
7 × 7 49 361 1,792,180 119,801 252,903 0.120 0.225 0.080 0.341 0.058
9 × 9 46 379 1,802,023 110,171 253,116 0.126 0.219 0.086 0.344 0.061

The experiment was designed to find the optimal set of GQL and AOS, which could result in
optimum PG segments for the extraction. PG segments in derivative image with the treatment of GQL
128 and AOS 3 × 3 has the lowest CEI, which is consistent with visual analysis in Section 3.

4.3. Effects of Image Texture Analysis on PG Segments

4.3.1. Effects of Increasing AOS on PG Segments

Images under four kinds of GQLs can be employed to process by four AOSs, so we could evaluate
the effects of increasing AOS on PG Segments as Figures 7 and 8 shown.

Figure 7. Effects of increasing AOS on PG segments using the area of lost and extra fragments.

With the increase in AOS (Figure 7), both the sum of LF and EF (related to USI) and the distances
between them (related to ETA) have relatively low values under the treatments of GQL initial and
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GQL 128 than that of GQL 64 and GQL 32. Variation of LF and EF is the foundation to understand the
value of USI and ETA, while the sum of USI and ETA is main source of CEI (Figure 8).

Figure 8. Effects of increasing AOS on PG segments using the OSI-USI-ETA-CEI pattern.

For GQL initial and GQL 128, the AOS 3 × 3 setup can let the values of ETA and CEI
reach their minimum simultaneously, and significantly decrease the value of OSI, whereas USI
increases somewhat.

For GQL 64 and GQL 32, the increase in AOS lead to the increase in CEI, which was not expected.
For each kind of GQL, the increase in AOS lead to opposite change trends of USI and OSI, whereas

CEI had the same with ETA. The curves under GQL 128 are smoother and steadier than other GQLs
with increasing AOS.

4.3.2. Effects of Decreasing GQL on PG Segments

Five AOS setups were used to evaluate the effects of decreasing GQL on PG Segments as shown
in Figures 9 and 10.

Figure 9. Effects of decreasing GQL on PG segments using the area of lost and extra fragments.

Similar to Figure 7, Figure 9 demonstrates the superiority of GQL initial and GQL 128 on both the
sum of LF and EF (related to USI) and the distances between them (related to ETA), which shows the
lower omission and commission errors of PG segments than GQL 64 and GQL 32.

From Figure 10, the treatment of GQL 128 has the lowest CEI values under each setup of AOS
compared to other GQLs, among of which AOS 3 × 3 produced the minimum value.
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Figure 10. Effects of decreasing GQL on PG segments using the OSI-USI-ETA-CEI pattern.

4.3.3. Combined Effects of AOS and GQL on PG Segments

Compared with the initial fusion imagery, the increase in AOS and the decrease in GQL can reduce
the influence of over-segmentation but can also increase the error of both under-segmentation and the
extraction area. An interaction of the effects occurs among OSI, USI, and ETA, all of which synthetically
decide the CEI.

After the treatment of different AOSs on GQL initial and GQL 128, the CEI was reduced by 4.0 to
9.8% compared to the initial fusion imagery, whereas the treatment of different AOSs on GQL 64 and
GQL 32 increase the CEI by 0.9 to 13.0%, except that of GQL 32 without an averaging operator, which
was very close to the initial fusion imagery with only a 0.1% reduction.

Thus, the optimum texture analysis setup for GF-2 fusion imagery is GQL 128 and AOS 3 × 3,
since the PG segments of the derivate image can reduce the CEI by 9.8% than PG segments of the
GF-2 fusion imagery.

5. Discussion

Since the segmentation results from the initial fusion image are highly fragmented compared with
the boundary of real-world entities, compressing the heterogeneity of adjacent pixels before segment
was notable. To improve the PG segments derived from eCognition, the innovation of our method is
that we evaluate the effects of texture analysis on PG segments using OSI-USI-ETA-CEI pattern, based
on the nature of segmentation and heterogeneity in a digital number image.

5.1. Evaluation Problems

Several problems need to be considered when measurement methods are used for the evaluation
of PG segments.

First, the confusion matrix is a common method for evaluation or verification, but in object-based
extraction, a problem occurs for each segmented object: omission and commission errors may coexist
compared to the reference polygon. Thus, the extraction result cannot be accurately evaluated by choosing
those segmented objects with an inaccurate boundary as the true values [19,20]. Each greenhouse object’s
omission and commission errors should be considered on the pixel-based rather than the object-based level.

If the specified proportion of a greenhouse that is adopted to define a segment as a PG increases
or reduces, the percentage of LF and EF would change either [24].

As a non-negligible indicator, the difference in the area between the extraction results and the
reference polygons must also be evaluated quantitatively.
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5.2. Comparison with Related Evaluation Research

Several pointed discussions in Section 3.4. theoretically explained why the OSI-USI-ETA-CEI
method differs from existing indexes, which is summarized in Table 6. Notably, the existing indexes
are designed based on scattered reference polygons and the corresponding overlapped PG segments,
whereas the OSI-USI-ETA-CEI method in this study was built on the whole image.

Table 6. Comparing the OSI-USI-ETA-CEI pattern with related evaluation research.

Proposed Pattern Comparation with Related Evaluation Research

OSI
Calculated by the ratio of the number of PG segments of derivate image to the number of

PG segments of initial fusion imagery, instead of ignoring the impact of the number,
or assuming the delineated polygons have a dependable quantity

USI Calculated by the proportion of area of lost and extra fragments together as a consequence
of under-segmentation, instead of calculating only one of them or separately

ETA Considers the difference in area between extraction results and reference polygons

CEI Rescale the OSI by geometry and area discrepancy first and then simply sum the rescaled
OSI with USI and ETA up, instead of calculating the Euclidean Distance of indicator values

Even though the effect of different shape and compactness values on PG segments are not
discussed in this study, we selected them on the basis of Aguilar et al. [17,18], which considered
ESP 2 to be an effective tool on PG segmentation. Aguilar et al. [17] evaluated the effects of shape
and compactness on the quality of PG segments by the ED2 in Equation (6), and Aguilar et al. [18]
compared the PG segments derived from multispectral, panchromatic, and atmospheric correctional
multispectral orthoimages under different shape and compactness values by the modified ED2 in
Equation (7):

ED2 =
√

PSE2 + NSR2 (6)

modi f ied ED2 =
√

PSE2
new + NSR2

new (7)

where PSE, NSR, PESnew, and NSRnew were defined in Section 3.4.1.
The ED2, modified ED2 and CEI are all evaluation methods based on both numeral and areal

indicators. Since the ED2 has a similar principle to the modified ED2 and is more computable than
that, we use the PSE-NSR-ED2 method contrasted with the OSI-USI-ETA-CEI pattern by numerical
and visualized analysis to support our availability.

The best texture analysis setup for GF-2 fusion imagery according to ED2 value is GQL 64 and AOS
9 × 9, which was judged as the worst one by USI, ETA, CEI and even PSE. Furthermore, the ED2 almost
determined by the NSR (Table 7 and Figure 11) shows that ED2 is not suit to evaluate the quality of
segmentation results in this study.

Table 7. Values of PSE, NSR, and ED2 of each set of PG segments under different GQL and AOS.

GQL AOS PSE NSR ED2 GQL AOS PSE NSR ED2

Initial none 0.071 18.914 18.914 64 none 0.127 2.026 2.030
3 × 3 0.066 10.503 10.504 3 × 3 0.138 1.331 1.338
5 × 5 0.098 3.709 3.710 5 × 5 0.151 0.689 0.705
7 × 7 0.100 1.954 1.956 7 × 7 0.171 0.656 0.678
9 × 9 0.095 2.358 2.360 9 × 9 0.197 0.132 0.237

128 none 0.087 4.351 4.352 32 none 0.111 4.437 4.438
3 × 3 0.078 2.715 2.716 3 × 3 0.139 2.490 2.494
5 × 5 0.093 1.517 1.519 5 × 5 0.148 1.351 1.359
7 × 7 0.093 1.649 1.652 7 × 7 0.152 1.391 1.399
9 × 9 0.098 0.768 0.774 9 × 9 0.153 1.510 1.518
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Therefore, the drawbacks of the ED2 [42] are: (1) equated the attribute of numerical indicator with
that of areal indicator; (2) gave the larger indicator a bigger weight than the smaller one in calculation.
The modified ED2 does this as well, which is not expected to happen when compositing the numerical
and areal indicators.

Although the PSE-NSR-ED2 method loses its efficacy in this study, it did work in several
studies [17,42–44]. A possible reason is the heterogeneity of the images of their study areas was
not as high as that of the GF-2 fusion data in this study [17].

 
Figure 11. Effects of increasing AOS on PG segments using the PSE-NSR-ED2 pattern.

5.3. Next Steps

Although the experiments are all based on MRS in eCognition, the proposed methods are
presented in a general sense and may helpful for practitioners who suffer from segmentation issues
in GEOBIA.

The drawback of the proposed method is the number of PG segments relies on the validity of
the ESP 2 tool and the PG segments must be obtained by manual selection. Thus, other effective
segmentation schemes or automatic extraction methods are needed for experimentation with the
method in the future.

We only analyzed the effects of two preprocessing operations (increasing AOS and decreasing
GQL) on PG segments, whereas the influence of atmospheric correction on PG segments was evaluated
by Aguilar et al. [18], but different methods or tools to change the heterogeneity of input imagery are
available, such as median filter, Gaussian averaging operator, Region-Scalable Fitting (RSF) model,
and the Laplacian of Gaussian (LoG) operator [11,13].

Since segmentation results are highly scene-dependent, the investigation should also be applied
to other scenes and data sources in future studies.

6. Conclusions

This study was designed to examine the ability of extracting greenhouses from GF-2 imagery.
To complete the process, compressing the heterogeneity of the initial fusion image was designed to
effectively use the texture analysis and improve the MRS, and a new OSI-USI-ETA-CEI pattern was
proposed to evaluate the effects of texture analysis on PG segments.

Although this work should be only considered as an initial approach, the following conclusions
are drawn:

(1) Appropriate texture analysis applied to a fusion image can change its heterogeneity effectively
for better segmentation.

(2) When shape and compactness are fixed at 0.3 and 0.5 respectively, the optimum treatment of
GF-2 fusion imagery prior to segmenting the plastic greenhouses using ESP 2 tool is compresses
the GQL to 128 and uses the AOS 3 × 3 setup, which reduces the CEI by 9.8% compared with the
initial fusion imagery in this study.
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(3) The proposed OSI-USI-ETA-CEI pattern can be applied to evaluate the effects of image processing
on the quality of PG segments, which is more accurate but requires a higher workload than the
PSE-NSR-ED2 method.
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Abstract: Remote sensing image scene classification is one of the most challenging problems in
understanding high-resolution remote sensing images. Deep learning techniques, especially the
convolutional neural network (CNN), have improved the performance of remote sensing image
scene classification due to the powerful perspective of feature learning and reasoning. However,
several fully connected layers are always added to the end of CNN models, which is not efficient in
capturing the hierarchical structure of the entities in the images and does not fully consider the spatial
information that is important to classification. Fortunately, capsule network (CapsNet), which is
a novel network architecture that uses a group of neurons as a capsule or vector to replace the
neuron in the traditional neural network and can encode the properties and spatial information of
features in an image to achieve equivariance, has become an active area in the classification field in
the past two years. Motivated by this idea, this paper proposes an effective remote sensing image
scene classification architecture named CNN-CapsNet to make full use of the merits of these two
models: CNN and CapsNet. First, a CNN without fully connected layers is used as an initial feature
maps extractor. In detail, a pretrained deep CNN model that was fully trained on the ImageNet
dataset is selected as a feature extractor in this paper. Then, the initial feature maps are fed into
a newly designed CapsNet to obtain the final classification result. The proposed architecture is
extensively evaluated on three public challenging benchmark remote sensing image datasets: the UC
Merced Land-Use dataset with 21 scene categories, AID dataset with 30 scene categories, and the
NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate
that the proposed method can lead to a competitive classification performance compared with the
state-of-the-art methods.

Keywords: remote sensing; scene classification; CNN; capsule; PrimaryCaps; CapsNet

1. Introduction

With the development of Earth observation technology, many different types (e.g., multi/
hyperspectral [1] and synthetic aperture radar [2]) of high-resolution images of the Earth’s surface are
readily available. Therefore, it is particularly important to effectively understand their semantic content,
and more intelligent identification and classification methods of land use and land cover (LULC)
are definitely demanded. Remote sensing image scene classification, which aims to automatically
assign a specific semantic label to each remote sensing image scene patch according to its contents,
has become an active research topic in the field of remote sensing image interpretation because of its
vital applications in LULC, urban planning, land resource management, disaster monitoring, and traffic
control [3–6].
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During the last decades, several methods have been developed for remote sensing image scene
classification. The early methods for scene classification were mainly based on low-level features
or hand-crafted features, which focus on designing various human-engineering features locally or
globally, such as color, texture, shape, and spatial information. Representative features, including the
scale invariant feature transform (SIFT), color histogram (CH), local binary pattern (LBP), Gabor filters,
grey level cooccurrence matrix (GLCM), and the histogram of oriented gradients (HOG) or their
combinations, are usually used for scene classification [7–12]. It is worth noting that methods relying
on these low-level features perform well on some images with uniform texture or spatial arrangements,
but they are still limited for distinguishing images with more challenging and complex scenes, which is
because the involvement of humans in feature design significantly influences the effectiveness of the
representation capacity of scene images. In contrast to low-level feature-based methods, the mid-level
feature approaches attempt to compute a holistic image representation formed by local visual features
such as SIFT, color histogram, or LBP of local image patches. The general pipeline of building
mid-level features is to extract local attributes of image patches first and then to encode them to obtain
the mid-level representation of remote sensing images. The well-known bag-of-visual-words (BoVW)
model is the most popular mid-level approach and has been widely adopted for remote sensing
image scene classification because of its simplicity and effectiveness [13–18]. The methods based on
the BoVW have improved the classification performance, but due to the limitation of representation
capability of the BOVW model, no further breakthroughs have been achieved for remote sensing image
scene classification.

Recently, with the prevalence of deep learning methods, which have achieved impressive
performance on many applications including image classification [19], object recognition [20],
and semantic segmentation [21], the feature representation of images has stepped into a new era.
Unlike low-level and mid-level features, deep learning models can learn more powerful, abstract
and discriminative features via deep-architecture neural networks without a considerable amount of
engineering skill and domain expertise. All of these deep learning models, especially the convolutional
neural network (CNN), are more applicable for remote sensing image scene classification and have
achieved state-of-the-art results [22–34]. Although the CNN-based methods have dramatically
improved classification accuracy, some scene classes are still easily mis-classified. Taking the AID
dataset as an example, the class-specific classification accuracy of ‘school’ is only 49% [35], which is
usually confused with ‘dense residential’. As shown in Figure 1, two images labelled ‘school’ and
two images labelled ‘dense residential’ have been selected from the AID dataset. We can see that the
contexts among these four images have similar image distribution and all contain many buildings and
trees. However, different from the arrangement irregularity of buildings in ‘school’, the buildings in
‘dense residential’ are arranged closely and orderly. This spatial layout difference between them is
very helpful in distinguishing the two classes and should be given more consideration in the phase of
classification. However, the use of the fully connected layer at the end of the CNN model compresses
the two-dimensional feature map into a one-dimensional feature map and cannot fully consider the
spatial relationship, which makes it difficult to distinguish the two classes.

school dense residential

Figure 1. Sample images labelled school and dense residential in the AID dataset.
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Recently, the advent of the capsule network (CapsNet) [36], which is a novel architecture to
encode the properties and spatial relationship of the features in an image and is a more effective image
recognition algorithm, shows encouraging results on image classification. Although the CapsNet is
still in its infancy [37], it has been successfully applied in many fields [38–49] in recent years, such as
brain tumor classification, sound event detection, object segmentation, and hyperspectral image
classification. The CapsNet uses a group of neurons as a capsule to replace a neuron in the traditional
neural network. In addition, the capsule is a vector to represent internal properties that can be used
to learn part–whole relationships between various entities, such as objects or object parts, to achieve
equivariance [36] and can solve the problem of traditional neural networks using fully connected
layers cannot efficiently capture the hierarchical structure of the entities in images to preserve the
spatial information [50].

To further improve the accuracy of the remote sensing image scene classification and motivated
by the powerful ability of feature learning of deep CNN and the property of equivariance of CapsNet,
a new architecture named CNN-CapsNet is proposed to deal with the task of remote sensing image
scene classification in this paper. The proposed architecture is composed of two parts. First, a
pretrained deep CNN, such as VGG-16 [51], is fully trained on the ImageNet [52] dataset, and its
intermediate convolutional layer is used as an initial feature maps extractor. Then, the initial feature
maps are fed into a newly designed CapsNet to label the remote sensing image scenes. Experimental
results on three challenging benchmark datasets show that the proposed architecture achieves a more
competitive accuracy compared with state-of-the-art methods. In summary, the major contributions of
this paper are as follows:

• To further improve classification accuracy, especially classes that have high homogeneity in the
image content, a new novel architecture named CNN-CapsNet is proposed to deal with the remote
sensing image scene classification problem, which can discriminate scene classes effectively.

• By combining the CNN and the CapsNet, the proposed method can obtain a superior
result compared with the state-of-the-art methods on three challenging datasets without any
data-augmentation operation.

• This paper also analyzes the influence of different factors in the proposed architecture on the
classification result, including the routing number in the training phase, the dimension of capsules
in the CapsNet and different pretrained CNN models, which can provide valuable guidance for
subsequent research on the remote sensing image scene classification using CapsNet.

The remainder of this paper is organized as follows. In Section 2, the materials are illustrated.
Section 3 introduces the theory of CNN and CapsNet first, and then describes the proposed method in
detail. Section 4 analyzes the influence of different factors, and discusses the experimental results of
the proposed method. Finally, conclusions are drawn in Section 5.

2. Materials

Three popular remote sensing datasets (UC Merced Land-Use [14], AID [35], and NWPU-
RESISC45 [53]) with different visual properties are chosen to better demonstrate the robustness
and effectiveness of the proposed method. In addition, details about the datasets are described in
Sections 2.1–2.3.

2.1. UC Merced Land-Use Dataset

The UC Merced Land-Use dataset is composed of 2100 aerial scene images divided into 21 land use
scene classes, as shown in Figure 2. Each class contains 100 images with size of 256 × 256 pixels with a
pixel spatial resolution of 0.3 m in the red green blue (RGB) color space. These images were selected
from aerial orthoimagery downloaded from the United States Geological Survey (USGS) National Map
of the following US regions: Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston,
Jacksonville, Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara, Seattle,
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Tampa, Tucson, and Ventura. It is not only the diversity of land-use categories contained in the
dataset that makes it challenging. Some highly overlapped classes such as dense residential, medium
residential and sparse residential are included in this dataset, which are mainly different in the density
of structures and makes the dataset more difficult to classify. This dataset has been widely used for the
task of remote sensing image scene classification [18,23–25,27,28,30,32,54–58].

       
(1) (2) (3) (4) (5) (6) (7) 

       
(8) (9) (10) (11) (12) (13) (14) 

       
(15) (16) (17) (18) (19) (20) (21) 

Figure 2. Example images of UC Merced Land-Use dataset: (1) agriculture; (2) airplane; (3) baseball
diamond; (4) beach; (5) buildings; (6) chaparral; (7) dense residential; (8) forest; (9) freeway; (10) golf
course; (11) harbor; (12) intersection; (13) medium residential; (14) mobile home park; (15) overpass;
(16) parking lot; (17) river; (18) runway; (19) sparse residential; (20) storage tanks; and (21) tennis court.

2.2. AID Dataset

AID is large-scale aerial image dataset, which was collected from Google Earth imagery and is a
more challenging dataset compared with the UC Merced Land-Use dataset because of the following
reasons. First, the AID dataset contains more scene types and images. In detail, it has 10,000 images
with a fixed size of 600 × 600 pixels within 30 classes as shown in Figure 3. Some similar classes make
the interclass dissimilarity smaller, and the number of images of different scene types differs from 220
to 420. Moreover, AID images were chosen under different times and seasons and different imaging
conditions, and from different countries and regions around the world, including China, the United
States, England, France, Italy, Japan, and Germany, which definitely increases the intraclass diversities.
Finally, AID images have the property of multiresolution, changing from approximately 8 m to about
half a meter.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

Figure 3. Cont.
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(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

Figure 3. Example images of AID dataset: (1) airport; (2) bare land; (3) baseball field; (4) beach;
(5) bridge; (6) centre; (7) church; (8) commercial; (9) dense residential; (10) desert; (11) farmland;
(12) forest; (13) industrial; (14) meadow; (15) medium residential; (16) mountain; (17) park; (18) parking;
(19) playground; (20) pond; (21) port; (22) railway station; (23) resort; (24) river; (25) school; (26) sparse
residential; (27) square; (28) stadium; (29) storage tanks; and (30) viaduct.

2.3. NWPU-RESISC45 Dataset

NWPU-RESISC45 dataset is more complex than UC Merced Land-Use and AID datasets and
consists of a total of 31,500 remote sensing images divided into 45 scene classes as shown in
Figure 4. Each class includes 700 images with a size of 256 × 256 pixels in the RGB color space.
This dataset was extracted from Google Earth by the experts in the field of remote sensing image
interpretation. The spatial resolution varies from approximately 30 to 0.2 m per pixel. This dataset
covers more than 100 countries and regions all over the world with developing, transitional, and highly
developed economies.

Figure 4. Example images of NWPU-RESISC45 dataset: (1) airplane; (2) airport; (3) baseball diamond;
(4) basketball court; (5) beach; (6) bridge; (7) chaparral; (8) church; (9) circular farmland; (10) cloud;
(11) commercial area; (12) dense residential; (13) desert; (14) forest; (15) freeway; (16) golf course;
(17) ground track field; (18) harbor; (19) industrial area; (20) intersection; (21) island; (22) lake;
(23) meadow; (24) medium residential; (25) mobile home park; (26) mountain; (27) overpass; (28)
palace; (29) parking lot; (30) railway; (31) railway station; (32) rectangular farmland; (33) river; (34)
roundabout; (35) runway; (36) sea ice; (37) ship; (38) snow berg; (39) sparse residential; (40) stadium;
(41) storage tank; (42) tennis court; (43) terrace; (44) thermal power station; and (45) wetland.
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3. Method

In this section, a brief introduction about CNN and CapsNet will be made first and then the
proposed architecture will be detailed.

3.1. CNN

The convolutional neural network is a type of feed-forward artificial neural network, which is
biologically inspired by the organization of the animal visual cortex. They have wide applications
in image and video recognition, recommender systems and natural language processing. As shown
in Figure 5, CNN is generally made up of two main parts: convolutional layers and pooling layers.
The convolutional layer is the core building block of a CNN, which outputs feature maps by computing
a dot product between the local region in the input feature maps and a filter. Each of the feature maps
is followed by a nonlinear function for approximating arbitrarily complex functions and squashing
the output of the neural network to be within certain bounds, such as the rectified linear unit (ReLU)
nonlinearity, which is commonly used because of its computational efficiency. The pooling layer
performs a downsampling operation to feature maps by computing the maximum or average value on
a sub-region. Usually, the fully connected layers follow several stacked convolutional and pooling
layers and the last fully connected layer is the softmax layer computing the scores for each class.

Figure 5. The convolutional neural network (CNN) architecture.

3.2. CapsNet

CapsNet is a completely novel deep learning architecture, which is robust to affine
transformation [41]. In CapsNet, a capsule is defined as a vector that consists of a group of neurons,
whose parameters can represent various properties of a specific type of entity that is presented in an
image, such as position, size, and orientation. The length of each activity vector provides the existence
probability of the specific object, and its orientation indicates its properties. Figure 6 illustrates the
way that CapsNet routes the information from one layer to another layer by a dynamic routing
mechanism [36], which means capsules in lower levels predict the outcome of capsules in higher levels
and higher level capsules are activated only if these predictions agree.

Figure 6. Connections between the lower level and higher level capsules.
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Considering ui as the output of lower-level capsule i, its prediction for higher level capsule j is
computed as:

ûj|i = Wijui (1)

where Wij is the weighting matrix that can be learned by back-propagation. Each capsule tries to
predict the output of higher level capsules, and if this prediction conforms to the actual output of
higher level capsules, the coupling coefficient between these two capsules increases. Based on the
degree of conformation, coupling coefficients are calculated using the following softmax function:

cij =
exp(bij)

∑k exp(bik)
(2)

where bij is set to 0 initially at the beginning of routing by an agreement process and is the log
probability of whether lower-level capsule i should be coupled with higher level capsule j. Then, the
input vector to the higher level capsule j can be calculated as follows:

sj = ∑
i

cijûj|i (3)

Because the length of the output vector represents the probability of existence, the following
nonlinear squash function, which is an activation function to ensure that short vectors are decreased to
almost zero, and the long vectors are close to one, is used on the output vector computed in Equation (3)
to prevent the output vectors of capsules from exceeding one.

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖ (4)

where sj and vj represent the input vector and output vector, respectively, of capsule j. In addition,
the log probabilities bij is updated in the routing process based on the agreement between vj and ûj|i
according to the rule that if the two vectors agree, they will have a large inner product. Therefore,
agreement aij for updating log probabilities bij and coupling coefficients cij is calculated as follows:

aij = ûj|ivj (5)

As mentioned above, Equations (2)–(5) make up one whole routing procedure for computing
vj. The routing algorithm consists of several iterations of the routing procedure [36], and the number
of iterations can be described as the routing number. Take the ‘school’ scene type detection as an
example for a clearer explanation. Lengths of the outputs of the lower-level capsules (u1, u2, . . . ,
uI) encode the existence probability of their corresponding entities (e.g., building, tree, road, and
playground). Directions of the vectors encode various properties of these entities, such as size,
orientation, and position. In training, the network gradually encodes the corresponding part-whole
relationship by a routing algorithm to obtain a higher-level capsule (vj), which encodes the whole
scene contexts that the ‘school’ represents. Thus, the capsule can learn the spatial relationship between
entities within an image.

Each capsule k in the last layer is associated with a loss function lk, which can be computed
as follows:

lk = Tkmax(0, m+ − ‖vk‖)2
+ λ(1 − Tkmax(0, ‖vk‖ − m−)2 (6)

where Tk is 1 when class k is actually present, m+, m− and λ are hyper-parameters that should be
indicated while training. The total loss is simply the sum of the loss of all output capsules of the
last layer.

A typical CapsNet is shown in Figure 7 and contains three layers: one convolutional layer (Conv1),
the PrimaryCaps layer and the FinalCaps layer. The Conv1 converts the input image (raw pixels) to
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initial feature maps, whose size can be described as H × W × L. Then, by two reshape functions and
one squash operation, the PrimaryCaps can be computed, which contains H × W × L/S1 capsules
(each capsule in the PrimaryCaps is an S1 dimension vector and is denoted as the S1-D vector in
Figure 7). The FinalCaps has T (number of total predict classes) capsules (each capsule in the FinalCaps
is an S2 dimension vector and is denoted as the S2-D vector in Figure 7), and each of these capsules
receives input from all the capsules in the PrimaryCaps layer. The detail of FinalCaps is illustrated
in Figure 8. At the end of the CapsNet, the length of each capsule in FinalCaps is computed by an
L2 norm function, the corresponding scene category represented by the maximum value is the final
classification result.

Figure 7. A typical CapsNet architecture.

Figure 8. The detail of FinalCaps.

3.3. Proposed Method

As illustrated in Figure 9, the proposed architecture CNN-CapsNet can be divided into two parts:
CNN and CapsNet. First, a remote sensing image is fed into a CNN model, and the initial feature
maps are extracted from the convolutional layers. Then, the initial feature maps are fed into CapsNet
to obtain the final classification result.
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Figure 9. The architecture of the proposed classification method.

As for CNN, two representative CNN models (VGG-16 and Inception-V3) fully trained on the
ImageNet dataset are used as initial feature map extractors, considering their popularity in the
remote sensing field [25,27,28,35,53,56,59]. The “block4_pool” layer of VGG-16 and the “mixd7” of
Inception-V3 are selected as the layer of initial feature maps, whose sizes are 16 × 16 × 512 and 14 ×
14 × 768, respectively, if the input image size is 256 × 256 pixels. The influence of the two pretrained
CNN models on the classification results is discussed in Section 4.2. In addition, a brief introduction
about them follows.

• VGG-16: Simonyan et al. [51] presented the very deep CNN models that secured the first and the
second places in the localization and classification tracks, respectively, on ILSVRC2014. The two
best-performing deep models, named VGG-16 (containing 13 convolutional layers and 3 fully
connected layers) and VGG-19 (containing 16 convolutional layers and 3 fully connected layers)
are the basis of their team’s submission, which demonstrates the important aspect of the model’s
depth. Rather than using relatively large receptive fields in the convolutional layers, such as
11 × 11 with stride 4 in the first convolutional layer of AlexNet [60], VGGNet uses very small 3 × 3
receptive fields through the whole network. VGG-16 is the most representative sequence-like CNN
architecture as shown in Figure 5 (consisting of a simple chain of blocks such as the convolution
layer and pooling layer), which has achieved great success in the field of remote sensing image
scene classification.

• Inception-v3: Unlike the sequence-like CNN architecture such as VGG-16, which only increases
the depth of the convolution layers, the Inception-like CNN architecture attempts to increase the
width of a single convolution layer, which means different sizes of kernels are used on the single
convolution layer and can extract different scales of features. As shown in Figure 10, it is the core
component of GoogLeNet [61] named Inception-v1. Inception-v3 [62] is an improved version of
Inception-v1 and is designed on the following four principles: to avoid representation bottlenecks,
especially early in the network; higher dimensional representations are easier to process locally
within a network; spatial aggregation can be done over lower dimensional embedding without
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much or any loss in representation; to balance the width and depth of the network. The Inception-
v3 reached 21.2% top-1 and 5.6% top-5 error on the ILSVR 2012 classification.

Figure 10. Inception-v1 module.

For CapsNet, a CapsNet with an analogical architecture as shown in Figure 7 is designed,
including three layers: one convolutional layer, one PrimaryCaps layer and one FinalCaps layer.
A 5 × 5 convolution kernel with a stride of 2, and a ReLU activation function is used in the convolution
layer. The number of output feature maps (the variable L) is set as 512. The dimension of the capsules
in the PrimaryCaps and FinalCaps layers (the variables S1 and S2) are the vital parameters of the
CapsNet and their influence on the classification result is discussed in Section 4.2. The variable T is
determined by the remote sensing datasets and is set as 21, 30, and 45 for the UC Merced Land-Use
dataset, AID dataset and NWPU-RESISC45 dataset, respectively. In addition, 50% dropout was used
between the PrimaryCaps layer and the FinalCaps layer to prevent overfitting.

As shown in Figure 11, the proposed method includes two training phases. In the first training
phase, the parameters in the pretrained CNN model are frozen, and weights in the CapsNet are
initialized by Gaussian distribution with zero mean and unit variance. Then, they are trained with a
learning rate of lr1 to minimize the sum of the margin losses in Equation (6). When the CapsNet is
fully trained, the second training phase begins with a lower learning rate lr2 to fine-tune the whole
architecture until convergence. The parameters between the adjacent capsule layers except for the
coupling coefficient can be updated by a gradient descent algorithm, while the coupling coefficients
are determined by the iterative dynamic routing algorithm [36]. The optimal routing number in the
iterative dynamic routing algorithm is discussed in Section 3.2. When the training finishes, the testing
images are fed into the fully trained CNN-CapsNet architecture to evaluate the classification result.

Figure 11. The flowchart of the proposed method.
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4. Results and Analysis

4.1. Experimental Setup

4.1.1. Implementation Details

In this work, the Keras framework was used to implement the proposed method.
The hyperparameters used in the training stage were set by trial and error as follows. For the Adam
optimization algorithm, the batch-size was set as 64 and 50 to cater to the computer memory (due to
the different volume of training parameters of the model in two training phases); the learning rates lr1
and lr2 were set as 0.001 and 0.0002 separately for two training phases. The sum of all classes’ margin
losses in Equation (6) was used for the loss function, and m+, m−, and λ were set as 0.9, 0.1 and 0.5.
All models were trained until the training loss converged. At the same time, for a fair comparison,
the same ratios were applied in the following experiments according to the experimental settings in
works [23–25,27,28,30,35,53–57,63–68]. For the UC Merced Land-Use dataset, the 80% and 50% training
ratio were set separately. For the AID dataset, 50% and 20% of the images were randomly selected as
the training samples, and the rest were left for testing. In addition, a 20% and 10% training ratio were
used for the NWPU-RESISC45 dataset. Here, two training ratios were considered for each of the three
datasets to comprehensively evaluate the proposed method. Moreover, different ratios were used for
different datasets because the numbers of images for the three datasets are different. A small ratio can
usually satisfy the full training requirement of the models when a dataset has a large amount of data.
Note that all images in the AID dataset were resized to 256 × 256 pixel from the original 600 × 600
pixel because of memory overflow in the training phase. All the implementations were evaluated on an
Ubuntu 16.04 operating system with one 3.6 GHz 8-core i7-4790CPU and 32GB memory. Additionally,
a NVIDIA GTX 1070 graphics processing unit (GPU) was used to accelerate computing.

4.1.2. Evaluation Protocol

The overall accuracy (OA) and confusion matrix were computed to evaluate experimental results
and to compare with the state-of-the-art methods. The OA was defined as the number of correctly
classified images divided by the total number of test images, which is a valuable measure to reveal
the classification method performance on the whole test images. The value of OA is in the range
of 0 to 1, and a higher value indicates a better classification performance. The confusion matrix is
an informative table that can allow direct visualization of the performance on each class and can be
used for easily analyzing the errors and confusion between different classes, in which the column
represents the instances in a predicted class and the row represents the instances in an actual class.
Thus, each item xij in the matrix is the proportion of images that are predicted to be the i-th class while
truly belonging to the j-th class.

To compute the overall accuracy, the dataset was randomly divided into training and testing
sets according to the ratios in Section 4.1.1 and repeated ten times to reduce the influence of the
randomness for a reliable result. The mean and standard deviation of overall accuracies on the testing
sets from each individual run were reported. Additionally, the confusion matrix was obtained from the
best classification results by fixing the ratios of the training sets of the UC Merced Land-Use dataset,
AID dataset and NWPU-RESISC45 dataset to be 50%, 20%, and 20%, respectively.

4.2. Experimental Results and Analysis

4.2.1. Analysis of Experimental Parameters

In this section, three parameters including the routing number, the dimension of the capsule in the
CapsNet, and different pretrained CNN models, were tested to analyze how these parameters affect
the classification result. In addition, the optimal parameters used in the experiments of Sections 4.2.2
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and 4.2.3. Training rations of 80%, 50%, 20% were selected for the UC Merced Land-Use dataset,
AID dataset and NWPU-RESISC45 dataset, respectively, in this section’s experiments.

1. The routing number

In the dynamic routing algorithm, the routing number is a vital parameter for determining
whether the CapsNet can obtain the best coupling coefficients. Therefore, it is necessary to select
an optimal routing number. Thus, the routing number was set to (1, 2, 3, 4) while other parameters
in the proposed architecture were kept the same. The pretrained VGG-16 model was selected as
the primary feature extractor, and the dimension of the capsule in the PrimaryCaps and FinalCaps
layers were set to 8 and 16, respectively. As shown in Figure 12, the OAs first increased and then
decreased with the increase in the routing number for all three datasets and all reached their peaks at
the routing number of 2. A smaller value may generate inadequate training, and a larger value will
lead to missing the optimal fitting. In addition, the bigger the value is, the longer the required training
time. Comprehensively, the routing number 2 was chosen as the optimal number, considering the
training time and was applied in remaining experiments.

Figure 12. The influence of the routing number on the classification accuracy.

2. The dimension of the capsule

The capsule is the core component of CapsNet and consists of many neurons, and their activities
within a capsule represent the various properties of a remote sensing scene image. The primary
capsules in the PrimaryCaps are the lower-level capsules that are learned from the primary feature
maps extracted from the pretrained CNN models, and they can represent some small entities in the
remote sensing image. The capsules with a higher dimension in the FinalCaps are in a higher level and
represent more complex entities such as the scene class that the image presents. Thus, the dimension
of the capsule in the CapsNet should be considered for its importance in the final classification result.
When the dimension of the capsule is low, the representation ability of the capsule is weak, which leads
to confusion between two scene classes with high similarity in image context. In contrast, the capsule
with a high dimension may contain redundant information or noise, e.g., two neurons may represent
very similar properties. Both of them will have a negative influence on the classification result. Thus,
a set of values ((6,12), (8,16), (10,20), (12,24)) were set to evaluate the capsule’s influence. Additionally,
other parameters were fixed with the pretrained VGG-16 model as the primary feature extractor,
and the routing number was set to 2. The experimental results are shown in Figure 13. As expected,
in all three datasets, the curves of OAs had their single peaks. The value (8, 16) obtained the best
performance, and thus it was used in the next experiments.
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Figure 13. The influence of the dimension of the capsule on the classification accuracy.

3. Different pretrained CNN models

As described in Section 3.3, two representative CNN architectures (VGG-16 and Inception-v3) were
selected as feature extractors to evaluate the effectiveness of convolutional features on classification.
The “block4_pool” layer of VGG-16 and the “mixd7” of Inception-V3 were selected as the layer of
initial feature maps. Other parameters remained unchanged in the experiment. As shown in Figure 14,
the Inception-v3 model achieved the highest classification accuracy on all three datasets. This can
be explained by the fact that the Inception-v3 consists of the inception modules, which can extract
multiscale features and have a stronger ability to extract effective features than VGG-16; however,
compared with the Inception-v3, the VGG-16 may lose considerable information due to the consistent
existence of pooling layers. Moreover, the OA differences between VGG-16 and Inception-v3 on the
AID and NWPU-RESISC45 datasets were more conspicuous than those on the UC Merced dataset.

Figure 14. The influence of pretrained CNN models on the classification accuracy.

Compared with the UC Merced dataset, the other two datasets have more classes, higher intraclass
variations and smaller interclass dissimilarity. Since the Inception-v3 shows its effectiveness in
extracting features with more complex datasets, it was chosen as the final feature extractor on the
evaluation of the proposed method.

4.2.2. Experimental Results

1. Classification of the UC Merced Land-Use dataset
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To evaluate the classification performance of the proposed method, a comparative evaluation
against several state-of-the-art classification methods on the UC Merced Land-Use dataset is shown in
Table 1. As seen from Table 1, the proposed architecture CNN-CapsNet using pretrained Inception-v3
as the initial feature maps extractor (denoted as Inception-v3-CapsNet) achieved the highest OA of
99.05% and 97.59% for 80% and 50% training ratio, respectively, among all methods. The CNN-CapsNet
using pretrained VGG-16 as the initial feature maps extractor (denoted as VGG-16-CapsNet) also
outperformed most methods. This demonstrates that the CNN-CapsNet architecture can learn a higher
level representation of scene images by combining CNN and CapsNet.

Table 1. Overall accuracy (%) and standard deviations of the proposed method and the comparison
methods under the training ratios of 80% and 50% on the UC-Merced dataset.

Method 80% Training Ratio 50% Training Ratio

CaffeNet [35] 95.02 ± 0.81 93.98 ± 0.67
GoogLeNet [35] 94.31 ± 0.89 92.70 ± 0.60

VGG-16 [35] 95.21 ± 1.20 94.14 ± 0.69
SRSCNN [24] 95.57 /

CNN-ELM [65] 95.62 /
salM3LBP-CLM [63] 95.75 ± 0.80 94.21 ± 0.75

TEX-Net-LF [64] 96.62 ± 0.49 95.89 ± 0.37
LGFBOVW [18] 96.88 ± 1.32 /

Fine-tuned GoogLeNet [25] 97.10 /
Fusion by addition [28] 97.42 ± 1.79 /

CCP-net [66] 97.52 ± 0.97 /
Two-Stream Fusion [30] 98.02 ± 1.03 96.97 ± 0.75

DSFATN [54] 98.25 /
Deep CNN Transfer [27] 98.49 /

GCFs+LOFs [56] 99 ± 0.35 97.37 ± 0.44
VGG-16-CapsNet (ours) 98.81 ± 0.22 95.33 ± 0.18

Inception-v3-CapsNet (ours) 99.05 ± 0.24 97.59 ± 0.16

Figure 15 shows the confusion matrix generated from the best classification result by Inception-
v3-CapsNet with the training ratio of 50%. As shown in the confusion matrix, 20 categories achieved
accuracies greater than 94%, half of which achieved an accuracy of 100%. In addition, only the class
of ‘dense residential’, which were easily confused with ‘medium residential’, achieved an accuracy
of 80%. This may have resulted from the fact that the two classes have similar image distributions,
such as the building structure and density which cannot be well utilized to distinguish each other.

2. Classification of AID dataset

The AID dataset was also tested to demonstrate the effectiveness of the proposed method,
compared with other state-of-the-art methods on the same dataset. The results are shown in Table 2.
It can be seen that the proposed method of the Inception-v3-CapsNet model generated the best
performance with OAs of 96.32% and 93.79% by using 50% and 20% samples, respectively, for training,
except for approximately 0.53% lower performance than the method of GCFs + LOFs in a 50% training
ratio. This can be explained that the process of downsampling from 600 × 600 to 256 × 256 for the AID
dataset in the preprocessing causes some loss of important information and has a negative effect on
the classification result. However, in the 20% training ratio, the proposed method outperforms GCFs
+ LOFs by approximately 1.31%. In addition, data augmentation was used in GCFs + LOFs. Thus,
overall, the proposed method yields the state-of-the-art result on AID dataset comprehensively.
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Figure 15. Confusion matrix of the proposed method on UC Merced Land-Use dataset by fixing the
training ratio to 50%.

Table 2. Overall accuracy (%) and standard deviations of the proposed method and the comparison
methods under the training ratios of 50% and 20% on the AID dataset.

Method 50% Training Ratio 20% Training Ratio

CaffeNet [35] 89.53 ± 0.31 86.86 ± 0.47
GoogLeNet [35] 86.39 ± 0.55 83.44 ± 0.40

VGG-16 [35] 89.64 ± 0.36 86.59 ± 0.29
salM3LBP-CLM [63] 89.76 ± 0.45 86.92 ± 0.35

TEX-Net-LF [64] 92.96 ± 0.18 90.87 ± 0.11
Fusion by addition [28] 91.87 ± 0.36 /
Two-Stream Fusion [30] 94.58 ± 0.25 92.32 ± 0.41

GCFs+LOFs [56] 96.85 ± 0.23 92.48 ± 0.38
VGG-16-CapsNet (ours) 94.74 ± 0.17 91.63 ± 0.19

Inception-v3-CapsNet (ours) 96.32 ± 0.12 93.79 ± 0.13

As for the analysis of the confusion matrix, shown in Figure 16, 80% of all 30 categories achieved
classification accuracies greater than 90% where the mountain class achieved the 100% accuracy.
Some categories with small interclass dissimilarity, such as ’sparse residential’, ‘medium residential’,
and ‘dense residential’ were also classified accurately with 99.17%, 94.83% and 95.73%, respectively.
The classes of ‘school’ and ‘resort’ had relatively low classification accuracies with 67.92% and 72.84.
In detail, the ‘school’ class was easily confused with ‘commercial’ because they had the same image
distribution. In addition, the resort class was usually misclassified as ‘park’ due to the existence of
some analogous objects such as green belts and ponds. Even so, great improvements were achieved by
the proposed method, compared with the classification accuracy of 49% and 60% in [35]. This means
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that the CNN-CapsNet could learn the differences of spatial information between these scene classes
with the same image distribution and distinguish them effectively.

Figure 16. Confusion matrix of the proposed method on the AID dataset by fixing the training ratio as 20%.

3. Classification of NWPU-RESISC45 dataset

Table 3 shows the classification performance comparison of the proposed architecture and the
existing state-of-the-art methods using the most challenging NWPU-RESISC45 dataset. It can be
observed that the Inception-v3-CapsNet model also achieved remarkable classification results, with OA
improvements of 0.27% and 1.88% over the second best model using 20% and 10% training ratios,
respectively. The good performance of the proposed method further verifies the effectiveness of
combining the pretrained CNN model and CapsNet.

Table 3. Overall accuracy (%) and standard deviations of the proposed method and the comparison
methods under the training ratios of 20% and 10% on NWPU-RESISC45 dataset.

Method 20% Training Ratio 10% Training Ratio

GoogLeNet [53] 78.48 ± 0.26 76.19 ± 0.38
VGG-16 [53] 79.79 ± 0.15 76.47 ± 0.18
AlexNet [53] 79.85 ± 0.13 76.69 ± 0.21

Two-Stream Fusion [30] 83.16 ± 0.18 80.22 ± 0.22
BoCF [67] 84.32 ± 0.17 82.65 ± 0.31

Fine-tuned AlexNet [53] 85.16 ± 0.18 81.22 ± 0.19
Fine-tuned GoogLeNet [53] 86.02 ± 0.18 82.57 ± 0.12

Fine-tuned VGG-16 [53] 90.36 ± 0.18 87.15 ± 0.45
Triple networks [68] 92.33 ± 0.20 /

VGG-16-CapsNet (ours) 89.18 ± 0.14 85.08 ± 0.13
Inception-v3-CapsNet (ours) 92.6 ± 0.11 89.03 ± 0.21
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Figure 17 gives the confusion matrix generated from the best classification result by Inception-
v3-CapsNet with the training ratio of 20%. From the confusion matrix, 36 categories among
all 45 categories achieved classification accuracies greater than 90%. The major confusion was
in ‘palace’ and ‘church’ because both of them have similar styles of buildings. In spite of that,
substantial improvements were still achieved with 79.3% and 68% compared with 75% and 64%
in [53], respectively.

Figure 17. Confusion matrix of the proposed method on the NWPU-RESISC45 dataset by fixing the
training ratio as 20%.

4.2.3. Further Explanation

In Section 4.2.2, it was found that the proposed method obtains state-of-the-art classification
results. This mainly benefits from the following three factors: fine-tuning, capsules and the pretrained
CNN model. In this section, further analysis will be performed on how they accomplish the significant
performance for classification. In addition, the training ratios of the three datasets were the same as
those in Section 4.2.1.

1. Effectiveness of fine-tuning

First, the strategy of fine-tuning was added to train the proposed architecture. To evaluate
the effectiveness of fine-tuning in the proposed method, a comparison was made between the
classification results with and without fine-tuning. As shown in Figure 18, the methods with fine-tuning
obtained a significant improvement compared with no fine-tuning operation. The reason is that the
features extracted from the pretrained CNN models have a strong relationship with the original task.
Fine-tuning can adjust the parameters of the pretrained CNN model to cater to the current training
datasets for an accuracy improvement.
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Figure 18. Overall accuracy (%) of the proposed method with and without fine-tuning on three datasets.

2. Effectiveness of capsules

In the design of the proposed architecture, the CapsNet is used as the classifier to label the remote
sensing image, which uses the capsule to replace the neuron in traditional neural networks. To prove
the validity of the positive impact on classification results with this replacement, a comparative
experiment was conducted. In detail, a new CNN architecture was designed as the classifier,
which consists of one convolutional layer and two fully connected layers. In addition, the only
difference between the new CNN architecture and the CapsNet described in Section 3.3 was using
the neuron to replace the capsule while other parameters including the training hyperparameters
were all kept the same. The experimental results are shown in Figure 19 (the VGG-16-CNN and
Inception-v3-CNN in Figure 19 mean that using pretrained VGG-16 and Inception-v3 as feature
extractors, respectively, and using the newly designed CNN architecture as the classifier). For three
datasets, the models using capsules all achieved better performance than those using traditional
neurons. This further demonstrates that the CapsNet can learn more representative information of
scene images.

Figure 19. Overall accuracy (%) of the proposed method with neuron and capsule on three datasets.

3. Effectiveness of the pretrained CNN model
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The pretrained CNN model was selected as the initial feature maps extractor instead of designing
a new CNN architecture. This is also a great factor for the success of the proposed architecture.
For comparison, a CNN architecture (Self-CNN) was designed, which only contained four consecutive
convolutional layers and the size of its output feature maps was 16 × 16 × 512, the same as that of
the pretrained VGG-16 used in this paper. The parameters of the CapsNet were the same. The new
Self-CNN-CapsNet architecture was trained from scratch. The classification results are presented in
Figure 20. From the Figure, the classification accuracy of CNN-CapsNet with the pretrained CNN
model as the feature extractor was much higher than that with self-CNN. This is because the existing
datasets cannot fully train the model and further proves the effectiveness of using pretrained CNN
models as feature extractors.

Figure 20. Overall accuracy (%) of the proposed method with the pretrained model and self-model on
three datasets.

5. Conclusions

In recent years, the prevalence of deep learning methods especially the CNN has made the
performance of remote sensing scene classification state-of-the-art. However, the scene classes
with the same image distribution are still not distinguished effectively. This is mainly because
some fully connected layers are added to the end of the CNN, which gives less consideration to
the spatial relationship that is vital to classification. To preserve the spatial information, the new
architecture CapsNet is proposed, which uses the capsule to replace the neuron in the traditional
neural network. In addition, the capsule is a vector to represent internal properties that can be used
to learn part-whole relationships within an image. In this paper, to further improve the classification
accuracy of remote sensing image scene classification and inspired by the CapsNet, a novel architecture
named CNN-CapsNet is proposed for remote sensing image scene classification. The proposed
architecture consists of two parts: CNN and CapsNet. The CNN part is transferring the original
remote sensing images to the original feature maps. In addition, the CapsNet part converts the original
feature maps into various levels of capsules and to obtain the final classification result. Experiments
were performed on three public challenging datasets, and the experimental results demonstrate the
effectiveness of the proposed CNN-CapsNet and show that the proposed method outperforms the
current state-of-the-art methods. In future work, different from using feature maps from only one
CNN model, in this paper, feature maps from different pretrained CNN models will be merged for
remote sensing image scene classification.
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Abstract: Degradation of streams and associated riparian habitat across the Missouri River
Headwaters Basin has motivated several stream restoration projects across the watershed. Many of
these projects install a series of beaver dam analogues (BDAs) to aggrade incised streams, elevate
local water tables, and create natural surface water storage by reconnecting streams with their
floodplains. Satellite imagery can provide a spatially continuous mechanism to monitor the effects
of these in-stream structures on stream surface area. However, remote sensing-based approaches to
map narrow (e.g., <5 m wide) linear features such as streams have been under-developed relative
to efforts to map other types of aquatic systems, such as wetlands or lakes. We mapped pre- and
post-restoration (one to three years post-restoration) stream surface area and riparian greenness
at four stream restoration sites using Worldview-2 and 3 images as well as a QuickBird-2 image.
We found that panchromatic brightness and eCognition-based outputs (0.5 m resolution) provided
high-accuracy maps of stream surface area (overall accuracy ranged from 91% to 99%) for streams as
narrow as 1.5 m wide. Using image pairs, we were able to document increases in stream surface area
immediately upstream of BDAs as well as increases in stream surface area along the restoration reach
at Robb Creek, Alkali Creek and Long Creek (South). Although Long Creek (North) did not show a
net increase in stream surface area along the restoration reach, we did observe an increase in riparian
greenness, suggesting increased water retention adjacent to the stream. As high-resolution imagery
becomes more widely collected and available, improvements in our ability to provide spatially
continuous monitoring of stream systems can effectively complement more traditional field-based
and gage-based datasets to inform watershed management.

Keywords: beaver mimicry; beaver dam analogue; QuickBird; riparian; stream restoration;
Worldview

1. Introduction

Remotely sensed imagery has been widely applied to characterize variability in surface-water
extent across space and time [1,2]. The spatial resolution (≥30 m) of commonly used sources of
imagery (e.g., Landsat, MODIS, AVHRR), however, has limited our ability to remotely monitor
river systems, except for large rivers (e.g., >40 m wide) [3] or rivers under flood conditions [4–7].
Yet remote monitoring of the spatial distribution of river stage and condition has several applications
including enhancing our ability to predict and monitor flood events, informing the source and
distribution of flow to downstream gaged points, helping monitor ungaged watersheds, predicting
carbon dioxide emissions, and informing river management [8–11]. The rapidly increasing availability
of multispectral, high-resolution imagery (≤5 m resolution, Dove, RapidEye (Planet, San Francisco,
CA, USA), Worldview-2, 3 (DigitalGlobe, Westminster, CO, USA)) provides increased opportunity to
potentially monitor river systems across diverse watershed sizes and flow conditions.
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Multiple sources of fine resolution imagery have been applied to aquatic systems. LiDAR [12,13]
and synthetic aperture radar (SAR) imagery have been successfully used to map surface water
and can be preferable in forested environments or during storm events under cloud cover [14–16].
Multispectral, high-resolution imagery has also been used effectively to map surface water [17,18].
Riverscape units including the active channel have primarily been mapped by digitizing very
high-resolution multispectral satellite imagery or aerial imagery [19–21] or by applying geographical
object-based image analysis (GEOBIA) methods [11,22,23]. A GEOBIA approach segments an image
into homogenous objects prior to object classification. Such an approach can help account for the
greater within-class spectral variability that can occur with high-resolution imagery, relative to
moderate-resolution imagery [18]. In general, however, efforts to remotely monitor narrow, linear
water features, such as rivers and streams, have lagged behind efforts to remotely monitor lakes and
wetlands [24,25].

The Upper Missouri River Headwaters Basin in southwestern Montana faces increasingly
uncertain water supplies attributable to high water demand for agricultural irrigation [26,27] and
public water supply [28,29]. In addition, shifts in the timing of runoff and peak streamflow are
predicted with increasing amounts of winter precipitation and a declining snowpack related to climate
change [30–32]. Societal water demands as well as climate-induced shifts in streamflow can threaten
habitat critical for fish and aquatic species [33,34]. These risks have raised interest in increasing the
capacity of streams to respond to extreme events [35–37]. One approach that is growing in popularity
is to slow runoff, absorb excess floodwater, and encourage groundwater recharge by enhancing
natural water storage in stream channels, riparian areas, and floodplains [38,39]. One way to create
natural water storage is using in-stream, channel spanning structures called beaver dam analogues
(BDAs) [40–42]. Over time BDAs have been shown to slow water flow, encourage channel stability
and riparian vegetation, activate side channels, and improve water quality and fish habitat [40,41,43].
Installing BDAs along a reach of stream can potentially increase spring overbank flow and elevate
riparian water tables [43]. If water is a limiting factor in the riverscape, elevating near-surface soil
moisture along stream channels can encourage riparian vegetation [44,45]. Depending on channel
shape and river stage, slowing the flow of water can increase the stream surface area through ponding
and temporary flooding [38,45]. Downstream from beaver dams, channels are more likely to be stable,
with lower sediment loads and a lower range of stream discharge [45]. Although the installation of
BDAs is becoming relatively common, analyses that evaluate their impact are limited. Most studies
to date have focused on the impact of actual beaver dams that differ from BDAs in the magnitude of
change and maintenance activity. In this study, we tested how multispectral high-resolution imagery
can be used to monitor stream condition along four stream reaches in the Upper Missouri Headwaters
Basin, and how pairs of images can potentially be used to monitor BDA stream restoration projects.
Our research questions included:

1. What methodological approaches are most effective to map stream surface area using
multispectral high-resolution imagery? And,

2. How can image pairs (e.g., pre- and post-restoration) be used to monitor changes in stream
surface area and riparian greenness?

2. Methods

2.1. Study Area and Restoration Activities

The four stream sites examined in this study occur within the Upper Missouri Headwaters Basin
in southwest Montana (Figure 1). Annual precipitation across the Headwaters Basin averages 565 mm
yr−1, while the annual temperature maximum and minimum average 10 ◦C and −3 ◦C, respectively
(1981–2010) [46]. Across the basin herbaceous vegetation (35%) and shrub/scrub (20%) dominate the
large river valleys while evergreen forest dominates the higher elevations (35%) [47]. Two restoration
sites occurred along reaches separated by 4.8 stream km in Long Creek (Figure 1), which flows south
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into the Red Rock River in the Red Rock River Hydrological Unit (Red Rock HUC8). Land cover
adjacent to Long Creek is dominated by herbaceous vegetation, shrub/scrub, and emergent herbaceous
wetlands [47]. The third restoration site occurred along Alkali Creek, which flows northwest into
Blacktail Deer Creek in the Beaverhead HUC8. This site showed evidence of beaver activity just
upstream from the restoration site. The fourth restoration site occurred along Robb Creek that flows
north into the Ruby River (Ruby River HUC8). Land cover adjacent to both Alkali Creek and Robb
Creek is dominated by herbaceous vegetation and shrub/scrub habitat [47].

Figure 1. Distribution of the stream sites within the Upper Missouri Headwaters Basin. Background
image is a Landsat 8 image (path 39, row 39, 9 June 2016). Location of the U.S. Geological Survey
stream gage (Jefferson River, #06026500) is also shown relative to the restoration sites. NHD: National
Hydrography Dataset, HUC8s: 8-digit Hydrological Units.

All restoration activities were developed and completed by the Nature Conservancy. A series
of BDAs were installed in stream reaches at each restoration site. The structures were created from
wooden posts installed vertically into the streambed across the channel with willow branches woven
between posts. The structures collect organic material and sediment behind them, building up the
stream bed height, ponding water upstream from the structures, stabilizing the channel and increasing
connectivity with its floodplain [48]. The BDAs were accompanied by willow plantings along the
stream to stabilize banks and cattle exclusions at most of the sites [48]. The design is cost effective as no
heavy equipment is used and the in-stream structures are designed to be temporary [49]. BDAs were
installed in two reaches of Long Creek (9 BDAs on the north reach and 7 BDAs on the south reach),
a reach of Alkali Creek (6 BDAs) and a reach of Robb Creek (12 BDAs) (Table 1). The goal of the
restorations at the Long Creek and Alkali Creek sites was to aggrade the streambed, improving
hydrologic connectivity between the stream channel and associated floodplains. Along Robb Creek,
the BDAs were designed to encourage reactivation of abandoned side channels. The time since
restoration ranged from one to three years across the sites (Table 1).
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2.2. Image Acquisition and Preprocessing

A total of six high-resolution images (2 m resolution) were acquired from DigitalGlobe
(Westminster, CO, USA) via the NextView license for this analysis. These images included
one QuickBird-2 image, three Worldview-2 images, and two Worldview-3 images (Table 1).
“Pre-restoration” conditions were represented by images acquired during summer 2014, while
“post-restoration” conditions were represented by images acquired during summer 2017. Using
historical (1895–2017) Palmer Hydrological Drought Index (PHDI) values, we found that the pre-
and post-restoration image dates represented similar historical wetness conditions (37.6% relative to
41.8% PHDI); however, 2013, the year prior to the pre-restoration images experienced a drought which
may have influenced stream conditions in 2014 (Figure 2). We also compared the stream discharge
values on the date the image was collected using a USGS stream gage downstream from the four
restoration sites (Jefferson River, USGS Gage #06026500) (Figure 1). Discharge was reasonably similar
between the image dates (10% higher post-restoration for the Long Creek image dates and 8% lower
post-restoration for the Robb Creek image dates), for all sites except Alkali Stream. The post-restoration
image at this site was collected in August when discharge was much lower relative to the early summer
period (Figure 2). We converted the image (processing Level 1) pixel values from Digital Numbers to
top-of-atmosphere reflectance in PCI Geomatica. For each image the panchromatic and multispectral
bands were orthorectified together using PCI Geomatica’s 2014 OrthoEngine. National Agricultural
Imagery Program (NAIP) images (1 m resolution) were used as reference images (Long Creek and Robb
Creek—22 October 2015, Alkali Creek—3 August 2013) together with the U.S. Geological Survey’s
10 m National Elevation Dataset (NED) [50]. Images were pan-sharpened to 50 cm resolution using
PCI Geomatica’s PANSHARP2 tool [51]. The panchromatic band width for QuickBird-2 extends
across all four of the multispectral bands (blue, green, red, NIR); however, the panchromatic band
for Worldview-2 and Worldview-3 extends across only five of the eight spectral bands (excludes the
coastal band, NIR1 and NIR2 bands). Prior work has shown that applying pan-sharpening methods
to bands outside of the panchromatic range can distort the values in these bands [52]. To account for
this, we pan-sharpened only the bands overlapping the panchromatic band using the PANSHARP2
tool. Bands outside of the panchromatic band range were resampled to 50 cm resolution using
cubic convolution.

Figure 2. Cont.
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Figure 2. (A) The monthly Palmer Hydrological Drought Index (PHDI) values for southwestern
Montana over the past 10 years, converted to percentages based on the historical record (1895–2017).
Stars indicate the PHDI value at the time of the pre- and post-restoration images; (B) The daily mean
discharge for the Jefferson River near Twin Bridges, Montana (USGS Gage #06026500) downstream
of the four restoration sites. Diamonds indicate the discharge value at the time of the pre- and
post-restoration images.

2.3. Object-Based Water Classification

We used the software eCognition (version 9.2.1, Trimble, Westminster, CO, USA) to process
the high-resolution images into maps of surface-water extent. This software uses an object-oriented
approach where an image is first segmented into objects representing meaningful features of the
physical landscape, and the objects are then classified using user-defined rules and algorithms.
Rules can be set in a hierarchical order as child rules under a parent process so that the ruleset
can be automatically run in sequence. In this case, our objective was to segment, then classify objects
into water and non-water where the objects of interest were the stream channels. Each pan-sharpened
image was first clipped to the spatial area of interest, which included a minimum of 300 m stream
length upstream from the restoration reach, the restoration reach and approximately 1 stream km
downstream of the restored site (Figure 3). The stream length of the restoration reach (from the
upstream to the downstream BDA) ranged from 830 m at Alkali Creek to 3.8 km at Long Creek (North)
(Table 1).

To segment each image into objects we focused the segmentation along edges or sharp contrasts
in the image. To do this we first modified the panchromatic band. Within eCognition, the Edge
Extraction Lee Sigma filter was applied to the panchromatic band to create a (1) bright edge layer
and (2) dark edge layer from the original image. The dark edge layer was then added to and the
bright edge layer subtracted from an inverted version of the panchromatic band to enhance the edge
contrasts along streams. The edge-enhanced panchromatic band was then used with the pan-sharpened
blue, green, red, and near-infrared bands to guide the initial image segmentation (scale = 50–100).
This approach focused segmentation along stream boundaries while segmenting the image at larger
scales, where scale refers to the maximum allowable heterogeneity within an object. The larger scale
was desired so that individual trees and tree shadows, which are spectrally similar to water, were
segmented into larger objects that contained multiple trees, tree shadows, and intervening vegetation
(Figure 4A). After the initial image segmentation, the objects were classified using spectral indices
applied in a hierarchical rule-based approach. Our goal was to classify all objects as (1) water; (2)
vegetation; (3) soil; or (4) shadow. Objects that were not spectrally similar enough to fit in any of
these categories were classified temporarily as (1) water candidates (i.e., potentially water) or (2)
unclassified. Objects classified as water candidates or unclassified using the rule-based approach
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were then re-segmented at a finer scale (scale = 15) to create smaller and more spectrally pure objects
(Figure 4B).

Figure 3. A schematic of (A) Alkali Creek, (B) Long Creek (North and South), and (C) Robb Creek,
indicating the reaches along each of the stream sites that were analyzed, relative to the distribution of
the beaver dam analogues. Flow direction can be determined from the relative location of the upstream
and downstream reaches.

Several spectral indices were included in our hierarchical rule-based approach (Table 2).
Worldview-2 and 3 images (8 spectral bands) provide data from several bands not available in Landsat
TM, ETM+ or QuickBird-2 including a coastal band, red edge band and two separate near infrared
bands (NIR1 and NIR2), offering opportunities for unique band combinations [53]. The Normalized
Difference Water Index (NDWI) [54] and the Worldview Water Index (WWI) [55] (Table 2) were used
as the primary means to identify water objects. Objects were classified as water when either the NDWI
or WWI object values were greater than zero. Objects were identified as vegetation when the objects
had high Enhanced Vegetation Index (EVI) [56] values, using the coefficients generally adopted [57],
or when they showed both a high Normalized Difference Vegetation Index (NDVI) [58] as well as
a minimal difference between NDVI and EVI. Objects were classified as soil when the Green-Red
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Vegetation Index (GRVI) [59] value of objects was less than zero or where brightness values, derived
from the panchromatic band, were high (Table 2). Shadow objects were identified using the normalized
difference between the coastal band and blue band. For QuickBird-2 images in which the coastal
band was not available this index was adapted to the normalized difference between the blue band
and green band. A low brightness threshold, derived from the panchromatic band, was also used to
identify shadowed areas. Finally, water candidates (i.e., potentially water) were identified using a
series of indices. The rules to identify objects as water candidates were applied as child rules below
the rules identifying objects as soil or vegetation. Indices used to identify water candidates included
the NDWI using the coastal band instead of the green band [60] and panchromatic brightness, both of
which were effective at identifying deeper water, as well as several novel band combinations including
the Red Edge NDWI and Red Edge WWI both of which were helpful in mapping shallow water,
particularly where sandy soils were visible below the water, and the Normalized Difference Coastal
Red Edge Index (NDCREI) which was helpful in identifying turbid water. A list of the indices used,
and the band combinations are shown in Table 2.

Figure 4. Examples from Robb Creek, Montana, of segmenting an image into objects of interest.
Segmentation approaches that focus on detecting edges as well as iterative segmentation at different
scales can allow objects to vary in size from large, upland objects (A) to narrow, small objects that
follow the stream (B); DigitalGlobe Copyright 2017.
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Table 2. Spectral indices used in object-based and pixel-based classification of surface water, as well as
the characterization of riparian greenness. NIR: near infrared.

Index Equation Purpose

Normalized Difference Water Index
(NDWI) (Green − NIR1)/(Green + NIR1) stream surface water area

Worldview Water Index (WWI) (Coastal − NIR2)/(Coastal + NIR2) stream surface water area

Panchromatic brightness stream surface water area, bare
ground, shadows

Enhanced Vegetation Index (EVI) 2.5 × (NIR1 − Red)/((NIR1 + 6) × (Red − 7.5) ×
(Blue + 1) vegetation

Normalized Difference Vegetation
Index (NDVI) (NIR1 − Red)/(NIR1 + Red) vegetation, riparian

NDVI and EVI difference (NDVI − EVI)/(NDVI + EVI) vegetation, riparian

Soil-Adjusted Vegetation Index (SAVI) (NIR − red)/(NIR + red + L) × (1 + L), L = 0.5 vegetation, riparian

Green-Red Vegetation Index (GRVI) (Green − Red)/(Green + Red) bare ground

Worldview Shade Index (Coastal − Blue)/(Coastal + Blue) shadows (Worldview)

QuickBird Shade Index (Blue − Green)/(Blue + Green) shadows (QuickBird)

NDWI v2 (Coastal − NIR1)/(Coastal + NIR1) deep water

Red Edge NDWI (Red Edge − NIR1)/(Red Edge + NIR1) shallow water

Red Edge WWI (Red Edge − NIR2)/(Red Edge + NIR2) shallow water

Normalized Difference Coastal Red Edge
Index (NDCREI) (Coastal − Red Edge)/(Coastal + Red Edge) turbid water

The hierarchical rule-based approach of classification was initially applied to all objects
(scale = 50–100). For objects that were classified as water candidates or unclassified by the initial
rule-based approach, these objects were re-segmented to create smaller, more homogenous objects
(scale = 15) and the rule-based approach was re-applied to this subset of smaller objects. For objects
classified as water candidates or unclassified after both rounds of rule-based classifications, we applied
a Random Forest classifier to determine if these remaining objects were water, vegetation, soil, or
shadow. The Random Forest classifier was trained using the objects already classified (either using
scale = 50–100 or scale = 15) by the rule-based approach. Bootstrap iterations (n = 500) were run using
all indices shown in Table 2, the individual band values, and the band standard deviations of the
objects as independent variables.

Following the classification of all objects, in images that contained dense riparian vegetation
with shadows, we applied the “grow region” algorithm to the shadow class in eCognition. This step
reclassified the objects neighboring shadow objects as shadow candidates. We repeated the process
as needed. More inclusive shadow thresholds were then applied to the shadow candidates and the
objects were converted to shadow if they were within the thresholds. The object-based elliptic fit shape
attribute was also used to classify individual tree shadows for trees that occurred near the stream.
Although a similar segmentation and image classification approach was applied to all high-resolution
images, as is common in the eCognition environment, a trial-and-error approach to segmentation and
image classification was used [61] so that segmentation scale, index thresholds and rulesets were not
identical across images. A flowchart showing our eCognition methods from image segmentation to an
output of water and non-water is shown in Figure 5.
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Figure 5. A flowchart showing the order of steps taken to process each image to water and non-water
using an object-based approach. Inputs and outputs are shown in ovals while processing steps are
shown in rectangles.

2.4. Pixel-Based Water Classification

Because a GEOBIA approach can be time-intensive and site specific, we were interested in
comparing the performance of eCognition outputs with outputs producing using simplistic, single,
spectral index thresholds. Using the pan-sharpened TOA reflectance values, we calculated the (1)
NDWI [54]; (2) WWI [55]; and (3) the panchromatic brightness value. Brightness was calculated
as the pixel value of the panchromatic band, a grayscale image of portions of the electromagnetic
spectrum (Worldview-2, 3 (450–800 nm) and QuickBird-2 (450–900 nm)) (e.g., [62]). These three indices
were selected as they were most prominently used to identify water objects in the eCognition image
processing approach. The spectral index values of the validation points, described in Section 2.5, were
used to guide the threshold selection. The rasters were thresholded to water and non-water using the
maximum Youden’s index, which maximizes the difference between the true positive rate and the
false positive rate from the ROC curve and provides an optimal threshold independent from class
prevalence [63,64]. The Youden’s Index optimal threshold and corresponding AUC were calculated for
each of the pixel-based outputs.
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2.5. Stream Surface Area Validation

At each of the four sites, a stream line was manually delineated along each stream reach.
The stream line was buffered (above and below the streamline, 1 m, 1.5 m, 1.8 m, 0.75 m for Alkali
Creek, Long Creek (North), Long Creek (South), and Robb Creek, respectively) so that the total buffered
area represented the average stream width. Points were randomly selected within the buffered stream
area to represent water points (n = 200). The stream line was then buffered by 50 m and 200 points
were randomly selected within the buffered area to represent non-water points. The 400 validation
points per image were visually inspected using the raw pan-sharpened image to confirm status (water
or non-water). Accuracy metrics calculated included overall accuracy, omission error, commission
error, Dice coefficient, and relative bias. Omission and commission errors were calculated for the
category of water. The Dice coefficient is the conditional probability that if one classifier (product or
reference data) identifies a pixel as water, the other one will as well, integrating errors of omission and
commission [65,66]. The relative bias provides the proportion that water is underestimated (negative
bias) or overestimated (positive bias). Accuracy metrics were calculated for each of the pixel-based
and object-based stream surface area outputs and presented by site, year, and methodology.

2.6. Changes in Stream Surface Area

To evaluate changes in stream surface area, our goal was to select the most accurate pair of
stream surface area maps per site. This was determined using both the accuracy statistics as well
as a visual assessment of quality. For Long Creek (North) and Long Creek (South), we used the
panchromatic brightness output (97.4 and 98.4% overall accuracy, respectively when averaged across
the two years, Table 3). For Robb Creek, we used the eCognition outputs (96.6% overall accuracy,
averaged across the two years, Table 3), and for Alkali Creek, we merged the eCognition outputs with
the panchromatic brightness outputs so that if water was identified by either output it was included
as water. This was necessary only for Alkali Creek as the stream segment immediately downstream
from the restoration was narrow (~1 to 1.5 m wide) and not adequately mapped using the eCognition
output alone. Each output was edited manually to remove errors of commission. All outputs were
converted to polygons and projected to WGS 1984 UTM zone 12 N prior to calculating area (m2) in
ArcGIS 10.3 (ESRI, Redlands, CA, USA).

All surface water continuous with the stream centerline was included in stream surface area
calculations, while waterbodies that were disconnected from the stream centerline were excluded
from the stream surface area calculations. The total stream surface area was calculated for (1) the
restoration reach, which extended from the upstream BDA structure to the most downstream BDA
structure; (2) a reach extending upstream from the restoration reach (stream length of 300 m), and
three reaches extending downstream from the restoration reach including; (3) a stream length of 0 m
to 250 m downstream; (4) a stream length of 250 m to 500 m downstream; and (5) a stream length of
500 m to 1 km downstream from the restored reach. A schematic showing the distribution of these
reaches at each site is shown in Figure 3. The stream length evaluated upstream and downstream from
the restoration reach was limited by the extent of the pre- and post-restoration images. The same five
reaches were used in analysis of the 2014 and 2017 images. At Robb Creek, the BDAs were aimed
at reactivating side channels so each of the side channels were considered separately from the main
channel (Figure 3). At Alkali Creek, beaver activity upstream from the restoration site influenced
conditions in the upstream reach, so that the reach containing extensive beaver activity was analyzed
separately (Figure 3). In addition, dense riparian vegetation approximately 300 m downstream from
the restoration site in Alkali Creek limited our analysis of downstream area, so that results were
presented only for a single downstream reach (0 m to 300 m) (Figure 3).
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Table 3. A comparison of the accuracy of methods to map stream extent across sites and image dates.
Errors are presented for the accuracy of mapping stream surface area extent. All methods listed
are pixel-based except for eCognition which is object-based. WWI: Worldview Water Index; NDWI:
Normalized Difference Water Index; WV2: Worldview-2; WV3: Worldview-2; QB2: QuickBird-2; OE:
omission error; CE: commission error; OA: overall accuracy; DC: Dice coefficient; RB: relative bias;
AUC: area under curve; NIR: near-infrared.

Site and Method
Image

Year/Sensor
Youden’s Index

Threshold
AUC

OE
(%)

CE
(%)

OA
(%)

DC
(%)

RB
(%)

Alkali Creek

WWI (coastal − NIR2)/(coastal + NIR2) 2014, WV2 −0.211 0.75 52.5 14.0 69.9 61.2 −44.8
NDWI (green − NIR)/(green + NIR) 2014, WV2 −0.316 0.60 68.5 13.1 63.4 46.2 −63.8

Panchromatic brightness 2014, WV2 0.080 0.91 3.5 12.7 91.3 91.7 10.5
eCognition 2014, WV2 ~ ~ 10.5 0.6 94.5 94.2 −10.0

WWI (coastal − NIR2)/(coastal + NIR2) 2017, WV3 −0.176 0.91 24.5 6.2 85.3 83.7 −19.5
NDWI (green − NIR)/(green + NIR) 2017, WV3 −0.277 0.68 56.0 9.3 69.8 59.3 −51.5

Panchromatic brightness 2017, WV3 0.123 0.97 2.5 6.3 95.5 95.6 4.0
eCognition 2017, WV3 ~ ~ 10.0 1.6 94.3 94.0 −8.5

Long Creek (North)

WWI (coastal − NIR2)/(coastal + NIR2) 2014, WV2 −0.225 0.94 15.0 4.0 90.8 90.2 −11.5
NDWI (green − NIR)/(green + NIR) 2014, WV2 −0.389 0.92 36.5 0.8 81.5 77.4 −36.0

Panchromatic brightness 2014, WV2 0.079 0.98 6.0 1.6 96.3 96.2 −4.5
eCognition 2014, WV2 ~ ~ 4.5 2.1 96.8 96.7 −2.5

WWI (coastal − NIR2)/(coastal + NIR2) 2017, WV3 −0.183 0.98 5.5 3.1 95.8 95.7 −2.5
NDWI (green − NIR)/(green + NIR) 2017, WV3 −0.326 0.97 9.0 2.2 94.5 94.3 −7.0

Panchromatic brightness 2017, WV3 0.102 1.00 2.5 0.5 98.5 98.5 −2.0
eCognition 2017, WV3 ~ ~ 4.0 0.5 97.8 97.7 −3.5

Long Creek (South)

WWI (coastal − NIR2)/(coastal + NIR2) 2014, WV2 −0.083 0.98 4.0 3.5 96.3 96.2 −0.5
NDWI (green − NIR)/(green + NIR) 2014, WV2 −0.274 0.98 6.5 4.6 94.5 94.4 −2.0

Panchromatic brightness 2014, WV2 0.076 0.99 2.0 1.5 98.3 98.2 −0.5
eCognition 2014, WV2 ~ ~ 1.5 6.6 95.8 95.9 5.5

WWI (coastal − NIR2)/(coastal + NIR2) 2017, WV3 −0.055 0.99 2.0 3.4 97.3 97.3 1.5
NDWI (green − NIR)/(green + NIR) 2017, WV3 −0.234 0.96 10.5 3.8 93.0 92.7 −7.0

Panchromatic brightness 2017, WV3 0.081 0.99 2.0 1.0 98.5 98.5 −1.0
eCognition 2017, WV3 ~ ~ 2.0 1.0 98.5 98.5 −1.0

Robb Creek

WWI (coastal − NIR2)/(coastal + NIR2) 2014, QB2 ~ ~ ~ ~ ~ ~ ~
NDWI (green − NIR)/(green + NIR) 2014, QB2 −0.278 0.74 62.5 2.6 68.3 54.2 −61.5

Panchromatic brightness 2014, QB2 0.137 0.94 4.0 7.2 94.3 94.3 3.5
eCognition 2014, QB2 ~ ~ 6.5 2.1 95.8 95.7 −4.5

WWI (coastal − NIR2)/(coastal + NIR2) 2017, WV2 −0.243 0.96 16.0 4.5 90.0 89.4 −12.0
NDWI (green − NIR)/(green + NIR) 2017, WV2 −0.299 0.70 36.5 8.6 78.8 74.9 −30.5

Panchromatic brightness 2017, WV2 0.103 0.97 0.5 4.8 97.3 97.3 4.5
eCognition 2017, WV2 ~ ~ 2.5 3.0 97.3 97.3 0.5

The challenge in evaluating the effects of restoration is to separate change attributable to
natural variation (interannual, seasonal, event) from change attributable to the restoration activities.
To accomplish this, we assumed that variability in hydro-climatic conditions would propagate similarly
at the scale of adjacent or nearby stream reaches. Therefore, the ratio between the condition (e.g.,
amount of water, greenness) of an upstream reach and downstream reach at T1 should be equivalent
to the ratio between the condition of the same upstream reach and same downstream reach at T2.

O upstream reachT1

O downstream reachT1
=

O upstream reachT2

E downstream reachT2
(1)

where O refers to the observed value and E refers to the expected value. If we let the downstream
reach represent the restoration reach, we can provide the values for the pre-restoration conditions
(upstream and downstream reach values at T1) and the value for the upstream reach at T2 and solve
for the “expected” value of the downstream reach (i.e., restoration reach) at T2. We can then use the
observed downstream reach value at T2, to calculate the percent change from the expected value that
we can attribute to the restoration activities:
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Change attributed to restoration (%) =
(O downstream reachT2 − E downstream reachT2)

E downstream reachT2
∗ 100 (2)

Calculating change as a function of the expected value can help account for variability between
the images due to natural variability in climate and stream discharge. Although the outputs used to
analyze changes in stream surface area tended to show high accuracy, if we assume that error induced
by the methodology is random or consistent across the image extent, this approach also allowed us
to take into account between-image variability in the accuracy of the mapped stream extent. We also
recognize that changes to the restoration reach can potentially propagate upstream (e.g., [67]), possibly
influencing the relationship between the upstream and downstream reaches; however, due to image
extents we were limited in how far upstream we could document stream surface area necessitating the
above assumptions.

In addition to calculating changes in stream surface area at a reach scale, we also calculated
changes in stream width, inundated length, and changes to stream surface area just upstream
from each BDA. To calculate changes in stream width, 20 points were randomly selected along
the stream centerline within each site and reach and stream width was measured manually using the
pan-sharpened raw imagery and averaged to obtain a single mean stream width per reach. The same
points were used in both years. Inundated stream length was calculated as the percent of the stream
centerline mapped as water. To quantify local changes in stream surface area induced by the structures,
we calculated the stream surface area immediately upstream of each of the structures that showed
a visually evident change (from 2014 to 2017) in stream width. Stream surface area was calculated
from the classified (edited) stream surface area used to quantify reach-scale changes. The local change
in stream surface area was presented as the change relative to pre-restoration stream surface area.
The localized change was observed over a variable stream length distance, but the observed effect
averaged 26 m of stream length upstream from the installed BDAs.

2.7. Changes in Riparian Condition

Riparian greenness was evaluated using three vegetation indices, NDVI, EVI and the Soil-Adjusted
Vegetation Index (SAVI) [65]. Multiple indices were included because vegetation indices are sensitive
to several conditions including canopy geometry (trees versus herbaceous vegetation), soil properties,
sun position, and cloudiness [68–70]. While NDVI is the most commonly used vegetation index,
EVI can help eliminate atmospheric noise, and SAVI reduces the influence of soil by including a soil
adjustment factor (L) [56,68]. Changes in riparian greenness, averaged across the three indices, were
then evaluated, (1) along the restoration reach (from the upstream BDA to the downstream BDA);
(2) 0 m to 250 m downstream from the restoration reach; (3) 250 m to 500 m downstream from the
restoration reach; and (4) 500 m to 1 km downstream from the restoration reach. At Robb Creek,
the BDAs were designed to reactivate side channels so the side channels were considered separately
from the main channel. We also tested how the effect changed as the buffer from the main channel
increased from 10 m to 20 m from the channel centerline.

It was critical to control between-image differences in greenness not related to the restoration,
therefore changes in greenness between the pre- and post-restoration riparian corridors were corrected
using the difference in greenness across reference areas. Three reference polygons were selected at
each site (ranging from 0.2 ha to 2.5 ha in size) representing: (1) herbaceous photosynthetic riparian
vegetation upstream from the restoration site; (2) an upland patch dominated by photosynthetic
grasses; and (3) an upland patch dominated by non-photosynthetic grasses. We avoided areas that
appeared to show a difference in grazing intensity between the two image dates. The greenness values
for each of the reference polygons were averaged to obtain a reference greenness value for each site and
date. Because herbaceous vegetation is more sensitive to interannual change than riparian tree species,
the reference polygons included a mix of riparian and upland vegetation samples. Additionally,
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because changes may have occurred for upstream vegetation in response to the restoration measures,
we used a mix of riparian and non-riparian patches. Even at sites with willow plantings, short-term
changes (one to three years) in riparian condition can be expected to primarily result from growth of
herbaceous species, a change attributable to increased water availability in the shallow subsurface
areas adjacent to the stream. The “reference greenness” values were seen as equivalent to the role of
the upstream reach values when analyzing changes to stream surface area. The same analysis used to
evaluate restoration effects on stream surface area above (Equations (1) and (2)) were applied here to
evaluate restoration-induced changes to riparian condition.

3. Results

3.1. Accuracy of Stream Delineation Approaches

The accuracy of our estimates of stream surface area depended on both the stream width and
the classification approach. Across all sites and classification approaches, the relative bias tended to
be negative, indicating that the stream surface area, on average, was underestimated. Long Creek
(South), which showed a stream width averaging 3 m to 3.5 m and Long Creek (North), which showed
a stream width averaging 2.5 to 3.5 m wide, showed more consistent accuracy statistics across the
approaches tested relative to the other two sites. The eCognition output and Panchromatic brightness
consistently performed the best with errors of omission for water ranging from 2% to 6% and errors of
commission ranging from 0.5% to 7%. In contrast, the NDWI tended to show higher errors of omission,
with omission errors ranging from 7% to 37% and commission errors ranging from 1% to 5% (Table 3).
Overall accuracy and dice coefficients were >95% except for NDWI outputs and one of the four WWI
outputs (Table 3).

As stream width decreased at the Alkali Creek (averaged 1 m to 2.5 m) and Robb Creek (averaged
1.5 m to 2 m) sites, the accuracy of published indices (NDWI and WWI) was relatively poor. Using these
indices errors of omission, for instance, ranged from 16% to 69% along the two streams. However,
panchromatic brightness and eCognition outputs maintained relatively strong accuracy even as stream
width decreased with errors of omission and commission across the two sites and years ranging from
3% to 11% and 2% to 13%, respectively, and the corresponding overall accuracy and Dice coefficient
ranging from 91% to 97%.

It was also evident that classification accuracy for a given method can be inconsistent over time.
Examples of this are shown in Figure 6, in which we can compare the outputs for each classification
approach and year along the Alkali Creek site. Figure 6 also demonstrated that when surface water is
a minority cover type across the image extent, an output can visually appear to be relatively noisy but
statistically show a relatively low amount of calculated commission error. An example of this is the
panchromatic brightness output for 2014 in which an error of commission of 13% created a visually
“noisy” output. The visualized variability in the surface-water extent across methods justifies the need
to analyze changes in stream surface area using the most accurate method possible and including a
manual editing component as time allows so that uncertainty in surface-water extent does not obscure
“true changes” in stream condition.
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Figure 6. A comparison of mapped surface water extent for a reach of Alkali Creek in which challenges
included shaded riparian vegetation (left) and narrow stretches of stream (center). Comparisons include,
natural color images (A,F); the Worldview Water Index (WWI, B,G); the Normalized Difference Wetness
Index (NDWI, C,H); the panchromatic brightness (D,I); and the eCognition output (E,J). O: omission
error; C: commission error Copyright DigitalGlobe, 2014, 2017.

3.2. Changes to Stream Condition

The installation of BDAs resulted in proximal changes (e.g., increases in surface water immediately
upstream from the in-stream structures) as well as changes at the scale of the restoration reach and
downstream reaches. Increases in stream surface area immediately upstream from structures or in
reactivated side channels were observed at all four sites. Increases in total stream surface area along
the restoration reach were observed at three of the four sites, while a decrease in stream surface area
downstream from the restoration reach was observed at all four sites (Table 4).
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At Alkali Creek approximately one year post-restoration, we observed a net increase of 303 m2

in stream surface area immediately upstream from installed BDAs (Figure 7). This amount of water
represented 19% of the total stream surface area along the restoration reach in 2017. After controlling
for differences in stream surface area attributable to interannual variability, we observed a 25% increase
in stream surface area attributable to the restoration activities, and a 30% decrease in stream surface area
downstream from the restoration reach (Table 4). These changes in stream surface area were matched
by corresponding changes in stream width (Table 4). A complicating factor at this site was that beaver
activity was present from 200 m to 800 m upstream from the restoration reach. Upstream ponding
resulting from natural beaver dams was substantial in the 2014 image but total stream surface water
along the beaver impacted reach (200 m to 800 m upstream) decreased 74% by 2017 (Table 4, Figure 8A).

Figure 7. Retention of water upstream of beaver dam analogues along Alkali Creek are visible
by comparing pre-restoration stream reaches (A,C) with post-restoration stream reaches (B,D).
Copyright DigitalGlobe 2014, 2017.
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Figure 8. Change in stream surface area between the most upstream and most downstream beaver
dam analogues (BDAs) along (A) Alkali Creek; (B) Long Creek (North); (C) Long Creek (South); and
(D) Robb Creek. Copyright DigitalGlobe, 2014.

The goal of the restoration along Robb Creek was to reactivate two side channels.
At approximately two years post-restoration, we observed a reactivation of the side channels that
included a 78% increase in stream surface area along the northern side channel and a 356% increase in
stream surface area along the southern side channel (Table 4, Figure 8). Correspondingly, we observed
a 27% decrease in stream surface area along the main stream stem, and a decrease in stream surface
area downstream from the restoration reach (0 m to 500 m downstream) (Table 4).

Long Creek (South) is 4.8 stream km downstream from Long Creek (North) and was the first
restored of the four sites. At the time of the post-restoration image the site was approximately three
years post-restoration. We observed a substantial amount of water stored upstream of many of the
structures (net increase of water surface area of 747 m2) (Figure 9), which represented 6% of the total
stream surface area along the restoration reach in 2017. We observed a 14% increase in stream surface
area along the restoration reach and a corresponding decrease in stream surface area (−17% to −20%)
from 0 m to 500 m downstream from the restoration reach (Table 4). Long Creek (North) at one-year
post-restoration was the only site where we did not observe an increase in stream surface area along
the restoration reach, but instead observed a minor decrease of 5% in stream surface area. We also
observed the smallest increase in stream surface area upstream from the BDA structures (net increase
of proximal water surface area of 171 m2), relative to the other sites evaluated (Figure 9). Similar to
other sites, however, Long Creek (North) showed a decrease in stream surface area (−9% to −16%)
through 1 km downstream from the restoration reach and an associated decrease in mean stream width
(Table 4, Figure 8).
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Figure 9. Visually apparent changes with the installation of the beaver dam analogues varied along
Long Creek. Within Long Creek (North) changes from pre- to post-restoration included retention of
water upstream from structures as well as the reactivation of abandoned side channels (A,B); Along
Long Creek (South) changes included widening of the stream as well as retention of water upstream
from structures (C,D). Copyright DigitalGlobe 2014, 2017.

3.3. Changes to Riparian Condition

At each site, the spectral greenness index used (NDVI, EVI or SAVI) showed a relatively minor
but inconsistent influence on the reported change in greenness, after controlling for between-year
differences in greenness. EVI, for example, showed a higher percent change in greenness relative to
NDVI and SAVI along Alkali Creek and Robb Creek, but not along the Long Creek sites (Table 5).
However, we also found that the directionality of change to riparian condition post-restoration at
each of the sites did not depend on the greenness index used. Increases in riparian greenness along
the restoration reach were observed at three of the four sites, while changes to riparian greenness
downstream from the restoration reach were less consistent.
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Along Alkali Creek, we observed an average increase in greenness of 20% using a 10 m stream
buffer, declining to a 15% increase using a 20 m stream buffer (Table 5). Although we had observed
a decrease in stream surface area downstream from this restoration site, we found an increase in
greenness that persisted through 1 km downstream from the restoration reach. Defining reference
conditions required particular attention along Alkali Creek because the post-restoration image was late
summer (August 2, 2017) when water is more limited. This is evident in the contrast observed in the
NDVI between the riparian area and uplands in the 2017 Alkali Creek image (Figure 10). Along Robb
Creek, minor increases in greenness were observed along the main stem and northern side channel
(<5%), while a substantial green-up was observed along the southern side channel that showed an
increase in greenness of 21% (Figure 10). The decrease in stream surface area observed downstream of
this restoration site was found to co-occur with a decrease in greenness, which ranged from a 4% to
12% decrease in greenness through 1 km downstream of the restoration (Table 4). Although Long Creek
(North) showed a minor decrease in stream surface area within the restoration reach, we observed an
increase in greenness of 7 to 8% along the restoration reach and an increase in greenness of 13 to 15%
just downstream of the restoration reach (0 to 250 m) (Figure 11). In contrast, while we observed clear
changes in stream surface area along Long Creek (South), changes in greenness were minimal (<5%
change) (Table 5, Figure 11).

Figure 10. Change in riparian greenness along (A) Alkali Creek (2014), (B) Alkali Creek (2017), (C) Robb
Creek (2014), and (D) Robb Creek (2017) from pre- to post-restoration conditions. NDVI: Normalized
difference vegetation index; BDAs: beaver dam analogues.
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Figure 11. Change in riparian greenness along (A) Long Creek (North, 2014), (B) Long Creek (North,
2017), (C) Long Creek (South, 2014), and (D) Long Creek (South, 2017) from pre- to post-restoration
conditions. NDVI: Normalized difference vegetation index; BDAs: beaver dam analogues.

4. Discussion

Long-term trends in the degradation of riparian and stream habitat are common across the western
United States [71,72]. Satellite imagery has the potential to provide spatially continuous monitoring of
stream extent and condition, which can complement point-based field efforts and stream gage data,
and better inform stream management in response to degradation. However, only a limited number of
studies have attempted to apply satellite imagery to streams, particularly smaller streams (<5 m wide).
We found that pan-sharpened high-resolution imagery can be used to effectively monitor streams
as narrow as 1.5 m wide. We tested sites where stream width was <1 m and found the results too
poor to include. Panchromatic brightness consistently outperformed more established indices such as
the NDWI. However, in experimenting with the classification of stream surface area we found that
spectrally mixed portions of a stream can be more challenging to identify using this approach, for
instance, portions of the stream showing high turbidity, high chlorophyll levels or bright sands can be
missed using brightness alone. In addition, vegetation shadows, common in riparian areas, can be
erroneously mapped as inundated areas, creating substantial errors of commission. Alternatively, while
far more time consuming, a GEOBIA approach was able to greatly reduce errors of commission outside
of the stream area by increasing object size with distance from stream and adding region growing to the
shadow class within heavily shadowed riparian areas. While the index- and object-based approaches
showed distinct advantages, we found that regardless of efforts accuracy results could be uneven
across years. This is a major challenge in change detection analysis in which uneven accuracy over
time, potentially attributable to differences in sensors, the off-nadir view angle, as well as the time of
day that the image was collected or variability in local hydro-climatic conditions, can obscure change
attributable to human-caused degradation or restoration [73]. We sought to minimize this source of
error by (1) using only our most accurate outputs and further manually editing these outputs prior to
analyzing changes in stream surface area; and (2) calculating the change as a function of the change
from the expected value, therefore controlling, to the extent possible, for change due to image quality
or variability in hydro-climatic conditions. This aspect of remote sensing change analysis, however,
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remains a challenge. Additionally, as the method that produced the highest overall accuracy varied
also across sites, it was evident that the appropriate processing approach to minimize uneven error
over time will vary across sites depending on the amount and type of riparian vegetation (herbaceous
or tree), stream width, as well as water depth and clarity, a finding supported by others [74,75].

Improving techniques to map stream surface area with commercial high-resolution imagery offers
opportunities to remotely monitor changes in key aspects of stream condition induced by flood or
drought events, shifts in local land uses, or in-stream restoration activities. However, it is important to
clarify that the stream data gleaned from a remote sensing analysis is intrinsically different from the
data a hydrologist typically uses. For example, at the Alkali Stream site, differences in the seasonality
of the image pair (June vs. August) meant that the downstream discharge in the Jefferson River was
much lower at the August date relative to the June date (15 m3 s−1 compared to 127 m3 s−1); however,
the stream surface area upstream from the restoration reach along Alkali Creek was only 3% less at
the August date relative to the June date. This contrast clarifies that a remote sensing analysis is not
necessarily capturing changes in stream discharge, which are better measured with stream gages, but
instead providing a spatially continuous dataset of changes in stream surface area, specifically stream
width and the creation or change to riparian wetlands, which could in turn, impact downstream
stream discharge.

Relying on image pairs, however, or only two points in time, can limit our understanding
regarding seasonally specific effects. For example, local stakeholders are interested in the effects of
BDAs on streams not just after snowmelt, but in particular during the late summer period in which
water availability can be limited [27,31]. Because very few DigitalGlobe images have been collected
and archived across southwestern Montana we were restricted to the early summer period and were
therefore unable to evaluate the impact of the BDAs during this late summer period. This limitation
in image timing means we were unable to observe how changes in stream surface area or riparian
condition documented near the start of the growing season influenced conditions near the end of the
growing season. However, this limitation will likely be reduced in the near future. Sentinel-2 (10–20 m
resolution), launched in June 2015, was too coarse for the streams evaluated, but in the future, could
be used to regularly monitor the condition of rivers >10 m wide. CubeSats, such as those launched by
Planet (San Francisco, CA, USA), also show high potential for improved monitoring of stream condition
at more frequent intervals. Obstacles to the widespread application of CubeSats for monitoring stream
condition, however, include the limited number of spectral bands (blue, green, red, near-infrared),
the cost of Planet imagery, as well as challenges in calibrating reflectance and georeferencing between
satellites e.g., [76]. As these technical obstacles are overcome, satellite imagery can be more commonly
used to monitor streams in a spatially continuous manner.

We found separating the influence of weather relative to the influence of human-induced change
particularly challenging in the riparian areas. Trends in riparian condition could be very sensitive to
how reference conditions were defined. In part, this is because we might expect that the magnitude
of interannual variability may be inconsistent across areas dominated by trees versus herbaceous
vegetation. Additionally, reference areas can be influenced by forces of change independent of
weather patterns such as variability in grazing intensity. The use of image pairs, and the time-frame
at which the projects were considered (one to three years post-restoration), also limited our ability
to evaluate the success of the activities with a lagged response, such as the tree planting effort,
which takes more time to establish and can act to further influence riparian-stream interactions over
time [44,77]. Riparian and wetland herbaceous species, however, can respond very quickly to changes
in riparian soil moisture [71,77]. Therefore, changes in riparian greenness can be used to indirectly
assess short-term changes to the stream hydrologic processes [77–79]. Because changes in riparian
greenness were detected even when using a 20 m stream buffer, it may be possible to monitor riparian
condition for streams <5 m wide using moderate resolution satellites, such as Landsat or Sentinel-2.
As riparian trees grow larger and become more established, they can also impact our ability to monitor
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stream surface area. For instance, stream length at most sites was found to be <100% inundated, a
finding that can be attributed to overhanging vegetation or hyporheic flow masking stream water.

Because our analysis relied on just two high-resolution images per site, we view this analysis as an
example of the capabilities and potential of using high-resolution imagery to monitor stream condition
and not a conclusion on the impact of specific restoration methods (e.g., BDAs, riparian planting) on
streams. However, despite these concerns, we saw proximal evidence of increases in stream surface
area upstream from structures at all four sites and evidence of either increases in stream surface area or
riparian greenness along the restoration reach at all four sites. We also saw a decrease in stream surface
area downstream from the restoration reach at all four sites. These findings suggest that the restoration
activities have induced increases in instream water storage, at least during the early summer period.
Uneven findings regarding the change induced by BDAs could be due to several factors including
stream size, pre-restoration conditions [41], restoration goals, restoration installation (including extent
and age), and site specifics, all of which can influence how a stream responds to change through time.
However, these findings suggest that high-resolution imagery can provide a spatially continuous
understanding of how narrow (<5 m wide) streams respond to restoration projects.

5. Conclusions

As high-resolution, multispectral imagery becomes more frequently collected and available,
regular monitoring of stream surface area and condition in response to local or watershed-based
changes will become increasingly feasible. However, mapping narrow, linear water features that are
subject to rapid changes in water depth and turbidity may require approaches independent from
those widely applied to map wetlands and lakes [1,2,80]. We found that utilizing bands unique to
Worldview-2 and 3 in an eCognition framework can produce accurate results and minimal errors of
commission down to a stream width of approximately 1.5 m. By comparing images pre- and post-
restoration across multiple sites in the Upper Missouri River Headwaters Basin, we were able to
quantify proximal and reach-scale changes in stream surface area and riparian greenness in response
to the installation of multiple BDAs at each site. In general, the installation of BDAs appeared
to create an increase in stream surface area immediately upstream from many of the structures.
These proximal changes tended to result in reach-scale increases in stream surface area and riparian
greenness along the restoration reach as well as decreases in stream surface area for reaches just
downstream (through 500 m) from the restoration reach at most of the sites. The consistency of the
directional changes to stream surface area across the sites, despite differing patterns in discharge
lower in the watershed between-image pairs, suggests that we were able to account for hydro-climatic
variability. Restoring degraded streams can positively influence in-stream habitat, water quality as
well as water quantity across a watershed [34,37,38]. Monitoring the impacts of stream restoration
projects, including resource-efficient structures such as BDAs, can improve and inform site selection
and expectations for future stream restoration efforts.
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Abstract: Coastal ecosystems experience multiple anthropogenic and climate change pressures.
To monitor the variability of the benthic habitats in shallow waters, the implementation of effective
strategies is required to support coastal planning. In this context, high-resolution remote sensing
data can be of fundamental importance to generate precise seabed maps in coastal shallow water
areas. In this work, satellite and airborne multispectral and hyperspectral imagery were used to
map benthic habitats in a complex ecosystem. In it, submerged green aquatic vegetation meadows
have low density, are located at depths up to 20 m, and the sea surface is regularly affected by
persistent local winds. A robust mapping methodology has been identified after a comprehensive
analysis of different corrections, feature extraction, and classification approaches. In particular,
atmospheric, sunglint, and water column corrections were tested. In addition, to increase the mapping
accuracy, we assessed the use of derived information from rotation transforms, texture parameters,
and abundance maps produced by linear unmixing algorithms. Finally, maximum likelihood (ML),
spectral angle mapper (SAM), and support vector machine (SVM) classification algorithms were
considered at the pixel and object levels. In summary, a complete processing methodology was
implemented, and results demonstrate the better performance of SVM but the higher robustness of
ML to the nature of information and the number of bands considered. Hyperspectral data increases
the overall accuracy with respect to the multispectral bands (4.7% for ML and 9.5% for SVM) but the
inclusion of additional features, in general, did not significantly improve the seabed map quality.

Keywords: benthic mapping; seagrass; airborne hypespectral imagery; Worldview-2; atmospheric
correction; sunglint correction; water column correction; dimensionality reduction techniques;
SVM classification; linear unmixing

1. Introduction

Coastal ecosystems are essential because they support high levels of biodiversity and primary
production, but their complexity and high spatial and temporal variability make their study particularly
challenging. Seagrasses are extremely important marine angiosperms (flowering plants) with a
worldwide distribution. Seagrass meadows are among the most productive ecosystems in the
world, which help protect the shoreline from soil erosion, serve as a refuge area for other species,
and absorb carbon from the atmosphere [1,2]. Thus, seagrasses are essential, and their preservation in
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a sustainable manner needs the appropriate management tools. In this sense, satellite remote sensing
is a cost-effective solution that has many advantages, compared to traditional techniques, like airborne
photography with photo-interpretation or in-situ measurements (binomic maps from oceanographic
ships). This way, satellite remote sensing is becoming a fundamental technology for the monitoring of
benthic habitats (e.g., seagrass meadows) in shallow waters, as it provides periodic and synoptic data
at different spatial scales and spectral resolutions [3].

Seafloor mapping using satellite remote sensing is a complex and challenging task, as optical
bands have limited water penetration capability and the best channels to reach the seafloor (shorter
wavelengths) suffer from higher atmospheric distortion. Hence, the signal recorded at the sensor level
coming from the seabed is very low, even in clear waters [4,5]. Towards the goal of mapping benthic
habitats at high spatial resolution and achieving a reasonable accuracy, the use of hyperspectral (HS)
imagery can be considered as an alternative to multispectral (MS) data. Unfortunately, high spatial
hyperspectral sensors onboard satellites are not yet available and, in consequence, high-resolution
data from airborne or drone HS sensors are the only options to collect HS data to map complex benthic
habitats environments.

To map the seafloor, the use of high-resolution remote sensing is promising but requires the
application of different geometric and radiometric corrections. Specifically, the removal of the
atmospheric absorption and scattering and the sunglint effect over the sea surface are essential
preprocessing steps. In addition, the water column disturbance can be corrected; however, it is a very
complex issue in coastal areas due to the variability of the scattering and absorption in the water
column, the bottom type, and the water depth [6].

Regarding the removal of the atmospheric effects, correction approaches can be basically grouped
into physical radiative transfer models and empirical methods exclusively considering information
obtained from the image scene itself [7]. Many scene-based empirical approaches have been developed
to remove atmospheric effects from multispectral and hyperspectral imaging data [8–11]. Concerning
the physical models, they are more advanced, complex and based on simulations of the conditions of
the atmosphere from its physical-chemical characteristics and the day and time of acquisition of the
image. At the present time, there are a number of model-based correction algorithms, for example
MODerate resolution atmospheric TRANsmission (MODTRAN), Atmosphere CORrection Now
(ACRON), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), High-accuracy
Atmospheric Correction for Hyperspectral Data (HATCH), Atmospheric and Topographic CORrection
(ATCOR), or Second Simulation of a Satellite Signal in the Solar Spectrum (6S) [12–14]. Some of
these algorithms include more advanced features, such as spectral smoothing, topographic correction,
and adjacency effect correction.

On the other hand, the removal of sunglint is necessary for the reliable retrieval of bathymetry
and seafloor mapping in shallow-water environments. Deglinting techniques have been developed
for low-resolution open waters and also for high-resolution coastal applications [15]. In general,
algorithms use the near-infrared (NIR) channel to eliminate sunglint assuming that water reflectivity
in the NIR band is negligible [16]. This assumption is usually correct, except when turbidity is high,
or the seabed reflectance is important, which can occur in very shallow areas [6].

Concerning the water column correction, Lyzenga [17] proposed the depth invariant index (DII),
an image-based method to decrease the water column attenuation effect. This correction technique
has been applied in previous works, due to its simplicity, with different degrees of success [18–21].
On the other hand, in the last decades, some radiative transfer models have been proposed, but they
are more complex, and the difficulty of accurately measuring some in-situ water parameters can limit
their applicability [22–25].

Once preprocessing algorithms have been applied, classification techniques can be used to
generate the seabed maps. Classification is one of the most active areas of research in the field of
remotely sensed image processing. For example, the classification of hyperspectral imagery is a
challenging task because of the imbalance among the high dimensionality of the data and the limited
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amount of available training samples, as well as the implicit spectral redundancy. For this reason,
specific approaches have been developed, like random forests, support vector machines (SVMs),
deep learning or logistic regressions [26]. Unmixing techniques have also attracted the attention of
the hyperspectral community. Unmixing algorithms separate the pixel spectra into a collection of
constituent pure spectral signatures, named endmembers, and the corresponding set of fractional
abundances, representing the percentage of each endmember that is present in the pixel [27].

Recent research to create seabed maps using remote sensing imagery has been mainly devoted
to map coral reefs [28–34] or seagrass meadows [3,18,35–40]. Commonly, these studies address
very shallow, clear and calm waters, and very dense vegetal species (i.e., Posidonia oceanica). As a
continuation of our preliminary study [14], in this work, hyperspectral and multispectral imagery
have been used to compare the benefits of each type of data to map the seafloor in a complex coastal
area where submerged green aquatic vegetation meadows have low density, are relatively located
at considerable depths (5 to 20 meters), where the sea surface is usually not completely calm due
to persistent local surface winds, and, consequently, where very few bands reach an acceptable
signal-to-noise ratio. Hence, a thorough analysis has been performed to obtain a robust methodology
to produce accurate benthic habitat maps. To achieve this goal, different corrections, object-oriented,
and pixel-based classification approaches have been considered, and diverse feature extraction
strategies have also been tested. In summary, contributions are presented regarding the best correction
techniques, feature extraction methods and classification approaches in such a challenging scenario.
Moreover, a comparative assessment of the benefits of satellite multispectral and airborne hyperspectral
imagery is included to map the seafloor in complex coastal zones.

2. Materials and Methods

2.1. Study Area

The Maspalomas Natural Reserve (Gran Canaria, Spain) is an important coastal-dune ecosystem
covering approximately 4 km2 and with a high touristic pressure, visited by more than 2 million people
each year. The marine vegetation in the coastal fringe is basically composed of seagrass beds. The most
abundant seagrass species is Cymodocea nodosa but, more recently, the Caulerpa prolifera green algae has
also become dominant in this area. Figure 1 shows the geographic location of Maspalomas.

   
(a) 

 
(b) 

Figure 1. Maspalomas area: (a) Geographic location; (b) Panoramic view of the study area (scale
is approximate).
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2.2. Multisensor Remotely Sensed Data

A flight campaign was performed on June 2, 2017 and data were collected at 2.5 m resolution with
the Airborne Hyperspectral Scanner (AHS). The AHS sensor (developed by ArgonST, USA) is operated
by the Spanish Aerospace Institute (INTA) onboard the CASA 212-200 Paternina. AHS incorporates
an 80-band imaging radiometer covering the range from 0.43 to 12.8 μm. In our study, only the first
20 channels were selected, covering the visible and near-infrared (NIR) spectrum from 0.434 to 1.015 μm
with 12-bits of radiometric resolution [41]. Additionally, a WorldView-2 (WV-2) image collected on
January 17, 2013 was considered for this study. Its sensor has a radiometric resolution of 11 bits and a
spatial resolution, at the nadir, of 1.8 m for the 8 multispectral bands (0.40–1.04 μm). The panchromatic
wideband was not used because this channel only provides information about the seabed in the very
first meters of depth and, in consequence, pansharpening algorithms are not effective.

Table 1 includes the spectral characteristics of both sensors and Figure 2a,b show the Worldview
and AHS imagery for the area of interest processed in this work, respectively.

Table 1. Airborne Hyperspectral Scanner (AHS) and Worldview-2 spectral channels.

Sensor Spectral Band Wavelength (nm) Bandwidth (nm)

AHS Visible and Near-IR
(20 channels) 434–1015 28–30

WV-2 Coastal Blue 400–450 47.3
Blue 450–510 54.3
Green 510–580 63.0
Yellow 585–625 37.4
Red 630–690 57.4
Red-edge 705–745 39.3
Near-IR 1 770–895 98.9
Near-IR 2 860–1040 99.6
Panchromatic 450–800 284.6

Figure 2. Cont.
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Figure 2. Color composite images after logarithmic stretching: (a) Worldview-2 of January 17, 2013
(channels 5-3-2) and (b) AHS of June 2, 2017 (channels 8-5-2); (c) Ship transects and sampling
sites during the field campaigns of June 2, 2017 and June 4, 2015 (isobaths included at 1 m steps);
(d) Reference benthic map 2013 [42].

2.3. In-Situ Measurements

In-situ data were acquired simultaneously to the AHS campaign. A total of 6 transects were
performed, measuring the bathymetry using an ecosounder Reson Navisound 110 and recording
images of the seafloor using two different video cameras (Neptune and Go Pro Hero 3+). Precise
geographic and temporal information was provided by a differential GPS receiver model Trimble
DSM132. Ten additional sites visited during 2015 were also used in the analysis, providing bathymetry
and video records from the Go Pro camera. The variation of the sea level due to tides and waves was
obtained from a nearby calibrated tide gauge.

Figure 2c presents the real ship transects during the 2017 campaign, as well as the sites monitored
in 2015 (marked by yellow dots). Isobaths are also included, and the sites and equidistant transects are
perpendicular to the shore to get the maximum information of the area at different depths up to 20 m.

Finally, to assess the accuracy of the benthic maps derived from HS and MS imagery, apart from
the accurate information from the in-situ transect and sampling sites, a reference map providing global
information for the whole area was desirable. Unfortunately, very limited cartography is available
and the map considered (Figure 2d) is the reference map available of the Maspalomas coast, which is
part of a Spanish coastline eco-cartographical study from a series of maritime engineering and marine
ecology studies structured in a GIS [42].

This information was used just as a coarse reference, but the quantitative validation only
considered the precise information measured during the campaigns of 2015 and 2017.

The data used in this study correspond to different years (2013 to 2017). However, the seabed of
Maspalomas is in a fairly stable area with the exception of Punta de la Bajeta (marked in Figure 2a),
which is the zone with the greatest topographic and sedimentary variability due to storms from
the southwest.

112



Remote Sens. 2018, 10, 1208

The seafloor images recorded during the field campaign (see Figure 3 for examples) show the
complexity to discriminate habitat classes because they are usually mixed. Especially, submerged
green aquatic vegetation meadows grow on sandy bottoms, and they have low density and mainly
live between 5 and 25 m depth. In addition, rocks are partially covered by algae making automated
classifications more challenging.

    
(a) (b) (c) (d) 

Figure 3. Seafloor classes: (a) Rocks; (b) Sand; (c) Cymodocea nodosa; (d) Caulerpa prolifera.

2.4. Mapping Methodology

The overall processing protocol to generate the seabed maps is presented in Figure 4. Different
inputs to the classification algorithm were analyzed to select the best methodology. Following, there is
a detailed description of the different steps involved.

 

Fe
at

ur
e 

Ex
tr

ac
tio

n
Pr

e-
pr

oc
es

si
ng

WV-2
(2m)

Geometric & 
radiometric 
corrections

HS
AHS

(2.5 m)

Atmospheric 
correction (6S)

Sunglint correction

Water radiative 
transfer model

Resize + Registration + Masking

Geometric & 
radiometric 
corrections

Sunglint 
correction

Atmosphere & Aerosol 
models, AOT,
Altitude, etc.

Atmospheric 
correction (ATCOR4)

Water radiative 
transfer model

Initial bathymetry 
Seabed normalized 

indices

Transforms (PCA, ICA, MNF)

Texture (Mean, Variance, Entropy)

Unmixing (Abundances)

Classification (Object and Pixel based)

Training
ROIs

Water quality

Seafloor albedo
Bathymetry

Water quality

Seafloor albedo
Bathymetry

Figure 4. Flowchart of the processing methodology to generate benthic maps.
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2.4.1. Multisensor Imagery Corrections

• Multispectral Satellite Imagery

DigitalGlobe owns and operates a world-class constellation of high resolution, high accuracy
Earth imaging satellites. The acquired WV-2 image is the level 2 ortho-ready product that has the
geometric correction implemented and a horizontal accuracy specification of 5 meters or better [43].

In coastal areas, radiometric and atmospheric corrections have proven to be a crucial step in
the processing of high-resolution satellite images due to the low signal-to-noise ratio at sensor level.
A comparative evaluation of advanced atmospheric models (FLAASH, ATCOR, and 6S) in the coastal
area of Maspalomas using high-resolution WorldView-2 data showed that the 6S algorithm achieved
the highest accuracy when the corrected reflectance was compared to field spectroradiometer data
(RMSE of 0.0271 and bias of −0.0217) [14]. Hence, we have applied the 6S correction model but
adapted to the WorldView-2 spectral response and to the particular scene geometry and date of the
image. 6S is a radiative transfer model that generates the constants (xa, xb and xc) to estimate the
surface (BOA: Bottom Of Atmosphere) reflectance by [14,44,45]:

ρ′BOA =
(xaLTOA)− xb

1 + (xc((xaLTOA)− xb))
(1)

corrected to consider the adjacency effect by:

ρBOA = ρ′BOA +
τodi f

τodir

[
ρ′BOA − ρ

]
(2)

where LTOA is the radiance measured by the sensor (TOA: Top Of Atmosphere), ρ′BOA is the initially
corrected surface reflectivity by the 6S model, ρBOA is the surface reflectivity taking into account the
adjacency effect, τodi f and τodir are the diffuse and direct transmittances and ρ is the average reflectivity
contribution from the pixel background [44].

Moreover, specular reflection of solar radiation is a serious disturbance for water quality,
bathymetry, and benthic mapping in shallow-water environments. We applied the method suggested
by References [15,16] to remove sunglint. Therefore, regions of the image having sunglint were selected,
preferably areas of deep water. For each visible channel, all the pixels from these regions were included
in a linear regression between the NIR against each visible band. Therefore, the reflectance of each
pixel in the visible band i (ρBOA,i) can be deglinted

(
ρDG

BOA,i

)
using the following equation:

ρDG
BOA,i = ρBOA,i − bi ∗ (ρBOA,NIR − MINNIR) (3)

where bi is the slope of the regression line for band i, ρBOA,NIR is the reflectance of the NIR channel
and MINNIR corresponds to the minimum reflectance value of the NIR image.

Improvements in the glint removal algorithm were performed [46] because, for WorldView-2,
all the sensor bands are not recording the energy at the same precise time. In addition, the deglinting
process, in the presence of considerable waves, alters the spectral content of the image. To overcome
this inconvenience, a histogram matching was applied to statistically equalize each channel after and
before deglinting. Finally, to remove the foam caused by the waves (whitecaps), pixels achieving
reflectance values above a threshold were replaced by interpolation [46].

Water column correction is a very complex matter due to the variability of the bottom type, water
depth, and water attenuation (scattering and absorption in the water column). Lyzenga proposed a
simpler depth invariant index [17] but, in the last decades, different water models have been developed.
In this work, a radiative transfer model for coastal waters was implemented [14]. The assumption is
that the water leaving radiance is not only caused by the water column (IOPs: water Inherent Optical
Properties), but it is also affected by the seafloor albedo and its corresponding bathymetry. In particular,
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the Lee et al. [47] exponential expression was used, that is an improved version of the formulation
proposed by Reference [22]. The model can be expressed by:

rm
rs(λ) ≈ rrs,∞(λ)

(
1 − e

−[ 1
μsw

s
+

Dc
u

μsw
v

]kdz
)
+

ρalb(λ)

π
e
−[ 1

μsw
s

+
Db

u
μsw

v
]kdz

(4)

where rm
rs(λ) is the modeled reflectivity, rrs,∞(λ) corresponds to the reflectivity below the sea surface

for deep waters generated by the IOPs, ρalb(λ) represents the seafloor reflectivity (albedo), z stands for
the bathymetry, kd is the water diffuse attenuation coefficient, μsw

s and μsw
v allow the corrections in the

sun and sensor trajectories for the downwards and upwards directions, and, finally, Dc
u and Db

u are
light diffusion ascending factors due to the water column and the bottom reflectivity, respectively.

As proposed in Reference [48], the Fully Constrained Linear Unmixing method (FCLU) was used
to model the seabed albedo. The albedo is obtained as the sum of the products of the abundances of
the p pure benthic elements (abi) by their albedo for each wavelength (emi(λ)):

ρalb(λ) =
P

∑
i

abi ∗ emi(λ) (5)

Due to the limitations of the sensitivity of the multispectral sensors, we decided to use the three
most significant and separable spectra of the seabed coverage in the area (sand, rocks and green
vegetation). The radiative transfer modeling was adapted to multispectral sensors by integrating the
result of the monochromatic model for the bandwidths of the 6 first channels of WV-2.

• Airborne Hyperspectral Imagery

Regarding the AHS geometric accuracy, the airborne inertial system achieves a final angular
precision of 0.008◦ for the roll and the pitch, and 0.015◦ for the true heading; and a 12 channels GPS
receiver provides trajectory location with accuracies of 5 to 10 cm [41].

For the hyperspectral data, atmospheric and illumination corrections were performed by INTA
using the ATCOR4 model [41,49]. ATCOR4 is the ATCOR specific version for hyperspectral airborne
data, and it is based on the MODTRAN-5 radiative transfer code.

The multispectral channels of the AHS sensor are somewhat narrower than the WV2 channels,
providing, in the visible range, 12 multispectral channels instead of the 6 of the WV2. The greater
number of channels implies greater spectral information and, therefore, an assumed greater sensitivity
in the classification of the benthic classes. In any case, the methodology carried out for the elimination
of the specular solar brightness, and the radiative transfer modeling is identical to that applied to WV-2.

Finally, land and deep water masks were applied to the corrected bands after both sensors have
been homogenized in terms of resolution and have been spatially aligned using a large database of
singular and well-distributed ground control points. Seafloor is difficult to properly monitor over 20 m
depth in this area using satellite or airborne remote sensing imagery; therefore, a mask was applied at
the 20 m isobath.

2.4.2. Feature Extraction

In addition to the spectral channels provided by each sensor, we also studied the inclusion
of additional information to check the possible increase in classification performance. Therefore,
we considered adding, to the multispectral or hyperspectral bands, components after Principal
Component Analysis (PCA), Independent Component Analysis (ICA) and Minimum Noise Fraction
(MNF) transforms; textural features to enrich the spatial information, and abundance maps extracted
from linear unmixing techniques. Next, the feature extraction techniques are explained in more detail.

• Image Transforms
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In hyperspectral imagery, the high number of narrow bands requires an increase in the number
of training pixels to maintain a minimum statistical confidence and functionality for classification.
This problem, known as the Hughes’ phenomenon [50] or the curse of dimensionality, can be addressed
by overcoming data redundancy. Several transforms have been proposed in the last decades to extract
reliable information, reducing redundancy and noise. Traditional feature-extraction techniques, mainly
applied to reduce the dimensionality of hyperspectral data, are PCA, ICA, and MNF [51].

PCA uses an orthogonal transformation to convert a set of correlated bands into a new set of
uncorrelated components [52]. PCA is frequently applied for dimensionality reduction because it
retains most of the information of the original data in the first principal components. In consequence,
computation times decrease, and the Hughes’ phenomenon is avoided, and, accordingly, the reduction
of the considered components allows obtaining more precise thematic maps [53].

ICA decomposes the set of image bands into a linear combination of independent source
signals [54]. ICA not only decorrelates second-order statistics, like PCA does but also decreases
higher-order dependencies, generating a new set of components as independent as possible. It is an
alternative approach to PCA for dimensionality reduction.

MNF Rotation is a linear transformation to segregate noise in the data and to reduce the
computational requirements for subsequent processing [55]. This MNF transformation orders the new
components so that they maximize the signal-to-noise ratio, rather than the information content [56].
MNF, apart from reducing the dimensionality, can be used to remove noise from data by performing a
forward transform, by determining which bands contain the coherent information, by examining the
images and eigenvalues, and then applying the inverse transform using only the appropriate bands,
or adding as well the filtered or smoothed noisy bands.

• Texture Maps

We analyzed the inclusion of spatial information into the classification to improve the separability
between the classes. There is a wide variety of texture measurements and, in this experiment,
the parameters used were derived from the Gray-Level-Co-occurrence Matrix (GLCM) [57]. The main
idea of the GLCM measurements is that the texture information contained in an image is based on the
adjacency relationship between gray levels in the image. The relationship of the occurrence frequencies
between pixel pairs can be calculated reliably for specific directions and distances between them.

After a preliminary analysis, we observed that most of the texture maps, derived from the
co-occurrence matrix, were very similar (variance, entropy, dissimilarity, etc.). Therefore, to avoid
the inclusion of redundant information, only the mean and variance parameters were finally used.
Instead of applying the GLCM to each original band and, consequently, to have a large dataset of
redundant texture information, the GLCM was only applied to the first component of the PCA and
MNF transforms.

• Abundance Maps

In general, many pixels in the image represent a mixture of spectral signatures from different
classes (e.g., seagrass and sand). In this context, mixing models estimate the contribution (abundance)
of each endmember (pure class) to the total reflectance of each pixel. Linear mixing models provide
adequate results in a large number of applications [27], and while non-linear models can be more
precise, they require detailed information about the geometry and physical properties of the objects,
which is not usually available and, thus, hinders its usefulness.

There are different strategies for the selection of pure pixels. In this work, as supervised
classification techniques were applied, the training regions selected for each class were used to
get the spectral signatures of each endmember.

After the application of unmixing techniques, an abundance map for each class to be discriminated
was generated. Each map represents the percentage of contribution of a class to the total reflectance
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value of the pixel. In consequence, maps have values between 0 and 1 and, if a pixel is a mixture of
different classes, the abundance of each class is obtained.

2.4.3. Classification

We used pixel and object-based supervised classifiers [51,58,59]. Specifically, Maximum
Likelihood (ML), Spectral Angle Mapper (SAM), and Support Vector Machine (SVM) algorithms
were assessed.

ML classification is one of the most common supervised techniques used with remotely sensed
data [51]. ML considers that each class can be modeled as a normal distribution, allowing to
describe that class by a Gaussian probability function, from its vector of means and covariance
matrix. ML assigns the pixel to the class that maximizes the probability function.

The SAM classifier [52] compares the similarity between two spectra from their angular deviation,
assuming that they form two vectors in an n-dimensional space (n being the number of bands).
This algorithm measures the similarity as a function of the angle both vectors form in such a space.

SVM [60] is a machine learning algorithm to discriminate two classes by fitting an optimal
hyperplane to separate the training samples of each class. The samples closest to the decision
boundary are the so-called support vectors. SVM has been efficiently applied to classify both linear and
nonlinearly separable classes applying a kernel function into a higher dimensional space, whose new
data distribution allows better fitting of a linear hyperplane. Although deep learning approaches
are becoming popular [61], they require large training datasets, and that is a great inconvenience in
many operational applications. In addition, a recent assessment comparing advanced classification
methods (SVMs, random forests, neural networks, deep convolutional neural networks, logistic
regression-based techniques, and sparse representation-based classifiers) demonstrated that SVM
is widely used because of its accuracy, stability, automation, and simplicity [26]. After a detailed
review of SVM literature [18,62–64] and many tests conducted using the SVM algorithm with
high-resolution imagery [65,66], the Gaussian radial basis function kernel K

(
xi, xj

)
was selected

for the SVM classification and their parameters were properly adjusted:

K
(

xi, xj
)
= e(−

‖xi−xj
2‖

2σ2 ) (6)

For the segmentation and merging steps in the object based classification (OBIA), after testing
different combinations, using diverse features and number of bands, AHS channels 1 to 3 and WV-2
channel 1 were used. During the segmentation process, the image is divided into homogeneous
regions according to several parameters (band weights, scale, color, shape, texture, etc.) defined by the
operator, with the objective of creating the suitable object borders. We tested a multiresolution
segmentation approach [67] and an algorithm based on watershed segmentation and merging
stages [68]. An over-segmented image was preferred, and as soon as a suitable segmentation was
attained, the classifier was applied.

Finally, the classification accuracy for each possible combination of input data was estimated
using independent test regions of interest (ROIs) located in the image and computing the kappa
coefficient, the confusion matrix, and its derived measures.

3. Results and Discussion

After the correction of each dataset (see Figure 4), three supervised classifiers were applied to
different combinations of input data. All the analysis was performed for HS and MS imagery (AHS
and WV-2, respectively) at the complex area of Maspalomas.

As seafloor reflectivity is very weak, and following the steps of Figure 4, precise preprocessing
algorithms were applied to correct limitations in the sensor calibration, solar illumination geometry,
viewing effects, as well as the atmospheric, sunglint, and water column disturbances. In this sense,
geometric, radiometric and atmospheric corrections were performed. As specified, 6S was selected
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to model the atmosphere and to remove the absorption and scattering effects in the multispectral
image [14], and ATCOR4 for the hyperspectral data [49]. This selection took into account the
results of a previous validation campaign comparing real sea surface reflectance recorded by a field
spectroradiometer (ADS Fieldspec 3) and the reflectance estimated for WV-2 data using different
models. Next, deglinting algorithms were applied to eliminate the solar glint and whitecaps over both
datasets. Finally, the seafloor albedo was generated applying the radiative transfer model described in
Section 2.4.1. As shown in Figure 5, for a small area, the improvement is considerable, especially for
the AHS data, as some areas were severely affected by de-sunglint.

   

   

(a) (b) (c) 

Figure 5. Color composite images, for Airborne Hyperspectral Scanner (AHS) (up) and Worldview-2
(WV-2) (down), after: (a) atmospheric correction; (b) sunglint removal; (c) water column correction.

A preliminary analysis was performed to find the most suitable corrected imagery to address
the classification problem. Specifically, images obtained after the different pre-processing steps were
assessed to identify the more reliable data source for the mapping production. The following thematic
classes were considered: sand (yellow), rocks (brown) and Cymodocea or Caulerpa (green). Using the
information from the ship transects and sampling sites (Figure 2c), sets of training and validation
regions were generated including regions of each class at five-meter step depths from 5 to 20 m.
Approximately, 3000 and 6000 pixels per class were selected for the training and test ROIs, respectively.
The class pair separability (Jeffries-Matusita distance [52]) in the bands ranges from 1.218 to 1.693 for
WV-2 and between 1.802 and 1.985 for AHS. These values corroborate a better discrimination capability
of HS data as more spectral richness is available.

Table 2 presents the results of applying the three supervised classifiers to the data after the
atmospheric, sunglint, and water column corrections. The same independent training and validation
regions of interest were used in all the experiments. As expected, the airborne hyperspectral imagery
allows a better classification than the satellite multispectral data (92.01% with respect to 88.66%).
It can be appreciated that the best overall accuracy was achieved after the deglinting step. The water
column removal did not improve the seafloor mapping, even after applying a complex radiative model.
Even providing adjusted water IOPs and bathymetry values, the modeling of the background albedo
by linear mixing of benthic classes in this complex area does not seem adequate for the subsequent
classification. The very low reflectivity of the coastal bottom, which usually contributes less than
1% of the radiation observed by the sensor, produces errors in the adjustment of the abundances
of the modeled pure benthic elements. Clearly, the model considered has to be further improved.
As indicated, the water column modelling in coastal areas is complex and depends on the water quality
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parameters, as well as the bathymetry and the type of seabed. For this reason, this preprocessing is not
always considered and some studies demonstrate that better results are not always achieved [18,20,40].
Finally, regarding the classification algorithm, SVM is the most appropriate approach for AHS but
Maximum Likelihood works better with WV-2.

Figure 6 shows examples of seafloor maps generated for the AHS sensor, with SVM, and for the
WV-2 data using the ML classifier. Comparing the results with the reference benthic map (Figure 2d)
and the available video records from the ship transects, higher accuracy can be noted for AHS and
using the imagery after the atmospheric and sunglint correction (middle row). Excessive amount of
submerged vegetation is identified for WV-2 and some rocks incorrectly appear on the right side when
these pixels should be labeled as vegetation.

 

 

 

 

Vegetation Rocks Sand

 
(a) 

 
(b) 

Figure 6. Seafloor maps after the atmospheric correction (up), sunglint removal (middle) and water
column correction (down), for: (a) AHS using Support Vector Machine (SVM); (b) WV-2 using
maximum likelihood (ML).

To improve the previous seabed cartography, a detailed feature extraction and classification
assessment was only performed using the preprocessed data after the atmospheric and sunglint
correction stages.

As stated in Section 2.4.2, to improve the benthic maps, additional information was obtained
using feature extraction techniques. In particular, PCA, ICA and MNF were applied to the corrected
spectral bands. In the analysis, the classifier performance was assessed including the complete new set
of components after these transforms and, in addition, the best components were also tested discarding
noisy bands. Figure 7 shows the first bands of each transform, as well as the original spectral bands as
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a reference (the remaining bands were not displayed as they are too noisy). Regarding the spectral
channels, we can appreciate that only shorter wavelengths (first bands) can reach the seafloor and,
in consequence, even dealing with hyperspectral data only a few channels are really valuable to
map benthic habitats up to a depth of 20 m. On the other hand, PCA, ICA and MNF provide useful
information in the first four components. The true color image and false color composites using the
first three components are also included, and it is possible to check the worse behavior of ICA and the
noise removal effect of MNF.

 

   

   

(a) 

 

   

   
(b) 

 

   

   
(c) 

 

   

   
(d) 

Figure 7. AHS color composite (RGB for the original bands and the 3 first components for the
transforms) and the first bands for each transform: (a) original bands; (b) Principal Component
Analysis (PCA); (c) Independent Component Analysis (ICA); (d) Minimum Noise Fraction (MNF).
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Table 2. Overall accuracy (%) of Maximum Likelihood (ML), Support Vector Machine (SVM)
and Spectral Angle Mapper (SAM) for Airborne Hyperspectral Scanner (AHS) and Worldview-2
(WV-2), and the different input combinations after each correction stage (AC: Atmospheric correction,
SC: Sunglint Correction and WCC: Water Column Correction. Best accuracies marked in bold).

Sensor Input ML SVM SAM

AHS AC 88.87 91.34 58.13
AC+SC 91.81 92.01 58.35
AC+SC+WCC 82.42 84.66 40.44

WV-2 AC 88.08 74.66 54.68
AC+SC 88.66 80.63 58.37
AC+SC+WCC 76.76 69.17 45.76

Additional textural parameters and abundance maps after unmixing were also inputted to the
classifiers as auxiliary information.

Table 3 summarizes the AHS and WV-2 accuracy results of each classifier for the following
input combinations:

• Spectral bands after atmospheric and sunglint corrections.
• Components after the application of three-dimensionality reduction techniques (PCA, ICA,

and MNF). The complete dataset and a reduced number of bands or components were both tested.
• Abundance maps of each class after the application of linear unmixing techniques.
• Texture information (mean and variance) extracted from the first PCA/MNF component.

Table 3. Overall accuracy (%) of ML, SVM, and SAM for AHS and WV, and the different input
combinations (Best accuracies marked in bold).

Sensor Input ML SVM SAM Average

AHS Bands (21) 91.81 92.01 58.35 80.72
Bands 1-8 (8) 93.77 84.56 57.36 78.56
PCA (21) 91.81 94.48 47.39 77.89
PCA 1-4 (4) 93.25 92.39 50.54 78.73
ICA (21) 91.81 85.57 29.58 68.99
ICA 1-4 (4) 88.61 79.29 40.92 69.61
MNF (21) 91.81 90.60 36.59 73.00
MNF 1-4 (4) 93.57 90.11 39.08 74.25
LU_ab (3) 90.63 73.33 48.57 70.84
B+LU_ab (24) 92.20 90.04 58.35 80.20
B+Text_PCA1 (23) 91.30 97.29 58.35 82.31
B+Text_MNF1 (23) 92.30 85.90 58.35 78.85
OBIA Bands (21) 85.70 97.36 61.51 81.52
Average 91.43 88.69 49.61 76.58

WV-2 Bands (8) 88.66 80.63 58.37 75.89
Bands 1-3 (3) 85.48 79.97 52.86 72.77
PCA (8) 88.66 80.91 69.13 79.57
PCA 1-4 (4) 87.60 82.27 68.79 79.55
ICA (8) 88.66 70.90 58.26 72.61
ICA 2-5 (4) 76.44 71.72 34.40 60.85
MNF (8) 88.66 80.91 53.44 74.34
MNF 1-4 (4) 88.34 80.52 53.31 74.06
LU_ab(3) 87.70 70.16 74.39 77.42
B+LU_ab (11) 88.71 81.16 74.38 81.42
B+Text_PCA1 (10) 87.50 81.44 58.75 75.90
B+Text_MNF1 (10) 88.41 78.45 57.57 74.81
OBIA Bands (8) 82.27 91.66 64.55 79.49
Average 86.70 79.28 59.86 75.28
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Pixel-based classification was applied to the previous options and, finally, object-based
classification was applied to the spectral bands.

With respect to the sensors, we can appreciate that AHS provides better accuracy than WV-2,
as expected, mainly due to the availability of additional bands and a better radiometric resolution.
Specifically, a major improvement is attained for SVM (mean accuracy increase of 9.5%) than for ML
(4.7% average increase).

Concerning the classification algorithms, SAM did not work properly because, even being more
insensitive to variations of the bathymetry, classes are spectrally overlapped, and only very few bands
are useful due to the water column attenuation. SVM is the algorithm achieving the best accuracy,
but the simpler and faster ML demonstrates good performance and, in many cases, better than SVM
(average results in Table 3 confirm it). Actually, Figure 8 presents the comparative performance of both
classifiers, and it can be appreciated that ML is more robust, providing more stable results regardless
of the input information used or the number of bands considered. Specifically, the standard deviation
(averaged for AHS and WV-2) of the overall accuracy for the different combinations is 2.9% for ML
and 6.4% for SVM.

Figure 8. ML and SVM overall accuracies for both sensors and the different input combinations
(LU: Linear Unmixing, B: Bands, Text: Texture. The number of input bands appears in parentheses).

PCA and MNF perform much better than ICA, but the improvement is, in general, negligible
with respect to the original bands. Also, the reduction of the number of bands/components to avoid
the Hughes’ phenomenon is basically not increasing the classification accuracy except for ML and the
hyperspectral data. The number of training pixels for each class is high enough (3000), and that could
be a possible explanation.

The application of unmixing techniques before the classification did not improve the accuracy
due to the small number of bands actually available. It can be appreciated the degraded performance
of SVM when only the three abundances are considered in the classification scheme.

Finally, texture information is a feature that can be included in the final methodology as precision
values in some circumstances increase the performance. Specifically, the improvement is more evident
for SVM and using the texture information provided by the first component of PCA. For ML, texture
generally does not provide a better accuracy of the benthic map.

It is important to highlight that results obtained by the object-based classification techniques
(OBIA) are not always the best. Basically, OBIA only provides superior performance than
pixel-based techniques for the SVM algorithm. However, results are quite dependent on the type of
segmentation considered.

In general, the overall accuracies for ML and SVM are high as few classes are considered and the
validation pixels chosen to numerically assess accuracy were selected in clear and central locations
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of each seabed type. In any case, the relative results between the different classifiers and input
combinations displayed in Table 3 are reliable.

Figure 9 includes an example of the AHS and WV-2 segmentation for a specific area. AHS provides
more detailed information and, in consequence, the number of objects increases.

 
(a) 

 
(b) 

Figure 9. Objects after the segmentation for rocky and sandy areas of the seafloor: (a) AHS; (b) WV-2.

Figure 10 compares the best pixel-based seafloor maps generated by ML and SVM for the
AHS image. A majority filter of 5 × 5 window size was applied to remove the salt and pepper
effect. Both maps are very accurate, but ML overestimates vegetation (green) in some specific areas,
while SVM the rocks (brown) in others. Finally, Figure 11 shows the best maps for each sensor obtained
using the object-based classification with the SVM algorithm. Results are similar and, in general, match
the available eco-cartographic map included in Figure 2d, except for the western side of the area.
In any case, as indicated, this map was just considered a coarse reference and really ship transects T1
and T2 in Figure 2c demonstrate the existence of vegetation meadows in that area, in agreement with
AHS and WV-2 maps. It is also important to highlight that a vulnerable and complex ecosystem was
studied where the density of submerged green aquatic vegetation beds is quite low and, therefore,
there is a considerable mixture of sand and plant contributions in each pixel of the image.

 
(a) 

 
(b) 

Figure 10. AHS pixel-based classification (majority 5 × 5): (a) ML using bands 1 to 8; (b) SVM using
the bands plus the texture of the first principal component.
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(a) 

 
(b) 

Figure 11. Object Based Classification (OBIA) (SVM): (a) AHS; (b) WV-2.

These methodologies will be shortly applied to generate precise benthic maps of natural protected
ecosystems in other vulnerable coastal ecosystems. In addition, these will be applied to hyperspectral
imagery recorded from drone platforms with the goal of discriminating between the different
vegetation species.

4. Conclusions

A comprehensive analysis was performed to identify the best input dataset and to obtain a robust
classification methodology to generate accurate benthic habitat maps. The assessment considered
pixel-based and object-oriented classification methods in shallow waters using hyperspectral and
multispectral data.

A vulnerable and complex coastal ecosystem was selected where the submerged green aquatic
vegetation meadows to be classified are located at depths between 5 and 20 meters and have low
density, implying the availability of very few spectral channels with information and a considerable
mixing of spectral contributions in each image pixel.

Appropriate and improved atmospheric and sunglint correction techniques were applied to the
HS and MS data. Next, a water radiative transfer model was also considered to remove the water
column disturbances and to generate the seafloor albedo maps. A preliminary analysis was performed
to identify the most suitable preprocessed imagery to be used for seabed classification. Three different
supervised classifiers (maximum likelihood, support vector machines, and spectral angle mapper)
were tested.

A detailed analysis of different feature extraction methods was performed with the goal to increase
the discrimination capability of the classifiers. To our knowledge, the effect of three rotation transforms
to generate benthic maps was assessed for the first time. Texture parameters were, as well, added
to check whether spatial and context information improve classifications. Finally, the inclusion of
abundance maps for each cover, obtained by the application of linear unmixing algorithms, was also
considered but, given the small number of spectral bands actually reaching the seafloor, results were
not fully satisfactory. The best results were produced by SVM and the OBIA approach. However,
to generate benthic habitat maps, the simple ML has shown an excellent performance and superior
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stability and robustness than SVM (average overall accuracies over 3% and 7% for AHS and WV-2
data, respectively).

In summary, a robust methodology was identified, including the best correction techniques,
feature extraction methods, and classification approaches, and it was successfully applied to
multispectral and hyperspectral data in a complex coastal zone.
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Abstract: Urban surface water mapping is essential for studying its role in urban ecosystems and
local microclimates. However, fast and accurate extraction of urban water remains a great challenge
due to the limitations of conventional water indexes and the presence of shadows. Therefore,
we proposed a new urban water mapping technique named the Two-Step Urban Water Index
(TSUWI), which combines an Urban Water Index (UWI) and an Urban Shadow Index (USI). These
two subindexes were established based on spectral analysis and linear Support Vector Machine (SVM)
training of pure pixels from eight training sites across China. The performance of the TSUWI was
compared with that of the Normalized Difference Water Index (NDWI), High Resolution Water Index
(HRWI) and SVM classifier at twelve test sites. The results showed that this method consistently
achieved good performance with a mean Kappa Coefficient (KC) of 0.97 and a mean total error (TE)
of 5.82%. Overall, classification accuracy of TSUWI was significantly higher than that of the NDWI,
HRWI, and SVM (p-value < 0.01). At most test sites, TSUWI improved accuracy by decreasing the
TEs by more than 45% compared to NDWI and HRWI, and by more than 15% compared to SVM.
In addition, both UWI and USI were shown to have more stable optimal thresholds that are close to
0 and maintain better performance near their optimum thresholds. Therefore, TSUWI can be used as
a simple yet robust method for urban water mapping with high accuracy.

Keywords: urban water mapping; water index; shadow detection; threshold stability

1. Introduction

Urban surface water such as rivers, lakes, reservoirs, and ponds, exerts a significant influence
on urban ecosystem services [1] and local microclimates [2]. As a consequence of Land Use/Land
Cover (LULC) and environmental changes and natural hazards, variations in urban surface water,
may result in a series of ecological, climate, health, and socioeconomic problems, such as water supply
shortages [3,4], biodiversity losses [5], aggravation of the urban heat island effect [6,7], and even
outbreaks of waterborne infectious diseases [8]. These problems tend to be more prominent in cities
with rapid urbanization [9–12]. With the development of urbanization, the urban space has been
expanded, leading to the shrinking of water bodies. Meanwhile, frequent human activities may lead to
the deterioration of water quality towards being turbid, stink, or black. Therefore, timely and accurate
mapping of urban surface water is crucial for urban planning and disaster assessments [13,14].

Remote sensing techniques, with their advantages of large area coverage, integration, speed,
and periodicity, have been widely used to delineate surface water and monitor surface water dynamics.
Various methods have been proposed to identify surface water bodies, which can be divided into
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four types: thematic classification [15,16], spectral unmixing [17–19], single band thresholding [20,21],
and spectral water index [22–24]. The last is the most widely used, due to its ease of use, relatively
high mapping accuracy, and low computational expense [25]. Over the past few decades, many
water indexes have been presented in the literature. McFeeters [23] proposed the first water index
called the Normalized Difference Water Index (NDWI) with a default threshold of 0, which utilized
the reflectance difference between water and vegetation and soil in the red and near-infrared (NIR)
bands. To suppress the signals from buildings, Xu [24] replaced the NIR band with the shortwave
infrared (SWIR) band in the NDWI formulation, creating the Modified Normalized Difference Water
Index (MNDWI). Although the MNDWI shows high accuracy, it was still unable to suppress shadows.
Therefore, Feyisa et al. [22] proposed an automated water extraction index (AWEI) and that has
been demonstrated to be effective in different environments, particularly in mountainous areas with
deep shadows.

However, mapping small and narrow urban surface water bodies requires the adoption of
high-resolution images [26]. Most high-resolution images, such as Gaofen-2 (GF-2), IKONOS, RapidEye
and Ziyuan-3 (ZY-3), have only visible and NIR bands and lack the bands necessary to compute most
of the conventional water indexes designed for low- or medium-resolution images. This condition
necessitates the development of a water index for fast and accurate mapping of urban surface water.
Compared to water detection in rural areas, the complex urban setting poses great challenges for
mapping water bodies with high-resolution imagery. Because urban water is greatly affected by human
activities, it may contain high amounts of pollutants, such as suspended solids, high levels of nutrients,
heavy metals, and sewage runoff. These pollutants make the spectral properties of urban surface
water quite different from those of unpolluted water [27]. In addition, abundant shadows cast by
tall buildings and trees are present in remotely sensed images in urban areas. Due to the similarity
in spectral patterns between shadows and water, it is difficult to remove shadow noise from urban
water maps.

NDWI and High Resolution Water Index (HRWI) are two water indexes commonly used for urban
water extraction. However, NDWI tends to misclassify buildings and shadows as water when applied
to high-resolution images [28]. HRWI is a water index that was proposed by Yao et al. [29]. HRWI also
exhibits limited ability to distinguish shadows and should be applied together with a shadow detection
model. Summaries of the aforementioned water indexes are presented in Table S1. To the best of our
knowledge, a water index for high-resolution images with four standard bands that can effectively
suppress all non-water pixels and extract urban water with high accuracy has not been proposed.

In this paper, a new urban water index, called the Two-Step Urban Water Index (TSUWI),
was proposed to map urban water bodies from high-resolution imagery based on the full utilization of
the spectral information from different objects in the visible and NIR bands. As one simple water index
may not address all issues at the same time, the TSUWI combines two subindexes of an urban water
index (UWI) and an urban shadow index (USI). The TSUWI proposed in this paper is expected to
improve the accuracy of urban water mapping by suppressing the signal from artificial construction and
shadows, and to be robust under various water conditions with stable thresholds and high accuracy.

2. Study Areas and Materials

2.1. Study Sites

Given the complex terrain and distinct climates over China, a total of twelve study sites with
variable environmental conditions and diverse types of water bodies were selected to establish and
validate the new urban water index. According to different application goals, these study sites were
divided into two types: training sites and test sites.

Training sites were used for pure pixel selection to formulate the new urban water extraction
index. Given that the features of urban surfaces are spatially variant, eight training sites characterized
by different surface water types, climates, topographies, and urban development levels were therefore
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deliberately chosen. The sites were selected from eight cities around China: Chengdu, Guangzhou,
Nanchang, Qingdao, Shanghai, Aksu, Lhasa and Shigatse (Figure 1). While covering all major
challenging issues affecting the accuracy of urban water extraction, such as shadows, low-albedo
buildings and black soil, these sites span across water bodies of different depths, turbidity levels,
chemical compositions, and surface appearances, including rivers, lakes, reservoirs, pools and seas.
The sites in Chengdu, Guangzhou, Nanchang, Qingdao and Shanghai are located in eastern China
within a dense water network. The water bodies in Chengdu, Guangzhou, and Nanchang are typical
inland waters and consist of several main rivers surrounded by many small ponds, regular or irregular
lakes and artificial reservoirs. The main rivers in Chengdu are relatively narrow, while those in
Nanchang are turbid with large amounts of fluid mud. Qingdao and Shanghai are coastal port cities
containing both marine and inland water bodies. The site in Qingdao has harbors, tidal creeks, and
a portion of the sea, and the main water body in Shanghai is a complicated mixture of suspended
sediment and intrusive seawater because of its special location in the turbidity maximum zone of the
Yangtze River Estuary. Aksu, Lhasa and Shigatse were selected to represent water bodies in China’s
western cities, which tend to be rare and shallow due to the arid or semiarid climates. The site in Aksu
primarily has a narrow river and a large shallow lake. Both sites in Lhasa and Shigatse have a narrow
river, but part of the river in Shigatse is semi-dry.

Test sites were selected to assess the accuracy and robustness of the TSUWI. The whole image at
each test site were used to delineate the true water body boundaries for the assessments. Considering
that the pure pixels sampled for the development of the TSUWI covered only an extremely small
portion of the image, the aforementioned eight training sites were also used as test sites. To enhance
the reliability of the assessments, another four test sites located in Fuzhou, Haerbin, Yinchuan,
and Dongguan were added to constitute the set of test sites. Fuzhou, Haerbin, and Dongguan are
located in Eastern China where there are plenty of water bodies, while Yinchuan is located in Western
China where water bodies are scarce. These twelve test sites are distributed across different regions of
China (Figure 1). The wide range of variability in water types and environmental conditions of the
twelve test sites imposes great difficulty for accurately mapping urban water bodies, which makes
these sites ideal test sites. Table 1 shows the detailed descriptions of these twelve study sites.

Figure 1. Cont.
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Figure 1. Locations of the twelve study sites and Gaofen-2 (GF-2) scenes in true color composites of
red, green, and blue bands.

Table 1. Characteristics of the twelve study sites.

Study Sites Main Water Types/Features Location Area (km2) Topography Climate

Guangzhou River c,t/lake c/pond c,t,e 23.11◦N,
113.33◦E 574.9 Plain/hills Subtropical oceanic monsoon

Aksu River c,n/lake s,t 41.19◦N,
80.31◦E 171.7 Basin Temperate continental arid

Chengdu River c,t,n/pond c,t/reservoir c 30.64◦N,
104.11◦E 521.9 Plain Subtropical humid monsoon

Lhasa River c,t/pond c 29.67◦N,
91.16◦E 54.0 Mountain/plateau Plateau mountain

Nanchang River t,w/lake c,t/pond c,t,e/reservoir c,t 28.69◦N,
115.82◦E 516.2 Plain/hills Subtropical humid monsoon

Qingdao Sea c/tidal creek t/river n,c,t/pond c,t 36.13◦N,
120.38◦E 561.8 Plain/hills Warm temperate monsoon

Shanghai Harbor w,t /river c,t/lake c,t/pond c,t 31.36◦N,
121.55◦E 504.9 Plain Subtropical oceanic monsoon

Shigatse River c,t/lake c,t/pond c,t 29.25◦N,
88.89◦E 84.0 Mountain/plateau Plateau mountain

Fuzhou River c,t,w/lake c,t/pond c,t/reservoir c 26.01◦N,
119.30◦E 522.2 Basin/hills Subtropical oceanic monsoon

Haerbin River t,w/lake c,t,e/ponds c,t,e 45.71◦N,
126.60◦E 468.3 Plain Temperate monsoon

Yinchuan Lake c,t/river c,n/pond c,t 38.48◦N,
106.24◦E 525.1 Plain Temperate continental

Dongguan River c,t/lake c,t/pond c,t,e/reservoir c 22.98◦N,
113.68◦E 288.9 Plain/hills Subtropical oceanic monsoon

Note: c means clear water, t means turbid water, e means eutrophic water, n means narrow water, and w means
wide water.

2.2. GF-2 Imagery

As a civil land observation satellite with currently the highest resolution in China, GF-2 is
equipped with two multispectral scanners and characterized by submeter spatial resolution, high
positioning accuracy and rapid posture maneuverability. With a revisit cycle of 5 days and a swath
width of 45 km, GF-2 is a critical data source for urban remote sensing applications. The basic
characteristics of GF-2 satellite is shown in Table 2.
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Twelve GF-2 images were ordered from the website of the China Center for Resources Satellite
Data and Application (available at http://cresda.com/CN/index.shtml). One image was used
for each site. When choosing images, all available data were inspected to avoid the influence of
clouds on the water bodies. The GF-2 images contain one panchromatic band and four multispectral
bands (comprised of blue, green, red, and near-infrared bands). All images were Level 1A products,
which contain enough information for further image preprocessing, such as radiometric correction
and geometric correction. The detailed information on these GF-2 images is presented in Table 3.

Table 2. Basic characteristics of GF-2 satellite. NIR: near-infrared.

Spectral Bands
Wavelength

(μm)
Resolution

(Nadir Point)
Swath Width

Side-Swing
Ability

Revisit Cycle

Panchromatic 0.45–0.90 0.8 m

45 km ±35◦ 5 days
Band1—Blue 0.45–0.52

3.2 m
Band2—Green 0.52–0.59
Band3—Red 0.63–0.69
Band4—NIR 0.77–0.89

Table 3. Characteristics of the twelve study sites.

Study Sites
GF-2 Scene

Supplementary Reference Data
Acquisition Date Path Row

Guangzhou 4 November 2016 1016 185
Google Earth™ image acquired on
5 October/5 November/9 December 2016, ©Digital
Globe

Aksu 29 February 2016 102 135 Google Earth™ image acquired on 17 April 2016,
©Digital Globe

Chengdu 21 March 2015 27 164
Google Earth™ image acquired on
11 February/21 March 2015, ©Digital Globe,
CNES/Airbus

Lhasa 3 December 2016 63 167 Google Earth™ image acquired on 3 December 2016,
©Digital Globe

Nanchang 28 November 2016 1013 170
Google Earth™ image acquired on
24 September/1 December/31 December 2016,
©Digital Globe

Qingdao 16 February 2016 1006 149 Google Earth™ image acquired on 16 January 2016,
©Digital Globe

Shanghai 2 January 2015 999 162
Google Earth™ image acquired on
18 December 2014, and 24 January/18 February 2015,
©Digital Globe

Shigatse 12 January 2017 69 168 Google Earth™ image acquired on 21 May 2018,
©CNES/Airbus

Fuzhou 7 December 2016 1001 177
Google Earth™ image acquired on
21 January/1 March 2017, © Digital Globe,
CNES/Airbus

Haerbin 10 September 2015 997 122
Google Earth™ image acquired on
19 June/9 July/16 September/24 October 2015, ©
Digital Globe

Yinchuan 4 January 2017 27 142

Google Earth™ image acquired on 30 October/2
November/
13 November 2016, and 21 January 2017, ©Digital
Globe

Dongguan 15 February 2017 1015 186 Google Earth™ image acquired on 12 February 2017,
©Digital Globe

2.3. Reference Data

The true water body boundaries of all twelve study sites were manually digitized on-screen to
evaluate the accuracies of the extracted water surface. In consideration of the inevitable bias caused
by the time span between GF-2 images and other data sources, the digitization was implemented
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on the GF-2 images, which was sharpened by the panchromatic band with higher spatial resolution.
Water conditions are sometimes extremely complicated, and small urban water bodies adjacent to tall
buildings, especially dark and quadrangle-shaped buildings, could easily be confused with building
shadows due to their similar spectra and morphology. Google EarthTM images, which were acquired
on dates as close as possible to the GF-2 images, were supplied to assist with the visual interpretation
by providing another different overview of the urban surfaces. Table 3 lists the detailed information
about these supplementary reference data.

2.4. Image Preprocessing

The GF-2 images in the form of raw digital number (DN) values were calibrated to the top of
atmosphere (TOA) reflectance via radiometric calibration. Atmosphere scattering and absorption could
bring unexpected spectral bias, leading to significantly reduced image quality. As a consequence, an
atmospheric correction was applied to the obtained TOA reflectance using the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI v.5.3 [30]. Relative
atmospheric parameters were determined via a lookup table [31], which is based on a seasonal-latitude
surface temperature model. The initial visibility applied in this procedure was estimated using the
aerosol optical depth (AOD) obtained from MODIS Terra aerosol products of version 6 [22].

Due to the effects of sensor tilt and terrain relief, orthorectification was carefully undertaken
with the GF-2 images after atmospheric correction. Given that each GF-2 image contains Rational
Polynomial Coefficient (RPC) information in the header file, this procedure was performed using the
RPC orthorectification workflow in ENVI v5.3. To improve the precision of the geometric correction,
ground control points (GPCs) with average root mean square (RMS) values of no more than 0.5 pixels
were selected for each image to refine the RPCs, and the high-resolution digital elevation data (30 m) of
ASTER GDEM v.2 [32] were supplied. The output pixel sizes for panchromatic band and multispectral
bands are 1 m and 4 m, respectively. Afterwards, all orthorectified images were clipped to achieve
higher urban water percentages and lower visual interpretation costs.

3. Methodology

3.1. Pure Pixel Selection

A dataset of pure pixel reflectance values of nine major urban land cover types was sampled from
the GF-2 multispectral images of eight training sites. The urban land cover types are bright soil, black
soil, bright built, dark built, vegetation, asphalt, light shadow, dark shadow, and water. These pure
pixels were utilized to examine the spectral differences between water and other land cover types and
act as samples fed into a linear Support Vector Machine (SVM) model for index coefficient training,
aiming to design an urban water index that accurately distinguishes water from other urban surfaces.
This new index is expected to be robust against various water type changes within complex urban
environments. Therefore, as discussed in Section 2.1, eight training sites located in different cities
across China, including a wide range of water types and all the major interference factors, were used
to extract pure pixels.

Pure pixels were generated by manual digitization of the GF-2 multispectral images with the
assistance of Google EarthTM images. Pure pixels were generally extracted from the center of a land
cover patch to ensure their purity and were evenly distributed across each image to achieve high
representativeness. For each of the eight training sites, 120 pixels were extracted for each land cover
type, leading to 1080 pure pixels for each training site and 8640 for all sites.

3.2. Spectral Features of Water and Non-Water Types

Water indexes are typically mathematic combinations of several spectral features, aiming to
enhance the contrast between water and non-water pixels [22]. Given the distinct separability of
each feature for various land cover types, an optimal feature combination is required for an effective
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water index. Therefore, comprehensive analyses of the spectral characteristics of water and other
land cover types are prerequisites for identifying the optimal feature combination to be applied in the
formulation. Statistical distributions of pure pixel reflectance values of nine land cover types for blue,
green, red, and NIR bands were obtained and displayed in Figure 2a–d. The results showed that the
original bands generally demonstrated good performance in discriminating water from non-water
types. However, considerable spectral overlap can be observed between water and dark shadows in all
bands, making it difficult to extract water information while suppressing the shadow noise. To account
for this issue, the TSUWI was proposed, which consisted of two subindexes of UWI and USI derived
from different feature combinations. The UWI is formulated to effectively discriminate water and dark
shadows from other non-water types, and the USI is formulated to remove the dark shadow pixels
included in the extraction result of the UWI.

  

  

  

 

Figure 2. Distributions of reflectance and water index values (a–h) for the major urban land cover
types, including bright soil, bright built, vegetation, black soil, asphalt, dark built, light shadow, dark
shadow, and water. Horizontal lines in each box plot (boxes and whiskers) indicate the locations of the
10th, 25th, 50th, 75th, and 90th percentiles, and the circles indicate the 5th and 95th (blue dashed line)
percentiles. The red dashed rectangles show the contrast between shadows and water in each water
index. NIR: near-infrared; NDWI: Normalized Difference Water Index; HRWI: High Resolution Water
Index; UWI: Urban Water Index; USI: Urban Shadow Index.
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For the UWI, the optimal feature combination was identified from the image bands. Figure 2a–d
showed that each band has a certain ability to separate water and dark shadows from other land cover
types, and the red band achieves the best separability. However, the unstable reflectance values in
the blue band may cause obvious variations in the optimal threshold values of the index [29], and no
significant improvement in accuracy was observed after the blue band was introduced (discussed in
Section 3.3.2). Therefore, the green, red and NIR bands were finally selected to formulate the UWI.

Band ratios were found to be capable of amplifying the minor differences between the spectral
reflectance of water and dark shadows. Meanwhile, band ratios can also help stabilize the
discrimination abilities of indexes by diminishing the undesired influence posed by topographic
relief and light intensity change. Hence, six band ratios composed of either two of all four bands were
calculated for the identification of the optimal feature combination for USI formulation, including
NIR/B, NIR/G, NIR/R, B/G, B/R, and G/R, where G, R, B, and NIR refer to the reflectance values
of the green, red, blue, and near infrared bands, respectively. Information redundancy exists among
the six band ratios, and only three of them can cover all four bands. The three band ratios with
maximum separability and minimum correlation were then chosen to formulate the USI. Scatter plots
and M-statistical tests were used to qualitatively and quantitatively measure the separability of water
and dark shadows in the band ratios. In the scatter plots shown in Figure 3, the area encompassed by
the two dashed lines in each plot shows the locations of pure dark shadow pixels in the corresponding
band ratio. Therefore, the more pure water pixels that fell out of this area, the better separability
the band ratio has. The M-statistical test (Equation (1)) is defined by quantifying the histogram
difference between two classes [33]. M values above 1.0 indicate fine separation, while M values below
1.0 indicate poor separation.

M =
μ1 − μ2

σ1 + σ2
(1)

where μ1 − μ2 is the difference in the means of two classes, and σ1 + σ2 is the sum of their standard
deviations. Considering that the USI is a linear combination of features, Pearson’s Correlation
Coefficient (PCC) analysis [34] was used to examine the linear correlation between two band ratios.
The closer a correlation coefficient to 1 or −1 is, the more significant the linear relation is, indicating
that one band ratio is more likely to be superseded by the other.

Separability results revealed that NIR/G, NIR/B, and NIR/R showed similar scattering
distribution patterns (Figure 3), and NIR/G achieved the best performance at separating water and
dark shadows with a high M value of 1.12 (Table 4). The PCC analysis further confirmed that there are
high correlations among NIR/G, NIR/B, and NIR/R, with correlation coefficients greater than 0.91.
Hence, NIR/G was chosen, while both NIR/B and NIR/R were discarded. The other three band ratios
of B/G, G/R, and B/R have M values of 0.91, 0.57, and 0.24, respectively. B/G and B/R are highly
correlated with a coefficient of 0.71, while G/R and B/G are only weakly correlated with a coefficient
of −0.25 (Table 5). Consequently, B/G and G/R were selected as the other two band ratios used in the
formulation of the USI. Any two of the selected band ratios (NIR/G, B/G and G/R) were significantly
correlated (Table 5).

Figure 3. Cont.
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Figure 3. Separability of dark shadows and water in the six band ratios, including NIR/G, NIR/R,
NIR/B, B/G, G/R, and B/R, denoted by the amounts of pure water pixels that fell out of the area
encompassed by the two dashed lines in each plot. (a–f) display the scatter plots of surface reflectance
of pure dark shadow and water pixels. The slopes of the two dashed lines in each plot correspond to
the 5th and 95th percentiles of the corresponding band ratios of pure dark shadow pixels, respectively.

Table 4. Separability of water and dark shadows in six band ratios using the M-statistical test.

Class Pair
M Value

NIR/G NIR/R NIR/B B/G G/R B/R

Water vs. Dark shadows 1.12 0.87 0.65 0.91 0.57 0.24

Table 5. Pearson’s Correlation Coefficient (PCC) among the six band ratios.

Value
Band Ratio Pair

NIR/G vs.
NIR/B

NIR/G vs.
NIR/R

B/G vs.
B/R

G/R vs.
B/R

B/G vs.
G/R

NIR/G vs.
B/G

NIR/G vs.
G/R

Pearson’s r 0.91 0.94 0.71 0.50 −0.25 0.51 −0.58

3.3. Constructing the Two-Step Urban Water Index

The TSUWI was devised to effectively suppress non-water surfaces and extract urban water
with improved accuracy. As discussed in Section 3.2, the spectral features used to eliminate water
dark shadows differ from those used for other non-water types. Therefore, the TSUWI was designed
to compose the two subindexes of the UWI and USI, the coefficients of which were obtained using
linear SVM.

3.3.1. Linear Support Vector Machine

The coefficients of the water indexes imply the contribution of a corresponding feature to the
separation of water and non-water pixels and become a significant issue for the design of a water
index. The coefficients of conventional water indexes (e.g., NDWI, MNDWI, and AWEI) primarily
resulted from reflectance pattern analysis of various land cover types, and therefore are characterized
by certain subjectivity. In addition, because urban water bodies are typically sediment-rich and algae
polluted and exhibit complicated optical features [35], it would become a great challenge for index
designers to empirically determine the coefficients of an effective urban water index. In this paper,
creating a new index is essentially a linear problem. Hence, the linear SVM was adopted to identify
the optical coefficients for the new water indexes.

Linear SVM is a nonparametric statistical learning machine based on the structural risk
minimization criterion [36]. By recovering an optical linear hyperplane in the feature space that
maximizes the margin separation of two classes, it has been proven to be an advanced coefficient
training model [29]. Given a set of labeled training data (X, Y) = {(xi, yi)|i = 1, . . . , N, yi ∈ {−1,1}},
the margin of the positive class is represented by equation wTx + b ≥ 1, while the margin of the
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negative class is represented by equation wTx + b ≤−1. That is to say, the minimum margin difference
between these two classes is 2, which ensures that the classifier has stable discrimination ability. The
linear SVM can be explicitly formulated by solving the following constrained optimization problem
(Equations (2) and (3)) [37].

min
w,b

max
αi

1
2
‖ w ‖2 −

N

∑
i=1

αi

(
yi

(
wTxi + b

)
− 1
)

(2)

subject to 0 ≤ α ≤ C and
N

∑
i=1

αiyi = 0 ∀i (3)

where xi ∈ Rd is the feature vector of training sample i, here referring to the optimal feature
combination selected for index formulation. yi ∈ {−1, 1} is the corresponding class label. N is
the total number of training samples. αi is the Lagrangian multiplier ranging from 0 to a constant C.
Weight vector w is a normal vector that is perpendicular to the hyperplane, and parameter b stands for
the intercept term of the hyperplane.

The optical hyperplane is then represented by Equation (4).

wTx + b = 0 (4)

For a test pixel x, if the expression wTx + b output is greater than 0, it belongs to the positive class,
and if the expression output is less than 0, it belongs to the negative class. Obviously, the expression
wTx + b can be used as an index, and parameters [wT , b] are the coefficients. In addition to enhancing
the separability of the positive and negative classes, the linear SVM also provided a default threshold
of 0, which could be used as a reasonable starting threshold for binary classification.

3.3.2. Formulation of the Urban Water Index (UWI)

The UWI was formulated using the linear SVM to discriminate water and dark shadows from
other land cover types. Pure pixels of all land cover types were used to train the linear SVM, where
water and dark shadow pixels are labeled as 1, and the other pixels are labeled as −1. To help determine
whether the blue band should be introduced into the new index, two linear SVM training experiments
were conducted with and without the blue band. By comparing their classification abilities using pure
pixels, it was found that the addition of the blue band led to a reduced accuracy of 94.14% compared
with 94.27%. The feature combination composed of the green, red, and NIR bands was thus used as
the input training vector. After training, the coefficients for the optimal hyperplane were obtained
(Equation (5)).

PUWI = 5.83 × G − 6.57 × R − 30.32 × NIR + 2.25 (5)

As shown in Figure 4a, the PUWI values of water and dark shadows did not display great
discrepancy with the values of other land cover types. To further enhance the separation ability,
PUWI was then divided by the expression |5.83 × G − 6.57 × R − 30.32 × NIR| to create the UWI.
This division enlarged the difference that water and dark shadows had from other types. Providing
insights into the histogram of pure pixel samples, it functioned by shifting water and dark shadow
pixels towards larger positive values and shifting other land cover pixels towards smaller negative
values, leading to a larger interval between them (Figure 4a,b). The modulus keeps the plus-minus
sign unchanged, which means the water and dark shadow pixels in the UWI remain above 0 and
other non-water pixels remain below 0. For ease of use, the common divisor 5.83 was removed in the
final index, and the coefficients were rounded to one decimal digit, which did not cause a significant
reduction in accuracy. The UWI formula is then represented by Equation (6).

UWI =
G − 1.1 × R − 5.2 × NIR + 0.4
|G − 1.1 × R − 5.2 × NIR| (6)
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Figure 4. Histograms of PUWI (a) and UWI (b) for pure pixels of positive classes (water and dark
shadows) and negative classes (non-water types except dark shadows). The dashed gray lines indicate
the peaks of the Gaussian fit curves.

3.3.3. Formulation of the Urban Shadow Index (USI)

The USI was designed to further improve the accuracy by removing the dark shadows that can
be confused with water classes from the extraction result of the UWI. Herein, pure water and dark
shadow pixels with NIR/G, B/G and G/R features were fed into the linear SVM to create the new
USI. Pure water pixels were labeled as 1, and pure dark shadow pixels were labeled as −1. For ease of
use, the coefficients of band ratios were rounded to two decimal digits, while one decimal digit was
reserved in the constant term. The USI was finally formulated as shown in Equation (7).

USI = 0.25 × G
R

− 0.57 × NIR
G

− 0.83 × B
G

+ 1.0 (7)

3.3.4. The Two-Step Urban Water Index

The TSUWI was developed by combining the UWI and USI. The TSUWI extracts urban water
by sequentially applying the UWI and USI to the image. The UWI was first applied to generate
a temporary water mask. The USI was then used to eliminate dark and light shadow pixels included
in the temporary water mask and obtain the final water extraction result. Therefore, the TSUWI can
then be expressed as Equation (8).

TSUWI = (UWI > T1) ∧ (USI > T2) (8)

Here, the TSUWI is a binary index with its possible values being 0 or 1. A value of 0 indicates
non-water, while 1 indicates water. T1 and T2 denote the optimal thresholds of the UWI and USI,
respectively. Zero could theoretically be used as their default value. However, due to the variation in
scene brightness and contrast with time and space, the optimal thresholds should be determined in
accordance with specific conditions.

The water extraction results of the TSUWI were generated by intersecting the threshold
segmentation results from both the UWI and USI; thus, the commission error caused by one index could
be corrected by the other. The UWI demonstrated remarkable performance in suppressing non-water
land cover types, including bright built, bright soil, vegetation, black soil, dark built, and asphalt. But
in areas with dark or light shadow covered surfaces, the UWI may misclassify such surfaces as water
(Figure 2g). As a remedy for the UWI, although the USI showed limited ability to eliminate some

139



Remote Sens. 2018, 10, 1704

non-water pixels, such as bright built, this index performed well in suppressing dark shadows and
performed even better in suppressing light shadows (Figure 2h).

3.4. Assessment Methods

The assessment of the TSUWI method included an accuracy assessment and stability analysis.
An accuracy assessment was used to measure how close the classification results were to the real world.
The threshold stability analysis was used to investigate the stability of the optimal threshold close to
the default threshold of 0 and the accuracy of water extraction near the optimum threshold.

3.4.1. Accuracy Assessment

To compare the accuracy of the proposed TSUWI with other methods, two well-known
water indexes for visible and near-infrared imagery, NDWI and HRWI, were chosen in this study.
The comparison between the TSUWI, NDWI, and HRWI was made at their optimum thresholds,
which were captured by an iterative approach on the principle of balance of commission and omission
errors [22]. Moreover, a nonlinear SVM with a Gaussian radial basis function was employed as a classic
and commonly used supervised classifier [35], and its classification accuracy was also compared with
that of the TSUWI. For the SVM classifier, the four multispectral bands of GF-2 imagery were chosen
as the feature vector input, and the parameters of the SVM were determined by the performance with
the highest accuracy. The training samples for each test site were taken from the pure pixel data of
the nine land cover types. For the additional test sites in Fuzhou, Haerbin, Yinchuan, and Dongguan,
pure pixels were acquired in the same way as other test sites (Section 3.2). After SVM classification,
pixels belonging to non-water types were assigned to one category, and binary water results were
then produced.

Classification accuracies of the TSUWI, NDWI, HRWI, and SVM, were assessed by calculating
the KCs, commission error (CE) and omission error (OE) derived from the confusion matrix [38].
The confusion matrix was produced via a pixel-by-pixel comparison between the classification and
reference images. As the reference image was the same for the different classification methods,
dependence between their confusion matrixes can easily occurs. This dependence may result in too
conservative inference about the superiority of one classification method over another [39]. McNemar’s
test was thus adopted to provide an assessment of the confidence in the accuracy difference between
the TSUWI and the other three methods. The test was based on a chi-square statistic, computed as
shown in Equation (9) [39].

χ2 =
(| f12 − f21| − 1)2

f12 + f21
(9)

where f12 and f21 denote the proportions of pixels that are correctly classified by one method but
wrongly classified by the other.

3.4.2. Threshold Stability Assessment

Threshold stability analysis is an important paradigm in the context of index development and
application. Because the NDWI and HRWI are similar to the UWI and USI and were formulated to
discriminate water from non-water pixels by forcing water pixels above 0 and non-water pixels below
0, the NDWI and HRWI were also chosen to further compare the stability of the proposed TSUWI. For
the three methods, a default value of 0 is, in theory, the optimum threshold that could extract water
with the highest accuracy. However, due to the variation in scene brightness and contrast with time and
space, the optimum threshold may not always lie at 0 but at a certain value near 0. As a result, a range
of multiple thresholds of approximately 0 at regular intervals are iteratively tested to find the optimum
threshold. To reduce the iteration times in adjusting the threshold, the threshold data for testing are
expected to have a small range but a large interval. Water extraction methods are thus required to (1)
stabilize the optimal threshold as close as possible to the 0 value and (2) maintain good performance
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near the optimum threshold. Therefore, the threshold stability comparison between the TSUWI, NDWI,
and HRWI was made from these two perspectives. The former perspective was assessed by examining
the variation in the optimal threshold values for the three methods across the twelve test sites, while
the latter one was tested by comparing their accuracy variability in a range of thresholds near the
optimum value. When testing the accuracy variability of the UWI and USI, the variation in the accuracy
of one index was calculated by fixing the other index at its optimum threshold.

4. Results

4.1. Water Extraction Maps

The water extraction maps generated by the TSUWI, NDWI, HRWI, and SVM at the twelve
test sites are presented in the Supplementary Material (Figure S1). Visual inspection of Figure S1
indicates that the TSUWI was effective in extracting surface water in the presence of complex urban
surfaces. Compared to the NDWI and HRWI, the proposed TSUWI consistently performed better in
suppressing shadows and other non-water surfaces, particularly at the test sites in Shanghai, Yinchuan,
and Dongguan. In most cases, the NDWI and HRWI resulted in noisy results with a large number
of misclassified pixels. The SVM resulted in classification outputs that were (visually) similar to the
TSUWI at first sight. However, closer inspection revealed that the proposed TSUWI did improve the
water extraction accuracy at most test sites compared to SVM.

4.2. Water Extraction Accuracy

The water classification accuracies of the TSUWI, NDWI, HRWI, and SVM methods at the twelve
sites are presented in Table 6. Statistical analysis of Table 6 indicated that the TSUWI successfully
achieved high accuracy of urban surface water mapping at all test sites, with a mean KC equal to
0.97 and a mean TE (the sum of the CE and OE) of 5.82%. In contrast, the other three methods
consistently exhibited lower classification accuracy, with an exception at the test site in Aksu for
SVM (TE = 6.89% for TSUWI, while TE = 6.22% for SVM). The two conventional indexes, NDWI and
HRWI, exhibited similar performance and resulted in a lower classification accuracy than the other two
methods, and their mean KC and mean TE were 0.90, 17.41% and 0.93, 13.21%, respectively. The SVM
classifier fell between, with a mean KC of 0.95 and a mean TE of 8.81%. For the overall stability,
it clearly appeared that the classification accuracy of the TSUWI at different test sites exhibited smaller
variations compared to the other three methods (Figure A1). By comparing the TEs at each test site,
it is found that at most test sites, the TE of TSUWI was less than 55% of that of NDWI or HRWI and
85% of that of the SVM classifier (Figure A2). In other words, the proposed TSUWI could generally
decrease the classification error by more than 45% compared to NDWI or HRWI, and 15% for the SVM.

Table 6. Summary of classification accuracies of the three methods by test site. TSUWI: Two-Step
Urban Water Index; NDWI: Normalized Difference Water Index; HRWI: High Resolution Water Index;
SVM: Support Vector Machine.

Test Sites
Kappa Coefficient Total Error (%)

TSUWI NDWI HRWI SVM TSUWI NDWI HRWI SVM

Guangzhou 0.96 0.92 0.92 0.95 7.72 14.46 13.90 8.35
Aksu 0.97 0.96 0.96 0.97 6.89 7.58 7.07 6.22

Chengdu 0.94 0.84 0.84 0.83 11.33 30.15 29.75 29.70
Lhasa 0.96 0.94 0.92 0.94 7.97 12.16 14.84 11.05

Nanchang 0.98 0.95 0.96 0.98 3.11 9.45 7.41 3.28
Qingdao 1.00 0.99 0.99 0.99 0.34 0.65 0.69 0.75
Shanghai 0.99 0.96 0.94 0.99 1.24 5.38 7.80 1.48
Shigatse 0.96 0.90 0.87 0.93 7.10 19.43 24.51 13.81
Fuzhou 0.98 0.95 0.96 0.96 4.31 8.10 7.82 6.25
Haerbin 0.97 0.90 0.91 0.97 6.17 18.09 17.64 6.50

Yinchuan 0.96 0.57 0.93 0.94 7.97 63.79 13.25 11.04
Dongguan 0.97 0.89 0.92 0.96 5.65 19.69 13.78 7.33
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Table 7 summarizes the significance of the accuracy difference at the twelve test sites by
McNemar’s chi-square test. Overall, significant accuracy improvement was achieved by the TSUWI
compared to the NDWI, HRWI, and SVM (p-value < 0.001). Exceptions were found in the test site
in Aksu for the HRWI and SVM. At this site, the superiority of the TSUWI over the HRWI was
nonsignificant (p-value = 0.364), and the TSUWI performed significantly worse than the SVM because
the TE of the TSUWI (6.89%) was greater than that of the SVM, and the p-value was below 0.001.

Table 7. Summary of McNemar’s χ2 test for accuracy difference between the TSUWI and the NDWI,
HRWI and SVM.

Test Sites
TSUWI vs. NDWI TSUWI vs. HRWI TSUWI vs. SVM

χ2 p-Value χ2 p-Value χ2 p-Value

Guangzhou 132,839.0 <0.001 115,749.6 <0.001 3154.6 <0.001
Aksu 77.3 <0.001 0.8 0.364 93.6 <0.001

Chengdu 17,469.1 <0.001 16,782.9 <0.001 29,634.9 <0.001
Lhasa 789.6 <0.001 1611.7 <0.001 565.7 <0.001

Nanchang 156,460.7 <0.001 90,288.0 <0.001 473.3 <0.001
Qingdao 27,076.7 <0.001 29,515.0 <0.001 37,705.9 <0.001
Shanghai 365,387.6 <0.001 614,546.5 <0.001 5523.5 <0.001
Shigatse 5466.0 <0.001 9882.5 <0.001 2461.9 <0.001
Fuzhou 93,062.7 <0.001 82,875.6 <0.001 33,324.0 <0.001
Haerbin 146,443.9 <0.001 148,493.8 <0.001 474.1 <0.001

Yinchuan 1,637,618.0 <0.001 41,856.2 <0.001 18,304.1 <0.001
Dongguan 242,347.7 <0.001 118,820.2 <0.001 10,548.3 <0.001

4.3. Threshold Stability Analysis

A comparison of the stability of the optimal thresholds of the UWI, USI, NDWI, and HRWI is
shown in Figure 5. The optimal thresholds of the UWI and USI at different test sites presented similar
ranges, which were from −0.38 to 0.15 and −0.38 to 0.11, respectively. Compared to the NDWI and
HRWI, the optimal thresholds of these two new indexes have smaller ranges of approximately 0.
Themaximum deviations of the optimal thresholds for the UWI and USI were both 0.38, whereas those
for the NDWI and HRWI reached 0.56 and 0.85. It was concluded that the optimal thresholds of the
UWI and USI at different test sites exhibited small variations from the default threshold of 0 compared
to the NDWI and HRWI. Therefore, 0 could be used as the initial threshold in the iteration to find the
optimum thresholds for both the UWI and USI.

Figure 6 shows the accuracies of the UWI, USI, NDWI, and HRWI in the range of [−0.1, 0.1]
near the optimal thresholds. At all twelve sites, the UWI exhibited almost unnoticeable variations,
whereas the variations in the USI variation were relatively more obvious. This result means that the
accuracy stability of the TSUWI near the optimal threshold is mainly dependent on that of the USI. In
most cases, the accuracy of the USI is much more stable and higher than that of the NDWI and HRWI.
Therefore, the TSUWI can alleviate the manual iteration issue for the optimum threshold, which is
often normal and serious in the application of water indexes [40]. Moreover, the UWI can maintain
the best performance in the range [−0.1, 0.1], while the USI can maintain the best performance in the
range [−0.01, 0.01]. In the application of the TSUWI, we thus recommend 0.2 as the iteration step size
for the UWI and 0.02 for the USI.
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Figure 5. Threshold variability and distribution of index values of water pixels for the UWI, USI,
NDWI, and HRWI. Dashed lines show the maximum and minimum of the optimal threshold at the
twelve test sites, and the “x” symbol shows the optimal threshold for each site.

Figure 6. Cont.
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Figure 6. The accuracies of the UWI, USI, NDWI, and HRWI at twelve test sites (a–i) in a range of
thresholds near the optimal threshold: (a) Guangzhou; (b) Aksu; (c) Chengdu; (d) Lhasa; (e) Nanchang;
(f) Qingdao; (g) Shanghai; (h) Shigatse; (i) Fuzhou; (j) Haerbin; (k) Yinchuan; (l) Dongguan.

5. Discussion

5.1. Effects of Shadow Detection

The fact that shadows are widely distributed throughout urban areas and exhibit spectral patterns
that are similar to those of water makes shadow removal a challenging problem in urban water
extraction [25,41]. To address this issue, many researchers have contributed to previous research on
the improvement of extraction accuracy by introducing additional shadow detection methods, such
as object-oriented classification [35,42], shadow detection model based on SVM feature training [29],
morphological shadow indexes [43,44] and invariant color model [45–47]. These methods may
achieve expected results but are relatively difficult to apply and are time-consuming. Our new
USI automatically suppresses shadow pixels through the arithmetic of bands. The circumvention of
complex shadow detection procedures may simplify urban water mapping.

As shown in Section 3.3.4, the USI was preliminarily verified to have good separation through
statistical analysis of pure pixels. To further confirm the role of this shadow detection index,
we compared the accuracy results of the NDWI and HRWI, as well as their combination with the
USI, and the proposed TSUWI at the twelve test sites (Table 8). Compared to the NDWI and HRWI,
the combination of both with the USI achieved improved accuracy at each test site. For the NDWI
and HRWI, the OE at most test sites was greater than the CE. The reason for this difference is that
only the NDWI or HRWI cannot suppress the signal from shadows (Figure 2e,f), and the threshold
has to be increased to achieve high accuracy at the cost of increasing the OE. By combining these
indexes with the USI, the USI can successfully remove the noise from shadows (Figure 2h), and the
NDWI or HRWI can then reduce the threshold to decrease the OE, thus resulting in improved accuracy.
However, reducing the threshold of the NDWI (or HRWI) may simultaneously increase the number
of misclassified pixels, such as dark built, asphalt and bright built (dark built and asphalt for HRWI)
pixels, on which the USI also has limited effects (Figure 2h). Among the three combination methods
with USI, the proposed TSUWI (UWI + USI) demonstrated the best performance with the highest
accuracy in detecting urban water bodies at all test sites. Therefore, we recommend using the TSUWI
method to extract urban water rather than the NDWI or the HRWI combined with the USI. However,
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the accuracies delivered by the combination of USI with NDWI and HRWI were quite similar to that of
the TSUWI. This finding not only implies that the USI is much more important for the performance
of the TSUWI, but also highlights the potential of USI to further improve the performance of other
water indices.

Table 8. Summary of the accuracy using HRWI, NDWI, NDWI+USI, HRWI+USI and TSUWI (UWI+USI)
at each optimal threshold.

Test Sites
NDWI HRWI NDWI + USI HRWI + USI TSUWI

Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% Kappa OE% CE% Kappa OE% CE%

Guangzhou 0.92 10.22 4.24 0.92 10.68 3.22 0.93 9.08 3.46 0.95 5.84 3.48 0.96 5.37 2.35
Aksu 0.96 2.04 5.55 0.96 2.96 4.11 0.96 2.04 5.51 0.96 2.98 4.03 0.97 1.98 4.91

Chengdu 0.84 25.29 4.86 0.84 24.49 5.26 0.88 11.76 10.96 0.93 6.66 8.02 0.94 5.91 5.42
Lhasa 0.94 8.61 3.55 0.92 7.30 7.55 0.95 7.42 3.27 0.94 7.32 4.09 0.96 6.68 1.30

Nanchang 0.95 6.15 3.30 0.96 4.43 2.98 0.96 3.72 2.64 0.97 2.66 2.19 0.98 1.99 1.11
Qingdao 0.99 0.35 0.31 0.99 0.33 0.36 1.00 0.19 0.33 0.99 0.19 0.38 1.00 0.17 0.17
Shanghai 0.96 2.05 3.33 0.94 3.25 4.55 0.99 0.92 0.45 0.99 0.86 0.47 0.99 0.83 0.41
Shigatse 0.90 10.80 8.63 0.87 7.51 17.00 0.91 9.67 7.50 0.91 9.17 8.23 0.96 3.83 3.28
Fuzhou 0.95 6.64 1.46 0.96 6.05 1.77 0.96 5.93 1.65 0.97 3.69 2.01 0.98 3.05 1.25
Haerbin 0.90 13.60 4.49 0.91 9.67 7.98 0.91 11.39 4.49 0.92 9.55 4.67 0.97 4.20 1.97

Yinchuan 0.57 7.93 55.86 0.93 9.23 4.02 0.96 5.42 2.70 0.96 6.14 1.89 0.96 5.41 2.56
Dongguan 0.89 7.54 12.16 0.92 8.09 5.69 0.97 3.38 2.61 0.96 3.72 3.01 0.97 3.04 2.61

5.2. Advantages of the Proposed Method

The TSUWI proposed in this paper contributes to the efforts to improve the accuracy of urban
water extraction for various environmental studies. Although a number of improved water mapping
indexes [22,24] have been proposed, few of them were established based on pure pixels derived from
various water body types in various environments with a sufficient number of study sites. This method
is constructed by combining the UWI and USI. To create effective indexes, a linear SVM model and
numerous pure pixels were used in this study. As an outstanding machine learning technique for
training the coefficient index, the linear SVM will not only provide an inherent default threshold of
zero but also automatically achieve the largest separation between positive and negative classes [29].
The pure pixels were selected from eight sites located in different regions across China, which were
deliberately chosen to cover various water body types and urban surfaces. As expected, the TSUWI
was shown to extract urban surface water with high accuracy and remain robust for different types of
water bodies under various urban environments.

The lack of a stable threshold is a problem in many water indexes, which may make the decision
of a cut-off threshold more time-consuming and easily lead to a subjective choice of threshold with
decreased accuracy [22]. In addition to accuracy improvement, the two indexes in the TSUWI were
also shown to have a relatively stable optimal threshold that is close to zero and maintain good
performance in the range of neighborhood thresholds near the optimal value. In the determination
of optimal thresholds, 0 could be used as the starting point for the iterations for both the UWI and
USI; 0.2 is recommended as the iteration step size for the UWI, and 0.02 is recommended for the USI.
Benefiting from this, the application of this method is simplified, and the likelihood of achieving the
highest urban water accuracy is improved. However, our findings are based on the suggestion that
radiometric calibration and atmospheric correction were carefully undertaken for the images from all
test sites. If either of these corrections is ignored, the accuracy and optimal thresholds may be different
from those observed in this study.

Although high-resolution images have been available for a few decades, simple yet efficient
indexes to characterize urban water extent with adequate detail are still lacking. This deficiency
mainly results from the limited bands and surface noise in these images, which are often major causes
of misclassification in urban surface water mapping. Our new TSUWI fills this gap. The TSUWI
is calculated by the simple arithmetic of four standard bands prevalent at high resolution images.
Using a simple threshold segmentation approach, the TSUWI consistently provides accurate water
results in various water conditions with regard to depth, turbidity, chemical composition, and surface
appearance. The extracted urban surface water can be further used as basic information for various
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urban studies, such as water quality analysis, urban heat island effect, and urban surface water change
under the context of urbanization.

5.3. Further Improvements

Although the proposed TSUWI achieved satisfactory results in this study, some issues remain,
such as atmospheric composition, transferability of the proposed method to other image data, seasonal
variation in the angle of the sun, and seasonal behavior of water bodies themselves. All of these factors
have an impact on the performance of the TSUWI. The use of different atmospheric correction methods
may also influence thresholds and accuracies, especially when there is heavy haze. Heavy haze has
been a serious issue in Chinese urban areas during wintertime in recent years. Current atmospheric
correction models may not necessarily work well when correcting atmospheric haze. Therefore,
one may need to consider the importance and type of atmospheric correction applied in the image
preprocessing stage when evaluating the accuracies of different water extraction methods. Because the
TSUWI is designed based on the land cover reflectance using GF-2 images, it is theoretically free of the
constraints in terms of satellite image type with similar spectral bands. However, due to the inevitable
differences among different sensors, it is still necessary to test the TSUWI on image data from other
sources. Seasonal variation in the angle of the sun leads to changes in the brightness of images, and
may also influence the performance of TSUWI. In addition, the spectral properties of water bodies will
vary with seasonal changes in precipitation, biodegradability, domestic animals, and aquatic plants.
In our test cases, we did not consider the influence of seasonal variation in the angle of the sun as well
as the seasonal behavior of water bodies themselves. Therefore, the robustness of the new method also
needs to be tested during different seasons. These issues are worth a follow-up study and verification.

6. Conclusions

The main purpose of this study was to devise a method that improves the accuracy of urban
water extraction by increasing the spectral separability between water and non-water surfaces in the
presence of shadows, which are often major causes of low classification accuracy. Using GF-2 data,
we proposed an urban water extraction method called the TSUWI, which is a combination of two new
indexes (UWI and USI) and compared its accuracy and threshold stability with that of the NDWI,
HRWI, and SVM classifiers. In twelve cities across China, the accuracy assessment results showed
that this method exhibited good performance, with an average KC of 0.97 and an average TE of 5.82%.
Compared with the NDWI, HRWI, and SVM, the TSUWI generally exhibited improved accuracy by
decreasing the TEs by more than 45% for the NDWI or HRWI and 15% for the SVM. In addition, both
the UWI and USI were shown to have stable thresholds that were close to 0 and maintained good
performance near their optimum thresholds with images from different locations and times compared
to the NDWI and HRWI. Therefore, the TSUWI is an alternative and improved method for urban water
mapping using high-resolution imagery. Moreover, the USI can be used alone to combine with other
water indices for the further improvement of their performance in more accurate water extraction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/11/1704/s1,
Table S1: List of water indexes. B, G, R and NIR refer to the surface reflectance of the green, red, blue and near
infrared bands. SWIR1 and SWIR2 donate the surface reflectance of two shortwave infrared bands (band 5 and
band7) in the Landsat TM/ETM+ imagery; Figure S1: Water extraction results using the TSUWI, NDWI, HRWI
and SVM at the twelve test sites.
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Appendix A

 
Figure A1. KCs and TEs obtained by the TSUWI, NDWI, HRWI and SVM for the twelve test sites.
The twelve sites here were Guangzhou (Gz), Aksu (Aks), Chengdu (Cd), Lhasa (Ls), Nanchang
(Nc), Qingdao (Qd), Shanghai (Sh), Shigatse (Sgs), Fuzhou (Fz), Haerbin (Heb), Yinchuan (Yc) and
Dongguan (Dg).

 
Figure A2. Total errors of the four methods for the twelve test sites.
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Abstract: The general topic here is the application of very high-resolution satellite imagery to the
study of ocean phenomena having horizontal spatial scales of the order of 1 kilometer, which is the
realm of the ocean submesoscale. The focus of the present study is the use of WorldView-2 along-track
stereo imagery to probe a submesoscale feature in the Baltic Sea that consists of an apparent inward
spiraling of surface aggregations of algae. In this case, a single pair of images is analyzed using an
optical-flow velocity algorithm. Because such image data generally have a much lower dynamic
range than in land applications, the impact of residual instrument noise (e.g., data striping) is more
severe and requires attention; we use a simple scheme to reduce the impact of such noise. The results
show that the spiral feature has at its core a cyclonic vortex, about 1 km in radius and having a vertical
vorticity of about three times the Coriolis frequency. Analysis also reveals that an individual algal
aggregation corresponds to a velocity front having both horizontal shear and convergence, while
wind-accelerated clumps of surface algae can introduce fine-scale signatures into the velocity field.
Overall, the analysis supports the interpretation of algal spirals as evidence of a submesoscale eddy
and of algal aggregations as indicating areas of surface convergence.

Keywords: High-resolution satellite imagery; submesoscale; spiral eddy; cyanobacteria; surface
convergence; western Baltic Sea

1. Introduction

High spatial resolution imagery from satellites capable of along-track stereo, or from satellites that
follow each other closely in time on similar orbits, can be exploited for target motion given appropriate
time lags between the image acquisitions [1–9]. In the ocean, targets take the form of spatial gradients
and other features in ocean color and surface temperature, suspended material, surface films, and (as in
this work) algae. Ocean currents can be deduced from time-lagged images by using various techniques
such as maximum cross-correlation [2,4,8] and optical flow [4–9]. Particularly exciting is the possibility
of using high-resolution time-lagged imagery to explore the realm of the ocean submesoscale, in which
strong surface convergences and downwelling become associated with horizontal density fronts and
cyclonic vortices e.g., References [10,11].

In this letter, a single pair of along-track stereo images from the WorldView-2 satellite
(DigitalGlobe, Inc., Westminster, CO, USA; pixel sizes of ~1 m) is used to examine aspects of small-scale
dynamical features as revealed through an algal bloom in the western Baltic Sea. A large-scale view of
the study area is provided by a Sentinel-3 satellite image (Figure 1a). The numerous green filaments
and spiral patterns in the imagery are caused by buoyant cyanobacteria (blue-green algae), which
commonly form summer blooms, often toxic, on the surface of the Baltic Sea under relatively low
wind conditions [12,13]. An understanding of and an ability to predict concentrations of cyanobacteria
are of practical importance and interdisciplinary interest. The WorldView imagery captures a small
algal spiral pattern (Figure 1b) that provides the focus of this study. High-resolution stereo views of
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submesoscale phenomena are rare in the Baltic Sea and other areas as well; and in the present case,
may provide insight into how the various algal patterns arise and what might be learned from them.
For instance, the relationship of the spiral pattern to ocean dynamics remains unclear. It is reasonable
to suppose that a spiral pattern derives from the action of an underlying eddy, but to our knowledge
this has never been confirmed directly. Assuming an eddy, then how does the spiral pattern arise?
Is it from kinematic distortion (i.e., from a differential angular velocity of the fluid) of any initial
distribution of algae material [14], or is it from the dynamics of the fluid, in which the cyanobacteria,
like any other surface floating material, become concentrated along frontal convergence zones that are
being swept into the eddy [10]?
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Figure 1. (a) Conditions in the Western Baltic Sea on 1 July 2018 as measured by the OLCI sensor
aboard the Sentinel-3 satellite (https://s3view.oceandatalab.com/). Red-filled circle shows location
of research platform FINO-2 (winds and in-water data); yellow-filled circle (just south of study site)
indicates a land-based weather station. (b) WorldView-2 RGB image of the area of the red rectangle in
panel a, showing the spiral pattern that is the focus of this study.

In order to address such questions, the WorldView stereo data are analyzed here using an
optical-flow algorithm to deduce the velocity field. There are, however, a variety of noise sources—
such as signal processing, data collection configuration, and environmental factors—that can
contaminate the results. A scheme for ameliorating the effect of one processing artifact (“striping”)
is described and used in this work. As will be shown, the analysis does indeed reveal a vortex at
the center of the algal spiral, which supports the interpretation of such algal spirals as evidence of a
submesoscale eddy, and that an individual algal aggregation corresponds to a velocity front having
both horizontal shear and convergence (and hence, downward transport).

2. Materials and Methods

2.1. Dataset

The WorldView-2 data were acquired on 1 July 2018, at 10:14:35 UTC (time t1; shown in Figure 1b)
and 10:15:52 UTC (time t2); the time interval between data collections being Δt = t2 − t1 = 77 s.
While only a segment of the imagery is examined in this study, browser versions of the full image
strips can be accessed at https://discover.digitalglobe.com/; select “Area of Interest”; then “Search
by image ID”, where the identification numbers for the t1 and t2 images are 10300100803F8400 and
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10300100819E2800. The t1 and t2 collections had similar off-nadir angles (25◦ and 31◦), but necessarily
different target azimuth angles (261◦ and 333◦). Solar elevation and azimuth angles were 57◦ and 155◦.
After geo-referencing and resampling to a uniform UTM map grid, spatial resolution is Δx = 2 m for
the eight color and near-infrared bands and Δx = 0.5 m for the panchromatic band. A further step
of image-to-image registration using a simple translation and ground control points, results in rms
displacement errors of about 1 pixel. High spatial resolution combined with relatively large image
time difference yields a velocity detection threshold Δx/Δt of 0.01 to 0.03 m s−1.

Wind data are available from the German research platform FINO-2 (55.007◦N, 13.154◦E), and a
close-by land station (54.443◦N, 12.558◦E). (See Figure 1a for locations; see Figure S1 for time series).
During the 48-h period prior to acquisition of the WorldView imagery, the mean 10-m wind speed
at FINO-2 was 3.3 m s−1 (s.d. = 1.3 m s−1). For the hour immediately preceding image acquisition,
the mean wind speed was 4.2 m s−1 at FINO-2 and 2.2 m s−1 at the land station, and the mean wind
directions were 41.1◦ and 22.5◦. In-water temperature and salinity measurements are also available
from FINO-2, and profile and time series plots are shown in Figures S2 and S3. Stratification is
dominated by temperature; the water column is weakly stratified in the upper 10 m, and becomes
increasingly stratified toward the bottom. The stratification changes little over time, suggesting that
horizontal spatial gradients are relatively weak.

2.2. Selection of Wavelength Bands to Analyze

An optimal signal would have a large dynamic range or image contrast and it would represent
radiation backscattered from features at the sea surface, so that the derived velocity field could be
ascribed to a fixed depth. The latter is an issue because the algae, in addition to forming accumulations
at or very near the sea surface, will be dispersed by wind-induced shear and Langmuir circulation,
and thus will have some vertical distribution. A dynamic range for an individual wavelength band
can be defined as the rms signal in areas having real ocean structure minus that in areas where the
signal is near the noise level. Values for the various WorldView bands were thus found to be as
follows: highest (6.1 and 5.3 counts) for green and yellow wavelengths (bands 3 and 4); lowest (0.5 to
1.5 counts) for the shortest and the near-infrared wavelengths (bands 1, 2, 7, and 8); and intermediate
(about 3 counts) for the red and red-edge wavelengths (bands 5 and 6). As the green wavelength
band (band 3; 510 to 580 nm) had the best dynamic range, it was chosen for analysis. A segment of
panchromatic data (dynamic range of 5.8 counts) will also be examined; although those data overall
have a large percentage of signal near near-noise level, they do capture the finest-scale variations in
the algal distributions.

As to the issue of what depth to associate with the derived velocity field, we can note that algal
features were found to be highly coherent across bands 3 through 6. Band 6 (wavelengths of 706
to 746 nm) has a penetration depth of 0.75 m, based on the inverse attenuation coefficient for pure
water; in the midst of an algal bloom, that depth is likely less. This suggests that, even though the
algae may be mixed vertically downward several meters (see Section 3.2), the backscattered signal will
be weighted toward the upper meter or so; hence, we assume the velocity field derived using band
3 represents the flow over the upper 1 to 2 meters of the water column.

2.3. Treatment of Noise Stripes

A push-broom instrument such as WorldView-2 uses a linear array of detectors arranged
perpendicular to the flight direction of the spacecraft; different areas of the Earth’s surface are then
imaged as the spacecraft flies forward. As different electronic amplifiers are used to process sequential
sub-arrays of detector elements, small residual errors inevitably arise across the array [15]. Such errors
give rise to a pattern of prominent vertical stripes in imagery having a small dynamic range, which
is often the case for imagery of the ocean. Such stripes are clearly visible, for example, in Figure 1b,
which combines data from red, green, and blue wavelengths (bands 5, 3, and 2, respectively). Striping
occurs in every wavelength band, including the panchromatic band, but to a varying degree; and,
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after geo-referencing data from any wavelength band, a particular stripe will appear in a different
geographic location in the t1 and t2 images. The stripe—particularly the abrupt transition, or a jump
from one stripe to another—can then be falsely interpreted as an ocean feature that has moved, and
this will introduce noise into an image-derived velocity field. An initial de-striping of the data is thus
an important step.

Approaches described in the literature [16,17] are based on deriving a polynomial to describe the
detector variations across the entire image; this typically results in different corrective adjustments
or offsets for every pixel across the push broom. Our approach differs in that it attempts to correct
for only the effects of the most significant jumps, which often are regularly spaced across the image
and readily identified. The approach consists of the following steps, all of which are done prior to
geo-referencing the image data. First (step 1), the position of each jump and its height are determined
through examination of an otherwise locally homogeneous part of the image. Second (step 2), the
heights are applied uniformly and cumulatively within each stripe to create a one-dimensional array
or row of offset values. (A minor complication arises because of a small overlap in the sub-array
processing; as a consequence, a jump from one stripe to the next occurs over a range of pixels—about
7 pixels in this dataset.) Lastly (step 3), the offsets are used to de-stripe the data image.

We found it convenient to do both steps 1 and 3 within the image-processing environment of
ImageJ [18]. For step 1, we use the ImageJ “Plot Profile” tool in areas of the image where the real ocean
signal variation is weak compared to the jump. (To increase the precision to which the jump heights
are determined, all data values are first multiplied by one hundred.) For step 3, the imported row
of offsets is replicated sufficiently to make an image of the same size as the data image, and is then
subtracted from it using ImageJ’s “Image Calculator”. Figure S4 shows the data both before and after
the de-striping.

2.4. Method for Calculating Currents

Optical-flow methods estimate the velocity field by assuming conservation of a passive tracer; i.e.,
the total (Lagrangian) derivative of the tracer is equal to zero for a suitably short time interval. This
condition is represented as an exact integral of the nonlinear tracer-conservation equation

I(r + u Δt, t2) = I(r, t1) (1)

where I is tracer intensity, Δt is the time difference between the two images, and r and u are the position
and velocity vectors for a particular image pixel. For the present application, we use a nonlinear
optical-flow method called the Global Optimal Solution [5–7]. In this approach, the image is partitioned
into a number of square sub-domains (called tiles), n pixels on a side. The velocity field within each
tile is modeled by a bilinear function. Velocity vectors at the tile nodes are derived through minimizing
a cost function that is the sum of errors arising from the use of equation (1) at every pixel; an iterative
technique is used that employs Gauss-Newton and Levenberg-Marquardt methods. Choice of tile
size depends on the correlation length scale and noise level of the image data [7]. Our procedure at
present is to try a range of tile sizes, then choose the one that is small enough to capture the features of
interest without excessive noise. In this study, a value of n = 300 pixels with the band-3 data yielded a
satisfactory result (see later Section 3.1); a value of n = 50 pixels was used with the panchromatic data.

A problem with any optical-flow method as applied to ocean imagery is sensitivity to intensity
value changes that do not result from local surface currents; this is always a potential source of
noise in the calculation [4]. An example would be changes in reflectance as the result of changes in
viewing angles; another is contamination by non-ocean features such as clouds. To help mitigate
such problems, two pre-processing steps are taken. The first is normalizing the images to have the
same overall standard deviation and mean intensity levels. The second is creation of an image mask.
In the present case, the elements of the mask include small clouds (and their shadows) that occur
in the northwest corner of the image scene, an aircraft in the center-left part of the t2 image, and an
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underway boat near the top edge. The mask of that boat includes the part of the boat’s turbulent
wake that formed between the t1 and t2 views, as this is a case where the tracer (the wake segment) is
clearly not conserved between the two images. We did not, however, mask boat-generated internal
waves that extend across the upper-middle part of the scene. (These are visible probably because of
variations in reflected sky radiation resulting from internal wave-induced modulation of sea-surface
roughness.) As internal waves propagate relative to the ambient fluid, they may contaminate estimates
of the ambient water velocity.

After computing the velocity field, the vertical component of vorticity and horizontal divergence
are calculated. These have their usual definitions: vorticity ζ = ∂v/∂x − ∂u/∂y, and horizontal
divergence δ = ∂u/∂x + ∂v/∂y, where (u, v) are the (x, y) components of horizontal flow.

3. Results

3.1. Spiral Pattern (Band 3 Data)

Results from analysis of the spiral pattern using band 3 data are shown in Figure 2. To help
distinguish any circulation pattern associated with the spiral, the velocity field (Figure 2a) was
computed after first spatially translating the t2 image to compensate for a 17-m southwestward drift of
the spiral pattern between the t1 and t2 views. The dominant feature in the velocity field is an area of
cyclonic (counter-clockwise) swirling flow that overlies what seems to be, based on the algae pattern,
the visual center of the spiral pattern. This oval-shaped vortex is the central feature in the vorticity
field (Figure 2b), though other features occur that may not all represent real dynamical features of the
flow; see next section. In order to derive some properties of the vortex, we chose a contour level of
2.2 × 10−4 s−1 (e−1 times the maximum vorticity) to delineate a core region of the vortex. The objective
here is to capture as much of the core vorticity as possible without including a possible errant signal, as
represented by the lower-level contours that deviate from the overall oval shape. The area of the core
was then used to estimate an approximate radius R = 1.1 km, and a mean vorticity ζcore= 3.8 × 10−4 s−1

(s.d.=1.0 × 10−4 s−1); equivalently, ζcore = 3.2 f, where f = 1.19 × 10−4 s−1 is the local Coriolis frequency.
As could be expected, the core radius and vorticity do vary with computational scale (i.e., tile size n):
At lower resolution (n = 400), the radius is larger (1.37 km) and mean vorticity smaller (2.7 × 10−4 s−1);
at higher resolution (n = 200), the radius is smaller (0.91 km) and mean vorticity larger (4.1 × 10−4 s−1).
The divergence field (not shown), when averaged over the core area, yields values not significantly
different from the background.

The character of the vortex core is of course just a part of a description of the eddy’s
hydrodynamics, as the spiraling arms of cyanobacteria accumulations extend over a much larger
area. In synthetic aperture radar (SAR) imagery, at wind speeds of 0.2 to 5.6 m s−1, the spiral arms
would appear as relative dark streaks because of the wave-damping effect of algae-derived surface
films. Sub-mesoscale eddies are thus manifested in SAR imagery as “black” spirals [19]. In the Baltic
Sea, such black eddies have a mean diameter D = 6.4 km (s.d. = 4.0 km) [20], where D is measured
between the most remote edges of the spiral pattern. One way spiral eddies can form is through
ageostrophic baroclinic instability associated with a background horizontal density gradient; and
theoretical studies [21] show such eddies to have cyclonic vorticity and a spiral diameter D = 2 Rd,
where Rd = (g Δρ/ρ H) 1/2 / f is the baroclinic deformation radius. Analysis of SAR spirals in the
Baltic, Black, and Caspian seas shows that nearly all the spirals have a morphology consistent with
cyclonic vorticity [19,20], a diameter proportional to Rd [20], and are statistically associated with
lateral density gradients [20]. Our analysis explicitly reveals the cyclonic vorticity, and based on the
available measurements of water stratification, we estimate a value of Rd ~ 3.7 km, which is close
to a climatological value of 3.9 km near the study site [22]. These values of Rd can be compared
with D/2 ~ 3 km, where D ~ 6 km is the distance between the farthest spiral arms in Figure 2. Our
estimate of ~1.1 km for the radius of the vortex core is smaller than both D/2 and Rd, thus making
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the vortex itself a submesoscale feature. Other studies [10,23] support the notion of a relatively small
submesoscale vortex core and convergence bands at larger radius that spiral inwards toward the core.
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Figure 2. Results for area of the spiral pattern using data from band 3 (510 to 580 nm): (a) Velocity field;
(b) Vorticity field. The largest vector in (a) has a magnitude of 0.21 m s−1. Contours in (b) are shown at
an interval of 5 × 10−5 s−1, but only where the vorticity magnitude exceeds 1.5 × 10−4 s−1. A subset
area (yellow rectangle; a) is examined in the next figure.

3.2. Algal Aggregations (Panchromatic Data)

As an example of panchromatic data, we zoom into a representative area (Figure 3) within the
spiral that shows two classes of algal features: windrows (the numerous bright streaks) and a long,
individual algal aggregation that extends from the x axis toward the northeast, which we examine first.
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Figure 3. Example of algal aggregations in panchromatic data: (a) Vorticity; (b) Horizontal divergence.
Contours are shown at an interval of 5 × 10−5 s−1, but only where the vorticity or divergence magnitude
exceeds 1.5 × 10−4 s−1. Dashed lines and labeled features (A, B) are discussed in the text.

The dashed line in Figure 3a highlights a band of positive vorticity (horizontal shear) that lies
to one side but parallels the aggregation. Spatially averaging in a 20-m wide strip along the dashed
line yields a cyclonic vorticity of 4.81 × 10−4 s−1 (s.d. = 1.07 × 10−4 s−1). The dashed line in
Figure 3b connects areas of negative divergence that overlay the aggregation. The mean divergence is
−2.9 × 10−4 s−1 (s.d. = 1.42 × 10−4 s−1), and hence indicates surface convergence. These bands of
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vorticity and convergence indicate a velocity front. This supports an assumption made in the literature
that such algal aggregations are frontal convergence zones and thus mark the locations of downwelling,
i.e., that submesoscale convergence occurs within specific structures in the flow field [10]. Drifter
measurements made in such structures show convergences of 2 to 6 f [10]; our value yields 2.4 f.

The windrows in Figure 3 are likely algae accumulations resulting from surface convergence
created by Langmuir circulation cells [24,25]. Evidence for this is that the windrows are approximately
aligned with the wind, i.e., they have an orientation of about 30◦, which is within about 10◦ of the
wind direction in the hour preceding image acquisition (Section 2.1). The spacing of the windrows in
these data is in the range of 5 to 8 m, which would imply a mixing layer of 2.5 to 4 m depth. Amongst
the windrows are a variety of relatively weak vorticity and divergence features, but an adjacent pair
of negative and positive vorticity and divergence features (A and B in Figure 3a,b) stands out. These
features can be accounted for as follows. Figure 4 shows an enlarged view of the area at times t1 and t2.
The two views have been aligned using the windrow patterns; and, by referencing to a common set of
grid lines, one can see that windrows patterns are indeed approximately stationary. On the other hand,
numerous bright pixels near the middle of the scene, and associated with individual windrows, do
move between views—by about 5 m, which corresponds to a relative speed of 0.06 m s−1, or about 1%
of the wind speed. Bright pixels such as in this figure have an enhanced response in the WorldView
near-infrared bands, and that response is characteristic of surface cyanobacteria [26]. The bright pixels
are thus assumed to correspond to small clumps of floating algae, and these clumps are likely to be
affected by both the wind-drift layer and wind drag on parts of the clumps that extend above the sea
surface. The enhanced speed of the clumps is detected by the optical-flow analysis and gives rise to the
dipolar vortices (A, B) in Figure 3a, and areas of divergence (A) and convergence (B) in Figure 3b as the
flow first accelerates upwind of the clumps and then slows downwind. These fine-scale (~100 m) flow
variations might, if desired, be suppressed by using the near-infrared response of the algae clumps to
mask them prior to the velocity computation.
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Figure 4. Enlargement of area near features A and B at times t1 (a) and t2 (b). The images shown
here have been aligned using the windrow patterns. A common set of grid lines (spaced 20 m apart)
helps illustrate how the brightest pixels (clumps of surface algae) move relative to the approximately
stationary windrows. An example is circled in red and shows movement of about 5 m towards
the south-southwest.
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4. Conclusions

Very high-resolution, time-lagged satellite imagery has been used to examine aspects of small-scale
ocean dynamical features as revealed through a cyanobacteria bloom in the western Baltic Sea. In this
case, a single pair of along-track stereo WorldView images was analyzed using an optical-flow
algorithm to derive fields of velocity, vertical vorticity, and horizontal divergence. The results show
(we believe for the first time) that an algal spiral pattern has at its center a cyclonic vortex, and that
an individual algal aggregation corresponds to a velocity front having both horizontal shear and
convergence (and hence, downward transport). While some sources of processing and environment
noise have been identified, further attention is needed for identifying and quantifying noise in the
derived flow field. Despite these shortcomings, the approach examined here is generally applicable,
as previous studies using WorldView imagery analyzed with the same optical-flow algorithm have
shown it provides a new way to quantify spatially complex phenomena and to assess the fidelity of
high-resolution coastal circulation models [8,9].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/7/865/
s1.
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Abstract: This work focuses on the accuracy estimation of canopy height models (CHMs) derived
from image matching of Pléiades stereo imagery over forested mountain areas. To determine the
height above ground and hence canopy height in forest areas, we use normalised digital surface
models (nDSMs), computed as the differences between external high-resolution digital terrain models
(DTMs) and digital surface models (DSMs) from Pléiades image matching. With the overall goal
of testing the operational feasibility of Pléiades images for forest monitoring over mountain areas,
two questions guide this work whose answers can help in identifying the optimal acquisition planning
to derive CHMs. Specifically, we want to assess (1) the benefit of using tri-stereo images instead
of stereo pairs, and (2) the impact of different viewing angles and topography. To answer the first
question, we acquired new Pléiades data over a study site in Canton Ticino (Switzerland), and we
compare the accuracies of CHMs from Pléiades tri-stereo and from each stereo pair combination.
We perform the investigation on different viewing angles over a study area near Ljubljana (Slovenia),
where three stereo pairs were acquired at one-day offsets. We focus the analyses on open stable
and on tree covered areas. To evaluate the accuracy of Pléiades CHMs, we use CHMs from aerial
image matching and airborne laser scanning as reference for the Ticino and Ljubljana study areas,
respectively. For the two study areas, the statistics of the nDSMs in stable areas show median
values close to the expected value of zero. The smallest standard deviation based on the median of
absolute differences (σMAD) was 0.80 m for the forward-backward image pair in Ticino and 0.29 m in
Ljubljana for the stereo images with the smallest absolute across-track angle (−5.3◦). The differences
between the highest accuracy Pléiades CHMs and their reference CHMs show a median of 0.02 m
in Ticino with a σMAD of 1.90 m and in Ljubljana a median of 0.32 m with a σMAD of 3.79 m.
The discrepancies between these results are most likely attributed to differences in forest structure,
particularly tree height, density, and forest gaps. Furthermore, it should be taken into account
that temporal vegetational changes between the Pléiades and reference data acquisitions introduce
additional, spurious CHM differences. Overall, for narrow forward–backward angle of convergence
(12◦) and based on the used software and workflow to generate the nDSMs from Pléiades images, the
results show that the differences between tri-stereo and stereo matching are rather small in terms
of accuracy and completeness of the CHM/nDSMs. Therefore, a small angle of convergence does
not constitute a major limiting factor. More relevant is the impact of a large across-track angle (19◦),
which considerably reduces the quality of Pléiades CHMs/nDSMs.

Keywords: very high-resolution Pléiades imagery; canopy height model; acquisition geometry;
forested mountain; accuracy assessment
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1. Introduction

Mountain forests provide a wide range of ecosystem services in terms of protective, productive,
social and economic functions. Therefore, the timely information on the state and the change of
land-use and forest cover, productivity, and structure is crucial for different stakeholders from local
to regional scales. To quantify the provided forest services, detailed forest information is required
with high spatial and temporal resolutions. Among the forest metrics, canopy height, which describes
the top of the vegetated canopy, is the basis for deriving other parameters such as forest gaps, crown
coverage, canopy density, volume, and biomass. For deriving canopy height at wide spatial coverage
i.e., at the landscape scale, remote sensing observations with fine spatial resolutions are required.
Current remote sensing systems that fulfil this requirement include airborne laser scanning (ALS) and
multi-view aerial or very high resolution (VHR) satellite imagery [1]. Since the last decade, airborne
laser scanning (ALS) has been the primary data source for three-dimensional (3D) information on
forest vertical structure [2–4]. The main advantage of ALS for forest applications is the capability
to penetrate through the vegetation and thus to obtain the top height, the forest vertical structure,
and the bare-earth, with the latter being needed to define the terrain height. By contrast, passive optical
sensors can provide only the topmost surface of forest canopies, where at least two images (a so-called
image stereo pair) share a common area in the scene [5]. Both aerial and satellite images have been
used to record forest change for more than 30 years. In the last decade, thanks to great technological
improvements, the gap between aerial and VHR satellite imagery has become smaller in terms of
image resolution (up to 30 cm ground sample distance (GSD)). However, in comparison with airborne
remote sensing, VHR satellite imagery has the benefits of worldwide availability without any access
restrictions, large area coverage and high temporal resolutions of only a few days.

Forest mapping over large spatial extents with VHR satellites started with IKONOS in 1999 [6,7].
Since then, several VHR satellites have been launched such as QuickBird, GeoEye-1, WorldView-1, -2,
and -3, Ziyuan-3A, and the Pléiades satellites. WorldView multispectral stereo imagery was largely
used to analyse forest structure [8,9], the size of tree crowns [10] and for the 3D modelling of forest
canopies [1,11,12].

Among the available VHR satellite systems, we consider Pléiades imagery over mountain regions
for deriving DSMs. This first European VHR satellite system is comprised of two identical satellites,
Pléiades-1A (PHR1A) and Pléiades-1B (PHR1B), which were launched in December 2011 and in
December 2012, respectively. Both satellites fly at an altitude of 694 km in sun-synchronous orbits with
98.2◦ inclination and an offset of 180◦ from each other, which provides a daily revisit capability [13].
An outstanding feature of the Pléiades system is the great agility of its sensors that allows for optimised
acquisitions of areas of interest, with stereo angles varying from ~6◦ to ~28◦ [14]. The time difference
between along-track images is in the range of a few seconds only, which guarantees almost constant
sun illumination conditions, limited changes in the scene and similar cloud coverages in all of them [15].
Moreover, the sensor is designed to acquire panchromatic and multispectral images, which are
delivered at nominal resolutions of 0.5 m and 2 m, respectively, in stereo (forward-, backward-view)
and tri-stereo (forward-, nadir-, and backward-view) modes along-track.

To explore the full potential of Pléiades images over forest mountain areas, an investigation of the
relationship between DSM accuracy and imaging geometry, such as tri-stereo imagery, convergence
angle and across-track angle, is essential for an optimal image acquisition planning. Therefore, we
focus on answering the question of which combination and acquisition setting of tri-stereo or stereo
pairs of Pléiades images can produce the highest DSM accuracy over Alpine forest regions.

160



Remote Sens. 2018, 10, 1542

Related Work and Research Questions

Despite the advantages of the Pléiades system, only a limited number of studies have investigated
the versatility of the Pléiades system through the controllable viewing angle and stereo and tri-stereo
views for forestry applications. The generation of height models with Pléiades triplets with large and
short base length image combinations has been investigated in different urban areas by References [16–19].
In Alpine areas, the capability of Pléiades tri-stereo to deliver reliable DSMs in complex terrain was
demonstrated by References [20–22]. Additionally, the benefit of using tri-stereo images was tested to
estimate the lava flow volume [12], and the height changes induced by earthquakes [23]. Among the
few researchers that have used the Pléiades satellites for forestry purposes, the Pléiades image texture
for forest structure mapping and forest classification has been investigated previously in [24,25].
Recently, the potential for use Pléiades images has been investigated for estimating forest attributes
for 10 m plots in a boreal forest [26], for deriving forest biomass by combining spectral and geometric
information [27,28], for predicting forest inventory attributes in New Zealand’s planted forests [29]
and for modelling tree diversity [30].

In contrast to these previous works on the use of Pléiades satellite images over forest areas,
our study is, to the best of our knowledge, the first to explore the accuracy of DSMs/CHMs derived
from Pléiades imagery over large mountain regions. Specifically, our work aims at answering the
following two questions, both regarding the accuracy of derived DSMs: (1) what is the benefit of
using tri-stereo images versus stereo pairs, and (2) what is the impact of different viewing angles
and topography? According to this twofold goal, the investigation is carried out in two accordingly
selected study areas located in Alpine forest regions. In order to derive the height above ground
(nDSM), we subtract external high resolution DTMs from Pléiades image matching DSMs. We focus
the analyses of the nDSMs/CHMs on open stable areas, and on tree covered areas. For evaluating the
accuracy of Pléiades CHMs, we use CHMs from aerial image matching and ALS as reference for the
Ticino and Ljubljana study areas, respectively.

2. Test Sites and Pléiades Image Data Sets

We tasked a new tri-stereo Pléiades data acquisition over Canton Ticino, Switzerland (site “Ticino”)
to investigate the potential of triplet scenes and the impact of tree height and slope on CHM accuracy
in forest mountain areas. The area was chosen for its topographic characteristics, with elevations
between 220 m and 2265 m a.s.l. and an average slope of 37◦. The tri-stereo data were acquired with
platform PHR1A within 20 s on 3 September 2017 around 10:00 in North-South direction, covering
~125 km2 in total (Figure 1). To study the impact of different along- and across-track angles, we used
three Pléiades stereo pairs near Ljubljana, Slovenia (site “Ljubljana”) available in the supplier’s archive,
which were acquired one day apart from each other with platform PHR1A on 27 and 29 July 2013,
and with platform PHR1B on 28 July 2013. This study area is rather flat with elevations between 346 m
and 1900 m a.s.l., and an average slope of 8.6◦. It comprises about 400 km2 that largely consist of
agricultural land and managed forest.

The optical satellite images for both study areas were delivered as four bands (blue, green, red,
near infrared), pan-sharpened with spatial resolutions (i.e., mean GSDs) between 0.71 m and 0.78 m,
depending on the viewing angle. The viewing angles and consequently the convergence angles and
baseline to height ratios are different for each stereo pair. For the Ticino dataset, according to our
request, we received one quasi-nadir image (viewing angle close to the vertical), and one backward-
and one forward-view with symmetric along-track angles, and a small convergence angle of about
12◦. The archive images over Slovenia were collected in stereo mode with symmetric and asymmetric
along-track angles and rather large convergence angles. In the across-track direction, the mean angles
are −5.3◦, 6.8◦, and 19.6◦. The acquisition properties of the satellite images for each study area are
given in Table 1. Figure 1 shows the Pléiades satellite positions over Ticino and Ljubljana.
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Figure 1. Study areas and imaging geometries of the Pléiades data sets (Google Earth preview of the
footprints and the satellite’s position).

Table 1. Acquisition properties for the satellite images over the two study areas.

Study Area Acquisition Date View
Acqu.
Time

GSD (m) Incidence Angles (◦)

Along Track Along Track Across Track Angle of Convergence

Ticino 3 September 2017
Forward 10:29:03 0.71 6.05 −0.42 5 (FN)

Nadir 10:29:13 0.70 0.89 0.78 6 (NB)
Backward 10:29:22 0.70 −5.37 2.49 12 (FB)

Ljubljana 27 July 2013 Forward 10:10:09 0.73 −12.12 −1.98
24Backward 10:10:51 0.74 12.36 −8.59

28 July 2013 Forward 10:03:43 0.71 −7.39 9.36
22Backward 10:04:21 0.74 14.78 3.95

29 July 2013 Forward 09:55:04 0.77 −10.20 22.31
27Backward 09:55:50 0.78 16.91 16.90

3. Data Processing and Analyses

3.1. Reference Data

For Ticino, an aerial image matching DSM [31] was used as reference data. The aerial images
were acquired in spring 2015 (two years before the Pléiades images) and the corresponding DSM
was provided by the Swiss National Forest Inventory as a raster with 1 m resolution. The digital
terrain model swissAlti3D from the Federal Office of Topography (swisstopo) with a resolution of
2 m was upsampled to 1 m and was used to derive the Pléiades and Aerial nDSM and to improve
the absolute geolocation of the Pléiades DSMs (see Section 3.2.2). The reference data in Slovenia was
based on ALS data collected in 2015 (i.e., two years after the Pléiades images), having a mean density
of 14 points/m2. From the classified ALS point cloud, the DTM and the nDSM were derived with
a resolution of 1 m using OPALS [32]. For both study areas, an existing orthophoto of 0.2 m spatial
resolution was used to pick the ground control points (GCPs) and check points (CPs) over stable
areas, whose height coordinates were extracted from the corresponding DTM. The GCPs were used in
the image orientation phase to optimize the Pléiades projection parameters provided along with the
image data, whereas the purpose of the CPs was to validate the accuracy of the image orientations and
the DSMs. The GCPs and CPs were homogeneously distributed in planimetry and height across the
area. The accuracies of the measured GCP and CP object coordinates were in the order of 20 cm in
planimetry and 25 cm in the vertical direction.

3.2. Pléiades Image Processing and DSM Generation

3.2.1. Pléiades Image Processing

The reconstruction of 3D points from VHR satellite imagery requires at least two overlapping
images, and it is performed by applying photogrammetric techniques and dense image matching
algorithms. The transformation between image and object space is given in terms of the Rational
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Polynomial Coefficients (RPCs) model [33]. The RPCs are provided for each image by the satellite
vendor. For the Pléiades pan-sharpened imagery the RPCs are reported to have a geo-location
accuracy of 8.5 m CE90 (circular error at 90% confidence) for nadir view in the nadir direction,
which corresponds to a standard deviation of 4 m [34]. Therefore, the declared absolute accuracy is not
sufficient if sub-meter accuracy is required, but this can be achieved with the use of GCPs. Thus, in total,
we employed 18 GCPs for each study area and 7 and 12 CPs for Ticino and Ljubljana, respectively.
Additionally, in order to quantify the geolocation accuracy of the original RPCs, the tri-stereo images
over Ticino were also evaluated without GCPs.

The Pléiades images were processed using Trimble/Inpho software. To generate a 3D point cloud
from stereo imagery the main procedure is (i) to import the images and the RPC information, (ii) to
(optionally) refine the orientation of the images based on tie points and GCPs, and (iii) to apply dense
image matching to determine the dense point cloud. The general workflow from the images to the
final DSM is illustrated in Figure 2.

Figure 2. General workflow to generate the nDSMs from Pléiades images.

For each study area, the image orientation refinement was performed jointly for all available
images in order to minimize the influence of the image orientation quality on the quality of the DSMs
derived for particular combinations of images. Therefore, tie points were extracted automatically for
all images, and they were employed together with the GCPs to refine the initial RPC coefficients.
During bundle block adjustment, the residuals of tie points, GCPs, and CPs were computed by
the software. Consequently, tie points with image residuals larger than 2 pixels were considered as
blunders and removed, and the RPCs refined again. For dense image matching, Match-T was used.
This is a module of the Trimble/Inpho software, which adopts a feature-based on the higher and a
cost-based strategy on the lower pyramid levels. The cost-based matching is a version similar to the
semi-global matching algorithm [35], which computes an object point for every pixel. For the Ticino
study area, after a simultaneous orientation refinement of the tri-stereo images, dense matching was
performed independently for the tri-stereo data (forward, nadir, backward, FNB) and for each stereo
pair i.e., forward-nadir (FN), nadir-backward (NB), and forward-backward (FB). A similar approach
was adopted for the Ljubljana study area. Thus, the six images were jointly oriented based on tie
points and GCPs, and dense matching was performed for the forward-backward pair of each day
of acquisition. For both study areas, four band orthophotos were generated to derive normalised
difference vegetation index (NDVI) maps.

3.2.2. Pléiades DSM

The 3D points generated by dense image matching were turned into regular rasters of height
values (i.e., DSMs) with 1 m resolution using the moving (tilted) plane interpolation with a search
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radius of 3 m. We have found this grid interpolation to be the optimal compromise between the
preservation of detail and the reconstruction of void areas over vegetation. This interpolation approach
was used for generating the DSMs for all combinations of images and for both study areas. We obtained
the nDSMs by subtracting the ALS DTMs from the Pléiades DSMs. Because the reconstructed area of
each image combination was slightly different due to different image footprints, the analyses were
performed on common regions of interest, which were about 103 km2 and 344 km2 for Ticino and
Ljubljana, respectively (see yellow rectangles in Figure 3). Since for both study areas, systematic
errors were visible between the Pléiades and reference nDSMs, we applied least squares matching
(LSM) to reduce them (compare [36]). LSM estimated the full 3D affine transformation parameters
of Pléiades DSMs that minimize the errors with respect to their reference DTMs over common stable
areas. These stable areas were identified based on several features. Mainly, the absolute values of
nDSM cells of the reference data needed to be less than 2 m for the aerial image data (Ticino), and less
than 0.5 m for the ALS data (Ljubljana). Subsequently, Pléiades nDSM cells with values greater than
60 m were identified as clouded areas and were removed from the mask of stable areas. Additionally,
NDVI map cells exceeding the thresholds of 0.1 for Ticino and −0.1 for Ljubljana were classified as
rivers and lakes, and were removed from their mask. The final stable areas consisted of approximately
28.3% of the scene for Ticino and 38.7% for Ljubljana. Subsequently, the 3D point cloud of each Pléiades
image combination was transformed according to the estimated LSM parameters and re-interpolated
to generate the final DSM. For comparison purposes and due to the low quality of the reference ALS
DTM of the Ticino study area, LSM was also applied to the aerial reference DSM. Having applied the
estimated transformation parameters, the aerial reference DSM points were interpolated using the
same method as for the Pléiades DSMs.

3.3. CHM Generation

To focus the analysis on forested areas and thus to derive the CHMs, a tree mask across the entire
area of interest was generated. The tree mask of the Ticino area was derived by applying a lower
threshold of 0.6 to the NDVI map. Furthermore, in order to exclude meadows and cloud cover, cells
of the Pléiades and aerial nDSMs smaller than 2 m or greater than 60 m were removed from the tree
mask. These nDSM thresholds were also used for masking the trees in the Ljubljana area. However,
because several forest areas had been harvested during the long time lag between the acquisitions
of the Pléiades images and the reference ALS data, the NDVI map could not be used. Instead, the
tree mask was further restricted to areas with ALS points classified as vegetation. According to the
final masks, the area covered by trees was approximately 57% in Ticino and 43% in Ljubljana. For
evaluating the accuracy of Pléiades CHMs, the aerial image matching and ALS CHMs were used as
reference for the Ticino and Ljubljana study areas, respectively.

3.4. Accuracy Assessment

For both study areas, the quality of the photogrammetric Pléiades image processing and the
derived products was assessed by considering three aspects. Firstly, we evaluated the quality of the
image orientation by means of the image residual errors of the tie points, GCPs, and independent
CPs. The ground coordinates of the GCPs and CPs were used to calculate the horizontal and vertical
RMSE of the residuals of measured and transformed coordinates. Secondly, the vertical accuracies of
the Pléiades DSMs were assessed in more detail for the entire scene and for each image combination,
both before and after applying LSM, and separately for stable areas and forested areas. The vertical
accuracy over stable areas was quantified by considering (a) the vertical RMSEs between the measured
and predicted object coordinates of the GCPs and CPs for each generated DSM and (b) the Pléiades
nDSMs, having an expected value of zero. In forest areas, the reference CHM was subtracted from
the Pleiades CHM to calculate the height differences (ΔH). Subsequently, the error distribution of
these ΔH was analysed, and for the vertical accuracy assessment we derived measures such as mean,
standard deviation (σ), median and a robust standard deviation based on the median of absolute
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differences (σMAD). For both study areas, potential factors controlling the quality of the Pléiades
CHMs like the tree height and terrain slope were evaluated with respect to vertical accuracy. Thirdly,
a detailed analysis of the Pléiades nDSMs was performed on small selected forest areas of 500 m by
500 m (blue squares in Figure 3). Profiles within these areas were analysed to provide a detailed view
of the structure of the produced Pléiades nDSMs in comparison to the reference data set. Specifically,
in Ticino, one area that exhibits steep terrain and sparse forest coverage was chosen to investigate the
performance of the tri-stereo dense matching in comparison to each stereo pair. The analysis of the
impact of different viewing angles on the reconstruction of the forest canopy height was performed on
two selected areas in Ljubljana, where the first (area 1) is characterised by homogenous forest height,
adult trees and high topography variation, and the second (area 2) by coarse forest cover with several
gaps and a relatively flat terrain.

Figure 3. For (a) the Ticino and (b) the Ljubljana study areas, left: the 3D point cloud. Centre: the
orthophoto generated from the 4-bands Pléiades images, visualised as true colour RGB, and overlaid
with the GCPs (red circles) and CPs (orange circles). The yellow rectangles represent the common
regions of interest for all scene combinations. Right: the colour coded, reconstructed DSMs. The blue
squares are the 500 × 500 m selected areas.

4. Results

For each study area, the image orientation refinement was performed jointly for all available
images. In Ticino, the bundle adjustment was performed with all three images in a single block.
Automatic tie point extraction identified ~580 points. The RMSE of the GCPs is in the range of a
decimetre both in the horizontal and vertical directions. At the CPs, a similar accuracy is achieved in
planimetry, whereas with 1.04 m, the RMSE results were much larger in the vertical direction (Table A1).
In Ljubljana, the RPCs of the six images were improved simultaneously in one single block using
18 GCPs and automatically extracted tie points. The number of the automatically extracted tie points
ranges between 690 and 806. The standard deviation of the tie point residuals ranges between 0.39 and
0.52 pixel. In the vertical direction, the RMSE of the ground coordinates is 0.80 m at the CPs, whereas
at the GCPs it is 0.17 m. In planimetry, the accuracy at the GCPs and CPs is almost the same (Table A2).
For details of adjustment results, see Appendix A for Ticino and Ljubljana, respectively.

Dense image matching was successful on forest areas (Figure 3). With ~1362 million points,
FNB over Ticino provided a larger point cloud than each of the three stereo pairs, having ~700 (FN),
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~696 (NB), and ~657 (FB) million points. For each of the Ljubljana stereo pairs, around 2000 million
points were matched, where the lowest number of points was generated for the stereo pair with the
widest angle of convergence.

Over the entire scene, the interpolation ensured an almost complete reconstruction of the void
areas since those areas were small enough to be reliably filled by the used grid interpolation with
3 m search radius. In all Pléiades DSMs, less than 1.5% of pixels result as void, being located within
or close to the clouds or, for Ticino, on the lake surface. Despite this, the image triplet reduced the
missing height values by up to 0.7 percentage points when compared to the standard stereo FB DSM.
Concerning Ljubljana, the image pair with the widest angle of convergence resulted in a notably larger
amount of missing data than the other pairs (Table 2).

Table 2. For both study areas, the performance of image matching and the percentage of cloud coverage
and empty cells (no data in %) within the regions of interest. The cloud coverage was defined by
selecting the nDSM cells with absolute values greater than 60 m.

Ticino (Switzerland) Ljubljana (Slovenia)

Scene
Comb.

Matching
Time (h)

LAS File
(GB)

Cloud
Coverage (%)

No Data
(%)

Image
Acquis.

Matching
Time (h)

LAS File
(GB)

Cloud
Coverage (%)

No Data
(%)

FNB 16 34 2.1 0.8 27 July 25 54 1.0 0.1
NB 10 17 2.1 1.2 28 July 26 53 0.2 0.1
FN 10 18 2.3 1.3 29 July 28 49 0.0 0.4
FB 9 17 1.8 1.5

4.1. Impact of the Tri-Stereo Acquisition on the Quality of the Derived Products in Ticino

4.1.1. Accuracy Assessment of the VHR nDSMs Over Stable Areas and of the VHR-CHMs

The GCPs and CPs were employed to assess the vertical accuracy of the DSM before and after
LSM for each image combination (Table 3). The total RMSE of the DSMs before LSM at the GCPs and
CPs ranged between 0.79 m (FB) and 1.25 m (FN). When the GCPs were not used within the bundle
adjustment, the vertical accuracy of the tri-stereo DSM resulted with an offset of approximately 37 m
at the GCP and CP locations. Nevertheless, this vertical offset was completely removed by application
of LSM, resulting in the same accuracy achieved with GCPs. The LSM transformation slightly reduced
the total RMSEs for each image combination, ranging between 0.68 m (FB) and 1.10 m (FN).

Table 3. RMSE in the Z-direction of the GCPs and CPs for each generated DSM. (* No GCPs within the
bundle adjustment).

RMSEZ DSM (m)

Before LSM After LSM

FNB * FNB FN NB FB FNB * FNB FN NB FB

18 GCPs 36.99 0.69 0.99 0.88 0.60 0.72 0.52 0.85 0.85 0.46
7 CPs 37.41 1.21 1.67 0.90 1.09 1.09 1.20 1.48 0.90 1.00

Tot (25) 37.12 0.89 1.25 0.89 0.79 0.90 0.75 1.10 0.89 0.68

The spatial distribution of the normalised elevation (nDSM) for the tri-stereo and the aerial images
are shown in Figure 4 before and after LSM.
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Figure 4. nDSM statistics for stable areas, with results before (top) and after (bottom) LSM. (Left)
colour coding of the Pléiades (FNB) and aerial nDSMs (non-stable areas shown in white). (Right)
distribution of nDSM heights for the aerial images, and for the Pléiades tri-stereo and all stereo pairs.

According to visual analysis, both positive and negative biases are visible on the stable areas for
both Pléiades and aerial nDSMs before and after the LSM transformation. Before LSM, the vertical error
distributions of the Pléiades nDSMs feature medians between 0.14 m and 0.43 m, with a maximum
σMAD of 1.30 m (Table 4).

Table 4. Height differences (ΔH) before and after LSM of Pléiades and aerial nDSMs over stable areas.

ΔH nDSM for Stable Areas (m)

Before LSM After LSM

Mean Std Median σMAD ±1 m (%) Mean Std Median σMAD ±1 m (%)

Aerial 0.11 0.84 0.05 0.85 74.8 −0.07 0.84 −0.15 0.80 77.6
Pléiades FNB 0.76 2.26 0.26 1.17 60.7 0.55 2.06 −0.05 0.85 72.3

NB 0.65 2.43 0.14 1.30 56.6 0.56 2.21 0.07 0.96 68.6
FN 0.88 2.33 0.43 1.29 56.2 0.54 2.23 0.08 1.02 66.1
FB 0.70 2.43 0.19 1.12 62.4 0.54 2.27 0.02 0.82 73.4

The highest accuracy was achieved by the standard stereo FB, although after LSM the accuracy is
practically the same for all image combinations and comparable with the results from aerial image
matching. LSM improved the accuracy of the Pléiades DSMs on the stable areas, which yielded a
median close to zero for each scene combination, and a σMAD below 1 m. Only the FN stereo pair
exceeds this value slightly. Moreover, the ratio of Pléiades cells with an absolute accuracy of better than
1 m increases by around 10 percentage points due to application of LSM. Nevertheless, both Pléiades
and aerial nDSMs after LSM show a negative shift in the frequency distribution histograms.

The distributions of ΔH between the Pléiades and aerial CHMs before and after LSM are reported
in Figure 5 by means of a map of the differences, histograms, and boxplots.
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Figure 5. Height differences (ΔH) between Pléiades and aerial CHMs before (top) and after (bottom)
LSM. (Left) spatial distribution for FNB as colour coding (areas outside forest mask shown in white).
Centre: distributions of ΔH for tri-stereo and all stereo pairs as histograms. (Right) the same
distributions shown as box plots.

For all image combinations, the histograms reveal unimodal symmetric distributions of the height
differences, similar to normal distributions, and they feature negative shifts. The two stereo pairs
involving the nadir image provided the lowest accuracy, whereas the tri-stereo and FB combinations
resulted in similar error distributions. After LSM, the histograms show a slightly lower dispersion
around zero, but the ratio of cells that fall in the range of ±1 m increase only by approximately 5
percentage points. The statistics of each scene combination are reported in Table 5.

Table 5. Height differences (ΔH) before and after LSM between the Pléiades CHMs for each stereo
combination and the reference aerial CHM.

ΔH Pléiades—Aerial CHMs (m)

Before LSM After LSM

Mean Std Median σMAD ±1 m (%) Mean Std Median σMAD ±1 m (%)

Pléiades FNB −0.47 3.24 −0.22 2.04 40.5 −0.28 3.05 −0.17 1.88 45.2
NB −0.56 3.35 −0.36 2.13 37.9 −0.30 3.12 −0.20 1.94 43.4
FN −0.37 3.31 −0.46 2.12 38.7 −0.28 3.19 −0.18 2.00 41.5
FB −0.21 3.32 −0.23 2.05 41.2 −0.04 3.16 0.02 1.90 45.9

Overall, the tri-stereo and nadir stereo Pléiades DSMs underestimated the canopy height,
with medians of around 20 cm, whereas the FB combination shows a median of almost zero.
The dispersion in terms of σMAD is about 2 m for each scene combination. The correlation between
the Pléiades CHM errors and the canopy height itself, as given by the reference CHM, was calculated.
In order to remove the spatial variation of the canopy height, a standard deviation moving window
of 20 m was applied over the aerial CHM and subsequently pixels with a standard deviation greater
than 5 m were excluded from the calculation. The time gap of two years can justify the positive ΔH of
Pléiades CHMs for young trees with heights below 10 m (Figure 6a), although young trees occupied
only about 8% of the entire area. For this tree height class, the median values of ΔH range from 0.29 m
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to 1.22 m, whereas negative values between −0.42 m and −0.17 m are identified for tree heights greater
than 10 m. No significant correlation was identified between ΔH and forest roughness, quantified by
the RMSE of the height values to a fitting a plane. Contrary, grouping the data by slope classes of 10◦

width, a rapid increase in the variance of ΔH was observed for the steep classes with slopes larger than
60◦, which, however, represents a small proportion of the investigated area (14%) (Figure 6b).

Figure 6. Box plots of the distributions of ΔH after LSM for different classes of (a) reference canopy
height, and (b) terrain slope. Respective cell counts are plotted in grey and refer to the right axes.

4.1.2. Accuracy Assessment of the VHR nDSMs for a Selected Area

The profiles in the insets in Figure 7 show that with Inpho Match-T, there is no benefit of using
three images i.e., FNB, because the resulting point cloud is simply the union of those of the two nadir
stereo pairs.

Figure 7. Profiles of 1 m width of the tri-stereo and stereo Pléiades point clouds (top) and of the
Pléiades nDSMs for each stereo pair in comparison to the reference aerial nDSM (bottom). The red line
in the orthophoto indicates the position of the profiles.

However, the questions which remain are: (1) if a better DSM than FNB can be derived by
computing the three stereo point clouds independently (i.e., for FN, NB, FB after LSM), and then
interpolate them into a tri-stereo DSM (FB-NB-FN) using the method described above, and (2) if
selecting the locally best of the three stereo DSMs (MinAbsΔH) improves upon the DSMs computed
so far. As the locally best DSM, we used the one with the minimum absolute error. To answer the
above questions, we derived the histogram of the absolute errors for each of the corresponding CHMs,
shown in Figure 8a. The generation of the DSM considering simultaneously the point clouds from
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the three stereo pairs (FB-NB-FN) does not provide significantly better results than the FB stereo pair.
The optimum selection provided a significant improvement. However, no clear systematic pattern
can be identified from the spatial distribution of the stereo pairs with the locally minimum absolute
error (Figure 8b). Moreover, examining the influences of the canopy height and forest roughness on
the absolute error, no significant relationships were identified. Nevertheless, for deriving an automatic
approach to optimally select the best height of these three stereo results, a reference data surveyed at
the same time should be considered.

Figure 8. (a) Histograms of the absolute height errors (AbsΔH) for each Pléiades CHM (MinAbsΔH
i.e., optimal selection from stereo DSMs, NB, FN, FB, and FB-NB-FN), and (b) the spatial distribution
of the stereo pairs with locally minimum absolute differences (MinAbsΔH).

4.2. Impact of the Viewing Angles on the Quality of the Derived Product in the Area of Ljubljana

4.2.1. Accuracy Assessment of the VHR nDSM over Stable Areas and the VHR-CHMs

The vertical accuracy of the Pléiades DSMs in terms of the total RMSE at the GCPs and CPs
is around 0.70 m (Table 6). The application of the LSM transformation led to a lower RMSE in the
Z-direction, which ranges between 0.14 m and 0.27 m. The worst result is shown by the DSM derived
from the stereo pair with the largest angle of convergence and across-track angle. The vertical accuracy
of Pléiades DSMs over the entire scene was assessed by calculating the distribution of ΔH using
the reference ALS dataset i.e., the ALS DTM for the stable areas, and the ALS CHM for the forested
areas. Figure 9 allows for a visual comparison of the Pléiades nDSMs for each stereo scene before
and after LSM, together with the ALS nDSM, and the orthophoto. Compared to the ALS nDSM,
the spatial distribution of the Pléiades nDSMs over stable areas appears clustered before LSM and
more homogeneous after LSM. The spatial pattern observed in the Pléiades nDSM suggests a tilt of
around ±1 m in north-east/south-west direction between the Pléiades DSM and the ALS DTM, which,
however, was significantly reduced by applying a full LSM transformation.

Table 6. RMSE in Z-direction of the GCPs and CPs for each generated DSM.

RMSEZ DSM (m)

Before LSM After LSM (m)

27 July 28 July 29 July 27 July 28 July 29 July

18 GCPs 0.65 0.64 0.77 0.14 0.22 0.25
12 CPs 0.74 0.63 0.88 0.15 0.17 0.30
Tot (30) 0.69 0.64 0.82 0.14 0.20 0.27
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Figure 9. The spatial distribution of the nDSMs of ALS (left, top) and each Pléiades stereo scene
before (right, top) and after (righ, bottom) LSM. At the (left, bottom), the orthophoto derived from
the forward Pléiades image of 27 July is shown.

According to the histograms of Pléiades nDSMs in stable areas and ΔH (in forest areas) (Figure 10),
the improvement of the accuracy of the CHMs due to LSM is not as significant as in the stable areas,
where a considerable reduction of dispersion around zero is visible.

Figure 10. Distribution of nDSM heights in stable areas (left) and CHM errors (ΔH) before (right, top)
and after (right, bottom) LSM for each stereo pair.

The statistics and the box plots of each stereo pair confirm this observation. Overall, after LSM,
nDSM heights in stable areas have a median of almost zero, with a σMAD below 0.50 m, whereas CHM
errors show a considerably higher dispersion, with a σMAD around 4 m (Table 7).
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Table 7. nDSM heights in stable areas and CHM errors (ΔH) before and after LSM.

Before LSM (m) After LSM (m)

nDSM Stable Areas Mean Std Median σMAD Mean Std Median σMAD

27 July (−12◦/12◦, −5.3◦) 0.23 0.63 −0.23 0.48 0.00 0.29 −0.01 0.29
28 July (−7◦/14◦, 6.7◦) −0.05 0.64 −0.19 0.60 0.14 0.34 −0.03 0.36
29 July (−10◦/16◦, 19.6◦) −0.05 1.35 −0.14 0.71 0.11 1.23 −0.04 0.42

ΔH

27 July (−12◦/12◦, −5.3◦) 0.66 6.11 −0.21 3.85 0.67 6.08 −0.32 3.79
28 July (−7◦/14◦, 6.7◦) 0.57 6.29 −0.17 3.89 0.54 6.28 −0.29 3.85
29 July (−10◦/16◦, 19.6◦) 1.15 6.54 0.20 4.14 1.03 6.49 −0.04 4.07

In order to investigate the correlation between the accuracy of the Pléiades CHMs and the reference
canopy height, the latter was divided into three height classes, and CHM cells with high variation,
i.e., larger than 5.0 m standard deviation within 20 m moving window were excluded (Figure 11a).
For all stereo pairs, the CHM errors for tree heights greater than 10 m displays negative median values
ranging from −0.58 m to −0.82 m. This can be explained by the tree growth during the two years gap
between the Pléiades and ALS data capture. Conversely, the accuracy of the Pléiades CHMs for tree
heights below 10 m shows overall positive differences and a considerably higher dispersion for the
tree heights smaller than 5 m (Figure 11b). Those trees occupied about 10% of the entire forest area and
they are mainly distributed within managed forests areas, as shown in the spatial distribution of the
ALS CHM grouped by the three height classes. For this study area, the effect of slope on the accuracy
of the Pléiades CHMs cannot be assessed since less than 1% of it reveals a slope greater than 50◦.

Figure 11. (a) The spatial distribution of the three reference CHM tree height classes, disregarding
areas with large height variation. Distributions of the CHM error (ΔH) for each stereo pair after LSM
grouped by (b) tree height class and (c) terrain slope.

4.2.2. Accuracy Assessment of the VHR CHMs for the Selected Areas

The quality of the Pléiades CHMs varies according to forest density and forest height. A detailed
investigation on the Pléiades CHMs for the two selected areas shows that Pléiades CHMs provided
comparable results to the ALS data for a homogenous forest canopy (Figure 12a). Conversely, distinct
canopy height patterns that can be seen in the ALS canopy height map cannot be discerned in the
Pléiades map where the tree crowns are significantly wider and less defined (Figure 12b). It is worth
noting that those differences in the canopy gap characteristics can be attributed to forest management
activities, but most likely to the severe freezing rain event that hit Slovenian forests in 2014, damaging
40% forest areas throughout the country [37]. Indeed, the orthophoto acquired simultaneously to ALS
data (2015) shows larger canopy gaps than those visible in the Pleiades orthophoto (2013) (Figure 12c).
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Figure 12. For the selected (a) area 1 and (b) area 2, the reference CHM (left), the Pléiades CHMs for
each stereo pair (centre), and the orthophoto generated from the four bands Pléiades image (right).
The dashed black line in ((a), left) indicates the position of the profiles of 1 m width of reference and
Pléiades CHMs shown on the left of (c). On the right of (c), the aerial orthophoto for area 2 that was
acquired simultaneously to the reference data.

These qualitative results are confirmed by the distribution of Pleiades CHM height errors,
where a clear correlation exists with low forest heights (Figure 13b, area 2). Moreover, the trend
also demonstrates that young forest (height < 5 m), which is typically underestimated by image
matching [23], is completely missing in the Pleiades results, validating the differences in forest structure
at the points in time of Pléiades and ALS data capture. The larger across-track angle shows a wider
error dispersion for both areas i.e., forest types.

Figure 13. 2D histograms of Pléiades CHM errors and reference CHM for the selected (a) area 1 and
(b) area 2, and each stereo pair (left, centre, right).
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5. Discussion

This work focuses on analysing the accuracy of Pléiades DSMs over forest mountain regions in
order to identify the optimal acquisition planning in terms of stereo or tri-stereo data and incidence
angle along- and across-track. Tri-stereo (FNB) images were requested in 2017 over Ticino forest area in
Switzerland. The angle of convergence of the forward-backward (FB) images was about 12◦, with an
average across track-angle of −5◦. The three stereo pairs with different across- and along-track angles
were acquired in 2013 over the same area in Ljubljana (Slovenia), one day apart from each other.
Those images had an angle of convergence of about 24◦, 22◦, and 27◦, respectively, with about −5◦,
+6◦ and +20◦ in across-track direction.

In this study, we focus on the reconstruction of the surface height from pan-sharpened Pléiades
images. As reported by Reference [26], if only tree heights are of interest, there is a limited
reimbursement of also acquiring and processing spectral and textural data, because multispectral and
colour information typically does not contribute to the matching performance [38]. Therefore, in this
work, the fourth band was only exploited to generate the NDVI map which was used to derive the tree
mask for the Ticino study area and for removing the lake and river surfaces from the stable area mask.
The surface covered by clouds was excluded from the analyses in post-processing based on the nDSM.

Processing in Inpho Match-T is highly automated. It requires only limited information to be
entered by users, consisting of manually observing GCPs in the images, checking the residuals of
tie points to remove blunders, and setting some parameters for the dense point cloud computation
e.g., the type of filtering and the spatial resolution (in our work, one point per pixel). The GCPs were
employed to achieve sub-meter accuracy. A high number of GCPs improves the accuracy, but no
significant improvement can be reached by increasing the number of GCPs from 10 to 40 [39,40].
For both study areas we used 18 GCPs to refine the RPC in combination with automatically extracted
tie points. For the tie points, we obtained a precision of better than 0.3 pixels for the tri-stereo images
in Ticino and around 0.5 pixels for the three stereo images in Ljubljana. For both study areas, there is a
good agreement between the horizontal RMSE of the adjusted coordinates of the GCPs and the CPs on
the ground, but high discrepancies can be found in the vertical direction, where the RMSE of the CPs
is about 1.0 m (Ticino) and 0.80 m (Ljubljana) in comparison to one decimetre of the GCPs. Because the
GCPs were used within the bundle adjustment, only the CPs residuals represent external accuracy.
Indeed, this result is validated by the vertical RMSE of the DSM at the GCPs and CPs, which is in
total about 0.90 m and 0.70 m for Ticino and Ljubljana, respectively. For the area of Ticino, the vertical
DSM RMSE of the CPs is almost twice as large as the one of the GCPs, which suggests a sub-optimal
distribution of the GCPs. However, the large forest coverage and the steep terrain limited the selection
of GCPs and CPs within this area.

To generate DSMs from dense point clouds, a moving plane interpolation was chosen that consider
all the points within a 3 m search radius. This approach was found to be the optimal compromise
between minimizing the number of void pixels, preservation of detail, and noise filtering. Considering
that the vertical accuracy of photogrammetric DSMs largely depends on the target land cover [11],
we assessed the global accuracy of Pléiades DSMs separately for stable areas and for forest areas (CHM)
by comparison with the reference data. In stable areas, the Pléiades DSMs elevation errors showed a
clustered bias for both study areas. Consequently, the application of an affine transformation estimated
by LSM reduced them. However, to derive globally optimal transformation parameters using LSM,
the common stable areas in the master and slave surfaces should be homogeneously distributed
over the entire scene, which can be hard to achieve in forest mountain areas. Despite this limitation,
we demonstrated that for both study areas, LSM improved the geolocation accuracy by removing
the clustered error, especially over the flat area of Ljubljana. Moreover, in Ticino, LSM removed the
35 m geolocation error resulting from the original RPCs delivered with the imageries. This accuracy
corresponds to the results reported by Reference [39], who estimated an RMSE of the absolute height
of the Pléiades DSMs between 35.6 m and 41.9 m when using the original RPCs. Our results indicate
that sub-meter geolocation accuracy can be achieved without the time-consuming measurement of
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GCPs by applying an LSM transformation, if a high-resolution DTM and stable areas are available.
In Ticino, some clustered errors were still present after LSM, likely due to the low quality of the
reference DTM, which showed abrupt terrain discontinuities. This is confirmed by similar distributions
of the nDSMs in stable areas for Pléiades (σMAD = 0.82 (FB)) and aerial image matching (σMAD = 0.80),
where the same DTM was used for normalisation. The application of LSM in Ljubljana significantly
removed the tilt effect in the flat stable areas: For the images of 29 July, 74% of the cells fell in the range
±1 m before LSM, whereas the percentage increased to 92% after LSM. The improvement due to LSM
of the Pléiades DSM accuracies in forest areas is not as significant as in stable areas. If we quantify this
improvement as the percentage of Pléiades DSM cells with height errors within the range of ±1 m,
then LSM increases the accuracy by 5 and 4 percentage points for Ticino and Ljubljana, respectively.
However, note that in both study areas there is a considerable time gap between the acquisition of the
reference data and the Pléiades image.

After LSM, the vertical error distribution of the Pléiades CHMs in Ticino and Ljubljana show
good agreement in terms of their median, ranging between 0.02 m (FB) and −0.20 m (NB) for Ticino
and between −0.04 m and −0.32 m for Ljubljana. In contrast, their dispersions differ significantly,
with a σMAD of about 4 m for Ljubljana, as opposed to 2 m for Ticino. This larger dispersion of
the error distribution can be attributed to the different forest types and managements of the two
study areas. In Ticino, the forest areas were more homogeneous, containing mainly adult trees (87%,
>10 m) in broadleaf forest. The height of lower trees was generally overestimated by Pléiades image
matching, contrary to the conclusion of Reference [26]. However, in our study, this overestimation can
be attributed to tree growth between the time of aerial (2015) and Pléiades (2017) images acquisitions.
However, in Ljubljana, only 76% of the canopy cover revealed heights greater than 10 m, and it
consists of managed forests, several vegetated urban areas, and single trees in flat areas. Tree growth
between the Pléiades (2013) and ALS (2015) data acquisitions can explain the negative differences
between Pléiades and ALS CHMs for tree heights greater than 10 m. Younger trees were significantly
overestimated by Pleiades CHMs in comparison to ALS. However, note that between these two
data acquisitions, the Slovenian forests were hit by a strong ice storm, which caused severe damage.
Consequently, many of the canopy gaps formed during this event and the younger trees due to forest
regeneration were not yet present at the time of the Pléiades image. This was confirmed by visual
comparison of a Pléiades orthophoto and an aerial one acquired at the time of ALS data acquisition.
An additional aspect to consider in the comparison of the results for the two study areas is the different
kinds of data used to compute the reference DSMs: ALS in Ljubljana versus aerial images in Ticino.
Hence, two image sensors (with GSDs of 0.50 m for the aerial and of 0.70 m for the Pleiades images)
were compared, which have similar issues concerning gap detection, because the same point has to
be visible in at least two images. Hence, accurate CHM reconstruction in mountain areas remains
difficult due to strong elevation contrast between trees and the surrounding ground, which results
in occlusions. Therefore, we confirm that the ability to accurately measure points between trees
heavily depends on the GSD, the base length of stereo images, dominating tree heights and the density
of the forest [41]. The analysis of the height profiles confirms that the Pléiades DSMs follow well
the aerial DSM (Figure 7) and the ALS DSM (Figure 12c) for homogenous canopy cover and adult
trees, but overestimates the height between single trees close to each other and within canopy gaps.
This result matches the expectation that stereo-photogrammetry reconstructions yield a relatively
smooth surface in which height discontinuity between trees and their surrounding are represented by
gradual changes [39,42]. The median of Pléiades CHM errors is not influenced by slope, but a rapid
increase of its dispersion was observed for steep areas in Ticino (>60◦).

When analysing the quality of Pléiades DSMs regarding the acquisition mode in Ticino, i.e.,
tri-stereo vs. stereo, we observed in a profile (Figure 7) that the nadir image increases completeness,
reducing the data void left out by FB matching in steep forest areas, because of fewer occlusions,
and larger image similarity. Anyway, the small angle of convergence (12◦) of the FB stereo pair resulted
in small unreconstructed areas only that were mostly filled by DSM interpolation. The study shows
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a limitation of the used software in the dense matching of from tristereo images: The resulting FNB
dense point cloud is simply a subset of the two-nadir stereo (FN and NB) point clouds, without any
contribution of the FB stereo pair. FB provided the highest accuracy in comparison to the tri-stereo
and the two nadir stereo pairs, albeit differences are rather small. Among the two nadir stereo pairs,
FN had the smaller angle of convergence, and it provided the worst results, as expected. The reached
accuracy of the height model based on all three images (i.e., FN-NB-FB) is slightly better than for
FB, as also observed by Reference [42]. Selecting the locally best of the three stereo results (i.e., with
minimum local height error) yields an improved model. This selection is straightforward when having
reference data at hand that was acquired at the same time as the satellite imagery. Without reference
data, however, according selection criteria still remain an open question.

Incidence angles, both across- and along-track, affect DSM accuracy, although our results showed
only moderate differences, especially within forest areas. When comparing the accuracies of the
study areas, we observed that the larger angle of convergence (>24◦ of Ljubljana versus 12◦ in Ticino)
provided a σMAD in stable areas that was two times smaller. However, this might also be attributed to
the more mountainous topography in Ticino and the more homogeneous distribution of the GCPs in
Ljubljana. Nevertheless, the median values of the nDSMs in stable areas is close to zero for both study
areas, which suggests that a narrow angle of convergence doesn’t constitute a major limiting factor
for the quality of the Pléiades DSMs [39]. By contrast, based on the assumption that a wider angle of
convergence (>15◦) would help to enhance the accuracy of the measured heights [15,43], our results
suggest that a wider across-track angle (20◦) has a negative impact on the vertical accuracy of the DSM.
Furthermore, the error dispersion is more affected by steep terrain than by small across-track angles
(±6◦).

6. Conclusions

Pléiades satellite images compared to other VHR sensors have the main advantages of a great
agility, daily revisit capability, smaller time intervals between the image acquisition and the possibility
to acquire a nadir-looking view. Considering these characteristics and if a digital terrain model
(DTM) is available, the system offers a great potential for providing a high spatial resolution canopy
height model (CHM), which can be used for supporting forest inventory and monitoring programs
at the regional and national level. Therefore, to take this system into consideration, an important
challenge is to understand the accuracy of the derived products. Specifically, since the acquisition mode
(Tri-stereo/stereo) and the incidence angles can be planned for the new Pléiades images acquisitions,
this work wants to answer the following two questions: (1) what is the benefit of using tri-stereo
images and (2) what is the impact of different incidence angles along- and across-track on the image
matching performance and on the accuracy of the DSM. In order to derive the height above the ground
(i.e., the nDSM), available DTM was subtracted from the DSMs. The image orientation implied the
use of GCPs and tie points to refine the RPC. However, in order to remove systematic errors on the
generated DSMs, an affine transformation (LSM) was successfully applied to the dense point cloud.
We demonstrated that by applying an LSM transformation sub-meter geolocation accuracy without
the time-consuming GCPs measurements could be achieved.

Our results suggest that the differences between tri-stereo and stereo matching are rather small and
the stereo forward-backward canopy height showed slightly higher accuracies than the tristereo results
and the two nadir stereo pairs. In terms of completeness, the nadir image can minimize the issues of
stereo matching in steep forest areas, but the adopted interpolation method and the narrow angle of
convergence of the forward-backward pair yielded to small unreconstructed areas. Both incidence
angles, across- and along-track are important parameters for determining DSM accuracy of a stereo
pair, although our results do not show dramatic differences. However, a large across-track angle (19◦)
reduces the quality of Pléiades CHMs/nDSMs.
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Appendix A

Figures A1 and A2, respectively for Ticino and Ljubljana, illustrate the image residual vectors for
the GCPs, CPs and tie points at the positions of their image points, and the 2D scatter plot of the image
residuals of the tie points for each image. Tables A1 and A2, respectively for Ticino and Ljubljana,
report the σ of the tie points image residuals and the RMSE of each of the adjusted ground coordinates
for the GCPs and CPs after the bundle adjustment.

Figure A1. For Ticino study area (a) the image residual vectors (scale 5000) for GCPs (red circle), CPs
(yellow circle) and tie points (blue circle) at their respective image positions after the RPC correction.
(b–d) The 2D scatter plot of the image residuals of the tie points of each image in pixel units.

Figure A2. For Ljubljana study area (a) Image residual vectors (scale 5000) for GCPs (red circle), CPs
(yellow circle) and tie points (blue circle) at their respective image positions after the RPC correction.
(b) The 2D distribution of image residuals of tie points of each image.
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Table A1. For Ticino study area, standard deviation (σ) of the tie points in image space after bundle
adjustment and the RMSE for each object coordinate of the GCPs and CPs after the bundle adjustment.

σ after RPC Refinement (pix) RMSE (m)

FW N BW Adjusted Coordinates

x y x y x y X Y Z

Tie points 0.27 0.16 0.27 0.26 0.29 0.14 18 GCPs 0.34 0.23 0.09
7 CPs 0.18 0.35 1.04

Table A2. For Ljubljana study area, standard deviation (σ) of the tie points in image space after bundle
adjustment and the RMSE for each object coordinate of the GCPs and CPs after the bundle adjustment.

σ after RPC Refinement (pix) RMSE (m)

27 July 28 July 29 July Adjusted Coordinates

FW BW FW BW FW BW X Y Z

Tie
points

x y x y x y x y x y x y 18 GCPs 0.37 0.37 0.17
0.43 0.43 0.39 0.44 0.46 0.42 0.44 0.40 0.44 0.52 0.52 0.49 12 CPs 0.56 0.54 0.80
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Abstract: Kinematic characterization of a landslide at large, small, and detailed scale is today still
rare and challenging, especially for long periods, due to the difficulty in implementing demanding
ground surveys with adequate spatiotemporal coverage. In this work, the suitability of space-borne
synthetic aperture radar sub-pixel offset tracking for the long-term monitoring of the Slumgullion
landslide in Colorado (US) is investigated. This landslide is classified as a debris slide and has so far
been monitored through ground surveys and, more recently, airborne remote sensing, while satellite
images are scarcely exploited. The peculiarity of this landslide is that it is subject to displacements
of several meters per year. Therefore, it cannot be monitored with traditional synthetic aperture
radar differential interferometry, as this technique has limitations related to the loss of interferometric
coherence and to the maximum observable displacement gradient/rate. In order to overcome these
limitations, space-borne synthetic aperture radar sub-pixel offset tracking is applied to pairs of images
acquired with a time span of one year between August 2011 and August 2013. The obtained results
are compared with those available in the literature, both at landslide scale, retrieved through field
surveys, and at point scale, using airborne synthetic aperture radar imaging and GPS. The comparison
showed full congruence with the past literature. A consistency check covering the full observation
period is also implemented to confirm the reliability of the technique, which results in a cheap and
effective methodology for the long-term monitoring of large landslide-induced movements.

Keywords: synthetic aperture radar; landslide monitoring; sub-pixel offset tracking; Slumgullion
landslide; natural hazards; large displacements

1. Introduction

The kinematic estimation of landslide deformation is an important task for investigating the
mechanisms affecting their evolution. An improved understanding of changes in landslide behavior as
a function of predisposing factors (such as slope, aspect, land use, lithology, etc.) and triggering factors
(such as intense or prolonged rainfall, seismicity, human actions, etc.) is crucial for risk mitigation,
and thus brings significant social, environmental, and financial benefits [1].
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Historically, landslides have been investigated with sparse point measurements acquired
through demanding on-field campaigns using traditional instruments (inclinometers, piezometers
topographic leveling) and/or GPS. However, recent years have been characterized by a rising
interest in and exploitation of satellite technologies for the monitoring of active ground deformation,
including landslide motion and hillslope creep, thus allowing for the overcoming of the insufficient
spatiotemporal coverage achievable through traditional monitoring methods. In this sense, Differential
Synthetic Aperture Radar Interferometry (DInSAR) techniques have largely demonstrated their
effectiveness in measuring surface motion and deformation at different scales [2–6]. The spread
of this methodology is mainly related to Permanent Scatterers (PS) [7] and Small BAseline Subset
(SBAS) [3] approaches, and their combination (known as SqueeSAR) [8–10]. However, these methods
are subject to some restrictions, such as the presence of vegetation (causing temporal decorrelation
even within very short time intervals) and the 1-D line of sight (LOS) measurement sensitivity, which is
also constrained by the adopted wavelength relatively to the maximum measurable displacement
rate [11,12].

Today, a new class of methods can provide information complementary to that derived from
DInSAR by working with the amplitude channel. These techniques, based on Sub-Pixel Offset Tracking
(SPOT) [11,13], allow the measurement of displacements in the South–North and East–West directions
without any limitation on the observable rate. This means that a pair of SAR images can be used
to detect movements of several meters with a good degree of approximation [13]. SPOT methods
are generally less precise than conventional DInSAR methods [11], however they are less sensitive
to atmospheric effects and are not strictly only applicable to highly coherent targets, i.e., they can
measure displacements even in densely vegetated areas [14].

SPOT methods have been successfully applied to estimate movements of glaciers and
terrain [15–17] due to natural phenomena (landslides) [11,13] and/or human activities (subsidence
induced by underground excavation) [18,19]. In this work, the suitability of this methodology for
the long-term monitoring of the Slumgullion landslide (Colorado, US) is investigated. This landslide
has been extensively studied in the past due to the fast/slow related displacements [20–23]. Previous
investigations have mainly been implemented with field sensors. Starting from the early 2000s,
synthetic aperture radar (SAR) airborne remote sensing was also employed. The first campaign was
implemented by the Brigham Young University using an X-band sensor, with the purpose of correlating
the measured movements to the soil water content [24]. More recently, some studies exploiting airborne
L-band remote sensing have been presented [25–27]. However, so far, the use of satellite technologies
in the literature was limited, despite they can provide a cost-effective and continuous update of the
landslide state. In fact, kinematic characterization at landslide scale is today still rare, especially
for long periods, due to the difficulty in implementing demanding ground surveys with adequate
spatiotemporal coverage [22].

To this end, state-of-the-art SAR SPOT was applied to three X-band COSMO-SkyMed spotlight
images with about one-meter spatial resolution to monitor the Slumgullion landslide over a time
frame of two years, from August 2011 to August 2013. The landslide is investigated at both large and
small scale, and, for the first time, the displacements retrieved using very high-resolution space-borne
images are validated against ground data provided in the past literature.

The work is organized as follows. The case study and available data are presented in Section 2.
Experimental results are presented and validated in Section 3, and discussed in Section 4. Conclusions
are drawn at the end of the work, in Section 5.

2. Materials and Methods

2.1. Study area and available data

The study area concerns the Slumgullion landslide, US. It is depicted in Figure 1, with a LiDAR
Digital Elevation Model (DEM) with a 0.5-meter spatial resolution superimposed and developed by
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the US National Center for Airborne Laser Mapping (NCALM). The landslide is located in the San
Juan Mountains in southwestern Colorado, near the town of Lake City. It has been moving for about
350 years, with a maximum measured velocity of six meters per year [21]. According to [28], it has
been classified as a debris flow which involves deeply weathered tertiary volcanic rocks. It extends
for about seven kilometers from the Cannibal Plateau to Lake San Cristobal, with a mean width and
depth of 300 meters and 14 meters, respectively [20].

Inside the landslide, an area of about one square kilometer (see black curve in Figure 1) is still
active, and is characterized by a low ground-surface inclination (about eight degrees). Based on its
average displacement rate (between 0.1–2.0 cm/day as reported in [2]), it can be considered a very
slow landslide according to [28].

 
Figure 1. Study area. The Slumgullion landslide is represented by the area within the purple line.
In box (a), the LIDAR Digital Elevation Model (DEM) by the US National Center for Airborne Laser
Mapping (NCALM) has been superimposed onto the Google Earth view of the landslide.

As observed in [29,30], the Slumgullion landslide is composed of multiple kinematic elements,
each of them moving like a rigid block sliding along faults. Accordingly, the landslide has been
segregated into 11 primary kinematic elements (see labels in Figure 1) that can be assumed as
temporally consistent [22].

Between 1985 and 1990, velocity of elements from 1 to 4, constituting the flattest part of the
landslide, increased nearly linearly in the downslope direction, as reported in [18,20,21]. Displacement
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rate abruptly increased from element 4 to 5 and increased almost linearly up to element 7. The latter
was the fastest and steepest element of the landslide. Then, it widens and flattens, slowing downslope
to elements 8 and 9. Finally, the landslide moved along the oldest ground surface forming elements 10
and 11, whose speed was much slower than that of elements 8 and 9. As indicated in [31], these regions
can be grouped into head (Region 1 to 4), upper neck (Region 5 to 7), lower neck (Region 8 and 9),
and toe (Region 10 and 11) (see box (b) in Figure 1).

Satellite monitoring has been implemented by exploiting three COSMO-SkyMed spotlight images
with about one-meter spatial resolution. The dataset covers a time frame of two years, from August
2011 to August 2013. Images were acquired with one-year frequency. They were combined in two
co-registered pairs, the first covering the period August 2011–August 2012 and the second covering
the period August 2012–August 2013. A third pair, covering the time frame August 2011–August 2013,
was also considered to implement a consistency check of the obtained results (see Section 3).

2.2. Implemented Sub-Pixel Offset Tracking (SPOT) technique

The flow diagram of the implemented methodology is depicted in Figure 2. In particular,
in the upper part, the general processing chain, from the input to the final displacement vector
field, is reported. In the lower part, an exploded view of the SPOT processing block is displayed.

Figure 2. Flow diagram of the implemented methodology. The upper part of the picture shows the
general processing chain, while in the lower part the flux represents an exploded view of the Sub-Pixel
Offset Tracking (SPOT) processing block.

General processing starts from standard co-registration [32]. If precise orbit data are available,
an only orbit-based co-registration can be implemented. Otherwise, full co-registration (i.e., including
cross-correlation and coherence refinement steps) is suggested, provided that the scene is much larger
than the area of interest. In this case, Ground Control Points (GCPs) located on the landslide will be
automatically discarded since they typically exhibit very low cross-correlation and interferometric
coherence values. The first acquired image is assumed to be the master image, i.e., the reference for the
estimation of displacements. The image in which displacements are evaluated is the slave image.

The SPOT algorithm exploits cross-correlation measures on several windows extracted from the
co-registered image pair to estimate the shift between the master patch and the slave patch. Windows
are extracted around grid points usually regularly distributed across the images (see first two blocks of
the lower diagram in Figure 2).

The cross-correlation between two null-mean patches M and S, taken, respectively, on the master
and slave image, is computed as follows:

C =
IFFT

{
FFT{M} × FFT{S}∗}√〈M2〉 × 〈S2〉 , Cij ∈ [0, 1] (1)
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where FFT and IFFT indicate the fast Fourier transformation and the inverse fast Fourier transformation,
respectively, the apex ∗ the complex conjugation operation, and the symbol 〈·〉 the mean operator.
In this equation M and S are oversampled by a factor f (which must be a power of two in order to
optimize the FFT calculation) to take into account sub-pixel movements, being the minimum detectable
displacement (in pixel units) equal to 1/f.

In Equation (1), C is a matrix. Its maximum identifies the amount of shift to be applied to the slave
patch to have it superimposed onto the master patch. The higher (and sharper) the peak identifying the
matrix maximum, the more reliable is the estimated shift. Note that C is a circular matrix, and therefore
the maximum detectable shift is equal to ±d/2, where d is the patch dimension (usually square).

In order to identify reliable shifts, two quality parameters are considered, i.e., the peak value
cmax of the cross-correlation matrix and the ratio q = cmax/〈C〉. For both of them, a pre-determined
user-defined threshold is used to exclude invalid GCPs.

Accepted GCPs are then subjected to a filtering procedure to minimize noisy displacement
patterns. To this end, shifts are classified based on their sign; specifically, a three-class classification
map (positive shift, negative shift, and null shift) is generated. A connected component labeling
algorithm [33] is used to segment this classification map. Small regions surrounded by a homogeneous
background of shifts with the same sign are assumed to be noisy patterns and are discarded. Finally,
filtered GCPs are interpolated into the final displacement map.

3. Results

An example of the results obtained with the SPOT technique is reported in Figure 3. It refers to
the time frame August 2011–August 2012. As expected from the past literature, the highest velocity
values have been recorded in the central part of the landslide (upper and lower necks). The arrows
in Figure 3 represent the direction of the estimated vector field retrieved from the North–South and
East–West component. All the results presented here have been obtained after re-projection of SAR
images into a cartographic system using the NCALM LIDAR DEM.

The result for the time frame August 2012–August 2013 is very similar to that for the time frame
August 2011–August 2012, and therefore is omitted for brevity. In both experiments, the size of the
correlation window was set to 64 pixels, the cross-correlation threshold to 0.1, the threshold on the
ratio q between the peak and the mean of the correlation matrix to 4, and the oversampling factor
to 4. This means that the minimum retrievable displacement is on the order of 17 centimeters in the
azimuth direction and 10 centimeters in the range direction. In Table 1, the parameters set to run the
experiments are summarized. The third one (Run 3) concerns a consistency check of the retrieved
displacements fields.

In Figure 4, the maps of quality parameters relative to the pair August 2011–August 2012 are
shown. Figure 4a represents the map of the maximum correlation coefficient and Figure 4b is the q map,
e.g., the ratio between the peak and the mean of the cross-correlation matrix. The noisy displacement
patterns displayed in Figure 3 correspond to areas characterized by a low value of the considered
quality parameters for the GCPs selection.

In Table 2, quantitative data about the estimated displacements rate are reported. These values
were obtained by averaging the estimated velocities in the kinematic regions indicated in [22].
Data concerning the standard deviation of the measurements are also provided.

Two different window dimensions (64 and 128 pixels) were experimented, and produced similar
results. The last columns of the table are reserved for the consistency check, which was conceived as
follows. A is the result for the period 2011–2012, B that for the period 2012–2013, and C that for the
period 2011–2013; reliable results should return A + B − C = 0. This is not strictly achieved, however
the deviation from zero of the aforementioned equation is generally small. The distribution of the
consistency check is Gaussian with a mean of about 1 cm/year and standard deviation of 42 cm/year
in the 64-pixel window case. In the 128-pixel window case, the mean and standard deviation of the
distribution are on the order of 2 cm/year and 42 cm/year, respectively.
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Figure 3. Slumgullion landslide displacement rate, in meters per year, for the time frame August
2011–August 2012. The superimposed arrows represent the direction of the estimated vector field.

Table 1. Summary of the adopted Sub-Pixel Offset Tracking (SPOT) parameters.

Run 1 Run 2 Run 3

Parameter Value Value Value

Master image 2011/08/03 2012/08/06 2011/08/03
Slave image 2012/08/06 2013/08/08 2013/08/08
Time span 369 d 367 d 736 d

Pixel spacing azimuth 0.70 m 0.70 m 0.70 m
Pixel spacing range 0.38 m 0.38 m 0.38 m

x-grid spacing 10 pixels 10 pixels 10 pixels
y-grid spacing 10 pixels 10 pixels 10 pixels

Oversampling factor 4 4 4
Cross-correlation threshold 0.1 0.1 0.1

q threshold 4 4 4
Max displacement 8 m 8 m 16 m

Computational time ≈ 45 min ≈ 45 min ≈ 45 min

186



Remote Sens. 2019, 11, 369

  

Figure 4. Ground Control Point (GCP) quality parameter maps for the satellite pair August
2011–August 2012. (a) Maximum of the cross-correlation matrix. (b) Ratio between the peak and
the mean of the cross-correlation matrix. In both pictures, black contours indicate the kinematic regions
as defined in [22].

Table 2. Summary of the obtained results. Data are reported in meters per year and have been averaged
using the regions indicated in [22]. V–displacement velocity; CC–consistency check.

Region id
<V>

2011–2012
std(V)

2011–2012
<V>

2012–2013
std(V)

2012–2013
|CC| std(CC)

w = 64 w = 128 w = 64 w = 128 w = 64 w = 128 w = 64 w = 128 w = 64 w = 128 w = 64 w = 128
Landslide 1.03 1.03 0.79 0.80 0.81 0.86 0.72 0.73 0.01 0.02 0.42 0.42

1 0.11 0.06 0.09 0.07 0.13 0.14 0.08 0.06 0.07 0.04 0.14 0.10
2 0.26 0.24 0.13 0.11 0.16 0.19 0.09 0.09 0.00 0.00 0.15 0.09
3 0.33 0.31 0.13 0.16 0.24 0.27 0.10 0.10 0.03 0.01 0.19 0.17
4 0.54 0.56 0.18 0.34 0.38 0.45 0.16 0.15 0.08 0.03 0.19 0.13
5 1.11 1.11 0.29 0.25 0.91 0.98 0.29 0.34 0.12 0.07 0.23 0.28
6 2.00 2.05 0.49 0.43 1.80 1.89 0.42 0.37 0.09 0.24 0.63 0.74
7 2.40 2.44 0.67 0.58 2.14 2.25 0.55 0.44 0.07 0.05 0.89 1.04
8 1.56 1.54 0.47 0.46 1.24 1.29 0.45 0.42 0.05 0.05 0.50 0.54
9 1.63 1.64 0.47 0.47 1.34 1.39 0.59 0.51 0.09 0.05 0.52 0.36
10 0.58 0.54 0.23 0.19 0.36 0.30 0.16 0.10 0.09 0.06 0.30 0.15
11 1.00 1.01 0.17 0.11 0.52 0.59 0.18 0.14 0.05 0.00 0.26 0.15

3.1. Validation

The Slumgullion landslide has been widely investigated in the past literature. Most of the studies
rely on field surveys [1,20–23,29,30,34]. Recently, some papers exploiting remote sensing data have
been presented [2,25–27,31]. In this context, only Reference [2] made use of space-borne SAR data.
However, this work was focused on spotlight DInSAR methods covering one year of observations,
with small insights in long-term displacement monitoring and limited validation of the presented
results against literature data. All other works reviewed rely on airborne images acquired by the
NASA/JPL L-band UAVSAR with 0.6- and 1.9-m spatial resolution in the azimuth and slant range
directions, respectively [35].

The validation of the obtained results is implemented both at landslide scale and at point scale.
A perfectly consistent validation set (i.e., ground measurements acquired over the same time span
covered by the SAR images used in this study) is not available, especially concerning the landslide
scale. In this case, the most referenced data are relevant to the period 1985–1990 and to the year 2010.
They are reported in Table 3 for the ease of the reader.
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Data concerning the period 1985–1990 were produced in [29,30] using photogrammetry and
field surveys. Data relevant to the year 2010 were collected in [22] through Ground-Based SAR
Interferometry (GBInSAR) measurements. The latter study highlighted that, by 2010, the landslide’s
velocity halved compared to its values in the 1985–1990 period, and that the landslide head was affected
by the largest decrease in velocity. The authors ascribed this behavior to both geomorphological and
climatic factors. At the climatic level, they suggested that the average increase in temperature and
decrease in precipitation could have induced an overall slowing of the landslide. Reference [1] showed
that the movement of the Slumgullion landslide is strongly correlated to the soil moisture, and that its
decreasing trend reflected the general slowing of the landslide.

Table 3. Available literature data, in meters per year, as reported in [22,29,30]. Vf is the displacement
velocity measured with field instruments between 1985 and 1990. VGB is the displacement velocity
estimated through Ground-Based Synthetic Aperture Radar Interferometry (GBInSAR) in 2010.

Region id
<Vf>

1985–1990
std(Vf)

1985–1990
<VGB>

2010
std(VGB)

2010

Landslide 2.48 1.38 1.16 1.35
1 0.73 0.40 0.14 0.91
2 1.20 0.25 0.32 1.27
3 1.42 0.14 0.36 1.31
4 1.60 0.51 0.36 0.98
5 2.44 0.29 1.05 1.53
6 3.86 0.87 1.67 2.51
7 5.25 0.73 2.84 3.35
8 3.57 0.40 1.64 3.13
9 3.65 0.87 1.93 3.06

10 1.56 0.18 0.91 6.49
11 1.97 0.36 1.13 2.37

From a geomorphological point of view, the observed thinning of the landslide head [36] caused
its stability to increase. The slowing of the head should have favored the overall slowing of the
landslide by decreasing downslope-directed transfer of shear stresses [22].

The displacement rates retrieved in this study are congruent with those reported in Table 3 in
the column relevant to the GBInSAR survey implemented in 2010 [22]. The direction of the estimated
vector field (see arrows in Figure 3) mainly follows the landslide slope profile and is qualitatively quite
similar to that presented in the past literature (see as an example [31]).

The obtained results showed that the effect of the variation of the correlation window is negligible
from the viewpoint of the estimated displacements, being for all the regions below the theoretical
sensitivity of the method, which, as previously stated, is given by 1/f, where f is the applied
oversampling factor. On the other hand, defining a smaller correlation window (e.g., 32 pixels)
makes the frequency-domain cross-correlation less reliable, and this increases the standard deviation of
the estimated displacement field (not reported here for brevity), which results in noisiness and physical
inconsistency. Therefore, it is suggested to operate with the 64-pixel window. This allows a lower
computational time compared to the 128-pixel window (for these experiments, the computational time
was about 2.1 h per run, compared to about 45 min for each 64-pixel window run), as well as a higher
level of detail and a better preservation of the landslide edges.

For the 64-pixel window, the registered values of the standard deviation range from 0.09 m/year
in Region 1 (pair 2012–2013) to 0.67 m/year in Region 7 (pair 2011–2012). They are similar to those
indicated in [29,30].

It is remarkable that the noisier displacement patterns, see as an example that north of landslide
Region 8, are characterized by very low values of the quality parameters considered. This means
that the peak of the correlation matrix is not sharp (i.e., it is not well-defined compared with the
background), thus leading to an unreliable estimate of the displacements. In the landslide area,
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even though the peak of the correlation matrix cmax is not very pronounced (as expected based on the
characteristics of the phenomenon under investigation), its ratio q with respect to the mean is quite
high. The average values registered for the pair 2011–2012 for these quantities within the defined
kinematic regions are, respectively: Region 1–0.33, 12.34; Region 2–0.39, 12.65; Region 3–0.32, 12.14;
Region 4–0.30, 12.33; Region 5–0.30, 12.38; Region 6–0.28, 10.21; Region 7–0.24, 9.70; Region 8–0.23,
9.92; Region 9–0.25, 11.17; Region 10–0.28, 11.42; and Region 11–0.24, 10.27.

The consistency check involves the three pairs: August 2011–August 2012; August 2012–August
2013; and August 2011–August 2013. A consistent result should pose that the sum of the displacements
is zero. As stated above, this is not strictly achieved, however the resulting distribution has a mean
very close to zero either at landslide scale or within the 11 kinematic regions. The registered deviations
from zero (using the 64-pixel window) range (in absolute value) from less than 1 cm/year (region 2) to
12 cm/year (region 5). Similar results were obtained using the 128-pixel window (see Table 2).

In the following, the obtained results will be discussed at a finer scale exploiting data concerning
19 measurement points (MPs) installed on the landslide by the US Geological Survey (USGS) [34].
Reference data for comparison were extracted from Reference [26], in which the kinematics of the
landslide was analyzed in the time frame August 2011–April 2012 using airborne L-band remote
sensing and was compared with GPS data collected at the USGS MPs. Note that these data were
reproduced through graph digitalization, and it is therefore possible that they exhibit (negligible)
differences with respect to their original version.

In Figure 5, the comparison between the results presented here (time frame August 2011–August
2012) and those from [26] is shown. The position of the MPs with respect to one of the available
SAR acquisitions is also reported (note that MP1 and MP2 are not shown in this graphic since their
position falls outside the image cut considered). Airborne SAR-derived data are rendered with blue
bars and GPS data with gray bars. Outcomes from this study (orange bars) were produced by taking
the maximum displacement in a window of 100 × 100 meters around each MP position (only for MP1,
which is expected to be immobile, the mean displacement was considered). This choice was made in
order to compensate geocoding errors (some of the MPs are at the landslide borders and/or at the
transition between different kinematic zones) and SPOT maps inhomogeneity/noise.

 

Figure 5. Comparison between space-borne COSMO-SkyMed displacement rates (orange), airborne
UAVSAR displacement rates (blue) and GPS displacement rates (gray) for the 19 USGS measurement
points. UAVSAR and GPS displacement rates have been extracted from [26].

The three datasets qualitatively show a good agreement. Disagreements are concentrated,
as expected, in the neck sector, where the landslide is faster. In this area, estimates from this work
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exhibit the highest discrepancy when compared to airborne SAR and GPS data, in particular in
MP8, MP9, and MP14. For those points, the landslide displacement rate is underestimated when
compared to GPS data of about 0.17 cm/day, about 0.3 cm/day, and about 0.16 cm/day, respectively.
If the measurements extracted from airborne SAR images are considered, the underestimation in
correspondence of the aforementioned points is on the order of 0.13 cm/day, 0.15 cm/day, and
0.17 cm/day.

Assuming that points MP1 to MP7 belong to the head, that MP8 to MP14 belong to the neck,
and that MP15 to MP19 belong to the toe, the registered Root-Mean-Square Error (RMSE) of the
displacement rates here estimated with respect to GPS measurements is about 0.05 cm/day for the
head, 0.15 cm/day for the neck, and 0.09 cm/day for the toe.

4. Discussion

SPOT methods allow for the estimation of two-dimensional displacements by using only the
intensity channel. They are less sensitive to atmospheric effects and land cover types (i.e. they can be
applied also in presence of vegetation) if compared with DInSAR. This is due to the lack of the phase
information, which also allows for avoiding unwrapping procedures, often leading to the failure of
DInSAR because of the low density of valid pixels [37].

With a lack of any facilities (i.e., corner reflectors) installed in situ, the accuracy of the estimated
displacements depends on the resolution of input images, the magnitude of the real displacements,
the acquisition geometry, and the correlation coefficient between the scatterers [38]. These parameters
are clearly interconnected, since higher-resolution images can provide a better description of the scene
features, thus maximizing their correlation at fine scale. On the other hand, when displacements
are significant, the hypothesis of rigid shift is weakened, i.e., the correlation tends to be lower,
as does the accuracy of the estimated offsets, as testified by the comparison with the GPS data
provided in Section 3.1, which gave the worst results in correspondence with areas characterized by
faster movements.

Spatial decorrelation can also be due to orbital issues. Differences in the acquisition geometry can
significantly change speckle patterns, thus affecting the amplitude and the sharpness of the correlation
peak [39]. Therefore, it is crucial that images ingested in the SPOT algorithm are acquired with
similar orbit, i.e., with contained normal baselines. Their values for the examined image pairs were
on the order of 30 m for the couple 2011–2012 and 460 m for the couples 2012–2013 and 2011–2013,
which values are significantly below the X-band critical baseline (i.e., the baseline value causing
complete image decorrelation), which is more than 4 km [40].

The implemented SPOT method, validated against the available literature data both at landslide
and at point scale, was able to successfully reconstruct the kinematics of the Slumgullion landslide
using very high-resolution space-borne SAR remote sensing. At landslide scale, the estimated average
displacement rates in relevant kinematic were consistent with the closest available data, which were
acquired a couple of years before the first considered observation period. The obtained displacement
maps resulted quite homogeneous in those regions, as testified by the low values of the standard
deviation reported in Table 2. As expected, its peaks were registered where the landslide is faster, i.e.,
where both the correlation value and the q parameter exhibited the lowest value (see Figure 4).

At the point scale, the performance of the implemented SPOT was fully comparable to that
achieved by dedicated airborne campaigns, whose results showed a slightly better agreement with
reference GPS data. However, this was expected, since UAVSAR L-band images exploited in [26],
having higher penetration depth, are less sensitive to land cover (e.g., vegetation) compared to the
X-band COSMO-SkyMed data used for this study. This means that the correlation between different
images is expected to be higher in the first case [41] and, in turn, the displacement estimation is
more precise.

However, the acquisition of space-borne images is surely cheaper than that of airborne ones and,
since differences in performance are small, it can be argued that the first solution is more beneficial,
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being also independent from weather conditions, especially when monitoring is implemented with
high temporal frequency.

5. Conclusions

Satellite technologies have widely demonstrated their potential in environmental monitoring and
forecasting, response, and recovery of natural hazards. In this paper, the suitability of space-borne SAR
observations for fast/slow landslide monitoring was explored. This application cannot be addressed
using classic differential SAR interferometry due to the magnitude of the displacement rate and scarce
preservation of interferometric coherence when movements are on the order of meters. Therefore,
sub-pixel offset tracking methodology was exploited. This technique, using only the amplitude channel,
is less sensitive to atmospheric and scene decorrelation factors and does not have particular restrictions
on the observable displacement rates. Thus, it can be applied to fast/slow landslides such as the
Slumgullion landslide (Colorado, US) which represented the objective of this study.

This landslide has been extensively investigated in the past through field surveys. Recently,
airborne remote sensing has been exploited for monitoring displacements, however, as far as we know,
there have been no results obtained using space-borne images validated against ground data. Therefore,
state-of-the-art sub-pixel offset tracking was applied to pairs of SAR images acquired with about
one-year temporal baseline in spotlight modality with sub-meter resolution by the COSMO-SkyMed
constellation. These were combined in two pairs covering two years, from August 2011 to August
2013, and the obtained results were validated with an inter-sensor consistency check and against the
temporally closest available ground data.

First, the cross-consistency of the estimated displacement fields was checked by comparing the
movements of the period 2011–2013 with the sum of those estimated for the time frames 2011–2012
and 2012–2013. The comparison was satisfactory, since the resulting displacement rates showed
discrepancies on the order of a few centimeters per year.

The obtained displacement fields were then compared with available literature data, both at
landslide scale and at point scale.

At landslide scale, the average displacement rates computed via ground-based SAR interferometry
in the aforementioned kinematic regions identified in [18] were used as benchmark. As a result,
the displacement fields estimated with satellite imagery were fully comparable with those provided by
field surveys.

At point scale, literature data regarding 19 measurement points installed by the US Geological
Survey were exploited. For that location, both GPS data and airborne remote sensing derived data were
available. The comparison was satisfactory even in this case, since maximum deviations from literature
data were on the order of fractions of a centimeter localized in the central part of the landslide.

The results discussed in this study demonstrated the reliability of space-borne radar imagery for
large landslide-induced movement monitoring and its consistency with the results given by more
expensive and time-demanding methodologies such as field surveys and airborne remote sensing.
Future research will address the validation of the displacements estimated using this methodology
over an extended time frame.
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Abstract: The outlining of agricultural land is an important task for obtaining primary information
used to create agricultural policies, estimate subsidies and agricultural insurance, and update
agricultural geographical databases, among others. Most of the automatic and semi-automatic
methods used for outlining agricultural plots using remotely sensed imagery are based on image
segmentation. However, these approaches are usually sensitive to intra-plot variability and depend
on the selection of the correct parameters, resulting in a poor performance due to the variability
in the shape, size, and texture of the agricultural landscapes. In this work, a new methodology
based on consensus image segmentation for outlining agricultural plots is presented. The proposed
methodology combines segmentation at different scales—carried out using a superpixel (SP)
method—and different dates from the same growing season to obtain a single segmentation of
the agricultural plots. A visual and numerical comparison of the results provided by the proposed
methodology with field-based data (ground truth) shows that the use of segmentation consensus is
promising for outlining agricultural plots in a semi-supervised manner.

Keywords: agriculture parcel segmentation; superpixels; consensus

1. Introduction

The world’s population has tripled over the last 100 years and is still growing dramatically while
resources have remained the same, causing changes in the outlook of food supply. According to the
Food and Agriculture Organization (FAO), global food production will need to grow by 70% in order
to satisfy the food and feed demand of a population of 9 billion people by 2050. The agriculture sector
faces a critical overall challenge: to ensure access to safe, healthy, and nutritious food while using
natural resources more sustainably and making an effective contribution to climate change adaptation
and mitigation [1].

This challenge implies a greater pressure than ever before on productive land. Accurate and
up-to-date information about agricultural land, such as its status, acreage, ownership, and the type of
crops, allows stakeholders to establish effective agricultural policies (e.g., for reducing greenhouse
gas emissions, regulating water rights, and estimating subsidies and agriculture insurances) [2,3]
and update agricultural geographical databases [4], among other important tasks. In order to have
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up-to-date information on agricultural land, it is essential that the outlines of the plots are correct and
can be quickly updated.

For the last 40 years, the outlining of plots in agricultural lands has been addressed through
different initiatives around the world. In the United States, the National Research Council has
published two reports that examine the situation of the land parcel data in the U.S. and provide a series
of recommendations that would foster a national data system for storing plot information [5,6]. On the
other hand, the European Union has promoted the use of a common Land Parcel Identification System
(LPIS, https://ec.europa.eu/jrc/en/scientific-tool/lpis-quality-assessment) among its members in
order to maintain a record of the activities of farmers on their lands [7]. The success of all these
initiatives depends enormously on a precise outlining of the parcels.

Traditionally, the outlining of the parcels has been carried out manually using photointerpretation
or field campaigns and documented by surveying sketches and textual documentation, all of which is
very expensive both in time and financial resources.

The application of Information Technology tools, such as remote sensing and geographical
information systems, improves efficiency in the agricultural sector, enabling planning and decision
making based on the spatially and temporally distributed data provided by these tools [8,9]. The new
generation of optical remote sensors placed on aircraft, satellite platforms, and drones offers accessible
and useful data of very high resolution for monitoring agricultural fields at a plot level [10,11]. The task
of processing this data while maintaining accuracy and meeting the time requirements becomes a
real challenge.

Several methods have been proposed in the remote sensing literature to try to solve the automatic
or semi-automatic parcel outlining problem. Most of them are based on image segmentation,
edge detection algorithms, classification models, or combinations of these techniques. An object-based
approach for extracting human-made objects, particularly agricultural fields from high-resolution
images, was proposed in [12]. This approach was able to extract regularly shaped objects by combining
edge detection models with region-based segmentation. Da Costa et al. [13] developed an algorithm
to outline vine plots automatically from very high resolution images by exploiting their textural
properties. To differentiate between vine and non-vine pixels, they applied a thresholding method to
the texture attributes of the image. In [14], a semi-automatic methodology for outlining field boundaries
from satellite data was proposed. The authors first carried out segmentation using tonal and textural
gradients, and the generated regions were then classified to obtain preliminary plot boundaries. Finally,
they applied an active contour model [15] to refine the geometry of these boundaries. Turker et al.
used perceptual grouping for automatically detecting sub-boundaries within existing agricultural
fields from satellite imagery [16]. This approach combined field boundaries and image data to carry
out a field-based analysis. A Canny edge detector was used to detect the edge pixels, and then lines
were identified using a graph-based vectorization method.

From the analysis of the state of the art, it can be concluded that approaches based on segmentation
methods have several drawbacks including that (1) they are sensitive to intra-plot variability, which
can result in the production of more segmentation than desired, and (2) most of these methods depend
heavily on the correct selection of parameters (e.g., the similarity measured used to group image pixels),
which needs prior knowledge of the landscape or tuning by trial and error. Moreover, variability in the
sizes and shapes of the plots means that certain configuration parameters do not allow plots with the
different characteristics needed for a landscape to be outlined properly. Approaches based on edge
detection tend to produce more of the desired edges, mainly due to the presence of spatial patterns
and image noise. The oversegmentation problem presented by the two approaches is directly related
to the high spatial resolution of the images used in the segmentation process. Nevertheless, in the
case of outlining plots, a very high spatial resolution (VHSR) is critical for managing very differently
shaped and sized parcels in the same scene. Methodologies based on the superpixel (SP) concept have
been proposed to deal with VHSR. These methodologies aim to reduce the influence of noise and
intra-class spectral variability, preserving most edges of the images and improving the computational
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speed of later steps, such as classification, clustering, and segmentation [17]. In fact, some approaches
to outlining plots based on SPs are found in the literature. The authors in [18] combined a contour
detection algorithm and simple linear iterative clustering (SLIC) to extract the cadastral boundaries
from UAV orthoimages automatically. In [19], the problem of outlining plots was addressed as a
machine learning problem. The authors first oversegmented a VHSR image, then labeled each pair of
segments according to whether they belonged to an agricultural plot, and, finally, they trained a classifier
using this information. The trained classifier was then used to segment the agricultural plots of other
regions in the image automatically. The oversegmentation problem has been addressed in other areas,
such as computer vision [20], video processing [21], and medicine [22], among others, by establishing a
consensus between a set of different segments. This approach can also alleviate the parameter selection
issue. Other works have addressed the problem of unsupervised parcel segmentation using time series.
A procedure to identify different crops by combining information provided by an LPIS and a low spatial
resolution image time series is presented in [23]. However, LPISs are not always available; in fact, as
has already mentioned, a suitable definition and update of an LPIS involve at least the semi-automatic
outlining of the parcels. Nevertheless, some works in the literature that have applied time series for
improving classification in agriculture. Thus, in [24], an operational crop identification strategy based on
the use of multispectral and multitemporal signatures was proposed for classification at the parcel level.
It proposes a combination of synthetic-aperture radar (SAR) and optical data registered on particular
dates with the objective of satisfying crop temporal constraints. The authors proved that the use of SAR
time series reduces the crop classification delivery time when the optical image is replaced by several
SAR images. The integration of spectral and temporal features was proposed in [25] for annual cropland
mapping. Even though the results presented in this paper showed that the methodology proposed
is independent of in situ data and that it is capable of differentiating the croplands effectively, this
methodology requires spatial baseline land cover information provided by different sources. A different
crop classification approach is proposed in [26]. Although an ensemble of multilayer perceptrons
(MLPs) provides classified pixel-based and parcel-based maps from multitemporal satellite optical
imagery, the labels of the training patterns were obtained through a ground survey. It should be noted
that all these approaches are supervised, need additional information, and are not always available.
To our knowledge, there is a lack of semi- or unsupervised methods that exploit temporal data for
the purpose of outlining a high variety of parcels differing in size and shape. The use of temporal
information to delineate agricultural plots appears promising since, during a growing season, plot
boundaries in agricultural landscapes are relatively stable, while the phenological pattern of crops
changes frequently [27]. Some successful examples of combining superpixels and temporal information
for change detection can be found in the literature [28,29]. However, in this case, the parcel outlining
problem could be seen as a special case of change detection, in which the pattern (parcel edges) tends to
remain constant over time.

In this work, a new methodology based on consensus segmentation for outlining agricultural
plots is presented. The proposed methodology combines segmentation on different scales—carried out
using an SP method—with images registered on different dates to obtain a single segmentation of the
agricultural plots.

This paper is organized as follows. Section 2 describes the imagery used and the ground truth
built for the evaluation of the methodology proposed, which is explained in detail in Section 2.2.
The results obtained are included and discussed in Section 3. The conclusions derived from this work
are presented in Section 4.

2. Dataset and Methods

2.1. Dataset

The study area comprises approximately 160 km2 (16,000 ha) of fragmented agricultural
plots located in the Lolol Valley, O’Higgins Region, Chile (Figure 1). The region is characterized
by a temperate climate, with an agricultural season between September and April (the
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spring-summer season). The rainfalls are concentrated in the winter months (June–August).
The landscape is characterized by very diverse sizes, ranging from small-scale farms on small
plots—smallholdings—(<5 ha on average) to large legally constituted entities with medium and
large plots (>50 ha).

Figure 1. Study site, located in the Lolol Valley, O’Higgins Region, Chile.

Three multispectral Plèiades-1 satellite images are available for analyzing the study area.
The corresponding dates are 4 December 2017, 30 January 2018, and 25 February 2018. Table 1
summarizes the spectral and spatial characteristics of this imagery.

Table 1. Spectral and spatial characteristics of the multispectral image taken by the Plèiades-1 satellite.

Band Name Bandwidth (nm) Spatial Resolution (m)

blue 430–550

2green 490–610
red 600–720

near infrared 750–950

The multispectral (MS) bands were geometrically corrected as well as co-registered. Moreover,
the histograms of the images were adjusted to enhance the contrast. One scene containing mostly
agricultural plots was selected and clipped from the three Plèiades images (as can be seen in Figure 2).
The images under study correspond to a single agricultural season (2017–2018). As can be seen in
Figure 2a–c, during an agricultural season, the main changes at the intra-plot scale correspond to
the different phenological states of the crops. Furthermore, one ground truth map was obtained by
manually outlining the agricultural plots in the clipped image for the date 30 January 2018. This map
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is used as ground truth to evaluate the result of the methodology proposed. Figure 2d sets out the
polygons corresponding to the ground truth overlaid onto the color-composition image for the date 30
January 2018.

(a) 4 December 2017. (b) 30 January 2018.

(c) 25 February 2018. (d) Ground truth map.
Figure 2. Color compositions (3-2-1) of the Plèiades-1 imagery for three different dates and the ground
truth of the study area.

2.2. Methodology

The methodology proposed in this paper integrates segmentation at different scales, carried out
by an SP approach, and different dates to obtain a final single segmentation of the agricultural plots.
An overview of the proposed methodology is shown in Figure 3.

The first step of this methodology is the image segmentation at different scales. Segmentation
was carried out by means of the multispectral SLIC algorithm proposed in [30]. This method extends
the original SLIC proposed in [31] by considering not only an RGB color space but a multispectral
space. In this case, the clustering distance (Equation (1)) between two pixels pi and pj is composed of
two components, one spatial (ds) and the other spectral (dc).

Dw = dc +
c
g

ds (1)

ds =
√
(xi − xj)2 + (yi − yj)2 (2)

dc =

√√√√ B

∑
b=1

(pb
i − pb

j )
2 (3)

where x and y denote the position of the pixels. B represents the total number of bands in the
multispectral image. The constants g and c influence the size of the superpixel and its compactness,
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respectively. The higher the g value, the bigger the superpixel; on the other hand, the bigger the c
value, the more compact the superpixel.

Multi-spectral
Image

t0

Consensus 
Segmentation

Ultrametric Contour
Map

Delineated 
Agricultural 

Plot Map

Multi-spectral
Image

tn

SLIC Segmentation at 
Different Scale
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Consensus 
Segmentation

Edge Map t0

Edge Map tn

Lowpass
Filter

n

t=0

Eij(t)

n

SLIC Segmentation at 
Different Scale

Scale 1

Scale N

Figure 3. Overview of the methodology proposed.

Segments at different scales are generated by fixing the value of the compactness parameter
but varying the size of the SPs. Similar to [30], the number of SPs was selected to follow a dyadic
progression. In this work, the three original images were segmented into 10 different scales using
the SLIC algorithm. The parameters used in the segmentation are a compactness factor (c), which is
0.04 times the maximum spectral value contained in each of the image, and the number of SPs, which
ranges from 28 (scale1) to 217 (scale10), on average.

The integration of the l segmentation for each date was carried out using a consensus process,
which consists basically of a voting scheme that determines which pixels belong to the same region
and which are part of the edges of objects in the image.

Thus, for each pair of adjacent pixels i and j, an Eij value is obtained by Equations (4) and (5),
which takes into account whether the pixels belong to the same region. If the two adjacent pixels (the
ith and jth) do not belong to the same region, that means they are part of the edges between these
regions. Eij is defined as:

Eij =
l

∑
k=1

Ψk
ij (4)

Ψk
ij =

{
S(rk

a, rk
b), if i ∈ rk

a, j ∈ rk
b and rk

a �= rk
b;

0, otherwise.
(5)

where rk
a and rk

b represent the regions a and b, respectively, belonging to the kth segmentation,
and S(rk

a, rk
b) is an index of the similarity between the regions rk

a and rk
b. The larger the value of

Eij, the stronger the separation between these regions.
The similarity index, analogous to that proposed by [32], is defined as a combination between the

similarity indices of color and texture:

S(rk
a, rk

b) = Scolor(rk
a, rk

b) + Stexture(rk
a, rk

b) (6)

where Scolor(rk
a, rk

b) measures the color similarity. For each region rk
u, a color histogram is obtained using

25 bins for each spectral band. Then, from the color histograms, a feature vector Cu = {c1
u, . . . , cHc

u }
with a length of Hc = 25 × B is generated for region rk

u (u can be a and b), where B is the number of
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bands of the multispectral images. The feature vector is normalized using the norm L1 (also known
as the Manhattan norm). Finally, the color similarity between the two regions rk

a and rk
b is calculated

using the χ2 statistic [33]:

Scolor(rk
a, rk

b) =
Hc

∑
h=1

(ch
a − (ch

a + ch
b)/2)2

(ch
a + ch

b)/2
(7)

where Stexture(rk
a, rk

b) measures the texture similarity. Texture is calculated by means of steerable
filters [34] using Gaussian derivatives in eight directions and σ = 1 as a basis. In this case, for each
region rk

u, a texture histogram is obtained using 10 bins for each spectral band and each filter direction,
resulting in 80 features. Then, from the texture histograms, a feature vector Tu = {t1

u, . . . , tHt
u } with a

length Ht = 80 × B is generated for each region rk
u, where B is the number of bands in the image. The

similarity in texture between two regions rk
a and rk

b is calculated as follows:

Stexture(rk
a, rk

b) =
Ht

∑
h=1

(th
a − (th

a + th
b)/2)2

(th
a + th

b)/2
(8)

The result of the consensus process is an edge map for each date that is generated with the
information of the voting scheme, which is normalized to a range of 0–1. These maps combine different
information, such as (i) different scales of segmentation through the different sizes of SPs, (ii) the
dissimilarity in both texture and color between neighboring regions, and (iii) the probability of a pixel
belonging to an edge. The closer to 1 the value of a pixel, the greater the probability of it belonging to
an edge in the multiple segmentation scales, and, therefore, the contrast between regions separated by
such a pixel at different scales is greater.

The next step in the methodology is the integration of the edge maps for all dates into the labeled
boundaries (Iedge). In this work, this integration was carried out by averaging the n edge maps.

Iedge =
n

∑
t=1

Eij(t)
n

(9)

Low-pass filtering should be applied to reduce the noise present in Iedge. In this work, a 3 × 3
median filter was used.

Since this averaged edge map generally includes open polygons, an ultrametric contour map
(UCM) was calculated by means of the method proposed by [35]. A UCM is an edge map with the
remarkable property, i.e., it produces a set of closed curves when any threshold is set [36]. The larger
the threshold, the greater the contrast of the edges of the segments generated. The output of the UCM
produces the outline of the final plots. In the end, a UCM is a soft representation of a segmentation
that takes into account information from the edges of the image. The UCM has two inputs: the
labeled boundaries (Equation (9)) and an image with boundary weights (IBW), which is defined by the
Equation (10):

IBWedge = SPscale1
t0

∨ · · · ∨ SPscale1
tn

(10)

where SPscale1
t0

and SPscale1
tn

represent the SPs at scale 1 for the date t0 and tn, respectively; and ∨ is the
logical operator OR. A detailed description of the UCM algorithm can be found in [35].

3. Results and Discussion

In Figure 4, the SP segmentation obtained for the image registered on 30 January 2018 and
corresponding to scale4 and scale8 is overlaid onto the color-composition image. It is possible to see
the good adherence of the SPs to image objects in the three displayed cases. However, it can also
be observed that the smaller the SP size (Figure 4a), the better its adherence to the edges, as well
as the homogeneity of the pixels that compose it. While, in the segmentation scales with larger SPs
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(Figure 4a,b), the segments are less spectrally homogeneous, they still respect the borders between
regions with a high contrast (the thickest edges).

(a) Scale4. (b) Scale8.
Figure 4. Superpixels for different scales are overlaid onto the ground truth of the study area with red color.

From the 10 segmentation scales for each date generated and consensus, the edge maps shown in
Figure 5a–c were obtained.

As can be seen in Figure 5a–c, the edges of the plots tend to be more intense in all cases.
In accordance with the methodology described, the next step is the integration of the three edge
maps, one for each date, by calculating the average value. The average value is chosen as the basic
form of integration because it allows for representing the information (borders) contained in all dates,
thus reducing the effect of the appearance of borders in only one of the images, which is usually
unusual for images of the same growing season (as mentioned in Section 1). In addition, the edges
that appear as a result of phenological changes tend to decrease. The edge map obtained (Figure 5d)
provides useful information for identifying the edges belonging to the plots; however, as mentioned
above, it does not guarantee complete plots by applying a threshold, mainly due to edge-pixels not
having the same value. Then, in order to obtain the final outlined agricultural plot map for the area
considered, the UCM algorithm was applied to complete the edges.

Figure 6 shows the result of applying the UCM algorithm to the average of the three edge maps
(Figure 5d). As can be observed, even though all edges have been closed, there is a lot of noise
inside each plot. This noise is due to the fact that in the UCM, the totality of the probabilities of
occurrence of the edges is represented. This is why it is necessary to determine a threshold value of the
probability above which an edge is considered as such. Two indicators were used to determine this
value objectively. The first was an error metric of the calculated edges with respect to a ground truth
called boundary displacement error (BDE) [37,38]; the second metric considers the Shannon entropy,
which represents the information content present in a border image: in this case, it is the number of
edges present at the UCM. The BDE index measures the difference between two segmented images by
averaging the displacement of boundary pixels. Specifically, the distance (dE) between a boundary
pixel (ps) in the obtained boundary image (Bs) and the closest pixel (pgt) in the ground-truth boundary
image (Bgt) is used to define the error (disagreement) of each boundary pixel. The BDE index can be
mathematically defined as in Equation (11).

BDE =
1
2

⎛
⎝ 1
|Bs| ∑

pss∈Bs

∑
pgt∈Bgt

min{dE(pss, pgt)}+ 1
|Bgt| ∑

pgt∈Bgt

∑
ps∈Bs

min{dE(pgt, pss)}
⎞
⎠ (11)

where |B| represents the number of boundary pixels in image B, and dE is the Euclidean distance. The BDE
index ranges within [0, ∞), where the lower its value, the better. The BDE index is plotted against the
edge entropy in Figure 5d for each threshold value. As shown in Figure 7, the smallest BDE metric
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error occurs for threshold values that are close to 1, while the worst values occur for values close to 0.
Conversely, entropy behavior presents low values of information content for high threshold values and
high information content for high threshold values. For the purpose of determining a specific threshold
value, a compromise was established between the BDE value and the entropy value. As can be observed,
a threshold value of 0.5 provides the balance between the error and the amount of edge information.

(a) 4 December 2017. (b) 30 January 2018.

(c) 25 February 2018. (d) Edge map, Iedge

Figure 5. Edge maps for three dates and the edge map, Iedge, obtained by averaging the three dates’
edge maps.

Figure 6. Result of applying the ultrametric contour map (UCM) algorithm to the average of the three
edge-maps.
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Trade-off beetwen
 BDE and Entropy

Figure 7. Representation of error versus the edge entropy for different threshold values.

Figure 8 shows the final outlined plot maps obtained for two different threshold values overlaid
onto the ground truth map.

(a) Threshold value of 0.45. (b) Threshold value of 0.55.
Figure 8. Final outlined plot maps obtained for two different threshold values.

As can be seen, most of the edges agree between the two maps (Figure 8a,b), particularly in
homogeneous areas with a high contrast between adjacent regions; however, discrepancies in plots
with different tilled patterns can be also distinguished where the appearance of inner edges is present,
as in plots within which anomalies are perceived due to poor agricultural practices, land heterogeneity,
or crop diseases. As an example of the above, some areas where these changes occur are shown
enclosed in circles. Consequently, only the edges stable over time—those that appear in the two
images—remain in the final outlined plot map.

4. Conclusions

In this work, a new methodology based on consensus segmentation for outlining agricultural
plots is presented. The methodology proposed combines segmentation at different scales—carried out
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using an SP method—and images registered at different dates to obtain a single segmentation of the
agricultural plots. This methodology allows the outlining of agricultural plots of different sizes, shapes,
colors, and textures. It is based on a consensus of segmentation (SP) at different scales and for different
dates to determine the boundaries of the agricultural plots. The segmentation at different scales allows
different-sized plots to be outlined. The use of SP for segmentation, which shows a good adherence to
the edges for all scales, allows for differently shaped plots to be outlined. By highlighting the stable
edges over time, the consensus of the segmentation reduces the intra-plot variability caused by the
phenological stages present in a single growing season. The methodology also allows a threshold
value to be determined in an objective way, which establishes a balance between the error and the
amount of edge information. In particular, in this study, the threshold value determined for balance
was 0.5. For lower threshold values, edges that are less stable over time appear on the outlined plot
map, while for threshold values of up 0.5, only the more stable edges over time appear on the map.
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Abstract: Automatic detection of buildings from very high resolution (VHR) satellite images is a
current research hotspot in remote sensing and computer vision. However, many irrelevant objects
with similar spectral characteristics to buildings will cause a large amount of interference to the
detection of buildings, thus making the accurate detection of buildings still a challenging task,
especially for images captured in complex environments. Therefore, it is crucial to develop a method
that can effectively eliminate these interferences and accurately detect buildings from complex image
scenes. To this end, a new building detection method based on the morphological building index
(MBI) is proposed in this study. First, the local feature points are detected from the VHR remote
sensing imagery and they are optimized by the saliency index proposed in this study. Second, a voting
matrix is calculated based on these optimized local feature points to extract built-up areas. Finally,
buildings are detected from the extracted built-up areas using the MBI algorithm. Experiments
confirm that our proposed method can effectively and accurately detect buildings in VHR remote
sensing images captured in complex environments.

Keywords: building detection; built-up areas extraction; local feature points; saliency index;
morphological building index

1. Introduction

Buildings are the places where human beings live, work, and recreate [1]. The distribution
of buildings is useful in many applications such as disaster assessment, urban planning,
and environmental monitoring [2,3], and the precise location of buildings can also help municipalities
in their efforts to better assist and protect their citizens [4]. Therefore, it is very important to accurately
detect buildings. With the development of sensor technology, High spatial Resolution/Very High
spatial Resolution (VHR) remote sensing images with multispectral channels can be acquired. In
the context of this paper, images with a spatial resolution lower than one meter in the panchromatic
channel are referred to as VHR imagery, and images with a spatial resolution greater than one
meter and lower than ten meters in the panchromatic channel are referred to as High Resolution
imagery [5]. Since these High Resolution/VHR remote sensing images contain a large amount of
spectral, structure, and texture information, they provide more potential for accurate building detection.
However, manual processing of these images to extract buildings requires continuous hard work and
attention from humans, and it is impractical when applied to regional or global scales. Therefore,

Remote Sens. 2018, 10, 1287; doi:10.3390/rs10081287 www.mdpi.com/journal/remotesensing207



Remote Sens. 2018, 10, 1287

it is necessary to develop methods that can automatically or semi-automatically detect buildings
from High Resolution/VHR remote sensing images. In the past decades, a large number of studies
in this area have been conducted. Depending on whether or not the auxiliary information is used,
we can divide the methods developed into two categories. The first category uses monocular remote
sensing images to detect buildings, and the second category combines remote sensing images with
auxiliary data such as height information to detect buildings. Several review articles can be found
in [6–10]. Among them, Unsalan and Boyer [7] extended the work in [6] by comparing and analyzing
the performance of different methods proposed until late 2003. Baltsavias [8] provided a review of
different knowledge-based object extraction methods. Haala and Kada [9] discussed previous works
on building reconstruction from a method and data perspective. More recently, Cheng and Han [10]
systematically analyzed the existing methods devoted to object detection from optical remote sensing
images. Since this study is dedicated to detecting buildings from a single VHR remote sensing imagery,
our discussion of previous studies will focus on this area.

The development of low-orbit earth imaging technology has made available VHR remote sensing
images with multispectral bands. In order to make full use of this spectral and spatial information,
a large number of studies have used classification methods to detect buildings. For example,
Lee et al. [11] combined supervised classification, iterative self-organizing data analysis technique
algorithm (ISODATA) and Hough transformation to automatically detect buildings from IKONOS
images. In their study, the classification process was designed to obtain the approximation locations and
shapes of candidate building objects, and ISODATA segmentation followed by Hough transformation
were performed to accurately extract building boundaries. Later, Inglada [12] used a large number
of geometric features to characterize the man-made objects in high resolution remote sensing images
and then combined them with support vector machine classification to extract buildings. In a different
study, Senaras et al. [13] proposed a decision fusion method based on a two-layer hierarchical ensemble
learning architecture to detect buildings. This method first extracted fundamental features such as color,
texture, and shape features from the input image to train individual base-layer classifiers, and then
fused the outputs of multiple base-layer classifiers by a meta-layer classifier to detect buildings.
More recently, a new method based on a modified patch-based Convolutional Neural Network (CNN)
architecture has been proposed for automatic building extraction [14]. This method did not require
any pre-processing operations and it replaced the fully connected layers of the CNN model with the
global average pooling. In summary, although these classification methods are effective for building
extraction, it should be noted that these methods require a large volume of training samples, which is
quite laborious and time-consuming.

Graph theory, as an important branch of mathematics, has also been used for building detection.
For example, Unsalan and Boyer [7] developed a system to extract buildings and streets from satellite
images using graph theory. In their work, four linear structuring elements were used to construct the
binary balloons and then these balloons were represented in a graph framework to detect buildings
and streets. However, due to the assumptions involved in the detection process, this method is only
applicable to the type of buildings in North America. Later, Sirmacek and Unsalan [15] combined
scale invariant feature transform (SIFT) with graph theory to extract buildings, where the vertices
of the graph were represented by the SIFT key points. They validated this method on 28 IKONOS
images and obtained promising results with a building detection accuracy of 88.4%. However, it
should be noted that this method can only detect buildings that correspond to preset templates and are
spatially isolated. In a different work, Ok et al. [16] developed a novel approach for automatic building
detection based on fuzzy logic and the GrabCut algorithm. In their work, the directional spatial
relationship between buildings and their shadows was first modeled to generate fuzzy landscapes,
and then the buildings were detected based on the fuzzy landscapes and shadow evidence using
the GrabCut partitioning algorithm. Nevertheless, the performance of this method is limited by the
accuracy of shadow extraction. Later, Ok [17] extended their previous work by introducing a new

208



Remote Sens. 2018, 10, 1287

shadow detection method and a two-level graph partitioning framework to detect buildings more
accurately. However, buildings whose shadows are not visible cannot be detected by this method.

On the other hand, some studies have also used active contour models to detect buildings.
For example, Peng and Liu [18] proposed a new building detection method using a modified snake
model combined with radiometric features and contextual information. Nevertheless, this method
cannot effectively extract buildings in complex image scenes. In a different work, Ahmadi et al. [19]
proposed a new active contour model based on level set formulation to extract building boundaries.
An experiment conducted in an aerial image showed that this model can achieve a completeness ratio
of 80%. However, it should be noted that this model fails to extract buildings with similar radiometric
values to the background. More recently, Liasis and Stavrou [20] used the HSV color components
of the input image to modify the traditional active contour segmentation model to detect buildings.
However, some non-building objects such as roads and bridges are also incorrectly labeled as buildings
by this method when applied to high-density urban environments.

In recent years, a number of feature indices that can predict the presence of buildings have also
been proposed. For example, Pesaresi et al. [21] developed a novel texture-derived built-up presence
index (PanTex) for automatic building detection based on fuzzy composition of anisotropic textural
co-occurrence measures. The construction of the PanTex was based on the fact that there was a high
local contrast between the buildings and their surrounding shadows. Therefore, they used the contrast
textural measures derived from the gray-level co-occurrence matrix to calculate the PanTex. Later,
Lhomme et al. [22] proposed a semi-automatic building detection method using a new feature index
called “Discrimination by Ratio of Variance” (DRV). The DRV was defined based on the gray-level
variations of the building’s body and its periphery. More recently, Huang and Zhang [23] proposed
the morphological building index (MBI) to automatically detect buildings from GeoEye-1 images.
The fundamental principle of the MBI was to represent the intrinsic spectral-structural properties of
buildings (e.g., brightness, contrast, and size) using a set of morphological operations (e.g., top-hat
by reconstruction, directionality, and granulometry). Furthermore, some improved methods for the
original MBI, aiming at reducing the commission and omission errors in urban areas, have also
been proposed [24,25]. The original MBI and its improved methods are effective for the detection
of buildings in urban areas, but they fail to detect buildings in non-urban areas (e.g., mountainous,
agricultural, and rural areas) where many irrelevant objects such as farmland, bright barren land,
and impervious roads will cause large numbers of interferences to the detection of buildings. To solve
this problem, a postprocessing framework for the MBI algorithm was proposed in [26] to extend
the detection of buildings to non-urban areas by additionally considering the geometrical, spectral,
and contextual information of the input image. However, it should be noted that this method is limited
by the performance of these additional information extractions.

In this study, a new building detection method based on the MBI algorithm is proposed to detect
buildings from VHR remote sensing images captured in complex environments. The proposed method
can effectively solve the problem that many irrelevant objects with similar spectral characteristics
to buildings will cause large numbers of interferences to the detection of buildings. Specifically,
the proposed method first extracts built-up areas from the VHR remote sensing imagery, and then
detects buildings from the extracted built-up areas. For the extraction of built-up areas (first step),
the spatial voting method [27] based on the local feature points is used in this study. The term
“local feature point” is defined as a small point of interest that is distinct from the background [28].
Among the literature, various local feature point detectors have been used to extract built-up areas,
such as the Gabor-based detector [27], the SIFT-based detector [15], the Harris-based detectors [29,30],
and the FAST-based detector [31]. However, it should be mentioned that these local feature point
detectors have a common problem when used for built-up areas extraction. Since they are mainly
designed to detect local feature points over areas with complex textures or salient edges, they not only
detect local feature points in built-up areas, but also detect local feature points in non-built-up areas.
However, these local feature points in non-built-up areas (referred to as false local feature points in this
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study) will weaken the extraction accuracy of built-up areas, so it is necessary to design a method that
can effectively eliminate these false local feature points. To this end, a saliency index is proposed in
this study, which is constructed based on the density and the distribution evenness of the local feature
points in a local circle window. In addition, we adopt the idea of voting based on superpixels in [32] to
improve the original spatial voting method [27]. Through these processes, we can extract the built-up
areas more accurately. On the other hand, for the detection of buildings (second step), since the original
MBI algorithm is susceptible to large numbers of interferences from irrelevant objects (e.g., bright
barren land, farmland, and impervious roads) in non-built-up areas, it has poor performance when
detecting buildings in non-urban areas, such as mountainous, agricultural, and rural areas. To solve
this problem, we propose applying the MBI algorithm in the extracted built-up areas (first step) to
detect buildings, which can directly eliminate large numbers of interferences caused by irrelevant
objects in non-built-up areas. In addition, to further eliminate some errors in built-up areas, we also
build a rule based on the shadow, spectral, and geometric information for the postprocessing of the
initial building detection results. Through these processes, our proposed method can effectively detect
buildings in images captured in complex environments.

The remainder of this paper is arranged as follows: Section 2 provides a detailed description of
the proposed method; Section 3 analyzes and compares the experimental results; Section 4 presents
the discussion; and Section 5 provides the conclusion.

2. Proposed Method

The proposed method is mainly composed of three key steps. First, the local feature points are
detected using the Gabor wavelet transform results of the input VHR remote sensing imagery, and then
these local feature points are optimized using a proposed saliency index. Next, a spatial voting matrix
is computed based on these optimized local feature points to extract built-up areas. Finally, buildings
are detected from the built-up areas using the MBI algorithm, and then the initial building detection
results are further optimized by the built rule. The flow chart of the proposed method is shown in
Figure 1.

 

Figure 1. The flow chart of the proposed method.

2.1. Local Feature Points Detection and Optimization

2.1.1. Local Feature Points Detection

Built-up areas are mainly composed of man-made objects such as buildings and roads. Compared
with natural objects, these man-made objects usually produce a large number of local feature points.
Since the density of local feature points in built-up areas is higher than that of non-built-up areas,
many studies have used the density map of local feature points to identify built-up areas [27,32,33].
In addition, some studies have shown that 2D Gabor wavelets [34] are able to detect salient cues such as
local feature points from images. Therefore, we use the Gabor wavelets to extract local feature points.

In order to obtain a complete representation of the image, the input VHR remote sensing image is
first decomposed by Gabor wavelets at multi-scales along multi-directions, and then the magnitudes
of the decomposition of all scales in each direction are summed up to obtain the Gabor energy map.
Given that (x, y) represents the coordinate of a pixel in the image, u represents the scale, v represents
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the direction, and U and V represent the number of scales and directions, respectively, the Gabor
energy map can be defined as

GEv(x, y) =
U

∑
u=1

Du,v(x, y) (1)

where Du,v(x, y) denotes the magnitude of the decomposition at scale u and direction v, and GEv(x, y)
denotes the Gabor energy map at direction v. After the Gabor energy maps in all directions are
obtained, the local feature point detection method proposed by Sirmacek and Unsalan [27] is used to
detect local feature points from the Gabor energy maps. More specifically, this method first searches
for the local maxima within the eight-connected neighborhoods of all pixels in the Gabor energy map,
and these local maxima are taken as candidates for local feature points. Then, these candidate
points are optimized according to their magnitude of GEv(x, y), and only the candidate whose
magnitude is greater than a threshold, which is automatically obtained by performing Otsu’s method
on GEv(x, y) [35], will be retained as the local feature point of direction v. Finally, these procedures
are applied to the Gabor energy maps in all V directions to obtain a local feature point set, noted as
Ωd. Figure 2a shows an example of using this method to detect local feature points. As shown in
Figure 2a, this method not only detects a large number of local feature points in the built-up areas,
but also detects many false local feature points in the non-built-up areas. Since these false local feature
points will weaken the extraction accuracy of built-up areas, it is necessary to develop a method that
can effectively eliminate them.

 

Figure 2. Local feature points detection and optimization. (a) Originally detected local feature points;
(b) Optimized results by the proposed saliency index.

2.1.2. Local Feature Points Optimization

In order to eliminate these false local feature points located in non-built-up areas and obtain a
reliable local feature point set, a saliency index is proposed in this study. The proposal of the saliency
index is inspired by the texture saliency index proposed in [36]. These two indices are similar, but their
implementation and purpose are completely different. The construction of our proposed saliency index
is based on the fact that the local feature points are more densely and evenly distributed in built-up
areas than in non-built-up areas. Therefore, we use the density and the distribution evenness of the
local feature points in a local circle window to calculate the saliency index. To more clearly describe
the derivation process of the saliency index, we use the enlarged circle in Figure 2a as an example for
illustration. Given that Ni represents the number of the local feature points in the ith quadrant of the
local circle window, the spatial distribution evenness parameter Pe can be defined as

Pe = min(N1, N2, N3, N4)/mean(N1, N2, N3, N4) (2)

211



Remote Sens. 2018, 10, 1287

where min(·) represents the minimum operation, and mean(·) represents the averaging operation.
If there is no local feature point in any of the four quadrants, then min(N1, N2, N3, N4) is equal to 0,
which in turn causes Pe to be equal to 0. In addition, given that r represents the radius of the local
circle window, Np represents the number of the local feature points in the local circle window, and Nw

represents the number of pixels in the local circle window, the point density parameter Pd can be
defined as

Pd = Np/Nw (3)

where Np = N1 + N2 + N3 + N4, and Nw = π ∗ r2. This equation indicates that the more local feature
points in the local circle window, the larger the value of Pd. The suggested value of r is twice the
average size of buildings in the image. For example, the average size of buildings in Figure 2a is about
13 pixels, so the recommended value of r is 26 pixels. The sensitivity of built-up areas extraction to the
parameter r setting will be discussed in Section 4.1.

For each local feature point in Ωd, its saliency index SI can be calculated by the product of Pe

and Pd
SI = Pd × Pe (4)

where the combination of Pd and Pe ensures that only those local feature points that are densely
and evenly distributed in the local circle window will have large SI values. Since the SI value of
the local feature points in built-up areas is higher than that in non-built-up areas, we use the Otsu’
method [35] to automatically calculate the threshold to segment these SI values to optimize the initial
local feature point set Ωd, and those local feature points whose SI values are less than the threshold
will be eliminated. Figure 2b shows the result of the optimization of the local feature points using our
proposed saliency index. As shown in Figure 2b, those false local feature points located in non-built-up
areas are effectively eliminated by our method. More specifically, from the enlarged circle in Figure 2a,
we can see that the local feature points located in non-built-up areas are unevenly distributed in the
local circle window. The number of the detected local feature points in the first and fourth quadrants
of the local circle window is six, and the number of the detected local feature points in the second and
third quadrants is two, which causes the calculated Pe value to be relatively low, resulting in a relatively
low SI value. Therefore, we can effectively eliminate these local feature points with low SI values
through threshold processing, as shown in the enlarged circle of Figure 2b. As we obtain the optimized
local feature point set, the next step is to use these local feature points to extract built-up areas.

2.2. Built-Up Areas Extraction

Based on the assumption that the probability of existence of built-up areas around the local feature
points is high, Sirmacek and Unsalan [27] proposed a spatial voting approach to calculate the voting
matrix to measure the probability that each pixel belongs to a built-up area. However, the calculation
of the voting matrix is time-consuming. To solve this problem, we adopt the idea of voting based on
superpixels in [32] to improve the original voting method, which is achieved by replacing the primary
computational unit from pixels to a homogeneous object. In addition, since the cardinality of the
optimized local feature point set Ωd is so large that using these local feature points to calculate the
voting matrix is still time-consuming, we also introduce a local feature point sparse representation
method to reduce the cardinality of Ωd to further speed up the calculation process. The main steps for
extracting built-up areas using the improved method are as follows.

(1) Superpixel segmentation: The simple linear iterative clustering (SLIC) method is used here
to partition the input VHR image into superpixels [37]. Given the number parameter q and
the compactness parameter c, the input image will be partitioned into q homogeneous objects.
In order to automatically handle different images, we set c = 20 and use the width w and height
h of the input image to calculate the parameter q with the expression q =

√
10 × w × h.

(2) Local feature point sparse representation: This method first searches for the connected
components Φ in Ωd, and then uses the centroid of the connected component to represent
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all the local feature points it contains. In this way, the optimized local feature point set Ωd
can be represented by a sparse local feature point set, noted as Ωs = {(Xi, Yi)|i = 1, 2, . . . , Q},
where (Xi, Yi) denotes the centroid coordinate of the ith connected component Φi, and Q denotes
the number of connected components. The centroid coordinate of Φi is defined as

Xi =
1

Wi

Wi

∑
p=1

xp Yi =
1

Wi

Wi

∑
p=1

yp (5)

where
(
xp, yp

)
represents the coordinate of the pth local feature point in Φi, and Wi represents

the number of the local feature points belonging to Φi.
(3) Calculation of the voting matrix: In order to improve the computational efficiency and extraction

accuracy, our improved spatial voting method uses the q homogeneous objects
{

hj
∣∣j = 1, 2, . . . , q

}
as the basic calculation units and combines them with the sparse local feature point set
Ωs = {(Xi, Yi)} to calculate the voting matrix, which is defined as

VM(j) =
Q

∑
i=1

1
2πσ2

i
exp

(
−
(
Xj − Xi

)2
+
(
Yj − Yi

)2

2σ2
i

)
(6)

where VM(j) represents the voting value of the homogeneous object hj, σi represents the tolerance
parameter of the ith connected component Φi, which is calculated by the expression σi = 20 ×Wi,(

Xj, Yj) represents the centroid coordinate of hj, and (Xi, Yi) represents the centroid coordinate
of Φi. Figure 3a shows the voting matrix calculated by the improved spatial voting method.
As shown in Figure 3a, the calculated voting matrix can clearly indicate the location of the built-up
areas. The high voting value (marked in red) in the voting matrix corresponds to the built-up
area, while the low voting value (marked in blue) corresponds to the non-built-up area.

(4) Built-up areas extraction: Since the voting value of the built-up area is higher than that of the
non-built-up area, we use the Otsu’ method [35] to segment the voting matrix to extract built-up
areas. Figure 3b shows the built-up areas (marked with red-colored area) extracted using the
voting matrix shown in Figure 3a. As shown in Figure 3b, the extracted built-up areas match
very well with the reference data (marked with cyan-colored polygons), which demonstrates the
effectiveness of our improved spatial voting method.

 

Figure 3. Improved spatial voting results. (a) The calculated voting matrix; (b) The extracted
built-up areas (marked with red-colored area) and their corresponding reference data (marked with
cyan-colored polygons).
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2.3. Building Detection via the MBI Algorithm

The original MBI algorithm [23] is specifically designed for the detection of buildings in urban
areas where the density of buildings is high. It fails to detect buildings in rural, agricultural,
and mountainous regions. In addition, many irrelevant objects (e.g., open areas, bright barren land,
and impervious roads) that have similar spectral characteristics to buildings will generate large
numbers of interferences when detecting buildings, and these interferences are difficult to eliminate
by conventional methods. In order to solve these problems, we first use the aforementioned method
described in Section 2.2 to extract built-up areas from the input image, and then apply the MBI
algorithm to detect buildings from the extracted built-up areas.

The calculation of the MBI is briefly described as follows. First, the brightness image, defined
by the maximum of all the visible bands, is used as the basic input for building detection. Next,
the white top-hat (WTH) transformation of the brightness image is performed in a reconstruction
manner to highlight the high local contrast characteristics of buildings, and then the differential
morphological profiles (DMP) are constructed based on the multi-scale and multi-directional WTH
transformation to represent the complex spatial patterns of buildings in different scales and directions.
Since buildings generally exhibit high local contrast and isotropic characteristics, they have larger DMP
values than most other objects such as roads in most directions and scales. Therefore, the multi-scale
and multi-directional DMP are averaged to calculate the MBI, which is defined as

MBI =
∑d,s DMP(d, s)

Nd × Ns
(7)

where d and s represent the direction and scale of the WTH transformation, and Nd and Ns represent
the total number of directions and scales, respectively. Since a large MBI value means that there is a
high possibility of the presence of a building structure, we use a preset threshold t to binarize the MBI
feature image to obtain buildings, where the locations with MBI values greater than t will be extracted
as buildings. The selection of the value of t is based on [23], and a larger t value means that more
building candidates will be removed.

Detecting buildings from the extracted built-up areas can effectively eliminate most of the
interference coming from other irrelevant objects. However, in the initial building detection results,
there are still some small errors caused by open areas, vegetation, roads, and small noises. Therefore,
to further eliminate these errors, we build a rule based on the shadow, spectral, and geometric
information. Given that β represents the connected component in the binarization map, the rule is
defined as

IF IBR(β) ∪ dilate(S(β)) = ∅ OR NDVI(β) > tNDVI OR LWR(β) > tLWR OR Count(β) < tCount,
THEN β should be removed,

where IBR(·) denotes the initial building results, S(·) denotes the shadow feature map produced
by the shadow index proposed in [38], dilate(S(·)) represents the morphological dilation of S by a
linear structural element in the opposite direction to the solar illumination angle, NDVI(·), LWR(·),
and Count(·) denote the normalized difference vegetation index, the length–width ratio, and the
number of pixels of the connected component, respectively, and tNDVI , tLWR, and tCount represent their
corresponding thresholds, respectively. The selection of the values of these thresholds will be discussed
in Section 3.2. Since buildings in high-resolution remote sensing images usually cast shadows around
them, the rule uses the spatial relationship between buildings and shadows to eliminate false alarms
caused by the connected components that are not adjacent to shadows, such as open areas and parking
lots. If there is no overlap between IBR(β) and dilate(S(β)), then β will be removed. Furthermore,
the rule uses the normalized difference vegetation index to eliminate false alarms caused by the bright
vegetation, and it also uses the length–width ratio and the area to eliminate false alarms caused by
the elongated and narrow roads and small noises. In this way, our proposed method can not only
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eliminate the interferences caused by irrelevant objects in non-built-up areas but also remove the false
alarms caused by open areas, vegetation, roads, and small noises in built-up areas.

Figure 4a shows the original VHR remote sensing imagery, and Figure 4b shows the building
map (marked with yellow-colored areas) detected by our proposed method. As shown in Figure 4b,
our method can effectively detect buildings in the image, and it can also eliminate a large amount of
interference caused by irrelevant objects that are easily confused with buildings. More specifically,
from the enlarged square area shown in Figure 4b, we can see that the detected buildings match very
well with the true distribution of the buildings displayed in the enlarged square area in Figure 4a.

 

Figure 4. Building detection results. (a) Original very high resolution (VHR) remote sensing imagery;
(b) Building map (marked with yellow-colored areas) detected by our proposed method.

3. Experiments

3.1. Data Set Description

The GaoFen2 satellite is a Chinese high-resolution optical satellite equipped with two
panchromatic/multispectral (PAN/MSS) cameras. It was launched on 19 August 2014. The main
characteristics of the GaoFen2 satellite are shown in Table 1. In order to evaluate the accuracy of
our proposed method, we used five representative image patches selected from three pansharpened
GaoFen2 satellite images to perform experiments. The three pansharpened GaoFen2 satellite images
are obtained by merging the high spatial resolution panchromatic images with the high spectral
resolution multispectral images using the NNDiffuse algorithm [39], and detailed information about
them is given in Table 2. As shown in Table 2, the image patches R1 and R4 are selected from the
GaoFen2 satellite image with the Scene ID of 3609415; the image patch R2 is selected from the GaoFen2
satellite image with the Scene ID of 3131139, and the image patches R3 and R5 are selected from the
GaoFen2 satellite image with the Scene ID of 2097076. All five image patches R1–R5 include four
spectral bands (red, green, blue, and near-infrared) with a spatial resolution of 1 m and a size of
1000 × 1000 pixels, and they cover different complex image scenes such as mountainous, agricultural,
and rural areas. These image patches are shown in Figure 5. As can be seen from Figure 5, these image
patches include a variety of land-cover types such as buildings, impervious roads, bright barren
land, mudflats, farmland, vegetation, and water. Among them, impervious roads, bright barren land,
and mudflats have similar spectral characteristics to buildings, so they usually cause large numbers of
interferences to the detection of buildings. Therefore, using these images for experiments can fully
verify the performance of our proposed method. Table 3 shows the number of samples selected for
accuracy assessment and the major error sources in each image patch. All the samples were manually
labeled by visual interpretation.
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Table 1. The main characteristics of the GaoFen2 satellite.

Sensor Specification Panchromatic Multispectral

Spatial Resolution 1 m 4 m

Swath Width 45 km 45 km

Repetition Cycle 5 days 5 days

Spectral Range 450~900 nm

Blue: 450~520 nm
Green: 520~590 nm
Red: 630~690 nm

Near-infrared: 770~890 nm

Table 2. The GaoFen2 satellite images used for the detection of buildings in this study.

Scene ID Acquisition Date and Time (UTC) Image Locations Image Patches

3609415 30 April 2017, 11:27:58 Tai’an City, China R1, R4
3131139 18 December 2016, 11:31:01 Zhongshan City, China R2
2097076 14 February 2016, 12:11:49 Xichang City, China R3, R5

Table 3. Number of samples and major error sources for R1–R5.

Image
Number of Samples

Major Error Sources
Building Background 1

R1 11218 11814 bright barren land, impervious roads
R2 12989 14816 impervious roads, open areas, farmland
R3 10334 12115 bright barren land, impervious roads, farmland
R4 11028 12395 bright barren land, impervious roads, farmland
R5 7120 7986 bright barren land, farmland, mudflats

1 Background refers to the area that is not a building.

   
(a) (b) (c) 

   
(d) (e)  

Figure 5. Five selected test image patches. (a) R1; (b) R2; (c) R3; (d) R4; (e) R5.

3.2. Accuracy Assessment Metrics and Parameter Settings

3.2.1. Accuracy Assessment Metrics

In order to quantitatively evaluate the building detection results, four widely accepted evaluation
measures [40] were used in this paper, which are commission error (CE), omission error (OE), overall
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accuracy (OA), and Kappa coefficient. The CE represents pixels that belong to the background but
are labeled as buildings, and the OE represents pixels that belong to a building but are labeled as
the background. The OA and the Kappa coefficient are comprehensive indicators for assessing the
classification of buildings and backgrounds, which are calculated by the confusion matrix. In addition,
since the accurate extraction of built-up areas is a prerequisite for the good performance of our
method, we also quantitatively assessed the built-up areas extraction accuracy using the following
three metrics: Precision (P), Recall (R), and F-measure (F). Among them, P and R metrics correspond
to the correctness and completeness of the built-up areas extraction results, respectively, and F is a
comprehensive measure of P and R. The three metrics are defined as

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F = 2 × P ∗ R
P + R

(10)

where TP denotes the number of pixels labeled as built-up area by both reference data and our method,
FP denotes the number of pixels incorrectly labeled as built-up area by our method while they are
truly labeled as non-built-up area by reference data, and FN denotes the number of pixels incorrectly
labeled as non-built-up area by our method while they are truly labeled as built-up area by reference
data. Meanwhile, a higher F value indicates better performance.

3.2.2. Parameter Settings

Our proposed method mainly involves the following parameters: the parameters U, V, and r for
the local feature points detection and optimization, the parameters Nd, Ns, and t for the calculation of
the MBI, and the parameters tNDVI , tCount, and tLWR for the postprocessing of the building detection
results. A detailed description of the selection of these parameters is as follows.

(1) Local feature points detection and optimization parameters: A large number of experiments show
that when the scale number U and the direction number V of the Gabor wavelets are set to 5 and
4, respectively, most of the local feature points in the image can be detected. Therefore, in this
study, the values of U and V are fixed as 5 and 4, respectively. Meanwhile, for the radius r of the
local circle window, the suggested value is twice the average size of buildings in the image, so it
should be tuned according to different test images.

(2) MBI parameters: As analyzed in [23], the four-directional MBI is sufficient to estimate the
presence of buildings, and the accuracy of building extraction does not improve significantly as
Nd increases. Therefore, in this study, the value of Nd is fixed as 4. For the scale parameter
Ns, the suggested value of it is calculated by the expression Ns = ((Lmax − Lmin)/5) + 1,
where Lmax and Lmin represent the maximum and minimum sizes of buildings in the image,
respectively. Therefore, it needs to be changed according to the test image. For the threshold
t, its recommended range is [1,6], and a large t value will result in a large omission error and a
small commission error. This parameter should also be adjusted for different test images.

(3) Postprocessing parameters: For the threshold tNDVI , according to the author’s experience,
its appropriate range is between 0.1 and 0.3, and we can adjust it within this range according to
the test images to obtain the best performance. In this study, the parameter tNDVI is fixed as 0.2.
For the thresholds tCount and tLWR, since they are relevant to the geometric characteristics of the
building, we should also adjust them according to different test images. The appropriate value
of tCount should be less than the area of the smallest building in the image to avoid erroneous
removal of the building. In this study, the value of tCount is fixed as 20. In addition, after many
trials, we determined that the appropriate value of tLWR should be greater than 3. In this study,
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the values of tLWR for R1–R5 are 5, 4, 3.5, 4, and 3.5, respectively. Since the postprocessing of the
building detection results is to further eliminate some small errors, it does not play a pivotal role
in our method. Therefore, these postprocessing parameters (tNDVI , tCount, and tLWR) are also not
critical to our method.

To sum up, the critical parameters of our method are U, V, r, Nd, Ns, and t. Among them,
the values of U, V, and Nd are fixed to 5, 4, and 4, respectively, and these values can be used for
most images. The parameters that need to be tuned according to different test images are r, Ns, and t,
and their values for the five test images R1–R5 are given in Table 4. The sensitivity of these three
parameters will be discussed in Section 4.1.

Table 4. Critical parameter settings of our method.

Image r Ns t

R1 26 7 4
R2 26 7 5
R3 24 7 5
R4 26 7 4
R5 24 7 5

3.3. Results and Analysis

3.3.1. Built-Up Areas Extraction Results and Analysis

In order to extract built-up areas, images R1–R5 are first decomposed by Gabor wavelets at
multi-scales along multi-directions, and then these decomposition results are further processed to
obtain local feature points. Next, the proposed saliency index is used to optimize these local feature
points. Finally, a voting matrix is calculated based on these optimized local feature points to extract
built-up areas. The originally detected local feature points of R1–R5 are shown in the third column of
Figure 6, and the results of optimizing these local feature points using the proposed saliency index
are shown in the first column of Figure 6. To more clearly display the extraction results of the local
feature points, the original VHR remote sensing images are converted into grayscale images for display.
From the third column of Figure 6, we can see that a large number of local feature points (marked
with red-colored points) are detected over areas with complex textures or salient edges. Among them,
many are located in non-built-up areas, which will impair the extraction accuracy of the built-up areas.
In contrast, in their optimized results (shown in the first column of Figure 6), there are only a few local
feature points in non-built-up areas, which indicates that our proposed saliency index can effectively
eliminate the false local feature points located in non-built-up areas and obtain a reliable local feature
point set.

The results of the built-up areas extracted using the optimized local feature points are shown
in the second column of Figure 6. In addition, to further verify the effectiveness of our proposed
saliency index, we also used the originally detected local feature points that were not optimized by
the saliency index to extract built-up areas for comparison. The built-up areas extracted using the
originally detected local feature points are shown in the fourth column of Figure 6. In the fourth
column of Figure 6 we can see that the boundaries of the extracted built-up areas (marked with
red-colored area) are very inaccurate, and they incorrectly identify many non-built-up areas as built-up
areas. By contrast, as shown in the second column of Figure 6, the built-up areas extracted using the
optimized local feature points show very good performance in all test images, which match very well
with the reference data (marked with cyan-colored polygons).

The accuracy evaluation results of the built-up areas extracted under these two conditions are
provided in Table 5. As shown in Table 5, for the results of the built-up areas extracted using the
saliency index, their average precision value is 0.841, their average recall value is 0.936, and their
average F-measure value is 0.885, which suggest that our method can effectively extract built-up areas
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from the image with high correctness and completeness. On the other hand, from Table 5 we can
find that the accuracy of the results extracted using the saliency index is better than the accuracy
of the results extracted without using the saliency index. Specifically, for each image, the precision
value and the F-measure value of the result extracted using the saliency index are higher than that
of the result extracted without using the saliency index. For example, when the saliency index is
used, the precision value and the F-measure value of R1 are 0.925 and 0.913, respectively, and when
the saliency index is not used, the precision value and the F-measure value of R1 are 0.605 and
0.751, respectively. Furthermore, in terms of the average value, the average precision value and the
average F-measure value of the results extracted using the saliency index increase by 0.33 and 0.221,
respectively, as compared with the results extracted without using the saliency index. The significant
improvements of precision and F-measure metrics indicate that our proposed saliency index is very
effective in improving the performance of built-up areas extraction. However, it should be noted that
the recall value of the results extracted using the saliency index is slightly lower than that of the results
extracted without using the saliency index, which is mainly because some small scattered buildings
cannot be extracted as built-up areas. According to the above qualitative and quantitative analysis
of the built-up areas extraction results, we can prove that our method can accurately extract built-up
areas from images by means of the saliency index.

Table 5. The accuracy evaluation results of built-up areas extraction.

Image
With the Saliency Index 1 Without the Saliency Index 2

Precision Recall F-Measure Precision Recall F-Measure

R1 0.925 0.901 0.913 0.605 0.989 0.751
R2 0.812 0.930 0.867 0.435 0.998 0.606
R3 0.849 0.978 0.909 0.720 0.996 0.836
R4 0.857 0.940 0.896 0.458 0.998 0.628
R5 0.762 0.931 0.838 0.335 0.993 0.501

Average 0.841 0.936 0.885 0.511 0.995 0.664
1 The results of the built-up areas extracted using the saliency index. 2 The results of the built-up areas extracted
without using the saliency index.

3.3.2. Building Detection Results and Analysis

After obtaining the built-up areas of the test images R1–R5, we first use the MBI algorithm to
detect buildings from the extracted built-up areas, and then we use the built rule to further eliminate
some small errors in the initial building detection results. The final building results of R1–R5 detected
by our method are shown in the third column of Figure 7, and their corresponding reference map
obtained by visual interpretation (marked with yellow-colored areas) are shown in the first column of
Figure 7. In addition, to further verify the effectiveness of our method, we also compared the building
detection results of our method with the original MBI algorithm [23]. To ensure the fairness of the
comparison, the parameter settings of the original MBI algorithm are consistent with our method.
The building results detected by the original MBI algorithm are shown in the second column of Figure 7.
As shown in Figure 7, the original MBI algorithm (the second column) performed poorly for all test
images as compared with the reference map (the first column). The detected buildings include a
large number of irrelevant objects such as farmland, barren land, and impervious roads. In contrast,
our method (the third column) can effectively eliminate the interferences from these irrelevant objects
and achieve satisfactory results. Taking the test image R5 for illustration, there are several land cover
types in the image, including mudflats, bright barren land, impervious roads, buildings, farmland,
and river. Among them, bright objects such as mudflats and bright barren land have similar spectral
characteristics to buildings and are brighter than their surroundings, which satisfies the brightness
hypothesis of the MBI algorithm. Therefore, these bright objects are incorrectly extracted as buildings
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by the original MBI algorithm. However, our method can eliminate these irrelevant objects and achieve
satisfactory performance.

 

Figure 6. Results of local feature points and built-up areas. (first column) Local feature points (marked
with red-colored points) optimized using the proposed saliency index; (second column) The reference
data (marked with cyan-colored polygons) and built-up areas (marked with red-colored area) extracted
using the optimized local feature points; (third column) Originally detected local feature points
(marked with red-colored points); (fourth column) The reference data (marked with cyan-colored
polygons) and built-up areas (marked with red-colored area) extracted using the originally detected
local feature points.
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Figure 7. Building detection results. (first column) Reference maps of building distribution (marked
with yellow-colored areas); (second column) Building maps extracted with the original morphological
building index (MBI) algorithm; (third column) Building maps extracted with our method.
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The accuracy evaluation results of building detection are given in Table 6. As depicted in Table 6,
the OA of all the test images of our proposed method is greater than 93%, the Kappa coefficient is
greater than 0.85, the maximum CE is 11.58%, and the maximum OE is 9.01%. This suggests that our
proposed method can effectively distinguish between buildings and backgrounds, and it can also
detect buildings with high accuracy and completeness. In addition, from Table 6 we can find that
the average CE of the original MBI algorithm is as high as 32%, while our proposed method reduces
the average CE to 5.9%, which demonstrates that our proposed method can effectively eliminate
large numbers of interferences caused by irrelevant objects. Meanwhile, compared with the original
MBI algorithm, the average OA and the average Kappa coefficient of our proposed method increase
by 17.55% and 0.342, respectively. The significant improvements of CE, OA, and Kappa coefficient
prove that our proposed method remarkably outperforms the original MBI algorithm and can more
effectively detect buildings in complex image scenes such as mountainous, agricultural, and rural
areas. On the other hand, it should be noted that the OE of our proposed method is slightly larger than
the original MBI algorithm, which is mainly because some small scattered buildings have not been
recognized during the extraction of built-up areas (first step), so these buildings are not detected in the
second step.

Table 6. Accuracy assessment of building detection for the original MBI algorithm and our method.

Image

Accuracy Assessment

The Original MBI Algorithm Our Proposed Method

CE (%) OE (%) OA (%) Kappa CE (%) OE (%) OA (%) Kappa

R1 28.82 7.50 78.11 0.565 4.33 8.60 93.79 0.876
R2 32.02 3.96 77.02 0.549 4.58 6.57 94.84 0.896
R3 37.86 8.30 70.46 0.426 6.29 9.01 93.05 0.860
R4 32.92 1.92 76.43 0.539 11.58 2.36 92.87 0.858
R5 28.64 3.48 80.10 0.608 2.74 7.36 95.29 0.905

Average 32.05 5.03 76.42 0.537 5.90 6.78 93.97 0.879

4. Discussion

4.1. Parameter Sensitivity Analysis

Our method has three critical parameters (r, Ns, and t) that need to be adjusted according to
different test images. In this section, we analyzed the effect of the different values of these three
parameters on the accuracy of the results.

4.1.1. Sensitivity Analysis of the Parameter r

As shown in Figure 2, the proposed saliency index is very effective for the optimization of the
local feature point set. It can effectively eliminate a large number of false local feature points located in
non-built-up areas, thereby making the extracted built-up areas more accurate. The saliency index
contains a tunable parameter, the radius r, which is used to control the size of the local circle window.
Figure 8 shows the sensitivity of built-up areas extraction to the parameter r setting. As depicted
in Figure 8, when the value of r is about twice the average size of buildings, the corresponding
precision–recall curves are very close to each other, which suggests that the extraction of built-up areas
is not dramatically sensitive to the value of r. In addition, the precision–recall curves also indicate that
a good performance can be achieved when the value of r is about twice the average size of buildings.
Taking the test image R1 for illustration, the average size of buildings in R1 is about 13 pixels. From the
precision–recall curves of R1 shown in Figure 8a, we can see that the curve of “r = 26” is close to the
curve of “r = 22” and the curve of “r = 30”, and a good performance can be achieved when the value of
r is close to 26.
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Figure 8. Built-up areas predication performance under different r. (a) The precision–recall curves of
R1, where the average size of buildings is 13 pixels; (b) The precision–recall curves of R2, where the
average size of buildings is 13 pixels; (c) The precision–recall curves of R3, where the average size
of buildings is 12 pixels; (d) The precision–recall curves of R4, where the average size of buildings is
13 pixels; (e) The precision–recall curves of R5, where the average size of buildings is 12 pixels.

4.1.2. Sensitivity Analysis of the Binary Threshold t

The threshold t is used to segment the calculated MBI feature image to obtain buildings.
Figure 9 shows the effect of different t values on building detection accuracy. As shown in Figure 9,
as the threshold t increases, the CE of R1–R5 gradually decreases and the OE gradually increases,
which suggests that a larger value of t will remove more uncertain candidate buildings. At the same
time, from Figure 9 we can see that, when the value of t is between 1 and 6, the OA and the Kappa
coefficient for all test images are very high, and the difference between them is small, but as the
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value of t continues to increase, the OA and the Kappa coefficient begin to decrease, which indicates
that the appropriate range of t is 1 to 6, and a value of t greater than 6 will impair the accuracy of
building detection.

Figure 9. Building detection accuracy under different values of t. (a) commission error (CE);
(b) omission error (OE); (c) overall accuracy (OA); (d) Kappa coefficient.

4.1.3. Sensitivity Analysis of the Parameter Ns

The parameter Ns is the number of scales of the WTH transformation, which is determined by the
size of buildings in the image. The building sizes of R1–R5 range from 4 pixels to 36 pixels, and its
corresponding Ns value is 7. Figure 10 shows the effect of different Ns values on building detection
accuracy. As shown in Figure 10, as the value of Ns increases, the CE of R1–R5 increases slowly, and the
OE decreases slowly, which indicates that a larger value of Ns will extract more buildings. On the
other hand, as can be seen from Figure 10, when the value of Ns increases from 4, the OA and the
Kappa coefficient of R1–R5 also increase slowly, but when the value of Ns increases to more than 7,
the OA and the Kappa begin to decrease slightly, which suggests that the optimal performance can be
achieved when the value of Ns is close to the actual size of buildings in the image.

4.2. Merits, Limitations, and Future Work

In this study, we proposed a new building detection method based on the MBI algorithm to
detect buildings in complex image scenes. Experiments performed in several representative images
demonstrate that the proposed method can effectively detect buildings in VHR remote sensing images
and significantly improve on the original MBI algorithm [23]. It achieved good performance with
an average OA greater than 93%. In addition, our method has two main advantages. On the one
hand, for the detection of buildings, our method can effectively eliminate a large number of false
alarms caused by irrelevant objects, which can greatly improve the accuracy of building detection.
More specifically, our method first extracts built-up areas from the image and then detects buildings
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from the extracted built-up areas, which can directly remove a large number of false alarms located in
non-built-up areas. Moreover, our method does not rely heavily on the accurate extraction of auxiliary
information such as shadows to eliminate false alarms, which is different from most methods. On the
other hand, for the extraction of built-up areas, our proposed saliency index solves a common problem
in the local feature point extraction, which can greatly improve the extraction accuracy of built-up
areas. In addition to these advantages, our method has some limitations that are worth noting.

First, some small scattered buildings cannot be extracted by our method. This is mainly because
these small scattered buildings usually produce only a few local feature points, which are easily
erroneously eliminated by the saliency index. Therefore, these small scattered buildings cannot be
recognized during the extraction of built-up areas (first step), causing them to be missed in the second
step. This is also a limitation of our proposed saliency index. In our future work, we will consider
incorporating additional information such as short straight lines into the built-up areas extraction
process as a supplement to the local feature points to extract these small scattered buildings.

Second, buildings with dark roofs cannot be extracted by our method. Since the MBI algorithm
assumes that the building is a bright structure with high local contrast, those buildings with dark
roofs will be treated as backgrounds and correspond to low MBI values, which will be removed when
binarizing the MBI feature image. In our future work, we will consider combining the spatial features
of the building, such as edges, to further judge those areas with relatively low MBI values to avoid
erroneous removal.

 

Figure 10. Building detection accuracy under different values of Ns. (a) CE; (b) OE; (c) OA;
(d) Kappa coefficient.

5. Conclusions

In this paper, we have proposed a new building detection method based on the MBI algorithm to
detect buildings from VHR remote sensing images captured in complex environments. This method
improves the original MBI algorithm and can effectively detect buildings in non-urban areas. Three key
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steps are included in our proposed method: local feature points detection and optimization, built-up
areas extraction, and building detection. First, the Gabor wavelet transform results of the VHR
remote sensing imagery are used to extract local feature points, and then these local feature points
are optimized by the proposed saliency index to eliminate the false local feature points located in
non-built-up areas. Second, a spatial voting matrix is calculated based on these optimized local
feature points to extract built-up areas. Finally, buildings are detected from the extracted built-up
areas using the MBI algorithm. Experiments on several representative image patches of GaoFen2
satellite validate the effectiveness of our proposed method for building detection. At the same time,
the comparative experiments of built-up areas extraction also proved the effectiveness of our proposed
saliency index. In the future, we plan to add additional information to the extraction of built-up areas
and the binarization of the MBI feature image to overcome the limitations of our method.
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Abbreviations

The abbreviations used in this paper are as follows:
MBI morphological building index
ISODATA iterative self-organizing data analysis technique algorithm
CNN convolutional neural network
SIFT scale invariant feature transform
DRV discrimination by ratio of variance
SLIC simple linear iterative clustering
WTH white top-hat
DMP differential morphological profiles
IBR initial building results
NDVI normalized difference vegetation index
LWR length–width ratio
CE commission error
OE omission error
OA overall accuracy
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Abstract: In recent decades, road extraction from very high-resolution (VHR) remote sensing
images has become popular and has attracted extensive research efforts. However, the very high
spatial resolution, complex urban structure, and contextual background effect of road images
complicate the process of road extraction. For example, shadows, vehicles, or other objects may
occlude a road located in a developed urban area. To address the problem of occlusion, this study
proposes a semiautomatic approach for road extraction from VHR remote sensing images. First,
guided image filtering is employed to reduce the negative effects of nonroad pixels while preserving
edge smoothness. Then, an edge-constraint-based weighted fusion model is adopted to trace and
refine the road centerline. An edge-constraint fast marching method, which sequentially links discrete
seed points, is presented to maintain road-point connectivity. Six experiments with eight VHR remote
sensing images (spatial resolution of 0.3 m/pixel to 2 m/pixel) are conducted to evaluate the efficiency
and robustness of the proposed approach. Compared with state-of-the-art methods, the proposed
approach presents superior extraction quality, time consumption, and seed-point requirements.

Keywords: road extraction; very high-resolution image; fast marching method; semiautomatic;
edge constraint

1. Introduction

Accurate and up-to-date road network information is extremely critical for various urban
applications, such as navigation and infrastructure maintenance [1–3]. The advent of modern remote
sensing has enabled the extraction of information from very high-resolution (VHR) and highly detailed
optical images of roads to update urban road networks [4,5]. High spatial resolution enriches feature
details but complicates object extraction [6–10]. Although considerable effort has been devoted to
road-feature extraction from VHR images, a completely practical road-feature extraction technology
remains unrealistic.

A considerable number of articles have been published on road-feature extraction from remote
sensing images. Generally, state-of-the-art methods for road-feature extraction from VHR images fall
into two categories: Automatic and semiautomatic methods. Automatic approaches require no prior
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information and can be executed by a series of image-processing algorithms, such as mathematical
morphology [11,12], active snake model [13], dynamic programming [14], neural networks [15–17],
probabilistic graphical models [18], filtering-based methods [19], and object-oriented methods [20].
In general, however, the unsatisfactory performance of the automatic method in road-feature
extraction from images presenting complex natural road scenarios (e.g., image noise and tree and
shadow occlusion) restricts its practical applications [21]. The limitation of automatic methods
has encouraged the proliferation of studies on semiautomatic methods. In contrast to automatic
methods, semiautomatic methods require user input or other prior information to achieve robust and
stable results.

Two technical ideas are present for semi-automatic road extraction; the first involves treating the
extraction as a problem of image segmentation (divided into road and non-road) and then obtaining the
final result by post-processing [22–26]. This method is easily affected by vegetation occlusion or large
shadows, which leads to low recognition rates. In addition, due to the introduction of a post-processing
algorithm, other features are easily misjudged as roads.

The other idea involves treating the extraction as a network optimization problem. The road
network is obtained by the connection of road seed points, and the final result is acquired with the
use of graph theory or dynamic programming techniques [27–32]. The local features of the road
(such as extensibility, edge characteristics, and topological structure of the road network, etc.) are fully
considered in this method, and a reliable initial road seed point is obtained through human–computer
interaction. Therefore, the accuracy of road extraction results is relatively high. However, the extraction
effect of shaded and occluded roads is poor because of the different methods of connecting road seed
points. In addition, the number of seed points needed for U- or S-shaped roads is more than that for
linear roads, thereby requiring considerable manual work.

According to this analysis, the method based on image segmentation is more efficient but less
accurate than that based on road seed points, which is less efficient but more precise. Inspired by
Reference [33], we propose to treat road seed point connection as a shortest-path problem to improve
the efficiency of road extraction on the basis of seed points. The fast marching method was recently
developed for connecting road seed points [33]; it is a particular case of level set methods, which
were developed by Osher and Sethian [34] as an efficient computational numerical algorithm for
tracking and modeling the motion of a physical wave interface (front). This method has been applied
to different research fields, including computer graphics, medical imaging, computational fluid
dynamics, image processing, and computation of trajectories [33,35,36]. In Reference [33], this method
showed high stability and general advantages and suitability for processing low-/medium-resolution
remote sensing images. However, it is difficult to extract unbiased road centerline information from
VHR remote sensing images by using the fast marching method alone.

In VHR remote sensing images, “noise” is produced by the improvement of resolution,
which leads to inconspicuous useful edge information. Complex image backgrounds also produce
a large number of finely divided edges, which are difficult to process and thus result in the difficulty of
road edge extraction. Extracting straight roads and planar roads is challenging due to the existence of
the same objects with different spectra and different objects with the same spectrum, which make the
extraction of roads effectively by using the road spectral feature alone a difficult task. Thus, this study
presents a semiautomatic edge-constraint fast marching (ECFM) method to extract road centerlines
from VHR images. Edge information, road spectral feature, and the road centerline probability map are
utilized and an edge-constraint-based weighted fusion model is introduced to assist the fast marching
method. The proposed method enables accurate and unbiased road centerline extraction and shows
high generalization capability in processing complex road scenarios, such as S-shaped, U-shaped,
and shaded roads. The contributions of the method are as follows.

(a) Edge information of remote sensing imagery has been studied extensively and widely used in the
extraction and tracking of linear objects, such as roads and rivers, in medium-/low-resolution
remote sensing imagery. The present study indicates that the synergy of edge information,
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road centerline probability map, and road spectral feature can overcome the shortcomings of the
bias of the road centerline extracted by the fast marching method, which uses spectral feature
only. Moreover, our method is robust to road extraction in shaded areas.

(b) Another contribution of this study is that the proposed method needs only a few road seed points
when extracting an S-shaped or U-shaped road. This characteristic leads to the efficiency of the
widespread practical application of road centerline extraction from remote sensing images.

The remainder of this paper is organized as follows. In Section 2, related state-of-the-art methods
are reviewed. Section 3 provides an introduction to the proposed method. Experimental results are
given in Section 4 and discussed in Section 5. The conclusion is presented in Section 6.

2. Related Work

Many approaches have been proposed in the last decades for extracting road segmentation from
aerial and satellite images. Low-level features can be extracted and heuristic rules (such as connectivity
and shape) can be defined in numerous ways to classify structures similar to roads. A geometric
stochastic road model based on road width, length, curvature, and pixel intensity was applied in
Reference [37]. Hinz and Baumgartner [38] used road models and their contexts, including their
knowledge of radiation, geometry, and topology. The disadvantage of these rule-based heuristic
models is that obtaining the optimal set of rules and parameters is difficult because of the wide variety
of roads. Therefore, these methods can work only in areas where the features used (such as image
edges) occur mainly on roads (e.g., rural areas).

Most approaches consider road extraction a binary segmentation problem. The path trajectory
point [22] and the angle-based texture feature [23] of a particular pixel can be defined to quantify
road probability on the basis of shape. Das et al. [24] adopted the spectral and local linear
features of multispectral road images. By combining the probabilistic support vector machine
(PSVM) method, dominant singular value method, local gradient function, and vertical central
axis transformation method to classify the region, the authors detected the road edge, linked the
broken road, and eliminated the non-road area. The advantages of this method were verified by
experiments on many road images. In Reference [25], the image was initially segmented by fused
multiscale collaborative representation and graph cuts, and the initial contour of the road was then
obtained by filtering the road shape. Finally, the road centerline was obtained through tensor voting.
In Reference [26], the image was first divided into road and non-road through SVM soft classification;
then, the probability of each pixel belonging to the road was obtained simultaneously; the final road
was acquired through the graph cut method. However, these methods work well in multispectral
images only and can detect only the main roads in urban areas. Thus, extracting roads from areas with
dense buildings or other areas which are similar to road grayscale is challenging.

Another semiautomatic road extraction method regards road extraction as the connection and
tracking problem of road seed points. Hu et al. [27] proposed a segmented parabolic model to delineate
road centerline networks. The method first uses seed points to generate parabolic segments and
then applies least-squares template matching to calculate parameters for precise parabola extraction.
Miao et al. [28] proposed a kernel density estimation method combined with the geodesic method to
decrease the number of seed points required for road extraction. Zhou et al. [29] used particle
filtering to track road segments between seed points. However, particle filtering is limited by
its incapability to effectively deal with road branches. To extend the generalization capability
of particle filtering to complex scenarios, Movaghati et al. [30] integrated particle filtering with
extended Kalman filtering. Lv et al. [31] proposed a multifeature sparsity-based model that can utilize
multifeature complementation to extract roads from high-resolution imagery. Dal Poz et al. [32]
proposed a semiautomatic method to extract urban/suburban roads from stereoscopic satellite images.
This method uses seed points to construct the road model in the object space. Optimal road segments
between seed points are then generated through dynamic programming. Road extraction based on
seed points can achieve high precision, but the efficiency is low. The main reason is that the input of

231



Remote Sens. 2018, 10, 900

road seed points needs human intervention. A large number of required seed points will affect the
efficiency of road extraction.

3. Methodology

As shown in Figure 1, the proposed approach consists of three main steps. These steps include:
(1) Road feature enhancement: The VHR image can reveal ground objects in great detail and depict
the color, shape, size, and structure of objects. However, its spectra may contain considerable noise,
which may reduce the reliability of the road extraction result. Thus, the image is first filtered through
guided filtering to enhance road features; (2) Road probability estimation: Three road features are
extracted, and an edge-constraint-based weighted fusion model is introduced for multifeature fusion
and road probability estimation; (3) Seed-point connection: The fast marching method is used to link
road seed points on the basis of the potential road map. To test the accuracy and efficiency of the
proposed approach, the performance of the proposed method on four VHR images is compared with
that of other road extraction approaches.

Figure 1. Flowchart of the proposed ECFM method.We use a real example to illustrate the detailed
flow of the presented method. The example is shown in Figure 2. A detailed description of the method
is provided in the following subsections.

Figure 2. Cont.
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Figure 2. (a) Test image. Seed points are represented by red crosses; (b) Image preprocessed through
guided filtering; (c) Mahalanobis distance map; (d) Thresholding result, in which 1 and 0 represent
road and nonroad classes, respectively; (e) Distance transform result; (f) Edge-energy information;
(g) Road probability map obtained through multifeature fusion; (h) Minimal path extracted from the
road probability map through the fast marching method.

3.1. Road Feature Enhancement

The principle of this step is the compression of nonroad pixel signals in advance. In VHR
images, roads are assumed to be locally homogeneous and elongated areas. However, some roads
in VHR images are contaminated by numerous nonroad pixels, such as cars and traffic lines. Thus,
image filtering is necessary to reduce the negative effect of nonroad pixels. Guided filtering performs
edge-preserving smoothing on an image while guided by a second image, the so-called guidance
image [39]. Similar to other filtering operations, guided image filtering is a neighborhood operation.
However, it accounts for the statistics of the neighboring pixels of a central pixel in the guidance image
when calculating the output value.

The commonly used linear translation-variant filtering can be formulated as follows:

qi = ∑
j

Wij(I)pj, (1)

where i and j are pixel indices, and I, p, and q denote the input, guidance, and output images,
respectively. The filter kernel Wij is the weighted average function of I and p, which is defined as:

Wij(I) =
1

|ω|2 ∑
k:(i,j)∈ωk

(
1 +

(Ii − μk)(Ij − μk)

σ2
k + ε

)
, (2)

where ωk is an overlapping window centered at pixel k; |ω| is the number of pixels in ωk; μk and σ2
k

denote the mean and variance of I in ωk, respectively; and ε is a regularization parameter that controls
the smoothness degree.

The key assumption of guided filtering is a local linear model between I and q [39]. This model is
defined as:

qi = ak Ii + bk, ∀i ∈ ωk, (3)

where (ak, bk) are some linear coefficients assumed to be constant in ωk. The two parameters are
computed with a linear ridge regression model:

E(ak, bk) = ∑
i∈ωk

(
(ak Ii + bk − pi)

2 + εa2
k

)
, (4)

where

ak =

1
|ω| ∑

i∈ωk

Ii pi − μk pk

σ2
k + ε

, (5)

233



Remote Sens. 2018, 10, 900

bk = pk − akμk. (6)

Here, pk is the mean of p in ωk. After computing (ak, bk) for all windows ωk in the image, the output
of guided filtering is expressed as:

qi =
1
|ω| ∑

k|i∈ωk

(ak Ii + bk). (7)

The guided image filtering result is shown in Figure 2b.

3.2. Road Probability Estimation

This step aims to exploit multiple features of roads to overcome the shortcomings of the traditional
fast marching method, which only considers spectral information. Thus, to estimate road probability,
road spectral information, centerline probability, and edge-energy features are combined through
a weighted fusion approach.

3.2.1. Mahalanobis Distance

The initial road seed point generated by users is taken as the central pixel, and its neighboring
pixels (i.e., the 5 × 5 window used in this study) are taken as training samples. The Mahalanobis
distance [40] is subsequently applied to compute the road probability of pixel x, as follows:

DM(x) =
√
(I(x)− m)TC−1(I(x)− m) (8)

where DM(x) is the value of Mahalanobis distance at pixel x; I(x) is the vector datum of the spectral
value of pixel x; and m and C indicate the mean values and the covariance matrix of the training samples,
respectively. After computing the Mahalanobis distance values of all pixels, simple thresholding is
used to divide the image into the foreground (i.e., road) and background (i.e., nonroad) regions.
The thresholding is defined as:

Label(x) =

{
1, if DM(x) ≤ T
0, otherwise

(9)

where Label(x) is the class label of the pixel x, and T is the area ratio of the road area to the entire image
region. In this study, a road area ratio of 0.2 is obtained through trial-and-error, and 1 and 0 represent
the road and nonroad classes, respectively. Figure 2c,d show the Mahalanobis distance matrix and the
corresponding thresholding result, respectively.

Then, the road spectral feature can be computed by applying a Gaussian filter, as follows:

Si,j =
1

2πσ2 e−
(i−k−1)2−(j−k−1)2

2σ2 (10)

where Si,j is the spectral feature value at the pixel location of (i,j), σ is the standard deviation, and k is
the slide window size.

The obtained road class is processed through distance transformation [41] to produce a distance
map Di,j that can be taken as the road centerline probability map. The result is shown in Figure 2e.
Although the Mahalanobis distance method misclassifies some nonroad pixels as road pixels, this error
negligibly affects the generation of the road centerline probability map because the connection of seed
points in this study relies on the fast marching method, which is robust to noise.

3.2.2. Edge Energy

The edge information of remote sensing images has been extensively studied and widely used
in the extraction and tracking of linear objects, such as roads and rivers, in medium/low-resolution
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remote sensing images. Thus, edge information can be used as a constraint for accurate road
centerline extraction.

Image edge energy can be computed through an edge-filtering operation. The edge-filter operator
filters the image on the basis of spectral variance and local similarity by considering the 3×3 neighborhood
of a pixel. ⎡

⎢⎣ vi−1,j−1 vi−1,j vi−1,j+1
vi,j−1 vi,j vi,j+1

vi+1,j−1 vi+1,j vi+1,j+1

⎤
⎥⎦

where (i, j) is the spatial coordinate of each pixel in the image, and vi,j is the spectral value of the pixel.
The Laplace operator is one of the most commonly used operators in edge extraction. To enhance

the ability of the Laplacian operator to detect changes in the grayscale on the diagonal [42], a redesigned
template that assigns different weights to the vertical, horizontal, and diagonal is defined as follows:

2

⎡
⎢⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎥⎦+

⎡
⎢⎣ −1 0 −1

0 4 0
−1 0 −1

⎤
⎥⎦ =

⎡
⎢⎣ −1 −2 −1

−2 12 −2
−1 −2 −1

⎤
⎥⎦ (11)

The image is convolved by the above 3 × 3 neighborhood to obtain the edge detection result Ei,j,
as shown in the following equation:

Ei,j =
1
12

⎛
⎜⎜⎜⎝

SA
(→

v i−1,j−1,
→
v i,j

)
+ 2SA
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⎞
⎟⎟⎟⎠ (12)

and

SA
(→

v ,
→
w
)
= cos−1

( →
v · →w

‖→v ‖‖→w‖

)
(13)

where SA stands for spectral angle and is a measure of similarity between two pixels, and
→
v ,

→
w represents

the spectral values of two pixels.
The edge filter operator has the following characteristics: (1) Small spectral variation in the

homogeneous region. This characteristic leads to low edge operator values in the homogeneous region;
(2) Sharp changes in the spectral range of the adjacent boundary area. This characteristic leads to high
edge operator value in the boundary area. These two characteristics can be used to obtain the edge
energy of an image, as shown in Figure 2f.

3.2.3. Road Probability Estimation

The information fusion of road features aims to estimate road candidates, to discard as many
false positives as possible, and to improve the consistency of the extracted roads. Most existing fusion
methods are feature fusion-based methods that combine multiple features derived from road areas.

Thus, an edge-constraint-based weighted fusion model, which consists of three items, was proposed
to integrate road features detected through the approaches presented in Sections 3.2.1 and 3.2.2:

�
P =

1
Z
(α fS + β fD + λ( fk − 1) fE/CurvE) (14)

where
�
P is the road probability map; Z is a normalization constant; fS, fD, and fE denote the road

spectral feature map, centerline probability, and edge energy information, respectively; fk is a metric
calculated through the KDE method [43] to evaluate the distance of any given pixel from the boundary
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with a range of [0, 1]; α, β, and λ are the weights of the three terms in the model; and CurvE is the
curvature measure of current pixels and depends on the relative direction of neighboring vectors [44].
It is defined as

Curvk =

∣∣∣∣∣∣
→
μ k∣∣∣→μ k

∣∣∣ −
→
μ k+1∣∣∣→μ k+1

∣∣∣
∣∣∣∣∣∣ (15)

where
→
μ k = (ik − ik−1, jk − jk−1),

→
μ k+1 = (ik+1 − ik, jk+1 − jk), and i and j are the row and column

numbers of the current pixel, respectively.
This model is based on the assumption that the pixel with high spectral intensity, low edge

intensity, and small curvature has a dominant role in extraction. The constraints used in the
computational model can maximize extraction reliability and accuracy. Figure 2g shows an example of
road probability estimation.

3.3. Seed-Point Connection

For a given image I and two road seed points p1 and p2, the road potential map P is obtained by
the edge-constraint-based weighted fusion model:

P(x) = 1/
�
P(x) (16)

The road has a small value on the potential energy map and thus has a large traveling speed
term 1/P. Let S = {s1, s2 . . . sn} be the set of paths between p1 and p2, and let l be the length parameter.
The energy term is formulated as follows:

E(s) = P(s(l))dl (17)

The shortest path Si between p1 and p2 is denoted as Cp1,p2 . Thus, the energy term E(s) has a global
minimum value. For any given pixel x in image I, the value in the minimal energy map of p1 is defined as:

U(x) = min{P(s(l))dl}, x ∈ I, s = Cp1,x (18)

where U(x) is an Eikonal equation:

{
∇U(x) = P(x), x ∈ I
U(p1) = 0

(19)

The minimal path Cp1,p2 can be obtained by solving the following difference equation:

{
dCp1,p2

dl (l) = −∇U(Cp1,p2(l))
Cp1,p2(0) = p2

(20)

Here, the fast marching method [34] is used to connect the seed points. The fast marching method
is a particular case of level set methods and is a numerical solution of the Eikonal equation.

During fast marching, the pixel with the shortest arrival time is used as the point of the current
front, and the minimum arrival time of its four neighborhood points is updated in accordance with
the minimum arrival time of the point. Once the loop terminates, the final minimum arrival time of
each point in the image is obtained. Then, the road centerline that connects two seed points will be
generated. Figure 2h presents an example of seed-point connection through the fast marching method.

4. Experimental Study

An experimental study was performed with eight VHR remote sensing images to validate
the effectiveness and adaptability of the proposed method in road extraction. A discussion of the
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experimental study is presented in this section, which is divided into three subsections. The first
subsection provides a description of the study. The second subsection presents a discussion of the four
experimental set-ups. The detailed parameter settings applied in the experimental set-ups are also
given in this subsection. Finally, the results of the four experiments are provided in the last subsection.

4.1. Datasets

To assess the effectiveness and adaptability of the presented method, experiments were conducted
with eight VHR remote sensing images. The images are described below.

The first image is shown in the first row of Figure 3. It is an aerial image with a spatial resolution of
0.3 m/pixel and a spatial size of 400 pixels × 400 pixels. It was downloaded from Computer Vision Lab [45].

Figure 3. Comparison of the results of road centerline extraction. (a) Red represents the result
obtained with edge constraint; (b) Yellow represents the result obtained without edge constraint;
(c) Superimposition of the two results. Seed points are shown as blue crosses.

The second image has a spatial resolution of 0.6 m/pixel and a spatial size of 512 pixels × 512 pixels.
It was collected by the QuickBird satellite and was downloaded from VPLab [46]. The image is shown in
the second row of Figure 3.

The third and fourth remote sensing images have spatial sizes of 400 pixels × 400 pixels and are
shown in Figure 4. The images were downloaded from Computer Vision Lab [45]. They have a spatial
resolution of 0.6 m/pixel and show an area that is mainly covered by vegetation, roads, and buildings.

The fifth image is shown in Figure 5 and has a spatial size of 3500 pixels × 3500 pixels and
a spatial resolution of 1 m/pixel. It was collected by the IKONOS satellite and shows an area of Hobart,
Australia. This image includes different types of noises, such as vehicle occlusion, sharp roadway
curves, and building shadows.
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Figure 4. Two cases of U-shaped road extraction. (a) Case 1; (b) Case 2.

Figure 5. Road extraction result provided by the proposed ECFM method for an IKONOS image.

The sixth image, which is shown in Figure 7, was collected by the QuickBird satellite. The image shows
an area in Hong Kong. It has a spatial resolution of 0.6 m PAN band and a size of 1200 pixels × 1600 pixels.
It includes various road conditions, such as road material changes, vehicle occlusion, and overhanging trees.
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The seventh image has a spatial size of 3000 pixels × 3000 pixels and a spatial resolution of
2 m/pixel, as shown in Figure 8. This image was collected by the WorldView-2 satellite and shows
an area of Shenzhen, China, covering a variety of roads with different materials. The image also
includes several types of noise, such as zebra crossings, traffic-marking lines, and toll stations.

The eighth image, as shown in Figure 10, is a grayscale image with a spatial size of
725 pixels × 1018 pixels and a spatial resolution of 1 m/pixel. This image was collected by the IKONOS
satellite and shows an area of Hobart, Australia, depicting several road conditions, such as overhanging
trees, vehicle occlusion, and roads with large curvatures.

Road extraction from these datasets is challenging because of their very high spatial resolution
of 1 m or higher. In addition, as seen from each image, roads, buildings, vehicles, and shade may be
conflated with one another. Hence, uncertainties may be encountered during road centerline extraction
from these datasets.

4.2. Experimental Setup and Parameter Setting

The accuracy and efficiency of the proposed ECFM road extraction method was investigated
through the following six experimental setups with the eight VHR remote sensing images shown above.

The first experiment was designed to test the effect of the edge constraint in the proposed approach.
Two VHR remote sensing images were used in the experiment, as shown in Figure 3. Two road seed
points were marked by the user, and the road centerline was extracted through our proposed method
with edge constraint and through a method without edge constraint. The parameters of the proposed
method were T = 0.2, α = 0.9, β = 0.7, and λ = 0.5.

The second experiment aimed to assess the performance of the proposed approach in extracting
the centerlines of U-shaped roads. Two VHR remote sensing images showing U-shaped roads were
adopted in the experiment, as depicted in Figure 4. The images have a resolution of 0.6 m. To ensure
fair comparison, we compared the proposed ECFM method with (1) Hu et al.’s method [27] and
(2) Miao et al.’s method [28] because these two methods rely on user-selected seed points. We used the
endpoints at both ends of the U-shaped road as the seed points for road extraction. If the two seed
points failed to provide the correct road extraction results, we added some intermediate points to
ensure the integrity of the road extraction results. The optimal parameters of each experiment were
identified through the trial-and-error method. The parameters of these approaches were as follows:
(1) In Hu’s method, the window size of the step-edge template was set at h = 5; (2) In Miao’s method,
the threshold parameter was set at T = 0.002; (3) In the proposed method, the parameters were set as
T = 0.2, α = 0.9, β = 0.9, and λ = 0.4.

The third and fourth experiments were designed to investigate the accuracy and efficiency of the
proposed ECFM method. This experiment employed satellite images with high spatial resolution and
had two objectives. First, similar to the first experiment, it aimed to test the efficiency of the proposed
method. Second, it aimed to verify the robustness of our proposed method for the centerline extraction
of shadowed roads. We compared the proposed ECFM method with (1) Hu et al.’s method [27] and
(2) Miao et al.’s method [28]. The parameter details of each approach are as follows: (1) In Hu’s
method, the window size of the step-edge template was set at h = 5; (2) In Miao’s method, the threshold
parameter was set at T = 0.002; (3) In the proposed method, the parameters were varied in accordance
with the shading condition of the road. When the road was not shaded, the parameters were set as
T = 0.2, α = 0.9, β = 0.9, and λ = 0.4. By contrast, when the road was shaded, the parameters were set
as T = 0.2, α = 0.5, β = 0.5, and λ = 0.05.

The experiments were designed as follows:

(1) For all methods, as few seed points are selected as possible to improve the efficiency of road
extraction while ensuring integrity.

(2) For an occluded road area, road seed points that are not occluded by shadows or automobiles are
selected as much as possible to ensure the accuracy of road extraction.
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The fifth and sixth experiments aimed to test the road extraction efficiency and accuracy of
different methods under the same seed points. The fifth experiment used a Worldview-2 color image,
and the sixth experiment used an IKONOS grayscale image. This design had two purposes. The first
was to verify the efficiency and accuracy of different methods under the condition of using the
same seed points, and the other was to verify the robustness of the methods proposed in this work
on images with different color modes (color images and grayscale images). Seed points for these
two groups of experiments were obtained by artificial marking. To ensure fairness, road extraction
should be conducted according to the collection sequence of artificial seed points when different
methods are adopted. (1) Hu et al.’s method [27] and (2) Miao et al.’s method [28] were used here for
comparison. The parameters used in these experiments were the same as those applied in the third
and fourth experiments.

4.3. Results and Quantitative Evaluation

Four accuracy measures [27,47] were used to evaluate the performance of the presented method.
These measures included: (1) Completeness = TP/(TP + FN); (2) Correctness = TP/(TP + FP); (3) Quality
= TP/(TP + FP + FN), where TP, FN, and FP represent true positive, false negative, and false positive,
respectively; (4) Seed-point number. The ground truth was produced through the hand-drawing
method, and the buffer width was set to four pixels.

4.3.1. Test of the Edge Constraint

Two remote sensing images were selected to test the edge constraint effect on road centerline
extraction. The results are presented in Figure 3. The method using edge constraint provided better
results than those provided by the method without edge constraint. The results obtained through
the method without edge constraint easily deviated from the true road centerline, whereas those
obtained through the proposed method with edge constraint could preserve the road centerline.
The proposed method using edge constraint is more accurate than other methods because of the two
following advantages: First, edge-energy computation and distance transformation can provide the
ridgeline of the road segment, as shown in Figure 2g. Second, the fast marching method can trace
the road centerline along the ridgeline. The visual comparison of the results, as presented in Figure 3,
illustrates the advantages of the proposed method in road centerline extraction.

4.3.2. Experiment on Centerline Extraction from U-Shaped Roads

The results of the three methods are compared in Figure 4. This figure shows that all the three
methods extracted the expected road centerlines. Compared with that of Hu’s method, the performance
of Miao’s method and the proposed ECFM method improved with the number of road seed points.
The proposed ECFM method, however, provided better results for both images than Hu’s and
Miao’s methods. Table 1 shows the quantitative evaluation results of the three methods. Among the
three tested methods, the presented method achieved the highest quality values for the two cases.
These values coincided with the extraction results presented in Figure 4. Although Hu’s method
accurately extracted centerlines, it consumed more road seed points than the other two methods
because it requires intermediate road seed points when extracting centerlines from S- or U-shaped
road segments. By contrast, the proposed method extracts centerlines from S- or U-shaped roads with
only two road seed points.
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Table 1. Comparison of Three Semiautomatic Road Centerline Extraction Methods.

Hu et al.’s Method Miao et al.’s Method Proposed ECFM Method

Case 1

Completeness (%) 89.76 83.26 90.95
Correctness (%) 93.54 84.04 94.93

Quality (%) 85.34 79.78 85.91
Number of seed points 8 2 2

Case 2

Completeness (%) 96.68 97.81 99.82
Correctness (%) 97.47 98.67 99.91

Quality (%) 94.32 96.54 99.73
Number of seed points 9 2 2

4.3.3. Experiment on An IKONOS Image

Figure 5 shows that the proposed ECFM method extracted most of the road segments and
provided satisfactory results. A visual comparison between the extraction results is shown in
Figure 6a–d. This figure shows that the proposed method performed better than the other methods.
Table 2 shows the quantitative results of the three methods. The results shown in Table 2 indicate that
the three methods successfully extracted a relatively complete road centerline with relatively high
extraction quality. Nevertheless, the efficiency of the proposed ECFM method is superior to that of
Hu’s and Miao’s methods. For example, the proposed method used the fewest seed points among
all three tested methods. Given that the solution of Hu’s method for parabola parameters is heavily
dependent on the radiometric features of dual edges, this method will encounter problems when
extracting features from images with unclear edges. Specifically, Hu’s method will not provide the
desired result if the road boundary is unclear. Miao’s method exploits the geodesic method to connect
road seed points. Its performance, however, is affected by road occlusions. The presented method
achieved the highest quality values among all tested methods, indicating that it achieves the best
balance between road extraction quality and seed-point consumption. Although Hu’s method can
extract relatively complete centerlines, its quality values are lower than those of the presented method
because the result obtained through Hu’s method is biased to the ground truth, whereas that obtained
through the presented method is considerably closer to the ground truth.

Figure 6. Cont.
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Figure 6. Comparison of the results provided by different road extraction methods for an IKONOS
image. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

Table 2. Quantitative Evaluation of Different Centerline Extraction Methods.

Hu et al.’s Method Miao et al.’s Method Proposed ECFM Method

Experiment on IKONOS image

Completeness (%) 96.24 97.94 98.39
Correctness (%) 96.99 97.07 97.83

Quality (%) 93.45 95.13 96.30
Number of seed points 442 279 264

Experiment on QuickBird image

Completeness (%) 94.91 90.80 95.58
Correctness (%) 95.16 93.57 97.82

Quality (%) 90.54 85.47 93.60
Number of seed points 8 8 5

4.3.4. Experiment on A QuickBird Image

Figure 7 shows that Miao’s method cannot efficiently manage abrupt changes, such as road
junctions and sudden material changes or conflations, in images. This limitation is attributed to the
method’s requirement for an intermediate step to measure initial road centerline probability, which is
computed on the basis of seed-point information, from the binary road image. Miao’s method could not
extract the expected road centerline if road segments between seed points were occluded by shadows
or by a vehicle. By contrast, the proposed method utilizes edge energy and curvature to reduce the
effect of shadows and vehicles on the road. The performance of Hu’s method was comparable with
that of the proposed method. However, the road seed-point consumption of the proposed method was
superior to that of Hu’s method. Table 2 shows the quantitative evaluation results of three methods.
Although the proposed method used fewer seed points than the other two methods, it obtained higher
completeness, correctness, and quality values. These values coincided with the extraction results
presented in Figure 7. The experimental results illustrate that the proposed method is robust to noise
and has considerable potential applications in road extraction from VHR remote sensing images.
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Figure 7. Comparison of the results provided by different road extraction methods for a QuickBird image.

4.3.5. Experiment on A WorldView-2 Image

Figure 8 shows that the proposed ECFM method can be used to reliably and accurately extract
roads in a wide range of high-resolution remote sensing images. Figure 9 shows the local comparison
of roads extracted by different methods. Overall, all three methods can achieve satisfactory results.
The comparison in Figure 9a shows that ECFM and Hu’s methods have good anti-noise performance
when encountering toll stations, and compared with Miao’s method, the road centerline extracted is
closer to the center. This difference is due to the fact that Miao’s method considers only the spectral
features of roads while our and Hu’s methods not only consider the spectral features but also combine
the edge features. Figure 9b shows that in road sections where road materials change greatly, all three
methods can extract the road centerline accurately. Nevertheless, comparison indicates that the road
centerline extracted by the ECFM method is smooth, and the technique can maintain high accuracy
in sections with large road curvatures. Figure 9c shows the differences among three methods of
extracting roads near road intersections. According to the figure, the road centerlines extracted by
ECFM and Hu’s methods are relatively smooth. The road centerline extracted by Miao’s method is
easily influenced by vehicles on the road, so the extraction results in the vehicle-intensive area are not
smooth enough. Figure 9d shows the results of different methods in the case of shadow occlusion.
Comparison shows that Hu’s extraction result is relatively smooth because the technique adopts the
piecewise parabolic model, which can obtain a relatively smooth curve. However, according to the
figure, the road centerline acquired by this method can easily shift. Miao’s method is influenced by
shadows and cars, which lead to the unsmooth extraction results. The ECFM method proposed in this
paper has achieved a relatively balanced performance, and it is better than the compared techniques in
terms of road smoothness and accuracy. The statistical results in Table 3 are also consistent with those
in Figure 9. Table 3 shows that the ECFM method performs well in terms of completeness, correctness,
and quality under the condition of using the same number and location of road seed points.

Table 3. Quantitative Evaluation of Different Centerline Extraction Methods.

Hu et al.’s Method Miao et al.’s Method Proposed ECFM Method

Experiment on WorldView-2 image

Completeness (%) 95.63 94.01 97.56
Correctness (%) 95.25 92.03 96.84

Quality (%) 91.28 86.94 94.55
Number of seed points 249 249 249

Experiment on IKONOS grayscale image

Completeness (%) 93.16 91.28 92.58
Correctness (%) 86.01 88.62 90.29

Quality (%) 80.90 81.71 84.20
Number of seed points 67 67 67

243



Remote Sens. 2018, 10, 900

Figure 8. Road extraction result provided by the proposed ECFM method for a WorldView-2 image.

Figure 9. Cont.
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Figure 9. Comparison of the results provided by different road extraction methods for a WorldView-2
image. Road seed points are marked with blue crosses. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

4.3.6. Experiment on An IKONOS Grayscale Image

Figure 10 shows the results of three different methods for extracting the road centerline from
an IKONOS grayscale remote sensing image. As can be seen from the figure, all roads can be extracted
completely by the three methods. The road centerline extracted by Hu’s method is the smoothest,
but the limitation of the piecewise parabolic model it uses causes the extracted results in areas with
large changes in road curvature to tend to deviate from the road center. Miao’s method and the
ECFM method can avoid this problem. Compared with Miao’s technique (which considers only the
spectral features of roads), the ECFM method (which fuses the edge features and spectral features,
thereby potentially overcoming the influence of spectral changes placed by shadows on road extraction
results to a certain extent) shows better performance on shadow and vegetation occlusion. As can be
seen from the statistical results in Table 3, the extraction completeness of all three methods is high
when the same number and location of road seed points are used. However, our method achieves the
best performance in terms of extracting correctness indicators. Similarly, our method demonstrates the
best quality.

Figure 10. Comparison of the results provided by different road extraction methods for an IKONOS
grayscale image.
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5. Discussion

In this section, we present our analysis and discussion of the parameter sensitivity and
computational costs of Experiments 3 and 4. Then, from Experiments 5 and 6, we discuss the influence
of the number and location of seed points on road extraction results. The details are provided in the
following subsections.

5.1. Parameter Sensitivity Analysis

We analyzed the effects of parameters α, β, and λ used in the edge-constraint-based weighted
fusion model. These parameters have various effects on road extraction performance. The QuickBird
satellite image shown in Figure 7 was tested, and the three parameters were set from 0 to 1 with
an interval of 0.075. As shown in Figure 11a, road extraction quality was less than 5% when α was
small. However, when α exceeded 0.15, performance suddenly increased and was maintained at
approximately 90%. This result indicated that spectral information plays a dominant role in the fusion
model. β was proportional to recognition quality, as shown in Figure 11b. Thus, increasing the weight
of the road centerline probability feature improves extraction accuracy. Figure 11c shows that the
effect of the edge constraint is not proportional to extraction quality. Recognition rate will decrease
if λ is excessively small or large. The proposed method yielded a good extraction result when λ was
approximately 0.4.

Figure 11. Quality of the results provided by the proposed method for the QuickBird image under
different α, β, and λ values. (a) Quality vs. α; (b) Quality vs. β; (c) Quality vs. λ.

5.2. Computational Cost Analysis

In this section, we present a discussion of the computational cost of the proposed approach. All the
experiments were performed on a personal computer with a 3.1-GHz Pentium dual-core CPU and
16-GB memory. Each experiment was repeated five times, and the average running time and seed-point
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number of the proposed approach with IKONOS and QuickBird satellite images are presented in
Table 4. The proposed method ensured correct road extraction and consumed less computational
time than the other two methods. According to this analysis, without considering the number and
location of seed points, the road extraction efficiency of the method proposed in this work is the
highest, thereby introducing an effective way for the extensive practical application of extracting road
centerline from remote sensing images. In general, the presented method is moderately efficient.

Table 4. Computation Cost of Different Centerline Extraction Methods.

Hu et al.’s Method Miao et al.’s Method Proposed ECFM Method

Experiment on IKONOS image (size: 3500 pixels × 3500 pixels)

Time (s) 1643 s 1307 s 1273 s
Number of seed points 442 279 264

Experiment on QuickBird image (size: 1200 pixels × 1600 pixels)

Time(s) 40 s 43 s 29 s
Number of seed points 8 8 5

5.3. Number and Location of Seed Points Analysis

In the third and fourth experiments, we adopted the strategy of obtaining the highest extraction
quality by multiple extractions regardless of the number and location of seed points to compare
different methods. As can be seen from Table 4, on the premise of ensuring the extraction quality,
the number and time of seed points required by different methods remarkably vary. On the premise
of obtaining the highest quality, our method requires the fewest number of seed points and time.
However, the location and number of seed points have a considerable influence on different methods,
and whether they are key factors affecting the experimental results needs to be analyzed.

Therefore, in the fifth and sixth experiments, to verify the influence of the number and location of
seed points on the road extraction results of different methods, we used the same number and location
of seed points to conduct comparative experiments. Seed points were obtained by artificial marking
before the start of comparative experiment. The experimental results and statistical results show that
the ECFM method produces good results in both groups of experiments. The statistical results in Table 5
indicate that when the same number of seed points is used, Miao’s method consumes the shortest
time, followed by the ECFM method, and Hu’s method consumes the longest time. This finding is
due to the fact that Miao’s method uses the simplest features, while Hu’s method uses the piecewise
parabolic model and least-squares template matching, thereby prolonging the optimization of the road
curve. Meanwhile, our method uses three features (spectral feature, edge feature, and road centerline
probability), and the time required is also increased compared with Miao’s method.

Table 5. Computation Cost of Different Centerline Extraction Methods

Hu et al.’s Method Miao et al.’s Method Proposed ECFM Method

Experiment on WorldView-2 image (size: 3000 pixels × 3000 pixels)

Time (s) 759 s 621 s 720 s
Number of seed points 249 249 249

Experiment on IKONOS grayscale image (size: 725 pixels × 1018 pixels)

Time(s) 108 s 79 s 97 s
Number of seed points 67 67 67

A comparison of the data in Tables 4 and 5 shows that when a similar number of seed points is
applied, the time required by our method to extract roads from different remote sensing images is
remarkably different. This result has a substantial relationship with the resolution of the image used,
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the size of the area, and the density of the road network. A high resolution of the remote sensing
image, large area, and high road network density result in a long extraction time.

6. Conclusions

This study presents a semiautomatic approach that uses road seed points to extract road centerlines
from VHR remote sensing images. An edge-constraint-based weighted fusion model was introduced
to overcome the influence of road occlusion and noise on road extraction. Finally, an edge-constraint
fast marching method was proposed to improve the accuracy and quality of the road extraction results.

Six experiments were conducted on eight VHR remote sensing images that are related to
different road conditions, including vehicle occlusion, sharp roadway curves, and building shadows.
The advantages of the proposed method are as follows: (1) favorable road extraction accuracy and
efficiency and (2) robustness to extracting road centerlines from VHR remote sensing images. Overall,
the presented method is a superior and practical solution to road extraction from VHR optical remote
sensing images.

In future work, the performance of the proposed method on additional types of remote sensing
images, such as unmanned aerial vehicle images with very high spatial resolution, will be extensively
investigated. The application of the proposed method to roads constructed from different materials
and the automatic selection of road seed points are interesting future research directions.
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