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Abstract 

Airborne sensors including LiDAR and digital cameras are now used extensively for 

capturing topographical information as these are often more economical and efficient as 

compared to the traditional photogrammetric and land surveying techniques. Data cap-

tured using airborne sensors can be used to extract 3D information important for, inter 

alia, city modelling, land use classification and urban planning. According to the EU 

noise directive (2002/49/EC), the National Road Authority (NRA) in Ireland is respon-

sible for generating noise models for all roads which are used by more than 8,000 vehi-

cles per day. Accordingly, the NRA has to cover approximately 4,000 km of road, 500m 

on each side. These noise models have to be updated every 5 years. Important inputs to 

noise model are digital terrain model (DTM), 3D building data, road width, road centre 

line, ground surface type and noise barriers.  

The objective of this research was to extract these objects and topographical information 

using nationally available datasets acquired from the Ordnance Survey of Ireland (OSI). 

The OSI uses ALS50-II LiDAR and ADS40 digital sensors for capturing ground infor-

mation. Both sensors rely on direct georeferencing, minimizing the need for ground con-

trol points. 

Before exploiting the complementary nature of both datasets for information extraction, 

their planimetric and vertical accuracies were evaluated using independent ground con-

trol points. A new method was also developed for registration in case of any mismatch. 

DSMs from LiDAR and aerial images were used to find common points to determine 

the parameters of 2D conformal transformation. The developed method was also evalu-

ated by the EuroSDR in a project which involved a number of partners. These measures 

http://www.milieu.be/noise/
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were taken to ensure that the inputs to the noise model were of acceptable accuracy as 

recommended in the report (Assessment of Exposure to Noise, 2006) by the European 

Working Group. 

A combination of image classification techniques was used to extract information by the 

fusion of LiDAR and aerial images. The developed method has two phases, viz. object 

classification and object reconstruction. Buildings and vegetation were classified based 

on Normalized Difference Vegetation Index (NDVI) and a normalized digital surface 

model (nDSM). Holes in building segments were filled by object-oriented multi-

resolution segmentation. Vegetation that remained amongst buildings was classified 

using cues obtained from LiDAR. The short comings there in were overcome by devel-

oping an additional classification cue using multiple returns. The building extents were 

extracted and assigned a single height value generated from LiDAR nDSM. The ex-

tracted height was verified against the ground truth data acquired using terrestrial survey 

techniques. 

Vegetation was further classified into three categories, viz. trees, hedges and tree clus-

ters based on shape parameter (for hedges) and distance from neighbouring trees (for 

clusters). The ground was classified into three surface types i.e. roads and parking area, 

exposed surface and grass. This was done using LiDAR intensity, NDVI and nDSM. 

Mobile Laser Scanning (MLS) data was used to extract walls and purpose built noise 

barriers, since these objects were not extractable from the available airborne sensor data. 

Principal Component Analysis (PCA) was used to filter points belonging to such ob-

jects. A line was then fitted to these points using robust least square fitting.  
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The developed object extraction method was tested objectively in two independent areas 

namely the Test Area-1 and the Test Area-2. The results were thoroughly investigated 

by three different accuracy assessment methods using the OSI vector data. The accep-

tance of any developed method for commercial applications requires completeness and 

correctness values of 85% and 70% respectively. Accuracy measures obtained using the 

developed method of object extraction recommend its applicability for noise modelling. 
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1 Introduction 

1.1 Research Context 

Roads have always been one of the basic pillars of economy and society. In the Euro-

pean Union, 44% of all goods are moved by trucks over roads and 81% of all people are 

transported by cars, buses or coaches on roads  (Europa, 2010). As a society develops, 

road transport increases, and consequently the issues of noise pollution and road safety 

become more important. The European Commission Directive 2002/49/EC of 25th June, 

2002 (European Parliament, Council, 2002) has resulted in a pressing need on part of 

the National Roads‟ Authorities in Europe to assess cost-effective and reliable methods 

for the modelling of physical objects within the environment of national roads. The di-

rective requires that inter alia noise maps and action plans (noise policy) be developed 

for major roads with more than 6 million vehicle passages per year (approximately 

8,000 per day), agglomerations with more than 250,000 inhabitants, major railways 

which have more than 60,000 train passengers per year and major airports. Limits Lden 

(noise level: day evening and night) and Lnight (noise level: night) for major roads, rail-

ways and airports should be less than, or equal to, 55 dB and 50 dB respectively (WG-

AEN, 2006). The European Environment Agency in Copenhagen, Denmark, collates the 

noise maps in a central European database. The first maps for major areas were required 

by mid 2007. Action plans for areas having noise levels greater than the prescribed limit 

were to be implemented within one year (mid 2008). These activities are to be repeated 

at five year intervals. All defined areas are to be completed by 30th June 2012 (European 

Parliament, Council Deadlines, 2002). 

http://eur-lex.europa.eu/pri/en/oj/dat/2002/l_189/l_18920020718en00120025.pdf
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A European Commission Working Group provides a general description of all the ob-

jects and relevant input parameters required for noise modeling, in order to ensure high 

quality and consistency (WG-AEN, 2006). All participating countries are required to 

follow these guidelines in preparing strategic noise maps. A strategic noise map refers to 

a map designed for the global assessment of noise exposure in a given area due to different 

noise sources or overall predictions for such an area (WG-AEN, 2006). The working group 

suggests that every effort should be made to obtain actual local data, representative of 

the area being modelled. A brief overview of the important noise propagation model 

inputs is given by the working group which serves as a guide line for the NRA (National 

Roads Authority). 

1.2 NRA Requirement of Noise Model 

Any model that meets the requirements of the noise directive should be as detailed as 

possible and as a minimum, should contain the following topographic features (NRA, 

2004). 

1. Surface contours 

2. Details of ground cover 

3. All buildings in the vicinity of roads 

4. Road alignments 

5. Road surface details 

6. Other significant features that may have a bearing on sound propagation, e.g. 

walls, crash barriers, bunds and side slopes. 

WG-AEN (2006) sets the guidelines for how these inputs related to noise propagation 

can be acquired using different techniques, achievable accuracies and their effect on the  
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overall accuracy of generated noise model. The report also compares different data ac-

quisition techniques in terms of their financial suitability. 

These topographic features can be subdivided into two categories. The first represents 

the physical properties of roads and the second constitutes the road environment. 

1.2.1 Road Properties 

The physical properties of roads have a direct relationship with the emission of sound 

from the vehicles. Important parameters related to the noise produced by vehicles are 

road gradient, road surface type, number of lanes and the location of roundabouts and 

intersections. WG-AEN (2006) recommends that the modelled road (or lane centre lines 

if these are used) should not normally fall outside the edge or perimeter of the road cor-

ridor. 

1.2.2 Road Environment 

1.2.2.1 Ground Surface Elevation (Contours)  

Strategic noise maps are often prepared using contours with a vertical resolution of 5 m 

to 10 m. This resolution is inappropriate to generate noise propagation models near 

sources which might be located either in embankments or cuttings such as roads and 

railway lines. In order to obtain better height information accurate to 1 m, a DTM (Digi-

tal Terrain Model) from LiDAR is preferred over other data acquisition techniques.  

1.2.2.2 Ground Surface Type 

Ground surface type in the environment of the road needs to be mapped as it effects 

sound dissipation. Hard surface reflects more sound as compared to grassy surfaces. 

Noise modelling using a hard ground type for the whole area is the worst possible sce-
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nario. However; different ground types can exist in one area. The working group re-

commends that areas where ground surface change is less than 250 m2 with respect to its 

neighbours should be ignored. It was also considered appropriate to ignore long, narrow 

areas of land where the length is less than 3 meters or narrow roads in the open country. 

1.2.2.3 Noise Barriers 

Noise barriers are built specifically closer to the source to reduce the noise propagation 

and should be modelled with high planimetric and vertical accuracy. Maximum allowa-

ble error in determining their position and height is 1 m and 0.5 m respectively. 

1.2.2.4 Buildings 

Accurate building height data is needed wherever possible. Different methods have been 

proposed for building height estimation such as counting the number of floors in each 

building or using a default height of 8 m for rural areas. However; it was recommended 

that these heights should be measured from aerial photographs, particularly for the ur-

ban areas. Depending upon the sources used for building height estimation, error ex-

pected in the determined noise levels has been provided by the working group which is 

less than 0.5 dB if the heights are measured using aerial photographs or LiDAR.  

Simplifying shapes of buildings and other objects that may influence sound propagation 

is necessary to avoid complex calculations and computational time in noise propagation 

modelling. The working group warns that over simplification will reduce the model ac-

curacy.  

A building roof can consist of multiple parts. In order to keep the model simple and 

computationally less intensive, a single height value is typically assigned to each build-

ing block. The working group recommends that a single building with varying heights 



Introduction 

— 5 — 

can be assigned the height of the majority of the building where the difference in these 

heights is no more than a specific figure, for example 2 m. Also, for all adjacent (con-

nected) buildings, with similar heights, for example within 2 m, all can be assigned the 

lower of these heights. 

1.2.2.5  Sound Absorption of Building Façades and Barriers 

Sound is propagated by building façades and barriers directly and by reflections from 

other buildings or objects. Absorption coefficients are known for the commonly used 

construction materials or could be measured and incorporated into the noise model. If 

default values of absorption coefficients are used or measured in the field then the noise 

model will be accurate to 1 dB or 0.5 dB respectively. 

These physical and environmental parameters of roads are the fundamental inputs and 

should be determined. Ground surface type and elevation, 2D (2 Dimensional) building 

boundaries with single height attribute, noise barriers, road surface and gradient, trees 

and forest patches were extracted in the course of this research, using high resolution 

multispectral aerial images, LiDAR and Mobile Laser Scanning (MLS) data. 

1.3 Problem Statement 

The National Roads Authority of Ireland, the organization responsible for producing 

noise maps, needs to survey approximately 4,000 km of national roads to an extent of 

500 m on either side for the purpose of noise modelling. Acquisition of the required 

input data can be very expensive, time consuming and labour intensive if acquired 

manually. It is also not possible to do so without causing hindrance to road users. The 
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need for economic, efficient and robust generation of this data to an acceptable accuracy 

is a key requirement which provides the main impetus for this research. 

There is a need to investigate the currently available geo-data capturing sensors and the 

characteristics of their acquired data in the ROI for the successful extraction of all ob-

jects or features of interest. This is because of the dependency of the object extraction 

techniques on the used sensor and their acquired data characteristics. These technologies 

include both airborne (aerial images & LiDAR) and terrestrial (MLS) sensors. The ex-

tracted objects should be of acceptable accuracy as recommended by the working group 

and explained in the previous section. 

1.4 Rationale Behind this Research 

Geospatial information is mostly extracted from remotely sensed data acquired using 

airborne and space-borne platforms (Baltsavias and Gruen, 2003). These platforms offer 

varying spatial, radiometric and temporal resolutions. Traditional film-based aerial cam-

eras provide panchromatic and visible true colour (Red, Green, Blue (RGB)) images. 

These images are mostly used for thematic land use or land cover mapping but not for 

land cover classification as the Near Infrared (NIR) band is missing. Multispectral bands 

in satellite imagery are however widely used for land cover classification where man 

made features can be efficiently separated from natural objects such as trees, grass and 

other vegetation using Red and NIR bands. 

Object extraction in the urban areas requires individual buildings and trees to be mod-

elled (Taubenböck et al., 2006) which is still not possible from commercially available 

satellite images, although spatial resolution has been increased to sub metre. Ireland has 

few full sunny days which make it impracticable to rely only on satellite data. For this 
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reason, the national mapping agency Ordnance Survey Ireland (OSI) uses airborne sen-

sors for mapping which provide flexible operational mobility and high spatial resolution 

up to 5 cm (Geosystems, 2010). 

The Leica Airborne Digital Sensor (ADS) is a large format digital line scanner used by 

OSI which can capture multispectral images i.e. Red, Green, Blue and NIR. On board 

GNSS/IMU provides direct georeferencing minimizing the need for independent ground 

control points (GCPs). OSI also uses the ALS50-II LiDAR sensor. Data from both of 

these sensors is available to the NRA for extracting geospatial information and this re-

search will evaluate their suitability to the noise mapping needs of the NRA. 

The fusion of a Normalized Digital Surface Model (nDSM) generated by subtracting an 

extracted DTM (Digital Terrain Model) from a DSM (Digital Surface Model) combined 

with multispectral imagery is known to have applications in urban classification (Hill et 

al., 2002; Hodgson et al., 2003; Rottensteiner et al., 2005; Rottensteiner et al., 2007), 

building extraction (Haala and Brenner, 1999; Rottensteiner et al., 2005) and potentially 

in the extraction of objects adjacent to national roads. 

The high spatial resolution of ADS imagery has significantly enhanced information con-

tent compared to space born data and the availability of NIR data facilitates land cover 

classification. However, traditional pixel-based approaches are unable to deliver high 

accuracy, robustness and automation in the object extraction process. For this reason, 

the focus has now been shifted from pixel-based statistical methods to knowledge and 

object based-classification approaches (Hodgson et al., 2003; Taubenböck et al., 2006). 

Moreover, it is not possible to discriminate between vegetation and buildings using only 

the NIR band because of shadows and spectral variations caused by apparent differences 

in roof composition. For the extraction of ground surface type attribute, it is necessary to 
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classify trees and low level vegetation such as grass. Input from another sensor is re-

quired which can provide the height information that the aerial images lack, though this 

information may also be generated from stereo aerial images, if available. 

LiDAR has proved its potential in generating a DSM with high vertical accuracy and 

has almost become an industry standard for capturing height information. Accuracy of 

LiDAR data is a function of the flying height, laser beam diameter (system dependent), 

the quality of the GNSS/IMU data and post-processing procedures. New sensors claim 

vertical accuracies in the range of 5 cm which are very difficult to achieve by digital 

photogrammetry. Modern LiDAR sensors can also record multiple returns of the re-

flected single pulse as well as the intensity of the returning pulse. With the advances in 

technology, pulse rates of LiDAR systems have also increased from a few Hertz to 200 

kHz such as Leica ALS60 sensor, providing a dense point cloud. The potential for the 

automated determination of roadside objects from the fusion of the two airborne data 

sources available to the NRA is a significant motivation behind this research. 

LiDAR and aerial images can be captured at different times, resulting in a mis-

registration between both. Mis-registration needs to be considered, even if both data sets 

are captured at the same time, because errors in calibration might cause the same effects. 

This element of the research will help to assess the direct georeferencing capability of 

the ADS40 and ALS50-II sensors used routinely by the OSI for mapping in Ireland. If 

direct georeferencing can be used, the need for GCPs can be minimized for many appli-

cations including the collection of data for noise mapping. 

High density point clouds may be generated by multi-ray image matching on imagery 

taken with multiple overlaps and of high radiometric quality provided by sensors such 
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as the Leica ADS40 (Haala, 2009). The potential of this technique to eliminate the need 

for LiDAR data acquisition will be explored. 

Apart from airborne sensors, ground based laser scanning systems, TLS and MLS are 

also growing in popularity for high density data acquisition from a different geometrical 

perspective for mapping the road environment. Helicopter LiDAR would provide possi-

bilities to map such smaller scale objects, but it is very expensive. Objects difficult to 

extract via airborne LiDAR data can be extracted using these ground based systems. 

Building façade, façade type, poles, road markings and footpaths have been extracted 

successfully using these systems (Kukko et al., 2009). However; the utilization of 

ground based laser scanning systems in extracting noise barriers is still largely unex-

plored. MLS offers this possibility but is hampered by moving and standing objects or 

features (e.g. cars, trees) in front of the noise barriers. The issues of registration between 

MLS and ALS data for achieving better fusion results also need further investigation. 

It is, therefore, a motivating factor for this research to assess the detection of vertical 

planes in MLS data to map noise barriers which are thin and continuous along the road 

that cannot be extracted in the routinely available airborne sensor data. This will be ap-

proached by applying airborne LiDAR point cloud processing algorithms to the ground 

based sensors or developing new algorithms and evaluating their performance. 

In addition, noise maps need to be updated every five years which means that changes 

occurring during this time period need to be monitored and incorporated in the subse-

quent noise maps. A change detection methodology is therefore also required, that is 

capable of detecting changes in subsequently captured data and eliminating the need for 

object re-extraction. 
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1.5 Research Hypothesis and Aims 

It is hypothesized that objects and features important for noise modelling can be ex-

tracted using multispectral aerial images, LiDAR and ground based MLS sensors or by 

the fusion of these, with a high degree of automation. 

The principal aim of this research is to design and evaluate a method to extract objects 

and features important for noise modelling with a high degree of automation using na-

tionally available sources of data. The study aims to achieve the above in the context of 

the spatial data needs of the NRA in meeting its obligations under the European Noise 

Directive. 

1.6 Specific Objectives of the Research 

The utilization of nationally available datasets for extracting objects or features impor-

tant for noise modelling by the NRA rather than using specialized or customized data 

capturing systems, is a key element of this research. This will make the research find-

ings more easily and economically implementable in the Republic of Ireland (ROI). The 

NRA has already taken appropriate actions for the acquisition of LiDAR data of all the 

roads for which noise maps have to be prepared.  

The following specific objectives are to be met in the course of this research. 

1. Devise a method using knowledge-based and object-based classification tech-

niques for automatic or semi-automatic object extraction from airborne sources. 

2. Test the method objectively using separate development and test areas. 

3. Strive for a high degree of accuracy and robustness in the object extraction 

method that is verified by experiments. 
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4. Evaluate factors influencing the performance of the method such as: 

a. Optimal classification parameters for buildings, trees, vegetation and roads. 

b. Registration issues between LiDAR and aerial images.  

c. Evaluating performance of different object extraction softwares such as 

Terra Solid, Erdas Imagine, E-Cognition and LiDAR Analyst available for 

processing LiDAR and aerial images with respect to the effective fusion of 

data and quality of the results. 

5. Explore the potential of high density image matching for the generation of point 

clouds as an alternative to LiDAR.  

6. Explore the potential of incorporating MLS data in the extraction process, par-

ticularly in relation to the detection of noise barriers. 

7. Devise and evaluate methods for detecting changes in roadside objects. 

8. Make recommendations for the best application of available airborne and MLS 

sensor data and existing GIS data to noise modelling. 

1.7 Available Data 

Airborne sensors‟ data include LiDAR and aerial images provided by OSI for two sites 

in the ROI using ALS50-II and ADS40 sensors. Object extraction method was devel-

oped using portion of the data from one project site called the development area which 

was later tested independently in two test areas (Test Area-1 and Test Area-2). For one 

project site MLS data was also available. Sensor and captured data characteristics, pro-

ject sites‟ location, the development and the test areas are described in detail in chapter 

3. 
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Reference vector data for checking the accuracy of the object extraction method was 

also provided by OSI. Ground truth data was also collected for the two project sites to 

check direct georeferencing quality of airborne sensors and compare the height of ex-

tracted buildings to the heights measured in the field.     

1.8 Method Outline 

The broad outline of the method evaluated in this research, aimed at extracting object 

and terrain features for noise mapping by fusing LiDAR and aerial images, is provided 

in Figure 1. The detailed methods for extracting each object of interest are presented in 

their respective sections. This includes development of an object extraction work flow 

using the development area and testing the method in two other independent test areas 

of similar characteristics and covered by the same airborne sensors. The object extrac-

tion method consists of two phases. 

In the first phase, direct georeferencing quality of ADS40 and ALS50-II sensors was 

evaluated using GCPs. It was important to check the quality of the direct georeferencing 

as it can minimize the need for independent ground control points, making the whole 

process simpler, faster and economically feasible. ADS40 panchromatic stereo images 

were used to generate a DSM using Leica Photogrammetric Suite (LPS) from Leica 

GeoSystems and Match-T from Inpho using image matching techniques. The point 

clouds and subsequently generated DSMs from image matching and LiDAR were also 

compared with the independent ground control points acquired using Network RTK 

GPS survey to check the vertical accuracy. The DSM obtained from image matching 

was also evaluated using LiDAR DSM to check its suitability as a replacement to Li-

DAR. 
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Figure 1: Object Extraction Method Outline 

Triangulation of ADS40 sensor data was also performed using GCPs visible in the over-

lapping images. The main purpose behind this was to generate high quality reference 

data which could later be compared with LiDAR sensor data to evaluate its planimetric 

accuracy. A co-registration test was carried out between the LiDAR DSM and the image 
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DSM. LiDAR DSM was transformed to fit the image DSM using the developed method 

as explained in chapter 4 (section 4.7). These datasets were acquired at different times. 

However; had they been acquired simultaneously there would still be a need to evaluate 

the quality of correspondence between them before the actual extraction process, and 

therefore this step is a part of the proposed strategy.  

After evaluating the used airborne sensor data for its horizontal and vertical accuracy, 

the second phase of object extraction began. Orthophotos were generated from the 

ADS40 sensor data using the RGB and NIR images. The DSM from LiDAR was pre-

ferred for generating orthophotos because of its better quality as compared to the DSM 

obtained from image matching using panchromatic aerial images. 

NDVI (Normalized Difference Vegetation Index) and other indexes were calculated 

from the orthophotos and combined with nDSM calculated by subtracting DTM from 

LiDAR DSM. This DTM was generated from the LiDAR data employing Terrasolid 

software. Morphological reconstruction techniques were also investigated initially but 

were not found to be as useful.  

These generated datasets along with multiple echoes were used in pixel-based, object 

oriented and knowledge-based classification techniques for extracting objects. The qual-

ity of the extraction process was determined using 2D vector data available from the 

OSI and ground truth surveys in the development area and the independent test areas. 

Extraction of noise barriers and building façades, which are required for noise model-

ling, can be difficult and sometimes even impossible using airborne data. Hence, MLS 

data was examined for the extraction of such noise barriers and building façades. Previ-
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ously extracted objects such as buildings were used to separate building façades from 

any of the extracted noise barriers.  

In addition, methods for change detection were developed for incorporating the changes 

occurring in the project area. This process highlights and guides the operator to those 

regions where changes might have occurred over time, instead of inspecting the whole 

project area. 

1.9 Structure of the Dissertation 

This section briefly describes the organization of the dissertation. In chapter 2, a review 

of different data capturing technologies is provided with a particular emphasis on those 

sensors that are used by the OSI. In addition, different object extraction techniques us-

ing LiDAR and aerial images, their fusion and different measures used to evaluate the 

success of the developed algorithm are discussed at length.  

Chapter 3 describes the project areas and related issues. It gives a detailed description of 

the available data from airborne and ground based sensors, flight characteristics during 

acquisition, vector data from the OSI and ground truth data acquired by the ground sur-

veys. 

Different steps involved in the processing of data, direct georeferencing quality assess-

ment of airborne sensors data, evaluation of DSM generated by image matching tech-

niques, aerial triangulation of ADS40 images to ensure proper registration of LiDAR 

data are explained in detail in chapter 4. 

In chapter 5 the methods developed for the extraction of building boundary and height, 

single trees, hedges, tree clusters, ground surface type, roads and longitudinal road gra-
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dient have been explained. Three methods used for evaluating the success of the ex-

tracted objects using the OSI vector data have also been discussed towards the end. 

The extracted objects and their accuracy assessment results for the development and the 

test areas are presented in chapter 6.  

A detailed analysis of the object extraction results is presented in chapter 7. These have 

been addressed in context of the objectives set at the beginning of this research and the 

extent to which these were achieved in due course. 

Chapter 8 provides a conclusion to this dissertation and highlights the innovative aspects 

of this research. It also provides recommendations for implementing the developed 

method for noise modelling and sets potential directions for future research. 
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2 Literature Review 

A review is provided for different ground and air-based geodata capturing technologies 

with a special emphasis on sensors whose data is available from OSI and other local 

organizations. Techniques for extracting objects of interest within the context of noise 

modelling using a single data source or by data fusion have also been discussed. Differ-

ent data acquisition techniques have been compared and object classification techniques 

have also been categorized. Parameters used in the previous research to determine the 

accuracy of object extraction have also been discussed using different methods. In the 

end, different change detection techniques for updating noise models have also been 

summarized. 

2.1 Available Data Sources in ROI 

OSI is the main government body responsible for spatial data acquisition, processing 

and updating and has Leica ADS40 and ALS50-II sensors for acquiring multispectral 

aerial and LiDAR data. OSI also provide a Network RTK service for rapid, high accura-

cy GNSS measurements. Apart from these, ground-based data acquisition systems such 

as MLS, video and digital cameras mounted on vehicle have been developed for road 

surveys by NUI at Maynooth, Ireland in cooperation with other private partners (NCG, 

2008; NCG, 2010). 

On 14th April 2010, NRA launched a research project for road environment modelling 

and asset management by fusing LiDAR data (2 points/m2) and TLS data. This suggests 

a high need of spatial information required for noise modelling, road safety and asset 

management purposes. 
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In this research the focus was object extraction important for noise modelling using lo-

cally available datasets. A brief overview of research and development in these sensors 

technology is provided in the coming sections. 

2.2 Digital Airborne Cameras 

Leading commercially available large format imaging sensors are ADS (ADS40, 

ADS80) from Leica Geosystems (Sandau et al., 2000; Fricker, 2007), DMC from Inter-

graph (Hinz et al., 2001; Rosengarten, 2007), and UltraCam (UltraCamD, UltraCamX, 

UltraCamXp) from Microsoft (Leberl and Gruber, 2003).  

These systems have replaced analogue frame cameras (Read and Graham, 2002) for 

topographic mapping and by the end of 2008, approximately 300 systems were in opera-

tional use worldwide (Honkavaara et al., 2009). The general design principles of these 

sensors includes a calibrated geometry with sub-pixel accuracy potential of up to 1 cm, 

a GSD (Ground Sampling Distance) potential of up to 2 cm, accurate stereoscopic data, 

an image width of more than 10,000 pixels, multi-spectral imagery in the Red, Green, 

Blue and NIR regions of the electromagnetic spectrum, and radiometry with linear re-

sponse, large dynamic range, high resolution, and suitable for visual and quantitative 

applications (Fricker et al., 1999; Spiller, 1999; Honkavaara et al., 2009). 

The ADS40 is a pushbroom line scanner while the DMC and UltraCam are multi-head 

frame sensors (Figure 2). DMC is good for photogrammetric and engineering applica-

tions whereas the ADS40 provides large image strips covering more area, effectively 

reducing operator time and effort, which is good for applications such as road surveys 

for noise modelling. 
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Figure 2: Different Image Capturing Techniques (a) Line Based Imaging (© LH 

Systems, 2000) and (b) Frame Based Imaging 

The GSD of the multispectral channels of the DMC is 3 to 4 times larger than the no-

minal GSD of the panchromatic channels. ADS40 sensor has one CCD array for re-

cording R, G, B and NIR images but two staggered pixel arrays with a difference of 0.5 

pixel to record panchromatic images (Figure 3, (Tempelmann et al., 2000)) . This in-

creases the spatial resolution by a factor of 2 (Reulke et al., 2006). The panchromatic 

channels are set at an angle to provide the stereoscopic view with high forward overlap. 

 

Figure 3: ADS40 Panchromatic Line Design 

The radiometric resolution of the ADS40 is 12-bit, but it is reduced to 8-bit using a los-

sy compression due to the data storage speed limitations in practical situations or subse-

quent processing in image processing softwares. This reduces the radiometric quality 

important for DSM generation using image matching techniques. The desirable situation 

is to have 16-bit radiometric resolution (Honkavaara et al., 2009). Haala (2009) com-

[a] [b] 
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pared DSMs generated from digital frame camera data using digital image matching 

techniques and ALS50 LiDAR sensor data against independent ground control points. 

The vertical accuracy of the DSM generated using modern digital cameras was (RMS ± 

3.9 cm) comparable to LiDAR (RMS ± 3.4 cm) using imagery with a GSD of 8 cm. 

This accuracy is possible because of the improvements in radiometric resolution of digi-

tal cameras as compared to the traditional analogue frame cameras such as the Zeiss 

RMK-Top15. However, digital image matching is affected by shadows and occlusions 

which is not the case with LiDAR as it is an active remote sensing sensor with much 

smaller swath width as compared to aerial images. 

GSD is limited by flying height, flight speed, illumination conditions, frame rate and the 

smallest possible integration time and speed of data storage in the case of the ADS40 

sensor. The minimum practically possible GSD is approximately 5 cm (Honkavaara et 

al., 2009). A GSD of 10-20 cm is considered appropriate for urban feature mapping by 

various geospatial data capturing companies and same is the case with OSI (Lemmens, 

2010). The geometric performance of various commercially available frame and push-

broom digital camera systems was investigated by Cramer and Haala (2009). Horizontal 

accuracy in the range of 0.25 of pixel and better was achieved both for image blocks 

with 8 cm and 20 cm GSD. The vertical component resulted in an accuracy of 0.5 pixel 

and better.  

2.3 Airborne Laser Scanning (LiDAR) Systems 

 LiDAR systems have become the most important geospatial data acquisition technolo-

gy that has been marketed since the late 1990‟s (Axelsson, 1999). Installed on airborne 

and ground based platforms, these systems can collect explicit 3D data in large volumes 
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at an unprecedented accuracy. LiDAR systems utilize pulsed, single wavelength laser 

light to obtain the topographic information. They transmit very short pulses in the near 

infrared part of the electromagnetic spectrum for range measurement. 3D object position 

is determined with the help of an onboard GNSS/IMU unit. The accuracy of the range 

measuring instrument is very high but overall system accuracy decreases because of 

inter alia, the errors introduced during the georeferencing of the point cloud using 

GNSS/IMU data. The complexity of the required processing of the measured laser data 

is relatively modest, which has fueled the rapid proliferation of this technology to a va-

riety of applications (Shan and Toth, 2008) . 

Three main commercial suppliers of LiDAR systems are Optech International Inc., Lei-

ca Geosystems and Riegel. Amongst these, Optech and Leica are the major suppliers in 

terms of volume and their data has been used extensively for research (Shan and Toth, 

2008). Optech ALTM and Leica ALS both have similar scanning patterns and yield 

height accuracies of ± 15 cm at a flying height of 1200 m. Typically, a project area is 

covered in multiple strips by flying in opposite directions. Figure 4 shows a fixed wing 

aircraft capturing topographic details using LiDAR technology.   
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Figure 4: Airborne Laser Scanning System (Kao et al., 2005) 

 

Figure 5: Ground Pattern of Point Cloud from Different LiDAR Systems 

Figure 5 (a) shows the saw-toothed pattern over the ground that is produced by the Op-

tech ALTM series of laser scanners; and (b) shows the sinusoidal pattern produced by 
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the Leica ALS laser scanners (Shan and Toth, 2008). In both cases, oscillating mirrors 

are used as the scanning mechanism. Rotating mirror (Palmer scan) and fiber optic sen-

sors (TopoSys) producing different scanning patterns have also been developed (Shan 

and Toth, 2008).  

The Optech ALTM Gemini, latest in the ALTM series, and ALS50-II, latest in the ALS 

series from Leica Geosystems, both use multiple pulses in air to achieve a pulse rate of 

167 KHz and 150 KHz respectively. As the technology has advanced, the horizontal 

accuracy of LiDAR has also steadily improved from 1/1000 of the flying height (H) to 

1/5500 H (Shan and Toth, 2008). 

Most commercial systems can record multiple echoes from a single laser pulse, together 

with intensity information, which delivers detailed information about the reflectance 

characteristics of the surface in the laser wavelength.  Steinle and Vögtle (2000) explain 

the effects of different laser scanning modes on the accuracy of extracted building 

boundaries with respect to their size and this is because of the divergence of laser 

beams. First and last pulse data had been classified separately for building extraction 

and later compared with the reference models to determine planimetric and vertical ac-

curacy (Vögtle and Steinle, 2005). First and last pulse data had been useful in separating 

vegetation from buildings as difference between first and last pulse elevation is less over 

buildings when compared to vegetation but this is not true for building boundary re-

gions. 

LiDAR return intensity which provides another classification cue used for buildings and 

road extraction depends on the range and scan angles of the laser beam. Changes in fly-

ing height and topography of the scanned surface and scattering and absorption of laser 

photons in the atmosphere, mean that the return energy attenuated and cannot be used to 
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precisely describe the scanned surface (Ahokas et al., 2006; Höfle and Pfeifer, 2007; 

Kaasalainen et al., 2009). Radiometric calibration of LiDAR systems has also been per-

formed using ground targets, similar to digital cameras which facilitate the feature clas-

sification using intensity information (Kaasalainen et al., 2007). As an outcome of this 

research, EuroSDR initiated a research project to develop a practical LiDAR intensity 

calibration method, using natural targets in field or laboratory or by portable laser in-

struments during a laser scanner flight (EuroSDR, 2010). 

Modern LiDAR sensors are often also equipped with medium format digital cameras. 

This greatly helps in the manual classification of the captured point cloud or checking 

the accuracy of automatic and semi-automatic point classification techniques available 

in LiDAR data processing software. 

Laser pulse-based LiDAR systems capture multiple pulse reflections but commercial 

systems are now available that can digitize and record the received signal of the reflect-

ed laser energy, which allows for the so-called full-waveform analysis (Shan and Toth, 

2008). This offers the possibility of analyzing the waveform off line using digital signal 

processing methods in order to extract different surface attributes from the received sig-

nal based on the shape of the returning pulses. Figure 6 shows the shape of the complete 

waveform of the returned (reflected) pulse that can be used for further analysis. 
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Figure 6: Full Waveform Laser Pulse Reflection (Shan and Toth, 2008) 

The contribution of full-waveform data is less obvious in urban feature extraction than 

in woodlands since multiple pulses only appear when the laser beam hits building edges 

(Mallet and Bretar, 2009). However; this could be useful in removing vegetation seg-

ments from classified aerial images which is a big hindrance to successful building ex-

traction. 

Apart from commercial laser scanning systems as discussed earlier, some service pro-

viders have developed their own custom-built laser scanning system such as the Fast 

Laser Imaging Mobile Airborne Platform (FLI-MAP). FLI-MAP is the name given to a 

series of airborne laser scanning systems produced in-house by the Fugro surveying and 

mapping company (Fugro, 2010). FLI-MAP 400 is the latest in this series, and these 

systems are meant for low altitude corridor mapping as they are helicopter mounted. 

FLI-MAP 400 has a scan frequency of 150 KHz, can be used up to an altitude of 350 m 

and can record 4 returns per emitted pulse. It features twin small format digital still 

cameras, each producing images of the ground that are 11 megapixels in terms of their 

format size. FLI-MAP 400 also records the intensity information of the returning pulse.  

Figure 7 shows a helicopter equipped with a FLI-MAP system, which is mounted on the 
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frame that is attached to the underside of the aircraft; note also the two outrigger pylons, 

each supporting a GPS antenna (Shan and Toth, 2008). 

NRA in the ROI had to model the road environment on either side of roads and for this 

reason the corridor mapping systems were not considered economical, especially for 

urban areas, although, they provide high point density which is not achievable using 

fixed wing mounted LiDAR systems. For road safety and asset management helicopter-

based systems are useful, especially if they are combined with MLS, data for extracting 

building façades, noise barriers etc. (Rutzinger et al., 2009). 

 

Figure 7: Fugro FLI-MAP 400 Laser Scanning System (© Fugro) 

2.4 Mobile Laser Scanning Systems 

Mobile laser scanning has emerged as a new technology for capturing detailed road and 

rail track information. Speed of data acquisition and recording direct georeferencing, 

increased efficiency and productivity and accuracy of the resulting data which can be 

verified very quickly on site are the major advantages associated with this technolo-
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gy. These systems can be mounted on a variety of platforms, including cars, trucks, rail-

road vehicles and even boats (ILMF, 2010). 

Noise barriers, important for noise modelling are difficult to extract from aerial imagery 

and LiDAR datasets but may be more easily and reliably using MLS. MLS has advan-

tage over airborne sensors because of different representation of objects but in some 

cases they may also complement each other (Figure 8 (Riain and McCarthy, 2009)). For 

example building roofs not visible from street level can only be captured using airborne 

sensors. 

  

Figure 8: Oblique and Vertical Views of Road Environment 

Road markings, edges, surface type (concrete or bitumen), footpath, traffic, electricity 

and light poles have been extracted using these mobile system‟s data (Brenner, 2009; 

Kukko et al., 2009). These systems provide 3D point cloud, intensity of the returning 

pulse and terrestrial images captured at the same time, providing rich information for 

object extraction. 

Commercial mobile laser scanning systems are available from inter alia Riegl USA 

(VMX-250), Optech Inc. Canada (Lynx Mobile MapperTM) and StreetMapper Inc. UK 
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(StreetMapper 360). Figure 9 (a) shows a StreetMapper system mounted on a vehicle, 

(b) a scene from the video camera and (c) the laser scanner intensity data.  

 

Figure 9: StreetMapper MLS (Kremer and Hunter, 2007) 

Barber et al. (2008) estimated the planimetric (0.10 m) and vertical accuracy (0.03 m) of 

the StreetMapper system specifically for the national road mapping agencies by using 

check points measured using conventional surveying techniques and recommended its 

use for numerical modelling and decision making. Custom built mobile laser scanner 

systems have also been developed by Universities and research institutes such as NUI, 

Maynooth Ireland (Hunter, 2009), Finish Geodetic Institute (ROAMER MLS) (Kukko 

et al., 2009) and the National Geographic Institute, France (Soheilian et al., 2007). 

Building façade type information is important for noise mapping and this can only be 

extracted using ground based systems. Limitations of these MLS data for road applica-

tions might occur due to parked vehicles on the road side, road users and vegetation in 

front of buildings and noise barriers. 

[a] 

[b] [c] 
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Building footprints and vertical walls have been successfully extracted from MLS data 

(Hammoudi et al., 2009; Rutzinger et al., 2009) and this provides impetus for its use to 

detect noise barriers in this research. 

2.5 LiDAR vs. Photogrammetry 

High density LiDAR data provide explicit geometrical information of topographic ob-

jects and multispectral aerial images provide spectral information with high spatial and 

spectral resolutions. The human eye can easily recognize features and discontinuities in 

a point cloud (intensity and height visualization) and aerial images which is not the case 

with computers. However; manual extraction of this information is expensive and time 

consuming. Weidner and Förstner (1995) predicted the ever increasing demand of 3D 

GIS data and since then automatic or semi automatic object extraction is still a topic of 

significant research. 

To explore the potential of both LiDAR and multispectral image datasets, it is important 

to identify the advantages and disadvantages of both and their complimentary nature, 

which is discussed in the following sections (Baltsavias, 1999; Schenk and Csatho, 

2002). 

2.5.1 DSM Quality 

LiDAR provides dense 3D point clouds for DSM generation, which can also be generat-

ed using image matching techniques. The quality of the DSM generated using image 

matching techniques is poor because of object occlusions, shadows and matching errors 

especially over trees. However, LiDAR can penetrate trees and is not affected by sha-
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dows. Image or point cloud processing techniques used for DTM extraction from the 

generated point cloud are the same for LiDAR and photogrammetry. 

2.5.2 Surface and Geometric Properties 

Object texture such as roughness, variance of surface normals and geometric attributes 

such as local range variation, Gaussian and mean curvature are an important classifica-

tion cue for classifying buildings and trees in LiDAR data (Maas and Vosselman, 1999; 

Vögtle and Steinle, 2000; 2003). However; classification in aerial images is based on 

spectral signature. If both datasets are available then cues obtained from LiDAR can be 

used to improve image classification results. 

2.5.3 Edge Extraction 

Edges extracted from aerial images are sharp as compared to LiDAR. This is because of 

LiDAR points not necessarily covering object edges uniformly at all places. Interpola-

tion is generally performed for DSM generation to apply image processing techniques, 

which also results in rough edges. 

2.5.4 Georeferencing Quality 

LiDAR and airborne digital line sensors, both rely on direct georeferencing. However; 

LiDAR has high vertical and low planimetric accuracy as compared to line sensors. 

Information extracted from both sensors data can be used for the extraction of roads, 

buildings, trees and other object of interests.  



Literature Review 

— 31 — 

2.6 Object Extraction 

Algorithms for object extraction combine more than one cue to classify objects of inter-

est. Different object classification and extraction techniques can be categorized as (Shan 

and Toth, 2008). 

1. Rule or Knowledge-Based Classification 

Based on expert knowledge about the appearance of certain object classes in the 

data that are used to define rules by which the classes can be separated. 

2. Fuzzy Logic 

Fuzzy logic can be used to model vague knowledge about class assignment in 

order to avoid hard thresholds as in rule-based algorithms. This requires the de-

finition of membership functions for all shape cues and all classes, and their pa-

rameters have to be determined in a training phase. In a second step, these mem-

bership values are combined to obtain a final decision (Vögtle and Steinle, 

2003). 

3. Unsupervised Classification such as ISODATA or K-Means Clustering 

Aim at the detection of distinct clusters in feature space that correspond to ob-

jects having similar properties, without assigning these clusters to semantic 

classes such as building or tree. This assignment has to be done in a separate 

classification and is sometimes carried out interactively (Haala and Brenner, 

1999; Shan and Toth, 2008). 

4. Probabilistic Reasoning 
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Probabilistic reasoning aims at assigning an object,  , to a class,  , of a given set 

of classes,  , given the feature vector    of  . The optimum class      is chosen 

as the class maximizing the a posteriori conditional probability          of    

given the data vector   . These conditional probabilities are computed using the 

theorem of Bayes (Gorte, 1999). 

The Dempster-Shafer theory of evidence was introduced as an expansion of the 

probabilistic approach that can also handle imprecise and incomplete informa-

tion as well as conflict within the data (Lee et al., 1987; Klein, 1999). 

These techniques can be applied either to each pixel of the DSM, to each LiDAR point, 

or to each candidate region (Brunn, 2001; Walter, 2004; Bartels and Wei, 2006). The 

classification technique used is highly influenced by the type of data available and the 

definition of object classes (Pfeifer et al., 2007). 

The following sections provide a review of the application of above mentioned tech-

niques for extracting objects from images (satellite or aerial) and LiDAR or by the fu-

sion of both. These have been discussed in an order of top to bottom with respect to 

height (buildings, trees and then roads). Techniques targeted at the extraction of above-

terrain features have to distinguish between buildings and trees. The latter is extracted as 

a byproduct or vice versa.  

2.6.1 Methods for Building Extraction 

2.6.1.1 Building Extraction from Aerial Images 

Extraction of buildings from single aerial or indeed satellite, images presents considera-

ble difficulty because of occlusion, complex building geometry, vegetation and lack of 
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height information (Huertas et al., 1993; Shufelt and McKeown, 1993; Lin et al., 1994; 

Nevatia et al., 1997; Zhang, 1999; Muller and Zaum, 2005). Multiple overlapping im-

ages have been used for the classification of buildings by many researchers for estimat-

ing building heights using data-driven and model-driven approaches highlighting the 

necessity of third dimension (Fischer et al., 1998; Fradkin et al., 2001). 

Waser et al. (2010) assessed the value of digital image data for semi-automatic analysis 

of classified land cover and tree species and was carried out in the framework of 

theDGPF-project. Sensor specific strengths of ADS40-2nd, Quattro DigiCAM, DMC, 

JAS-150, Ultracam-X, and RMK-Top15 cameras and weakness for classification pur-

poses were presented and shortly discussed. The first approach was based on a maxi-

mum likelihood method in combination with a decision tree and produces 13 land cover 

classes. The second approach was based on logistic regression models and produces 

eight tree species classes. The accuracy assessment reveals that in both approaches simi-

lar classification results are obtained by all sensors. Some variations in the classification 

results are due to phenological differences and different illumination and atmospheric 

conditions since the image data was acquired at different dates. 

DSM‟s generation using image matching techniques has been researched for its useful-

ness for building extraction (Brunn and Weidner, 1997; Vosselman, 1999; Nardinocchi, 

2001) but results have been limited by the quality of image matching algorithms or 

shortcomings in aerial data such as shadows, poor quality of DSM over trees and several 

overlapping images were required. 

2.6.1.2 Building Extraction from LiDAR 

The detection of buildings from LiDAR is normally done is three steps. 
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1. DTM extraction from DSM to generate nDSM. 

2. Detection of building candidate regions. 

3. Evaluation of building candidate regions. 

LiDAR data shows the topographic details from which the laser pulse is reflected and 

represents its non selective nature. For object extraction, it is important to extract the 

ground which is also one of the most desired outputs of LiDAR and the first step in 

building extraction. 

The quality of DTM from LiDAR is comparable to those generated using terrestrial sur-

veying and better than aerial photogrammetry, especially under the trees. For this rea-

son, LiDAR has almost become an industry standard to generate high quality DTM. 

Extracting the ground manually is time consuming and expensive. Generally the time 

taken to classify a point cloud takes about 85% of the total project time (O‟Neill, 2009). 

Different techniques have been used from time to time, to extract the ground points au-

tomatically (Kilian et al., 1996; Kraus and Pfeifer, 1998; Vosselman, 2000). A surface is 

interpolated using different techniques such as Kriging, inverse distance weighting, 

nearest neighbour, minimum curvature, polynomial regression and moving average to 

apply the image processing techniques to the point cloud for DTM extraction. 

Different operations of gray scale mathematical morphology have been used to extract 

the terrain in the past research (Haala and Brenner, 1999; Morgan and Habib, 2002). 

Two basic operations are erosion and dilation and all others are built using these. These 

operations were previously built for binary images but have also been extended for gray 

scale images. Dilation and erosion are often used in combination. For example, the defi-

nition of a morphological opening of an image is erosion followed by dilation, using the 

same structuring element for both operations. The related operation, morphological clos-
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ing of an image, is the reverse. It consists of dilation followed by an erosion with the 

same structuring element (MathWorks, 2010). 

The selection of the shape and size of the structural element is crucial. It should be larg-

er than the size of the biggest building in the area. If a large sized building exists in un-

dulating terrain, this would result in some small hills being classified as buildings. That 

is why a coarse-to-fine strategy is required for terrain classification. 

Haala and Brenner (1999), Rottensteiner and Briese (2002) and Rottensteiner et 

al.(2005) used a rule-based algorithm to identify large buildings in the area after each 

morphological process. These building regions were retained for the next iteration and 

the process was repeated until the minimum size structural element was reached. 

Arefi and Hahn (2005) used geodesic dilation (morphological reconstruction) to sepa-

rate terrain and off-terrain points. It has certain unique properties as compared to the 

traditional morphological image processing (MathWorks, 2010). 

 

Figure 10: Repeated Dilations of Marker Image, Constrained by Mask 

1. The processing is based on two images, a marker and a mask, rather than one 

image and a structuring element.  

2. The processing repeats until stability; i.e., the image no longer changes. 
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3. The processing is based on the concept of connectivity, rather than a structuring 

element. 

Arefi and Hahn (2005) required a proper height threshold to classify all off-terrain 

points from non-terrain points. It was difficult to estimate in the hilly terrains. A few 

marker images were created with different thresholds to overcome this difficulty. The 

off-terrain objects were separated using local range variation (difference of local maxi-

mum and minimum) and area thresholds in each resultant image (Mask - dilated Marker 

image). The classification technique again depends upon the knowledge of the operator 

about the project area. 

Bartels et al.,(2006) developed a novel approach based on an unsupervised segmentation 

algorithm and skewness balancing to separate object and ground points efficiently from 

high resolution LiDAR point clouds using statistical moments. Instead of converting the 

point cloud to a grid, original point cloud was used. 

A comparison of different filtering algorithms for extracting DTM was provided by Si-

thole and Vosselman (2004) and  Keqi et al. (2005). The studies concluded that the suc-

cess of terrain extraction algorithm varies depending upon the complexity of the scene, 

point density, steep slopes, discontinuities, very small and large objects, trees and build-

ings on slopes and objects connected to the Earth (bridges). 

To find the actual height of the objects, a DTM has to be generated first and its eleva-

tions subtracted from DSM elevations. This new (normalized) surface model is called 

nDSM which represents the height of the objects relative to the terrain (Weidner and 

Förstner, 1995). 
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In the second step of building extraction from LiDAR data, buildings segments are gen-

erated using a height threshold value to separate low level objects. Standalone pixels 

and loosely connected pixels are removed using morphological operations. However; 

successive applications of the morphological operations can significantly alter the seg-

ment size and shape. 

The last step for building extraction is the classification of buildings and trees using the 

mean values of the classification cues in the candidate regions, such as surface rough-

ness, height variation, intensity etc. in combination with geometric attributes (size, 

shape, roundness etc) (Rottensteiner and Briese, 2002; Lu et al., 2006). 

LiDAR sensors can record multiple returns, and first and last pulse data has also been 

explored for differentiating between buildings and vegetation segments. However, large 

differences in first and last pulse data can also occur at the edges of the buildings. 

 

Figure 11: Laser Beam Interaction with Objects (Vögtle and Steinle, 2005) 

Figure 11 shows how a laser beam covers a tree standing beside a house. Dashed lines 

represent those parts of the laser signal that penetrate the tree. Dotted lines show reflec-

tions at the roof of the building while solid lines indicate reflections at leaves and 

branches (Vögtle and Steinle, 2005). This illustrates the complex return scenarios that 
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can occur during the interaction of the laser beam with topographic features. For DTM 

extraction, only last pulse data is used with an assumption that it generally belongs to 

the ground (Sithole and Vosselman, 2004). Depending upon the pulse used for object 

extraction, object size varies because of beam divergence. 

Intensity of the LiDAR sensor which is in the NIR region of the electromagnetic spec-

trum has also been used as additional information for the classification of buildings, 

roads and trees (Höfle and Pfeifer, 2007; Kaasalainen et al., 2009). Spherical loss, topo-

graphic and atmospheric effects influenced the backscatter of the emitted laser power in 

these studies, which led to a noticeably heterogeneous representation of the received 

power. 

2.6.1.3 Building Extraction by Data Fusion 

To complement the short comings in LiDAR data, multispectral images are used for 

fusion. Colour infrared imagery (Haala and Brenner, 1999) and NDVI (Yi Hui Lu et al., 

2006) have been applied for discriminating vegetation. Building shadows and water 

bodies where there is no reflection in LiDAR can be masked out using NDWI (Norma-

lized Difference Water index) (Chen et al., 2009), where 

                        

In addition to these data sources, additional shape parameters such as size, compactness 

and parallelism of long segment contour lines have been used for classification purposes 

(Vögtle and Steinle, 2003; Arefi, 2009). 

A height threshold is normally applied to an nDSM for removing small objects such as 

cars and low vegetation in order to improve building classification. It is similar to the 

application of a height threshold to LiDAR data as has been explained in the preceding 
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section. A rule-based technique which requires operator knowledge of the area and ma-

nual selection of many thresholds was used by Forlani et al. (2006). In order to avoid 

hard thresholds, fuzzy logic or adaptive boosting algorithm (AdaBoost) for the auto-

mated identification of classification rules was used by Zingaretti et al. (2007). 

The Dempster-Shafer theory of evidence (Shafer, 1976) for fusion has been used by 

Rottensteiner et al.(2004; 2005; 2007) and Lu et al. (2006).  Rottensteiner et al.(2004; 

2005; 2007) combined different classification cues obtained from LiDAR and aerial 

images using Dempster-Shafer theory for densely built up areas in order to extract 

buildings. It was concluded that considering only large sized buildings considerably 

improves the accuracy of the extraction process. Pfeifer et al. (2007) compared the 

Dempster-Shafer theory of evidence and a rule based classification technique developed 

in an open source GIS tool, and provided an overview of different building extraction 

algorithms from LiDAR data. It was concluded that an accuracy of 80% is achievable 

however; no method is fully automatic. 

Khoshelham et al. (2010) compared different building classification techniques namely 

Bayesian, Dempster-Shafer and AdaBoost, based on the fusion of LiDAR and multis-

pectral images on two different sites. By fusing multi sensor information, an overall 

accuracy of 90% was considered possible however; the accuracy varied depending upon 

the topographic details. 

Mayer (2008) provided a review of the different state- of-the-art techniques for automat-

ic object detection. Mayer emphasized that there are only a few practically successful 

systems in the market. The review concludes that the practical success of an automated 

objected extraction method must be backed up a theoretically informed background, 

statistical modeling, testing to clarify which approach will best suit a particular scenario 
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and how useful it will be for praxis and efficient user interaction. Drawing from the 

above, much needs to be done to make any automatic process acceptable to the industry. 

After the identification of building regions, building roofs are in most cases modelled 

using LiDAR data (Brunn and Weidner, 1997; Haala and Brenner, 1999; Maas and Vos-

selman, 1999; Rottensteiner and Briese, 2002; Suveg and Vosselman, 2004; Samadza-

degan et al., 2005; Madhavan et al., 2006). 

Shan and Toth (2008) explained methods for the extraction of building boundaries and 

roof reconstruction using data and model driven approaches to create prismatic and 

polyhedral models. Prismatic model as required by noise modelling was created in three 

steps: (1) building detection; (2) linear feature extraction; and (3) BSP-Tree (Binary 

Space Partitioning Tree).  

For noise modelling, a level of detail comprising a building boundary with a single 

height value is required. This equates to the LoD1 designation as part of the OGC Ci-

tyGML specification (Kolbe, 2008). Brenner (2005) compared different semi-automatic 

and automatic techniques for building reconstruction using LiDAR and aerial images. It 

was concluded that since the topic has been researched immensely over the last twenty 

years but still there are no fully automatic systems around. 

Vögtle and Steinle (2000) determined the planimetric (± 0.2-0.3 m) and height accuracy 

(± 0.05-0.10 m) of the extracted building models using LiDAR and multispectral im-

ages, and these are within the acceptable limit of noise modeling i.e. within one metre of 

the referenced 3D models. 
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2.7 Methods for Trees Extraction 

Trees are part of a DSM and must be classified in any case for the extraction of build-

ings and DTM. This also fuelled the research in vegetation studies using LiDAR data. 

Penetration of LiDAR through trees has made it possible to generate a DTM in forest 

areas which is not possible from photogrammetric and image matching techniques 

(Kraus and Pfeifer, 1998; Juha et al., 2000). 

EuroSDR conducted a research project evaluating the quality, accuracy and feasibility 

of automatic or semi-automatic tree extraction methods using high density laser scanner 

data and aerial images (Kaartinen and Hyyppä, 2008). Data sets from two sites were 

delivered to twelve participants and the results were analyzed with respect to tree loca-

tion, tree height, crown base height and crown delineation accuracy. 

Participants either used LiDAR or aerial images and very few used both datasets. The 

results showed that the extraction method was the main factor on the achieved accuracy. 

When the laser point density increased from 2 points to 8 points per m2, the improve-

ment in crown base height and crown delineation accuracy was marginal, but in some 

methods the accuracy of the tree location and especially the tree height determination 

improved. 

Only two participants had used the hybrid methods, where the height was obtained from 

laser data and crown delineation (and species) from aerial images. It was impossible to 

give a well grounded conclusion, if and by how much the results can be improved by 

integrating laser scanner data and aerial data. However; it was concluded that more em-

phasis should be put on the process, integrating features from laser scanning and aerial 
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images. On the other hand, full waveform LiDAR data capturing sensors are also gain-

ing popularity for vegetation studies. 

NRA, Ireland is not interested in trees and vegetation extraction as these have no effect 

on noise propagation. However; these objects need to be classified for successful build-

ing extraction and are a byproduct of the extraction process which can be very useful for 

many other applications. 

2.8 Methods for Road Extraction 

2.8.1 Road Extraction from Images 

Mayer et al. (2006) presented a review of different road extraction techniques used on 

the aerial and satellite images provided by EuroSDR in a collaborative research project. 

They assert that as per industry standards, the quality in terms of correctness and com-

pleteness should be more than 70% and 85% respectively to render any automatic ap-

proach acceptable. If a method or developed algorithm does not meet these accuracy 

measures, extensive manual work is required. In such a case, it might be preferable to 

digitize the objects manually. The study found that the road recognition and reconstruc-

tion results vary considerably depending upon the complexity of the scene. Meyer and 

colleagues conclude that it is possible to extract roads with the required accuracy meas-

ures in terms of completeness and correctness which can be useful for practical applica-

tions. However; this is achievable only for scenes with a limited complexity. 

Gerke (2006) developed a geometric-topologic relationship model for roads and their 

surrounding objects (context objects, such as rows of trees) to support the quality as-

sessment of road vector data as they may explain gaps in road extraction. The extraction 
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and explicit incorporation of those context objects contributed to an efficient assessment 

of a given road database. Ravanbakhsh and Fraser (2009) extracted roundabouts using 

existing topographical databases and active contour model (such as ziplock snakes)  

from high resolution aerial images. Baumgartner et al. (2002) presented a system for 

semi-automatic road extraction and study its efficiency compared to manual plotting. 

The system employs a road tracking algorithm based on profile matching. Only 50% 

reduction in the plotting time was possible for rural scenes where as the developed tool 

was not feasible for complex urban scenes. 

With the increase in spatial resolution of aerial and satellite images, roads are no longer 

represented as a line feature. For many applications such as car navigation both edges of 

the roads are needed. Aerial photogrammetry has the inherent problem of shadow, oc-

clusions due to trees and buildings and parked cars etc. The automatic extraction of 

roads is a challenging task particularly for the high resolution data and a lot still needs to 

be done to be able to generate acceptable results. 

2.8.2 Road Extraction from LiDAR 

Road extraction only from LiDAR is still in its infancy. However; LiDAR DSM gener-

ated at a point spacing of 1 m is considered suitable for the extraction of road borders  

(Shan and Toth, 2008). LiDAR data is not affected by shadows and occlusions and can 

penetrate trees. A DTM built using this data in forest areas is comparable in accuracy to 

a DTM prepared by field surveying. Roads are part of the DTM which is used for road 

borders and center line extraction along with the intensity information.  

Clode et al. (2007) used a phase coded disk approach to extract 2D roads from classified 

road pixels. The algorithm achieved a topological completeness of 87% and a topologi-
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cal correctness of 73%. Lane markings, intersections and roundabouts present additional 

challenges for road extraction in complex scenes. 

Vector data has also been used in combination with LiDAR or aerial imagery for ex-

tracting road geometry and updating the database (Hatger and Brenner, 2003; Zhang, 

2004). 

2.8.3 Road Extraction by Data Fusion 

LiDAR data has been used as supplementary information for road extraction from aerial 

images (Fortier et al., 1999; Hu et al., 2004). Roads have very specific reflectance prop-

erties in the wavelength of a LiDAR pulse because of the uniform and consistent nature 

of road material which is not the case with buildings. A road surface is defined by 

means of a homogeneity measure and break lines are described as linear structures that 

show discontinuities perpendicular to their shape (Brügelmann, 2000). Classification 

cues and techniques used for roads are mostly the same as used for buildings such as 

using NDVI for building and roads classification. Specific geometric parameters of 

roads have made shape parameters highly appropriate for road reconstruction. Multis-

pectral images are also used to detect cars in the parking lots which will help in differen-

tiating roads from parking areas as both have the same intensity and surface characteris-

tics but varying shape parameters (length to width ratio). 

2.8.4 Road Extraction from Ground Sensors 

Extraction of road parameters which are important from a car navigation and a noise 

perspective has been done using ground based laser scanning systems in the recent 
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years. These sensors provide detailed 3D information from an orthogonal perspective 

not available from airborne sensors.  

Tao et al. (1998) carried out automatic reconstruction of road centerlines from mobile 

mapping image sequences. National Center for Geocomputation (NCG) at the NUI, 

Maynooth in cooperation with private partners had also developed such a system for 

asset management, road safety and other applications (NCG, 2008). Each object is digi-

tized or identified manually and its position and other related attributes are stored in a 

GeoDatabase. Large numbers of terrestrial images are required to cover the area on both 

sides of the roads. Automatic object extraction from these stereoscopic images is also 

fuddled by the rich information content of these images. 

Road centerline extraction is not an objective of this research as this is already available 

from OSI. These centerlines represent the position of the source of noise pollution. Ad-

ditional attributes are also added to these lines such as traffic flow information and the 

type of traffic that can use this road. In multilane or dual carriage way each lane is mod-

elled separately. The mentioned geospatial data capturing technologies have the poten-

tial to extract road surface type, road geometric parameters and model the road envi-

ronment. 

2.9 Accuracy Assessment 

Methods used for the accuracy assessment of object extraction techniques vary and are 

of fundamental importance in the evaluation of the developed algorithms. The same 

applies to this research making it necessary to thoroughly evaluate the results before 

deeming them acceptable.  
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Accuracy assessment method can be pixel or object-based depending upon the data 

(available a priori or self generated) for verification. Rutzinger et al. (2009) utilized dif-

ferent classification accuracy assessment methods such as pixel-based, building centroid 

and building overlap to evaluate the success of different building extraction algorithms. 

Completeness and correctness parameters were determined using a method developed 

by Heipke et al. (1997). It was found that the results can  vary up to 30% depending 

upon the method used and that different evaluation methods should be used simulta-

neously (Pfeifer et al., 2007; Rutzinger et al., 2009). These parameters have also been 

used to evaluate other object extraction algorithms developed for roads and trees. The 

accuracy method used to compare the extracted and reference objects can vary slightly 

however; the parameters used for reference i.e. completeness and correctness, generally 

remain the same. 

The completeness is the percentage of the reference data which is explained by the ex-

tracted data. The correctness is the percentage of the extraction, which is in accordance 

with the reference. 

Other measures such as quality, rank distance and branching factor have also been used 

in the research to show the success of object extraction. These are basically derived 

from completeness (compl) and correctness (corr) as can be seen from the formulae be-

low. 

        
          

                     
 

                
            

 
 



Literature Review 

— 47 — 

                  
                       

          
 

Correct registration of extracted objects and reference data is very important when using 

pixel based accuracy assessment as compared to area overlap or building centroid me-

thods. In the area overlap method, different classes of reference objects are identified 

depending upon the percentage overlap with respect to the extracted buildings. To call 

the extraction successful the percentage overlap must be above a preset threshold of 

70% (generally). In the building centroid method, the centroid can lie outside the build-

ing and needs to be corrected before comparing it with the reference data.  

2.10 Change Detection 

There is a requirement under the noise directive that the noise maps be updated every 

five years. It is not feasible for NRA Ireland to acquire, process and analyze new data 

every five years for noise modelling. A method is required that can automatically identi-

fy the changes by comparing the new dataset with the previously acquired datasets or 

comparing previously extracted objects with the new dataset. Jensen (2007) analyzed 

various change detection algorithms and summarized their compositions. It was con-

cluded that the use of expert systems to detect change automatically in an image with 

very little human interaction is still in its infancy.  

Champion et al. (2009) reported the outcomes of a EuroSDR test undertaken to find out 

the building change detection approaches and their success rates using three different 

types of datasets i.e. satellite images, aerial images and LiDAR. It was concluded that 

change detection methods can be influenced by the methodology used, type and spatial 

resolution of input data and the complexity of the scene. 
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A simple difference between two DSMs acquired at two different times can show where 

changes might have occurred (Murakami et al., 1999). However; it will also reflect 

changes that occurred because of vegetation growth which might not be of interest to the 

NRA. The same is also true for simple image differences or comparing different spectral 

bands with one reference image for change detection. The cross correlation method re-

quires classified objects, extracted from the data acquired on date 1 to be compared with 

the data acquired at date 2, without classifying it. Change detection accuracy will then 

be dependent upon the accuracy of the classified objects in data set pertaining to date 1. 
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3 Data 

In order to assist in the development and testing of an efficient object extraction method, 

airborne sensor (image and LiDAR) data was provided by the OSI initially for the Sligo 

area and later for Maynooth and Leixlip towns and the road connecting (R148) them. 

Sligo is located in the north west of the ROI (Figure 12). The site of the second data set 

lies at a distance of 25 km from Dublin (Figure 13) which is on the east coast. The study 

areas are so selected as both aerial and LiDAR data should be available.  

  

Figure 12: Data Set Locations in the ROI 

 

Figure 13: Second Data Set Location 



Data 

— 50 — 

The Sligo data covers the town centre, which features a river flowing through it, a 

coastal area, residential and industrial buildings, a national highway, a number of 

bridges, trees, forest patches and low vegetation with terrain height variation of ap-

proximately 65 m. The second data set also comprises similar characteristics, however; 

it also includes the MLS data available for the road connecting the towns of Maynooth 

and Leixlip.  

The details of the characteristics of the available airborne and ground based sensor data, 

areas of interest and other data sets available or acquired during the course of this re-

search are given below. 

3.1 Aerial Images 

3.1.1 Sligo Area 

Coverage Extent 6.5 km * 4.5 km 

Nadir CCD Lines Red, Green, Blue 

Panchromatic Forward and Backward Looking (28°,-14°) 

NIR Forward Looking (18°) 

Sensor Pixel Size 0.0065 mm 

Focal Length 62.7 mm 

Number of Strips 3 

Flying Height 1447 m 

Ground Sampling Distance 0.15 m 

Table 1: Characteristics of ADS40 Sensor during Sligo Data Acquisition 
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High resolution, multispectral aerial images were captured by the OSI using Leica 

ADS40 second generation sensor in the last week of March 2007. Flight characteristics 

are listed in Table 1. 

The ADS40 sensor is configured with individual CCD lines for recording R, G, B and 

NIR data. It also has two staggered CCD lines for recording panchromatic data with a 

displacement of 0.5 pixels, therefore reducing the ground sampling distance to half as 

compared to other channels (Sandau et al., 2000). However; the OSI used only one CCD 

line data as part of their workflow. The second CCD line data was either not used or 

might have been permanently switched off.   

The coordinate reference system used throughout this research was ITM (Irish Trans-

verse Mercator) and its parameters are listed in Table 2 (Morgan and Bray, 2000). As a 

result, all extracted objects can easily be incorporated into other OSI databases and in 

the spatial analysis software used for noise modelling.  

Projection Transverse Mercator 

False Easting 600,000.000 m 

False Northing 750,000.000 m 

Central Meridian 8° West Longitude 

Scale Factor 0.999820 

Latitude of Origin 53.5° North Latitude 

Linear Unit 1 metre 

Datum ETRS89 

Table 2: Coordinate Reference System Used Throughout the Research Project 

Two areas were selected from the Sligo data which are referred to as the development 

and Test Area-1 in this research. These areas are marked in Figure 14 showing the full 
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extent of available aerial images for Sligo. Each area covers approximately 3 km2 and 

the Test Area-1 includes parts of all the three image strips. The development area was 

used for developing the object extraction method which was later tested objectively in 

the Test Area-1 to evaluate its performance. 

 

Figure 14: Sligo Project Area 

3.1.2 Test Area-2 (Maynooth and Leixlip) 

The second project site which includes the towns of Maynooth and Leixlip and the road 

connecting them is designated Test Area-2 from here onwards. The developed method 

was retested here as was done in Test Area-1. The Figure 15 shows a single strip of ae-

rial images (RGB) available for the Test Area-2 acquired using ADS40 sensor in June 

2009. The flight characteristics are similar to the Sligo dataset (Table 1) but lack NIR 

Test Area-1 

 

Development Area 
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imagery. The red polygon in Figure 15 shows the area (10 km2) for which LiDAR data 

is also available. It covers 500 m on either side of the road (R148), a necessary condi-

tion required for noise modelling. This presents a more realistic scenario as compared to 

the development and the Test Area-1. The data was captured in June 2009 and provided 

to the DIT in March 2010 for testing the developed method. 

 

Figure 15: Test Area-2 ADS40 Data 

3.2 LiDAR Data 

3.2.1 Sligo Area 

The LiDAR data was captured by the OSI in May 2007 using a Leica ALS50-II sensor. 

The flight characteristics of the ALS50-II sensor data used in the Sligo area are listed in 

Table 3. High resolution data is only acquired when it is specifically needed such as for 

mapping transmission lines and fences but such data was not available for the Sligo 

area. ALS50-II sensor records multiple returns if the difference in elevation between 

them is more than 3.5 m.  It also records the intensity of the returning pulses (single and 

multiple) with a radiometric resolution of 8-bit. Eight flight strips covered the entire 

Maynooth 

Leixlip 
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project area. Raw LiDAR data was provided in ITM with orthometric height above the 

Malin Head datum.  

Figure 16 shows the full extent of available LiDAR data for Sligo, two selected tiles for 

processing and the flight trajectories. Figure 17 shows a subsection of aerial images 

overlaid by the LiDAR DSM tiles. 

Specification Data 

Flight Altitude 1242 m 

Pulse Frequency 69 Hz 

Wavelength of the Laser 1064nm (near infrared) 

Measurement Density ~ 1 to 1.5 points per m2 

Swath Width 800 m 

Scan Rate 39.4 Hz 

Field of View (FOV) 36° 

Table 3: ALS50-II Sensor Flight Characteristics 
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Figure 16: LiDAR Strips and Tiles Selected for Processing 

  

Figure 17: (a) Development and (b) Test Area-1(DSM Overlaying Imagery) 

Development Area 

Test Area-1 

[a] [b] 
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3.2.2 Test Area-2 

 

Figure 18: Four LiDAR Strips Covering Test Area-2 

Figure 18 shows available LiDAR data and flight trajectories for the Test Area-2, ac-

quired in July 2009. Figure 19 shows a subset of aerial images overlaid by the LiDAR 

DSM selected for further processing. 

 

Figure 19: LiDAR DSM Overlaying Aerial Images (Test Area-2) 

Maynooth 

Leixlip 
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3.3 MLS (Mobile Laser Scanning) Data 

The MLS data is only available for the national road (R148) connecting Maynooth and 

Leixlip in the Test Area-2. The data was acquired in both directions (Maynooth to Leix-

lip and back) by an experimental MLS system (XP-1) developed by the NUI, Maynooth. 

The density of the data is approximately 100 points/m2 which happens to be greater in 

the areas with overlapping point clouds. The onboard Riegel LiDAR sensor also records 

the intensity of the reflected laser pulse. 

There is a mismatch between the data acquired in either direction because of calibration 

issues between the vehicle and the mounted sensors (Figure 21). This makes it difficult 

to utilize the data captured in both directions simultaneously. For this reason, only the 

data captured from Maynooth to Leixlip has been used in this research as far as the Test 

Area-2 is concerned. The data captured from Leixlip to Maynooth was disregarded be-

cause it lacked objects of interest (boundary walls).  

 

Figure 20: MLS Data (Test Area-2) 

Figure 20 shows MLS data overlaying aerial images for the road (R148) between two 

roundabouts close to Tesco and Intel. 

Maynooth 

Leixlip 

MLS Data 
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Intel 
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Figure 21: MLS Data (Intensity Image) 

3.4 Ground Truth Data 

3.4.1 Sligo Area 

The ground truth data was acquired in two stages. In the first stage, static GPS technique 

(2 base stations plus rover) was used while in the second stage, Network RTK system 

was employed to acquire independent GCPs. The network RTK provides a real-time 

solution and is much faster. The points acquired in the static GPS survey were so se-

lected that these were also identifiable in the aerial images and distributed over the 

whole project area. These points were used for determining the direct georeferencing 

quality of the aerial images and later for aerial triangulation. These points were also 

used to determine the height accuracy of the LiDAR DSM and the DSM generated from 

image matching. 

A large number of 3D points were acquired using Network RTK system. These points 

were used for determining the accuracy of LiDAR point cloud and setting the orienta-

Mismatch between 
Overlapping Points 
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tion of the reflectorless Total Station used for measuring building heights. These build-

ing heights were later compared with the extracted building heights. 

3.4.2 Test Area-2 

GCPs were also acquired in Test Area-2 using the Network RTK system and building 

heights were measured using Total Station as was done in Sligo. These points were used 

for the vertical accuracy assessment of LiDAR point cloud and the measured building 

heights were compared with the extracted ones.  

3.5 OSI Vector Data 

Vector data was also provided by the OSI for the Sligo project area to check the accu-

racy of the developed object extraction method. This vector data included, buildings, 

road centreline and the road edges. This data corresponded to the year 2009, whereas the 

aerial and LiDAR data corresponded to the year 2007. The vector data was subjected to 

manual editing to make it similar to the aerial images from 2007, before using it for ac-

curacy assessment. However; the vector data was used as such in the area overlap 

method for change detection. This was done by comparing it with the extracted objects 

from the airborne data. It highlights those features which are new or were modified or 

demolished in two years time. 

The buildings were digitized as line features in the OSI vector data. Whereas extracted 

buildings were polygons. Multipart digitized building boundaries in the OSI data were 

merged together to create a single building polygon. 
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The vector data was also available for the Test Area-2 to reconfirm the accuracy of the 

developed method. Since the LiDAR and aerial images were also captured in the same 

year i.e. 2009, no significant differences were found.  
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4 Preliminary Data Processing and Accuracy 

Assessment 

The steps performed in the processing of raw LiDAR and multispectral data acquired 

using ALS50-II and ADS40 sensors are discussed in detail in this chapter. The expected 

accuracies as per sensor specifications for particular flight characteristics are evaluated 

using independent GCPs, acquired at different stages during the course of this research. 

The DSMs generated using image matching techniques are compared with the LiDAR 

DSM to evaluate its potential for DTM extraction, orthophoto generation, object extrac-

tion or as a replacement for LiDAR. A method is suggested using common points in the 

LiDAR DSM and the new DSM generated by image matching after aerial triangulation 

to ensure proper registration in case the data from different airborne sensors is required 

to be fused. 

4.1 Surveyed Reference Data 

Performance Specifications Accuracy 

Static 
Horizontal: 3 mm + 0.5 ppm (x baseline length) 

Vertical: 5 mm + 0.5 ppm (x base length) 

RTK 
Horizontal: 10 mm + 1.0 ppm 

Vertical: 15 mm + 1.0 ppm 

Table 4: TOPCON System Specifications 
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To check the direct georeferencing quality of LiDAR and aerial images and to execute 

aerial triangulation, it was considered necessary to acquire GCPs having an accuracy 

higher than both datasets. In order to achieve that, a survey was planned for Sligo to 

acquire 12 static GCPs which were also visible in the available ADS40 aerial images. A 

TOPCON system was used which employs both GPS and GLONASS to determine the 

3D coordinates of a point. The horizontal and vertical accuracies of TOPCON system in 

the static and Network RTK mode are listed in Table 4. 

4.1.1 Ground Control Points 

The survey was conducted on a day (14th November, 2008) when there were at least 6 

satellites available at all times during the data acquisition (Figure 22). 

 

Figure 22: Satellite Availability 

The base station was set up at an already known point, fixed by the OSI. A second, ac-

tive station, point also exists in the project area at a distance of 555 m from the base 
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station. The active station continuously acquires data which is available for download at 

hourly bases from the OSI website. Since the length of the base line was very small, it 

was considered necessary for the horizontal and the vertical accuracies to lie approxi-

mately in the range of 3 to 5 mm. The data was collected at each point for a duration of 

15 minutes. Adjustment of the acquired data was performed by using the known coordi-

nates of the base station. The coordinates of other acquired points were computed using 

Topcon software (Table 6). The coordinates of the known OSI active station were also 

compared with the resulting coordinates and these are presented in Table 5. 

Base Length Stations Easting 
(m) 

Northing 
(m) 

Height 
(m) 

Base Station Fixed 569322.817 836027.232 15.217 

OSI Active 
Station 

Known (1) 569830.044 836248.600 48.359 
Computed (2) 569830.044 836248.603 48.384 
Difference (2-1) 0 -0.003 -0.025 

Table 5: Comparison of Active GPS Coordinates 

No. GCPs 
Information 

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 
1 OSI Active Station  569830.044 836248.603 48.384 
2 Base Station 569322.817 836027.232 15.217 
3 GCP 569943.600 836644.749 3.341 
4 GCP 569901.017 836682.820 3.658 
5 GCP 570474.601 837218.653 30.020 
6 GCP 569612.802 837569.547 11.210 
7 GCP 569525.948 837455.615 13.275 
8 GCP 567393.578 836575.852 6.035 
9 GCP 566440.196 836253.136 7.437 
10 GCP  567314.060 835335.233 31.616 
11 GCP 568402.124 834739.729 33.359 
12 GCP 568963.228 834940.388 31.061 
13 GCP 569382.672 835562.79 17.854 
14 GCP 569591.253 835727.047 9.651 

Table 6: Computed Coordinates of Acquired GCPs in the Sligo Area 
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Figure 23: Ground Control Points Location 

Another survey was conducted on 24th February 2010 to acquire more GCPs to verify 

the LiDAR point cloud quality over flat areas such as parking lots and to measure build-

ing heights using reflector less total station (Leica 1200). A mobile phone featuring 

Bluetooth was used as a medium of communication between the receiver and the remote 

server. The remote server constantly acquires RTK data from the active stations fixed by 

the OSI. The coordinates are computed and transferred back to the man held receiver. 

Figure 24 shows the basic components of Network-RTK technology. The planimetric 

and vertical accuracies of this system as reported by the OSI are 3 cm and 7 cm respec-

tively (Bray, 2004). These were achieved in the said survey, using the TOPCON system. 

At the time of the first survey, the DIT did not have the Network RTK system available 

to them, otherwise more points would have been acquired the first time. 
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Figure 24: Network-RTK Configuration (Bray, 2004) 

GPS 
Points Mode 

Coordinates 
∆E ∆N ∆H 

E (m) N (m) H (m) 

1 Static 569943.600 836644.749 3.341 -0.008 -0.001 -0.067 
Network-RTK 569943.608 836644.750 3.408 

2 Static 569901.017 836682.820 3.658 0.022 0.017 -0.049 
Network-RTK 569900.995 836682.803 3.707 

3 Static 570474.601 837218.653 30.020 -0.004 0.012 -0.043 
Network-RTK 570474.605 837218.641 30.063 

4 Static 569525.948 837455.615 13.275 0.016 0.015 -0.07 
Network-RTK 569525.932 837455.600 13.345 

Table 7: Accuracy Comparison of GCPs Acquisition Techniques 

Four points were measured using the Network RTK system for which the coordinates 

were also available from the previous survey. These points were used to compare Net-

work RTK with the static method of surveying. Table 7 shows the difference between 

the GCP coordinates determined in the two surveys. The maximum error in Easting, 

Northing and Height is 2, 1 and 7 cm respectively. This provides necessary confidence 

in measuring spot heights using the Network RTK system at many locations. It takes a 
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couple of seconds to measure the coordinates once the Network RTK system is properly 

setup. Whereas, the static method of surveying requires two base stations to be set up 

and the time required at each location surpasses at least 10 minutes.  

4.1.2 Reference Building Height Data 

The orientation of total station for building height measurement was also done using 

point coordinates measured by the Network RTK system. Points were measured below 

the building roofs to calculate building heights. The measured heights (Table 8) were 

used to analyze the estimated building heights using the developed method of building 

extraction. The analysis of estimated and measured building heights is provided in chap-

ter 7. 

 Building 

Roof Ridge 
Height 

(m) 
 (1) 

Ground  
 Height 

(m) 
 (2) 

Building  
Height  

(m) 
 (1-2) 

1 17.83 8.96 8.87 

2 21.13 9.09 12.04 

3 19.16 11.20 7.96 

4 15.79 4.39 11.40 

5 13.63 3.60 10.04 

6 18.20 10.14 8.07 

7 18.67 10.44 8.23 

8 19.13 10.45 8.68 

9 18.11 10.32 7.79 

10 18.09 9.98 8.11 

Table 8: Building Heights in the Development Area 

4.2 LiDAR Data Processing 

TerraScan and TerraMatch software from Terrasolid Inc. were used to process eight 

LiDAR aerial strips. The process starts by detecting low points or below surface points 

and points in the air using TerraScan. Flight trajectories were used in TerraMatch to find 
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the differences between overlapping point clouds in adjacent strips over areas where the 

slope was high or in opposite directions. Such differences occur because of the interpo-

lation required to geo-reference LiDAR point cloud using GPS/INS. These observed 

differences are translated into correction values for heading, roll and pitch which apply 

for the whole data set (Soininen, 2004). 

Corrections Value 
Heading Shift -0.031 
Roll Shift -0.0141 
Pitch Shift 0.00277 
Mirror Scale 0.00057 

Table 9: LiDAR Strip Adjustment 

Table 9 shows the correction values determined from the whole Sligo LiDAR data. Af-

ter applying these corrections, differences in height values (dz) were computed at the 

overlapping point cloud in the adjacent LiDAR strips to identify any errors that re-

mained after the adjustment process. Expected height and planimetric accuracies from 

ALS50-II sensor data are shown in Figure 25, which are dependent upon the flying 

height and the position of the point with respect to nadir (Leica Geosystems, 2007). The 

maximum error in dz was ± 0.025 m for strip 4 and 5 which is well below the sensor 

specification for the used flying height (Figure 26). This shows that all the strips 

matched perfectly. Overlapping points were deleted by restricting the FoV (Field of 

View) to 16° to ensure uniform point densities. 
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Figure 25: Leica ALS50-II Product Specifications 

 

Figure 26: Height Shifts Computed in Adjacent LiDAR Strips 
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LiDAR data provided for the Test Area-2 was already pre-processed. Therefore, no strip 

adjustment was performed. However; the points overlapping in the adjacent strips were 

filtered using flight trajectories in TerraScan to ensure uniform point density. 

4.2.1 DTM and nDSM Generation 

The DSM contains ground and non-ground objects and these must be separated in order 

to extract a DTM which is used subsequently for nDSM (DSM-DTM) generation. Be-

fore starting the ground extraction process, it is important to detect and remove errors in 

the point cloud such as very low points (water bodies) or reflections in the air (birds or 

dust particles). TerraScan software was used to remove such points.   

a. Low points (negative height): For each point a neighbourhood is considered and 

the low points are the points with a height value less than a pre-defined threshold 

below all other points within a given    distance. However; this routine can also 

search for groups of low points where the whole group is lower than other points 

in the vicinity. 

b. High points: A point is classified as high points, if there are less than the given 

number of neighbouring points (1-5) within a 3D search radius (2-10 m).  

After removing low and high points, DSMs were generated for the development and the 

Test Area-1 & 2 using linear interpolation, which applies the first-order polynomials for 

each triangle area. The maximum TIN (Triangulated Irregular Network) linking distance 

was specified at this stage. A higher value will fill small gaps where either no LiDAR 

data is available because of the earlier filtration process or the LiDAR pulse is absorbed, 

such as in water bodies. Sampling was done using the nearest neighbour method. The 

pixel size selected for each DSM was 0.5 m. 
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DTM was extracted using TerraScan software which has almost become an industry 

standard. Figure 27 shows the inputs required for DTM extraction which are explained 

in the following paragraphs. 

The maximum building size is required in the tile selected for processing which defines 

a starting grid size. Low points in these grids define the seed points for terrain extrac-

tion. Triangles in this initial model are mostly below the ground with only the vertices 

touching the ground. The routine then starts moulding the model upwards by iteratively 

adding new laser points to it. Each added point makes the model follow the ground sur-

face more closely (Soininen, 2010).  

 

Figure 27: Parameters used for Terrain Extraction in TerraScan 

Iteration parameters (for classification maximums in Figure 27) determine how close a 

point must be to a triangle plane for being acceptable as a ground point and added to the 

model.  Terrain angle parameter restricts the maximum allowed angle in the generated 
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DTM. Iteration angle is the maximum angle between a point, it‟s projection on triangle 

plane and the closest triangle vertex. Iteration distance parameter makes sure that the 

iteration does not make big jumps upwards when triangles are large. This helps to keep 

low buildings out of the model (Soininen, 2010). Figure 29 and Figure 30 show the ex-

tracted DTMs and nDSMs in the selected development and the Test Area-1 and 2.  

Negative heights in the DSM and DTM occurred due to interpolation were set to zero. 

MATLAB          operation was used to fill holes of any size by interpolating height 

from the neighbouring pixels in the generated DSM and DTM.  

 

Figure 28: Results of MATLAB Hole Filling Operation (a) RGB Image (b) Hole in 

the DSM Before (c) After Filling 
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Figure 29: (a) Interpolated DSMs (b) Extracted DTMs and (c) nDSMs in Devel-

opment (Left) and Test Area-1 (Right) Respectively  

[a] 

[b] 

[c] 

[a] 

[b] 

[c] 
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Figure 30: (a) Interpolated DSM (b) Extracted DTM and (c) nDSM in the Test 

Area-2 

[a] 

[b] 

[c] 
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4.3 ADS40 Data Processing 

Figure 31 illustrates the process involved in the acquisition and processing of ADS40 

sensor data. GPro software from Leica Geosystems is used by the OSI for processing 

ADS40 data. It is a step by step procedure which should be followed to generate L1 

(plane rectified) images from L0 (raw) images. Planimetric and vertical accuracies de-

pend upon the accuracy achieved in the processing of GPS/INS. This is only acceptable 

for projects requiring medium accuracy. In order to achieve higher accuracies, triangula-

tion of the acquired image strips with GCPs is necessary. 

 

Figure 31: Direct Digital Workflow (Tempelmann et al., 2000) 

The GPS and INS data, which is measured at high rates during image acquisition, yields 

a continuous position and attitude of the ADS40 sensor. During the triangulation proc-

ess, this continuous stream of data is updated based on the principles of least squares 

bundle adjustment (ORIMA). “Orientation fixes” at regular intervals along the flight 

path of the push broom scanner are used (Figure 32 (a)) (Hinsken et al., 2002 ) . The co-

linearity equations, which describe the relationship between a point in the ground coor-
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dinate system and in the corresponding image, are generalised such that every point in 

the ground system falls between the two orientation fixes (Figure 32 (b)).  

   

Figure 32: Orientation Fixes of GPS/INS Data (Line Scanning Camera) 

                                                               

                                                               

Given above are the generalized co-linearity equations for image coordinates x, y of 

point i.   is the focal length of the camera and   is the GSD which varies with flying 

speed. These equations are a function of the orientation fixes k and k+1. 

Raw ADS40 sensor data of the Sligo project area which consists of three flying strips 

was processed in-house using GPro to utilize the NIR channel which is not processed as 

part of the OSI workflow. It also provided the opportunity to assess the direct georefer-

encing quality and later to perform aerial triangulation on ADS40 sensor data. However; 

for the Test Area-2, only the pre processed single aerial strip was provided which lacked 

the NIR channel because of the earlier mentioned reason. This also made it unusable to 

assess direct georeferencing quality.  

[a] [b] 
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4.4 Accuracy Assessment of ADS40 Images and Triangulation 

The captured GCPs, easily identifiable in stereoscopic panchromatic images were used 

for evaluating the horizontal as well as the vertical accuracy of ADS40 images. LiDAR 

has a high vertical and a low planimetric accuracy. Whereas, the case is opposite for 

ADS40 digital sensor. It is therefore considered necessary to evaluate the data from both 

airborne sensors prior to object extraction, especially when both data sets need to be 

fused. The GCPs were marked manually in the aerial images using LPS software and 

their corresponding ground coordinates were recorded and compared with the coordi-

nates measured during the field survey (Table 10).  

 

Table 10: Difference between 3D Image and GPS Coordinates 

Table 11 shows the RMSE, Mean and standard deviation of 11 points used for compari-

son. Planimetric and vertical accuracy is about 0.30 and 0.45 m respectively which is 

still acceptable for projects requiring medium accuracy as well as for noise modelling 

and lie within the sensor specification limits of the used flying height (Geosystems, 

2007). In the second run, 8 GCPs were used to calculate RMSE value at 3 check points 

and    using ORIMA. Three image strips were divided automatically into 72 images 

depending upon the GPS/INS position fixing in three flight profiles. Standard deviation 
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allowed in GCPs‟ measurement was set to 0.005 m for E, N and H. The RMSE for 

check point differences is tabulated in Table 12. 

The achieved planimetric and vertical accuracy was less than 5 cm after aerial triangula-

tion was performed. This value is suitable for projects requiring a high accuracy. 

 

Table 11: Accuracy Assessment of ADS40 Data without GCPs 

Image Block 

ADS40 

#GCPs/ChP ChP differences / RMSE [m]    

µm ∆E ∆N ∆H 

GSD=15cm 8 / 3 0.04 0.05 0.02 4 

Table 12: Empirical Accuracy for ADS40 Line Scanning System 

4.5 DSM Generation by Image Matching 

The DSMs were generated from stereoscopic ADS40 panchromatic images for the de-

velopment and the Test Area-1 using image matching techniques in LPS and Match-T 

softwares before and after aerial triangulation or bundle block adjustment. Former was 

used for vertical accuracy assessment using GCPs and its comparison with the LiDAR 

DSM and latter was used for checking registration (planimetric accuracy) of LiDAR 

data. 

(m) (m) (m) 



Preliminary Data Processing and Accuracy Assessment 

— 78 — 

In LPS, DSM is generated as an image and there is no option to have an output in the 

form of point cloud. This however; is not the case with Match-T. The resolution of the 

DSMs was 0.5 m which corresponds to a point density of 4 Points/m2. This is the mini-

mum requirement for extracting building roof shapes (Fritsch, 2010). The type of terrain 

(flat, undulating or mountainous) and terrain model required (DSM or DTM) are the two 

major inputs for appropriate image matching. Other inputs such as, smoothing, feature 

density (number of pixels to be used) and parallax threshold should also be selected ap-

propriately, depending upon the intended use of the generated surfaces. The option that 

allows the detection of gross and minor errors in the generated point cloud, (Match-T 

only) should be enabled to automatically detect bad points. Break lines and spot heights 

can also be used during image matching to improve the quality of the generated surface. 

The process of image matching can be problematic because methods are prone to failure 

in certain areas (Baltsavias, 1999). Area-based matching matches small areas or patches 

in each digital image using cross-correlation or least-squares matching techniques. 

Area-based techniques have difficulty in regions with monotonous uniform textures, 

such as man-made features or areas of sudden elevation change.  

Feature-based matching identifies objects such as the edges of buildings, roads, etc., 

which are visible in both images. Feature-based techniques suffer in monotonous re-

gions with few features. In order to overcome these problems the software packages 

offer different strategies and a variety of post-processing tools, for example, interpola-

tion and filtering algorithms. 

In LPS (9.1) there are eight predefined scanning strategies which all differ in search and 

correlation window size and the correlation coefficient limit, but also in the amount of 

DSM filtering, the topography, and surface type. Search window size, correlation win-
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dow size, and correlation coefficient limit can be adjusted automatically if the corre-

sponding checkbox is enabled in the strategy parameter dialog window. 

If adaptive change is selected, LPS computes and analyzes the terrain features after each 

pyramid and determines the strategy parameters accordingly. Once the correlation coef-

ficient has been computed for each set of possible matching image points, various statis-

tical tests are used within LPS to determine the final set of image points associated with 

a ground point on the surface of the Earth. After the final set of image points has been 

recorded, the 3D coordinates associated with the ground feature are computed. The re-

sulting computation creates a DSM mass point. A mass point is a discrete point, located 

within the overlap portion of at least one image pair, the 3D ground coordinates of 

which are known. A space forward intersection is used to compute the 3D coordinates 

associated with a mass point (Eckert and Hollands, 2010). 

Gehrke et al.(2008) presented a DSM derivation approach based on Semi-Global Match-

ing  (SGM) for ADS line scanner images (Hirschmuller, 2005). It was found that the 

SGM derived surfaces strongly agrees with the LiDAR points. Based on high resolution 

ADS imagery, the increased point density reveals fine detail that may be difficult for 

LiDAR to capture. There are, however, significant differences inherent to the respective 

method. Generally around trees and vegetation, where LiDAR in contrast to image 

based SGM has the ability to penetrate to the ground, or measure the top more consis-

tently. 

Lemaire (2008) explained MATCH-T DSM method for the automatic measurement of 

an extremely large number of irregularly distributed surface points. The point extraction 

is on computation units. Each computation unit chooses the best suited image pairs. 
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Each image pair delivers a point cloud. The combined point clouds are filtered by a ro-

bust analysis. INPHO calls this extraction method sequential multi-matching. 

In order to improve the matching precision, LSM can be optionally selected in the new 

MATCH-T DSM (5.2) software. The improvement in height accuracy of the raster is 

about 20%, but computation time increases by a factor of two, thus LSM is optional. 

The user can decide himself if the 20% accuracy improvement is worth spending that 

extra time. The selection of the best suited image pairs is based on the analysis of the 

DSM slope. The algorithm chooses images that have the best viewing angle of the 

matching unit. The algorithm allows a limitation of the number of models which are 

used for the DSM extraction in one matching unit (Lemaire, 2008). 

Eckert and Hollands (2010) compared four different softwares for creating DSM in ur-

ban area. It was concluded that a little can be optimized by the user to achieve a more 

detailed and accurate DSM using automatic DSM generation methodologies. 

DSM generated using Match-T software is better than LPS when inspected visually. 

Poor matching occurs in both, especially over building roofs where one side is shad-

owed. Although, there have been significant improvements in radiometric and spatial 

resolution of large format line scanners, DSM generated using LiDAR still has an edge 

over DSM generated using image matching techniques for tree extraction and roof mod-

elling. Figure 33 and Figure 34 show DSMs generated using image matching techniques 

and their difference with respect to LiDAR DSM to highlight areas of large variation.  

For noise modelling, the DTM should be accurate to 1 m. In view of this requirement, 

the pixels in difference images (LiDAR DSM minus DSM generated using image 
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matching) were categorized into two classes to assess the suitability of the DSM gener-

ated using image matching techniques for the purpose of noise modelling.  

Table 13 shows the percentage of pixels in the DSMs generated in Match-T and LPS, 

whose difference with respect to the reference (LiDAR DSM) lay in the range of ± 1 

and ± 2 m.  The results show the superiority of the image matching algorithm used in 

Match-T over LPS for generating DSMs. This is because the percentage of pixels with a 

difference of less than 1m with respect to the reference pixels is greater in Match-T 

DSM. The results are approximately the same for the development and the Test Area-1 

using Match-T software. However; large variations occurred with the LPS software al-

though the same method was used for both areas. 

Height 
Difference 

Development Area Test Area-1 

LPS Match-T LPS Match-T 

± 1 m 64.18 67.14 45.11 61.53 

± 2 m 74.72 81.57 67.24 80.11 

Table 13: Evaluation of Image Matching Algorithms for DSM Generation 
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Figure 33: DSMs Generated using Match-T and LPS in the Development Area 

and their Difference to LiDAR DSM  

 

[DSM using Match-T] [DSM using LPS] 

[LiDAR minus Match-T] [LiDAR minus LPS] 
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Figure 34: DSM Generated using Match-T and LPS in the Test Area-1 and their 

Difference to LiDAR DSM 

4.6 Accuracy Assessment of LiDAR and Image DSMs 

4.6.1 Vertical Accuracy of DSMs using GCPs (Static GPS Survey) 

The LiDAR DSM and the DSM generated using image matching techniques have been 

evaluated for their vertical accuracies using the GCPs. These GCPs were collected in the 

static GPS survey and can also be identified in the aerial images.  

[DSM using LPS] [DSM using Match-T] 

[LiDAR minus Match-T] [LiDAR minus LPS] 
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Vertical Accuracy  

Difference from reference data  ∆h  

Number of tested points  n  

Root Mean Square Error  RMSE = sqrt(∑∆h2/n)  

Maximum Difference  І∆hmaxІ 

Definition of a blunder (threshold)  S>3*RMSE  

Number of blunders  N  

Number of points without blunders  n´=n-N  

Mean  μ = ∑ ∆h/n´ 

Standard Deviation  σ = sqrt (∑(∆h-μ)2/(n´-1))  

Horizontal Accuracy  σp  = √(σ2
x + σ2

y)  

Table 14: Vertical and Horizontal Accuracy Measures 

It is not possible to identify the exact points in the DSMs. Therefore, the heights were 

computed using bilinear interpolation at the measured locations. These heights were 

later compared with the heights of the GCPs.  

The method used to assess the vertical accuracy and remove blunder points was adopted 

from Höhle and Potuckova (2006) and is explained in detail in Table 14. The GCPs 

which were called blunder points do not mean that these were not acquired properly. In 

fact, they represented an error in DSMs. These points were removed from the subse-
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quent calculation as these were few in number but significantly altered the final results. 

This made it difficult to predict the true picture of the available data height quality. 

 All GCPs were located on roads, footpaths or flat surfaces such as car parking lots. De-

tailed calculations are shown in Appendix-I. 

DSM   
Generation 

Method 

Points   
Observed 

Blunders RMSE 
(m) 

Mean 
(m) 

Standard 
Deviation 

(m) 

LPS 13 3 0.489 -0.102 0.200 

Match-T 10 2 0.321 -0.001 0.160 

LiDAR 14 5 0.444 -0.035 0.109 

Table 15: Vertical Accuracy Assessment of DSMs 

The greatest vertical accuracy (standard deviation of 10 cm) was achieved using LiDAR 

for DSM generation. Vertical accuracy is dependent on the flying height and position of 

the point with respect to nadir. The expected vertical accuracy from the available 

ALS50-II LiDAR data is around 10 cm which is similar to the estimated vertical accu-

racy as shown in Table 15. This suggests that LiDAR generated DSMs are superior to 

the ones generated using image matching techniques (area, feature based or together).  

For a typical photogrammetric project,                  of the flying height (Höhle 

and Potuckova, 2006). ADS40 stereoscopic panchromatic images of Sligo were cap-

tured at a flying height     of 1,447 m with an expected               . Both im-

age matching softwares generated good quality DSM in flat areas where most of the 

acquired GCPs were located. This also resulted in achieving good vertical accuracies as 

can be seen from Table 15. 
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Number of blunder points was higher in LiDAR DSM as compared to the other DSMs. 

However; this is due to the low RMSE value of LiDAR which results in a tighter thre-

shold to filter blunder points. As a subsequent result of this, more points were eliminat-

ed. However; this shows how close the LiDAR measurements match with the heights of 

the acquired GCPs (precision). The comparison of height interpolated at each GCP loca-

tion from three different DSMs is shown in Figure 35. The points which were eliminat-

ed as a result of not meeting the threshold value in any of the DSMs show zero height 

difference such as point 8, which was identified as a blunder point in all DSMs.  

 

Figure 35: Height Difference Comparison in the Generated DSMs 

4.6.2 Vertical Accuracy of DSMs using GCPs (Network RTK) 

A total of 165 points were captured in the second round using Network RTK system 

(Appendix-V). Figure 36 shows the location and characteristics of 5 selected areas for 

data acquisition. The previous DSM evaluation using 14 GCPs was not considered suf-

ficient enough to quantitatively determine the DSM quality. An approach similar to the 

previous one was used with the new GPS points with small modifications because of 
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large    values. These mostly occur in DSMs generated using LPS. A threshold of ± 1 

m was used initially, prior to the determination of RMSE in order to remove all points 

having    values greater than the selected threshold. The DSMs from LPS, LiDAR and 

Match-T were used for vertical height accuracy assessment.  
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Figure 36: Five Surveyed Sites in Development Area (Sligo) 
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After removing the blunder points, RMSE was calculated, followed by mean and stan-

dard deviation as has been done in the previous section. Table 16 shows the number of 

points removed as blunders, the total points finally used in the assessment and the stan-

dard deviations. The standard deviation values are on the higher side for LPS and 

Match-T generated DSMs when compared to using only 14 points for assessment as was 

done previously. However, vertical accuracy of LiDAR DSM is still close to the antic-

ipated value of 10 cm. 

Parameters LPS LiDAR Match-T 

Points Available 165 165 165 

         49 4 0 

RMSE (m) 0.400 0.153 0.405 

         1.201 0.459 1.215 

New Blunders 0 5 0 

Final Points Used 116 156 165 

Mean (m) -0.212 -0.074 -0.024 

   (m) 0.340 0.083 0.329 

Table 16: Vertical Accuracy Assessment Using GCPs Acquired by using Net-

work RTK System  

The blunder points were very close to the buildings and trees (Figure 36, Area-3 &5) 

where matching is poor in overlapping images. The blunder points can also occur be-
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cause of the interpolation required for DSM generation. That is why it was considered 

important to evaluate the vertical accuracy of point cloud using independent GCPs and 

not the generated DSMs. 

4.6.3 Vertical Accuracy of Point Cloud using GCPs (Network RTK) 

Five areas (Figure 36) for which GCPs were acquired using the Network RTK system 

were used again to determine the vertical accuracy of the point cloud produced using 

LiDAR and image matching techniques. This was done without converting them to a 

surface model. However; the DSM obtained from LPS was converted to a point cloud 

using the elevation value at the pixel centre. This was done because LPS cannot produce 

a point cloud as an output.  

TerraScan provides a routine to compare the ground points against the control points. It 

scans through the 3D point cloud and loads points within a given search radius from any 

of the known points.  It then creates a small triangulated surface model from the points 

around each known point. The elevation for each known point location is then computed 

from the triangulated surface model. This effectively interpolates the elevation from the 

points which were closest to a known point. A report is generated as an output (Table 

17) listing the interpolated elevations at a known location from the point cloud and the 

difference with respect to the actual measured value in the field (Soininen, 2010). If the 

determined elevation shift is more than the expected (determined from sensor specifica-

tion for a particular height), it can be applied to the available data. 

Table 17 shows that the available LiDAR data and the point cloud obtained using 

Match-T software have a high vertical accuracy. However; the results obtained from  the 

LPS point cloud show the short comings of the matching software in the regions sur-
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rounded by buildings and trees. This results in a large number of blunder points and 

high standard deviation values especially in the Area-3 (Figure 36). 

Figure 37 shows the standard deviations in elevations obtained from three different 

point clouds with respect to the measured values in an independent ground truth survey. 

The high accuracy of LiDAR point cloud makes it more suitable for object extraction 

rather than creating it from stereoscopic images. The quality of the point cloud obtained 

from image matching techniques especially from Match-T is good for applications that 

require terrain model to be accurate up to 1 m. However; this is not the case with LPS 

which requires considerable improvements. 

Area 
No. of 
Points 

DSM 
Mean 

(m) 

Standard  
Deviation 

(m) 

RMSE 
(m) 

Average 
(m) 

Min. 
dz 

(m) 

Max. 
dz 

(m) 

1 37 

LiDAR 0.097 0.129 0.088 -0.096 -0.410 0.020 
Match-T 0.120 0.129 0.140 0.056 0.292 0.230 

LPS 0.468 0.265 0.524 -0.454 -1.063 0.231 

2 17 

LiDAR 0.123 0.131 0.045 -0.123 -0.177 -0.016 
Match-T 0.085 0.068 0.102 0.078 -0.031 0.190 

LPS 0.140 0.220 0.221 -0.057 -0.701 0.238 

3 37 

LiDAR 0.219 0.234 0.085 -0.219 -0.500 -0.122 
Match-T 0.712 0.151 0.728 -0.713 -0.931 -0.312 

LPS 5.925 3.897 7.058 5.925 1.501 13.88 

4 29 

LiDAR 0.054 0.071 0.072 -0.004 -0.140 0.204 
Match-T 0.033 0.038 0.040 0.014 0.073 0.097 

LPS 0.189 0.323 0.319 0.037 0.594 1.014 

5 44 

LiDAR 0.122 0.128 0.039 -0.122 -0.196 -0.025 
Match-T 0.363 0.252 0.380 -0.289 -0.502 0.447 

LPS 0.769 1.586 1.576 0.195 -0.593 8.539 

Table 17: Vertical Accuracy Assessment of Point Cloud Obtained using LiDAR 

and Image Matching Techniques with Respect to Independent GCPs 



Preliminary Data Processing and Accuracy Assessment   

— 92 — 

 

Figure 37: Standard Deviation of Interpolated and Measured Height Values 

 

Figure 38: Three Surveyed Sites in Test Area-2 (Maynooth-Leixlip) using Net-

work RTK System 
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Area 
No. of 
Points 

DTM 
(Source) 

Mean 
(m) 

Standard  
Deviation 

(m) 

RMSE 
(m) 

Average 
(m) 

Min. 
dz 

(m) 

Max. 
dz 

(m) 

1 44 LiDAR 0.200 0.076 0.212 0.198 -0.038 0.352 
2 35 LiDAR 0.132 0.094 0.151 0.118 0.095 0.329 
3 52 LiDAR 0.036 0.042 0.044 0.016 -0.141 0.105 

Table 18: Vertical Accuracy of Generated DTM using TerraScan Software in the 

Test Area-2  

Figure 38 shows three areas in the Test Area-2 where GCPs (Appendix-VI) were ac-

quired in a field survey to determine the accuracy of ground extraction from the avail-

able LiDAR data using TerraScan. The points were acquired on a hard surface such as 

car parking lots (Figure 38: Area-1 & Area-3) as well as on soft ground (Figure 38: 

Area-2) surrounded by vegetation and buildings.  

The standard deviation (Figure 36) of the measured heights (GCPs) and the heights in-

terpolated from the extracted ground (LiDAR) for these known locations is very low 

and approximately the same as achieved in the Sligo Area. However; in the Test Area-2 

the extracted filtered ground was evaluated rather than the full point cloud to evaluate 

the quality of the generated DTM (Table 18).  

4.7 DSM Registration 

The proper registration of LiDAR and aerial images is a necessary prerequisite for any 

process combining the two data sources (data fusion). Both LiDAR ALS50-II and 

ADS40 sensors rely on direct georeferencing, which needs to be verified to ensure 

proper registration.  
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Point features are the principal sources of control for photogrammetric triangulation 

although extracted linear features and planar patches have also been used in the past 

research for registering LiDAR and aerial images (Habib and Schenk, 1999; Habib et 

al., 2004; Mitishita et al., 2008). The accuracy of LiDAR systems has improved greatly 

in the recent years which is why LiDAR data is considered as a viable source for photo-

grammetric control (Mitishita et al., 2008). Locating a single image point that corres-

ponds to a particular laser point in the LiDAR set is either very difficult or impossible 

(Baltsavias, 1999). Building boundaries, roof ridges and break-lines extracted from the 

aerial imagery and LiDAR are useful for registering both data sets. 

Ressl et al. (2008) used DEM in the overlapping LiDAR  strips for checking the quality 

of the relative orientation. A roughness mask was calculated for each strip to consider 

only smooth surfaces.  If the differences are above expectations, a deeper analysis of the 

two slightly shifted grids was done using least square matching. This is because, the 

height differences between pairs of overlapping strips show the summed effect of all 

errors from GNSS/IMU and laser. This total effect should be split into its parts in X, Y 

and Z. 

 Kager (2004) used corresponding tie planes in the overlapping LiDAR strips and flight 

trajectory for LiDAR strip adjustment to correct internal systematic errors and to im-

prove the relative orientation of the strips. This was done by minimizing the residuals at 

corresponding planes in the overlapping LiDAR strips. The absolute orientation of the 

LiDAR data was corrected using ground control planes. These were provided from ter-

restrial measurements or measured during aerial triangulation. These control planes can 

then be used simultaneously in the strip adjustment, together with the tie planes. Using 
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this approach the entire LiDAR strip adjustment can be compared with block adjustment 

by integrated sensor orientation as in the case of aerial images. 

In case of conventional aerial images or modern digital cameras with central projection 

for each captured image, normal collinearity equations are applicable for transforming 

object coordinates in LiDAR to image space. ADS40 data is a continuous array of pixels 

in the flight direction, directly georeferenced using an on board GPS/INS. GPS/INS 

positions are fixed at different intervals. The position and orientation for each array of 

pixels is then interpolated between these fixed intervals.  

Most photogrammetric projects are carried out in a configuration that provides a 3D 

stereoscopic model of the project area. However; in this research, high radiometric reso-

lutions of modern large format digital cameras were utilized in order to make the regis-

tration process simple and quick. High quality GCPs were used for the aerial triangula-

tion of ADS40 strips to generate a reference dataset that can be used for registering Li-

DAR data. The available LiDAR data was already evaluated for its vertical accuracy in 

the DSM and point cloud forms prior to this.   

The DSMs were created from overlapping images using image matching techniques. 

This process eliminates the need of extracting common features in data sets and their 

matching. A fully automatic extraction process with high robustness and accuracy is still 

not available which further obstructs the registration process. DSMs obtained from Li-

DAR and by image matching using Match-T after aerial triangulation were used to reg-

ister LiDAR data with aerial images. Two approaches have been considered which are 

explained in the following sections. 
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4.7.1 First Approach 

Common points were identified in LiDAR and image DSMs. A 2D conformal transfor-

mation (translation, scale and rotation) was then used to determine the transformation 

parameters and applied to the whole LiDAR point cloud.  

The 2D conformal transformation equations that were used are as follows: 

           

           

The above transformation was applied about the origin of the coordinate reference sys-

tem.  

4.7.1.1 Sligo Project Area 

Parameters 
Panchromatic Images 

Development 
Area 

Test Area 

  1.001611 0.9999799 

  0.000640 0.001044 

   -381.097 987.467 

   -1709.745 -425.613 

       

0.75 pixel 
(0.39m) 

0.92 pixel 
(0.33m) 

       

0.67 pixel 
(0.35m) 

0.65 pixel 
(0.29m) 

Rotation* 

         
 

 
  

0.000638 0.001044 

Scale 

        
 

1.001610 0.999799 

X shift Mean (m) -0.80 -0.28 

Y shift Mean (m) 0.20 -0.27 

Table 19: Transformation Parameters for ALS50-II LiDAR sensor data in Sligo 

Project Area 
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DSMs from LiDAR and aerial images were created with a resolution of 0.5 m. Trans-

formation parameters (Table 19) were determined using eight common points to trans-

form LiDAR ALS50-II point cloud before fusing it with the multispectral data. 

The values for X shift Mean and Y shift Mean were calculated from the 8 points used in 

the matching process. Georeferencing can be an issue while implementing the devel-

oped method for extracting objects important from a noise modelling perspective and 

this simple method can be used to rectify such problems. 

4.7.1.2 EuroSDR Project 

EuroSDR started a research project whose aim was to evaluate the techniques used for 

registering LiDAR with aerial images. DIT also participated in this project as it pro-

vided an opportunity to evaluate the method that was developed in house, on the data 

from other sensors. DMC aerial images, ALS50-II and Optech ALTM 3100 data were 

provided by the EuroSDR to the participants. Artificial shifts and rotations were pur-

posely introduced by the project organizer in the LiDAR data.  

The developed method was tested during this project. Match-T was used to generate 

DSMs from the panchromatic and the coloured stereoscopic aerial images captured us-

ing the DMC camera for registering ALS50-II and Optech LiDAR data.  

Panchromatic and colour orthophotos were created using the generated DSM from im-

age matching. This was done to make sure that the provided interior and exterior orien-

tation parameters were properly setup using the GCPs. The GCPs were also provided by 

the EuroSDR as a part of the dataset.  
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The NIR band was provided at a later stage, by the EuroSDR because of the large vege-

tation cover, hindering automatic building extraction from the aerial images. However; 

this has not been used in the developed method. 

Figure 39 shows the used DSMs generated from ALS50-II and Optech LiDAR sensors, 

DSMs from image matching using Match-T and orthophotos. 
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Figure 39: Data Processing Steps in the EuroSDR Project 

ALS50-II DSM Optech ALTM 3100 DSM 

DSM 

DSM from Pan Images DSM from RGB Image 

RGB Orthophoto Panchromatic Orthophoto 
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The quality of the DSM generated from the panchromatic aerial images was much better 

as compared to the DSM produced from the multi-spectral images. The reason for this is 

that the DMC sensor has 4 panchromatic CCD lens modules. The four panchromatic 

images from these converging cameras are mosaiced digitally to form a single high 

resolution image as compared to four independent channels for capturing multispectral 

information. This results in a reduced ground resolution (Hinz et al., 2001). Computed 

parameters of the transformation for registering LiDAR with aerial images are listed in Table 

20. 

Parameters 
Panchromatic Images RGB Images 

Optech ALTM 
3100 

ALS50-II 
Optech 

ALTM 3100 
ALS50-II 

  1.000508 0.999846 0.999819 0.9999493 

  -0.001018 -0.00111 -0.00114 -0.000082 

   -6953.95 -7358.28 -7499.45 -377.89 

   -3029.81 1415.07 1610.74 3390.75 

       

0.8 pixel 
(0.39m) 

0.7 pixel 
(0.33m) 

0.23 pixel 
(0.05m) 

0.4 pixel 
(0.2m) 

       

0.7 pixel 
(0.35m) 

0.6 pixel 
(0.29m) 

0.5 Pixel 
(0.25m) 

0.5 pixel 
(0.25m) 

Rotation* 

         
 

 
  

-0.0010 -0.0011 -0.0011 -0.0001 

Scale 

        
 

1.0005 0.9998 0.9998 0.9995 

X shift Mean (m) 24.06  -18.84  24.17  -18.09  

Y shift Mean (m) -17.89 -21.22 -17.39 -20.87 

* Rotation   is in Radians and about origin of the coordinate system 

Table 20: Computed Transformation Parameters 

The shift parameters,    and    were not indicative of the actual shifts between the Li-

DAR and images. Therefore, these were analysed separately, following the application 

of the transformation to the LiDAR data set, based on a sample of 1000 points. These 

are given as X shift Mean and Y shift mean in Table 20. 
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Preliminary results are available for the EuroSDR project (Rönnholm, 2010). The com-

parison was done using six local reference surfaces (distributed to different sides of la-

ser scanning strips) that were created from additional terrestrial laser scanning (with 

expected accuracy of a couple of centimetres). Laser point clouds were registered with 

reference surfaces using ICP (iterative closest point) method. The total error budget in-

cludes errors from developed registration method as well as from internal geometrical 

errors of laser scanning data and image orientations. 

The preliminary results relating to the accuracy of the registration method are discussed 

in chapter 7 along with the results obtained by the methods developed by other project 

participants. 

4.7.2 Second Approach 

Instead of identifying common points in the images, cross-correlation method was in-

vestigated by convolving LiDAR DSM over image DSM to reach a point where correla-

tion reaches its peak value. This method has certain limits such as:  

a. This method was limited to the determination of the shifts in X and Y directions. 

b. An initial estimation pertaining to the amount of shift that occurs between the 

two datasets was required to set the convolution limits. This was particularly im-

portant for the EuroSDR project where large shifts were artificially induced. 

c. The quality of the image DSM was poor as compared to the LiDAR DSM espe-

cially over vegetation, building roofs (shadows) and the regions occluded by 

high objects or shadowed. 

However; this method can be easily automated, if the shifts are small and the quality of 

both DSMs is good. Two parameters i.e. the maximum shift allowed in X and Y direc-
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tions are required to initiate the process. The process terminates by providing the output 

of the location where the maximum correlation is reached. 

      
                  

 
   

   
 

        
     

    
 

Where, 

Z - value of a cell 

i,j – are image layers 

μ- is the mean of a layer 

N- is the number of cells 

k - denotes a particular cell 

   and    are standard deviations of image i and j 

 

Cross correlation values are determined by moving LiDAR DSM over image DSM in a 

window of 5 m2. The computed values are shown in Figure 40. As the shifts in the Sligo 

data were small, a high correlation value was achieved in the beginning of the process.  

 

Figure 40: 3D Scatter Plot 
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The method is computationally intensive and not recommended for large areas. It was 

therefore not considered any further. The manual matching of common points is faster 

and more reliable however; it requires human intervention in the registration process. 

 

Different issues related to LiDAR (ALS50-II) and ADS40 data processing were dis-

cussed in this chapter. This was done with a special emphasis on achievable accuracies 

using the data from these sensors which was verified by the ground truth data. Direct 

georeferencing quality was evaluated and in case of a mismatch, a solution was also 

suggested to register LiDAR data with stereoscopic aerial images. This is because a few 

GCPs are required for ADS40 aerial triangulation to achieve a reference data set with 

which LiDAR can be matched. In the next chapter a method has been developed for 

extracting objects of interest by fusing the information extracted from these two data-

sets. 
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5 Method Development 

This chapter details the steps considered and implemented during the course of this re-

search to fuse LiDAR and aerial images for the extraction of buildings, trees and roads.  

The object extraction strategy was developed in the area called the development area 

and later tested as such on the two test areas i.e. Test Area-1 and Test Area-2. 

The extraction method used for each object of interest is explained in its respective sec-

tion. The initial step was the generation of orthophotos to avoid a strategy based on co-

linearity equations i.e. back projection of LiDAR data (or object segments) to the multi-

spectral images. This was because of the non availability of nadir NIR image. Another 

reason for avoiding co-linearity equations was the fact that and each array of pixels in 

the push broom scanner has its own geo referencing as has been explained in the preced-

ing chapter.  

 

Figure 41: Orthophoto Generation 
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The steps undertaken for orthophoto generation can be seen at a glance in the following 

flow chart in Figure 41 and explained subsequently. 

 Single return data from LiDAR was used for DSM generation. The DSM from 

the aerial images was also generated after aerial triangulation. 

 The DSM from aerial images was used as a reference to check to eliminate any 

errors in the direct georeferencing of the LiDAR data, as has been explained in 

the previous chapter. 

 The orthophotos from nadir R, G, B and forward looking NIR (18°) section of 

the electromagnetic spectrum were created using LPS.  

 

Figure 42: (a) True Colour and (b) Colour Infrared Orthophotos 

Figure 42 shows a combination of different spectral bands (a) R,G,B and (b) NIR,R,G 

that have been further exploited to extract useful information for object extraction such 

as NDVI and NDWI (Normalized Difference Water Index) indices. 

Proper thresholding of these calculated indices is necessary to extract desired objects 

and different methods have been considered in order to achieve this. The building seg-

ments were generated from thresholded NDVI and binary nDSM (DSM-DTM) and fur-

[a] [b] 
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ther classified to remove remaining vegetation segments using cues obtained from Li-

DAR. Building extraction is generally hindered by the presence of vegetation. Although 

NRA is not interested in vegetation, however; it should be separated for successful 

building extraction. 

A method was developed for the generation of vegetation segments (Figure 70) and 

classification of building segments in vegetation, left after the NDVI thresholding. The 

vegetation was further classified into trees and hedges using a shape parameter. A 

method for tree crown extraction was also developed (Figure 78). Singles trees were 

separated from tree clusters using a distance matrix. 

Roads are generally part of DTM and were separated from grass and barren surfaces 

using LiDAR intensity and NDVI images (Figure 83). The holes were filled in the re-

sulting road segments. The road gradient was also determined. 

The MLS data was only available for a section of road connecting the towns of 

Maynooth and Leixlip (Test Area-2) and is used in this research for noise barrier extrac-

tion. 

In the following sections, the details of methods developed for extracting each object of 

interest (building, tree, road and noise barrier) and the steps taken to address different 

issues have been explained. In the end, accuracy assessment methods that have been 

used for determining the success of the developed methods using reference data from 

the OSI have been explained. 
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5.1 Building Extraction 

 

Figure 43: Method for Building Extraction 
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Figure 43 shows the developed method for building extraction after the initial registra-

tion check as shown in the Figure 41. 

5.1.1 NDVI 

The first product created from orthophotos for object extraction was NDVI for separat-

ing vegetation from other objects such as roads and buildings. NDVI is defined as: 

     
     

     
 

ADS40 camera has a radiometric resolution of 12-bit whereas the captured images were 

stored as 16-bit images during processing in GPro. These were then used for NDVI cal-

culation. However; for thresholding and further processing these were converted to 8-bit 

images. This is because the images having a high spatial resolution and covering large 

areas cannot be processed in Definiens Ecognition software if smaller sized segments 

(consisting of 2 or 3 pixels) are required from multi-resolution segmentation. LiDAR 

intensity, object texture and geometric information extracted from LiDAR was also 

stored in 8-bit format. It was considered appropriate to use a single radiometric resolu-

tion throughout the extraction process. 

A threshold is necessary for separating vegetation from other objects in the NDVI im-

age. It is not a unique value and varies because the amount of radiation arriving at a pas-

sive sensor depends on many factors. Some of them are characteristic for the sensor or 

the object, but there are also geometrical ones, namely the direction of the sun, the sen-

sor viewing direction, and the normal vectors of the illuminated surfaces. A slope facing 

the sun will appear brighter than a slope pointing away from the sun (Rottensteiner et 

al., 2007). Parameters such as the position of the sun at the time of data capturing or 
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training areas have also been used to determine appropriate thresholds for NDVI image 

by others (Hejmanowska, 1998; Rottensteiner et al., 2007). On most occasions, date and 

time at which the data was acquired is not available to the operator and to avoid selec-

tion of training areas, only those techniques were considered in this research, that have 

the potential of making the process automatic or minimize operator involvement and 

knowledge of the area. Figure 44 shows ground and building regions showing different 

characteristics, making multi-spectral information very difficult to be thresholded.  

 

Figure 44: Spectral Heterogeneity of Ground and Buildings 

Figure 44 (a), (c) and (e) show the true colour ortho image sections and (b), (d) and (f) 

show their representation in CIR imagery. Figure 44 (a) and (b) show how CIR imagery 

can be helpful in successfully separating vegetation from other image objects. Figure 44 

(c) and (d) show a typical large industrial building with its representation closer to vege-

tation and lastly Figure 44 (e) and (f) show variation within CIR image to separate two 

different grass fields. One of these could be a grass field while the other could be Austro 

[a] 

[b] [d] 

[c] [e] 

[f] 



Method Development   

— 110 — 

Turf. Such objects were retrieved during vegetation extraction using the same classifica-

tion cues as were used during the extraction of buildings for classifying vegetation that 

remained amongst the building segments. 

    

Figure 45: Histogram Variation of NDVI Images 

The red line in Figure 45 shows the separation between vegetation and other non natural 

objects based on the histogram mean value i.e. 179.484 (Figure 45 (a) Development 

Area) and 147.596 (Figure 45(b) Test Area-1) in Sligo. The valley between the first two 

peaks also provided a rough idea for selecting a threshold for NDVI image and was 

compared later with the values determined using global thresholding methods.  

5.1.2 Image Thresholds 

If the image consists of predominantly two objects then a histogram based threshold can 

be used (Figure 45). The thresholded image        is defined as 

        
                 

                 
  

Then any point       for which           is called an object point; otherwise, the 

point is called a background point. Pixels labelled 1 correspond to objects, where as 
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pixels labelled 0 correspond to the background. When T is a constant, this approach is 

called global thresholding (Gonzalez et al., 2004). 

5.1.2.1 Threshold by method of Gonzalez: 

To automatically select a threshold, a method developed by Gonzalez et al.(2004) was 

investigated. The steps involved in this method were implemented in MATLAB and are 

explained below. 

1. Select an initial estimate for  . (A suggested initial estimate is the midpoint 

between the minimum and maximum intensity values in the image). 

2. Segment the image using  . This will produce two groups of pixels:   , con-

sisting of all pixels with intensity values   , and   , consisting of pixels 

with values   . 

3. Compute the average intensity values   and    for the pixels in groups 

   and   . 

4. Compute a new threshold value: 

  
       

 
 

5. Repeat steps 2 through 4 until the difference in   in successive iterations is 

smaller than a predefined parameter    which is 0.5, for the purpose of this 

research.  

5.1.2.2 Threshold by Method of Otsu 

Another method for automatically selecting threshold provided in MATLAB is Otsu‟s 

method (Otsu, 1975).   
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Otsu‟s method is a histogram based method which chooses a threshold value that maxi-

mizes the variance between two classes. The threshold is returned as a normalized value 

between 0.0 and 1.0 (Gonzalez et al., 2004). 

   

  

Figure 46: (a, b) NDVI Images and (c, d) Thresholded Images 

Global thresholding may fail when the background is not uniform. It is also affected by 

illumination. The common practice is to compensate illumination before applying global 

thresholding. Morphological top hat operator (opening) combined with MATLAB 

           function can be used to compensate non-uniform background problems but 

this does not appear to be an issue with the available data. 
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Figure 46 upper half (a & b) show two NDVI images while the lower half shows their 

corresponding binary images (c & d) using Gonzalez et al. (2004) method, where, white 

pixels correspond to buildings and roads and black pixels correspond to vegetation. 

Thresholding Method NDVI Image-1 NDVI Image-2 

(Gonzalez et al., 2004) 163.910 152.742 

(Otsu, 1975) 164.633 152.601 

Histogram Analysis (Mean) 179.484 147.596 

Histogram Valley 146.573 154.604 

Table 21: Global Thresholds for NDVI Images 

Image thresholding values from the two used methods (Table 21) were not very close to 

the values determined using histogram. However; the lowest value between two histo-

gram peeks for NDVI Image-2 (Figure 46 (b)) was close to the first two thresholding 

methods. One possibility is to select this low value for thresholding or use either of the 

Gonzalez or Otsu method for automatic thresholding. Gonzalez method was used in this 

research for thresholding NDVI image. Visual inspection of binary NDVI images re-

vealed that building roof parts under shadows were retained but industrial buildings in 

Figure 44 (c) were considered as vegetation. 

5.1.3 NDWI 

NDWI index have been used previously to delineate open water features from satellite 

and high resolution aerial images (McFeeters, 1996; Chen et al., 2009). NDWI is de-

fined as 



Method Development   

— 114 — 

     
     

     
 

This is important for road extraction as these features remain part of the thresholded 

NDVI image retained for building as well as road extraction. 

A LiDAR sensor records no data over water bodies because LiDAR beams are absorbed 

in water. However; a few points could be recorded if water level is low. Regions with 

negative height values or no values were investigated to mask out such areas but did not 

prove successful because of low water levels, wavy conditions and small boats, resulting 

in LiDAR reflections from the river. These reflections from water bodies need to be 

removed as these regions later became part of the generated DTM. However; this is not 

applicable to buildings as these water bodies were separated from the thresholded NDVI 

image using height threshold. 

 

Figure 47: Thresholded Binary NDWI Images 

After determining NDWI, all proposed methods of image thresholding to separate water 

areas were tested. Thresholding results in the removal of vegetation and dark areas re-

moval instead of the actual water bodies. Although, water channel in Figure 47 (a) is 

[b] 
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narrow and small however; the NDWI index also failed to mask out the river in Figure 

47 (b). The manual investigation of pixel values to select an appropriate threshold was 

also not very conclusive in separating these regions. Water bodies in both areas have 

been masked out manually. 

5.1.4 nDSM Processing 

Single return data from LiDAR was used to create DSM and DTM after removing low 

and very high points using Terrasolid as has been explained in chapter 3. However, mul-

tiple reflections were utilized to determine another classification cue (Anisotropic Diffu-

sion (AD)) which is explained at a later stage in this chapter. The DTM was subtracted 

from the DSM to obtain actual object heights (nDSM). A height threshold of 2.5 m was 

used for the purpose of separating low height objects in nDSM and a binary image was 

generated (Figure 48). 

 

Figure 48: Binary nDSM with Height Threshold (         
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A morphological operation such as opening of a 3 x 3 matrix was used once to eliminate 

the stand alone single pixels. Care must be taken in using morphological operations 

(matrix size and iterations) as these significantly change the size and shape parameters 

of the extracted objects. Figure 49 shows the effectiveness of the morphological opera-

tion (opening) in removing a single white pixel (object pixel) and separating loosely 

connected pixels. 

 

Figure 49: Morphological Operation (Opening) Results (a) Before (b) After 

The resulting binary nDSM image now contains two objects i.e. building and trees 

which were separated using thresholded NDVI image. 

5.1.5 Raw Buildings 

Two iterations of morphological operation opening were used with the thresholded bi-

nary NDVI image (Figure 46 (c) Development area) showing buildings and other man-

made objects with white pixels.  

This generated binary image (Figure 50 (b)) was than combined with the previously 

generated binary nDSM image using conditional and Boolean functions. 

[a] [b] 
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Figure 50: Results of Morphological Operation (Opening) on NDVI Image (a) 

Before (b) After 

The extracted raw buildings (Figure 51) need further processing to generate building 

regions without holes which is explained in the next section. 

 

Figure 51: Raw Building Boundaries 

[a] [b] 
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5.1.6 Building Reconstruction 

The raw extracted building regions need reconstruction to fill the gaps within, which 

occurred during NDVI thresholding or artefacts ,which occurred during orthophoto gen-

eration. Instead of using morphological operation to fill these gaps, the relative border 

between the small gaps (black image segments) and the building pixels (white image 

segments) was used. This way those object shapes were retained which would be altered 

had morphological operations been used. 

Object oriented analysis was carried out using Ecognition to fill holes in building re-

gions without filling the real open spaces between them. Multi-resolution segmentation 

was used to generate small segments. These, when combined after filling gaps, repro-

duced objects not very different from the actual objects in the raw building image in 

terms of their size and shape. Figure 52 shows a dialogue box from Ecognition that al-

lows one to set multi-resolution segmentation parameters. 

 

Figure 52: Object Segmentation Parameters in Ecognition 

The scale value should be kept low and proper weights should be assigned for colour, 

shape compactness and smoothness. The shown values in Figure 52 were used for seg-

menting raw building image. 
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Figure 53: Flow Chart for Building Objects Reconstruction 

The relative border of background segments with building segments (white) was deter-

mined. The object merging started by using relative border value of 100% to first incor-

porate small segments (black) completely surrounded by building segments (white). 

These segments were then merged to generate building regions. After the first cycle, the 

process was repeated with lower relative border value. In this manner, more gaps were 

filled (Figure 53). The minimum value used for relative border was 75%. The heights of 

identified segments fulfilling this criteria were checked from the binary nDSM before 

merging them into building regions. This was so done to avoid filling the space between 

buildings which might be very close to each other. This process also filled small gaps in 
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tree regions caused during orthophoto generation or due to LiDAR penetration, resulting 

in large height variations within the tree regions in the generated DSM. 

 

 

Figure 54: Reconstructed Building Regions (a) Before (b) After 

Figure 54 shows the reconstructed building regions before and after the application of 

the reconstruction method shown in Figure 53. After reconstruction, these building re-

gions were further classified using parameters obtained from the LiDAR data (Variance 

of Surface Normals, Surface Roughness, Local Range Variation and Anisotropic Diffu-

sion) to remove those vegetation segments which were not separated using NDVI 

thresholding and still existed amongst building regions. These classification parameters 

are explained in the following section. The mean value of each of these stated parame-

ters was determined in the reconstructed building regions and analysed to extract the 

final building regions. 

[a] 

[b] 
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5.1.7 Classification Cues from LiDAR  

5.1.7.1 Variance of Surface Normals (VSNs) 

The surface normal is a vector perpendicular to a surface. Surface normals show large 

variations over trees as compared to the buildings (Figure 55).  The point density was 

low in the available LiDAR data. This resulted in small flat areas over the building roofs 

when DSM was interpolated (Figure 55) and affect the quality of the surface normal. 

The variance of the surface is defined as: 

         
         

   
 

Where: 

    = Digital Number (DN) of pixel (i, j)  

n = number of pixels in a window 

M = Mean of the moving window, where: 

     
    

 
 

 

Figure 55: Subset of 3D Surface Normal Plot in Development Area  
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The variance of surface normals was computed for the generated nDSM with a height 

threshold of 2.5 m using a 3 x 3 matrix. The mean variance value was calculated for 

each object in the reconstructed building image. 

Figure 56 shows a surface generated using normal vector values at each pixel and Figure 

57 shows the corresponding variance of the surface normals, both gray scale (8-bit). 

5.1.7.2 Local Range Variation (LRV) 

Local range variation is a height based classification cue used for separating buildings 

and trees from other small objects such as cars, bushes etc (Arefi, 2009). Large height 

variations occur in small areas especially for trees as compared to buildings. However; 

this does not apply to small buildings. 

LRV was calculated by subtracting local maximum and minimum obtained by convolv-

ing the nDSM by a 3 x 3 matrix. Mean LRV value in building segments was used for 

classifying remaining trees (false positive). This operation is simple and can also be 

very useful, if only buildings and tree boundaries are required from LiDAR, or to refine 

extracted building edges.  
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Figure 56: Subset of Surface Normal Image (Development Area) 

 

Figure 57: Subset of Variance of Surface Normals Image (Development Area) 

Figure 58 shows LRV image (gray scale, (8-bit)) for a portion of the development area. 

The mean variance value was low for building regions whereas it was higher for trees. 
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Figure 58: Subset of Local Range Variation Image (Development Area) 

5.1.7.3 Surface Roughness 

In the DSM image, there is a significant height change between ground and non-ground 

objects. Whereas, the height change within a single object such as a building will be 

much smaller compared to large trees. The second derivative of nDSM was used to 

separate trees amongst building regions. The Laplacian is a generalization of the second 

derivative taken in two dimensions. It has the effect of enhancing changes (Myler and 

Weeks, 1993). When there is a significant height change, the sign of second derivative 

reverses.It however remains constant if the object has a smooth surface.  Figure 59 

shows a section of the nDSM (Figure 59 (a)) revealing the surface roughness value over 

a tree and a building (Figure 59 (b)). For trees it changes abruptly from negative to posi-

tive as LiDAR penetrates the vegetation but this is not the case with the buildings result-

ing in lower mean values compared to trees. However; it is not applicable to building 

edges. 
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Figure 59: Cross Section of nDSM Showing Surface Roughness 

0 -1 0 
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0 -1 0 

Table 22: Laplace Filter for Surface Roughness 

-1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 

-1 -1 24 -1 -1 

-1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 

Table 23: Smoothed Laplace Filter for Surface Roughness 

Laplace filter was used to determine the surface roughness parameter. It can be used 

alone (Table 22) or in combination with Gaussian smoothing (Table 23).  

Figure 60 shows the results achieved after convolving the thresholded nDSM with the 

two previously defined matrices. Small variations over buildings roofs were smoothed 

using Laplacian filter combined with Gaussian which helps in the better classification of 

tree and building segments.   
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Figure 60: Subset Gray Scale (8-bit) Surface Roughness Image (a) Laplace 

(3*3) (b) Smoothed Laplace (5*5) (Development Area) 

Many researchers also performed segmentation of DSM using Gaussian and mean cur-

vature for building roof extraction by identifying different surface types instead of 

Laplace filter (Besl and Jain, 1988). Using surface curvature signs, a surface type image 

was determined for each pixel. In the second stage, an iterative region growing was per-
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formed using variable order surface fitting. The output of the second stage consists of a 

region label image, which contains all region definitions in one image, and a list of coef-

ficient vectors, one for each region. These regions were also used for classifying build-

ings and trees in the range images. 

5.1.7.4 Anisotropic Diffusion 

Object extraction techniques are dependent upon the characteristics of the available 

data. For example, Optech ALTM sensor can record two returns per emitted pulse. That 

is why; it is possible to create two separate range and intensity images from a single 

scan. Normalized Difference (ND) is a LiDAR based vegetation index to separate trees 

from buildings using the first pulse and the last pulse, especially for the Optech sensor 

data. Equation for ND is defined as (Arefi et al., 2003). 

   
                      

                      
 

Once a major part of vegetation is removed, building regions can be refined using the 

previously stated classification cues obtained from the LiDAR data. 

Multiple returns from ALS50-II data area were not dense, except where there are clus-

ters of trees or big trees (Figure 61). These multiple returns, because of their very low 

density, cannot be interpolated. It was not possible to classify these returns on the basis 

of height to find those echoes which were reflected from the ground or building corners, 

because of the complex urban environment as shown in Figure 62. 
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Figure 61: Multiple Return Range Image from ALS50-II Sensor  

 

Figure 62: Complex Urban Environment Side View (Jenkins, 2006) 
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Figure 63: Effect of Anisotropic Diffusion (a) Multiple Returns Image Before 

(from TerraScan) (b) Resulting Diffused Image 

[b] 

[a] 
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The density of multiple returns was greater over trees as compared to the buildings. 

These were exported as a height image (gray scale) using TerraScan (Figure 63 (a)). The 

multiple returns were combined using AD to utilize them for building and tree classifi-

cation. This process smoothes the regions while preserving and enhancing, the contrast 

at sharp intensity gradients (Figure 63 (b)). A 2D network structure of 8 neighbouring 

nodes was considered for diffusion conduction (Perona and Malik, 1990; Kovesi, 2007).  

5.1.8 LiDAR Classification Cue Analysis 

The classification cues obtained from LiDAR (VSNs, LRV, SR and AD), whose mean 

values were determined in the reconstructed building regions to remove remaining trees, 

require thresholding. This was done using QQ plot to select appropriate thresholding 

values. It has two forms, a normal QQ (Quantile - Quantile) plot and a general QQ plot 

which are explained below. 

5.1.8.1 Normal QQ plot 

Normal QQ plots are graphs on which quantiles from two distributions are plotted rela-

tive to each other. Distribution of the data is compared to a standard normal distribution, 

providing another measure of the normality of the data. The closer the points are to the 

straight line in the graph, the closer the sample data follows a normal distribution (ESRI, 

2007). 

5.1.8.2 General QQ plot 

The general QQ plot is used to assess the similarity of the distribution of the two data-

sets. A general QQ plot is created by plotting data values for two datasets where their 

cumulative distributions are equal (ESRI, 2007). 
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Normal QQ plot technique was used in ArcGIS after exporting building polygons from 

Ecognition (raster to vector conversion) with four attributes to select appropriate thresh-

olds for classifying the remaining trees amongst them. Only the buildings greater than or 

equal to 30 m2 were considered. This was done to eliminate small structures (such as 

huts and sheds) especially in the back yards which could possibly have been extracted as 

buildings. 

The general QQ plot is useful for comparing the classification cues. However; this has 

been done later by using the confidence matrix to examine the number of trees removed 

by each classification cue  that have also been classified by other cues. This shows how 

effective each classification parameter is in removing trees. 

Figure 64 to Figure 67 show the normal QQ plot of mean values for each of the four 

classification cues. Where the plotted classification cue object value deviates from the 

straight line, it is an indication of possible tree objects and was selected as a threshold to 

separate them from buildings. By selecting the plotted values in the graph (red ellipse) 

corresponding objects were highlighted in ArcGIS. The minimum value of the selected 

objects for a particular classification cue was set as a threshold. The Normal QQ plot 

reveals the heterogeneous behaviour of the parameters better than histogram especially 

highlighting each single object which varies greatly from the other objects. The build-

ings have low mean VSNs, LRV, SR and AD values as compared to the trees. 
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Figure 64: Variance of Surface Normals QQ Plot 

 

Figure 65: LRV Normal QQ Plot 

 

Figure 66: Surface Roughness Normal QQ Plot 
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Figure 67: Anisotropic Diffusion Normal QQ Plot 

5.1.9 LiDAR Parameter Analysis without NDVI 

If only ALS50-II sensor data with three multiple returns was available for object extrac-

tion without multi spectral images, it would be difficult to classify buildings and trees in 

the thresholded nDSM. All classification cues were analyzed using normal QQ plot to 

select appropriate thresholds for the classification of buildings and trees. The task be-

comes tedious because of a large number of objects. There were more than 1,233 objects 

in the LiDAR data in the development area which were reduced to less than 500 when 

using NDVI. This makes parameter analysis and the extraction process easier. 

5.1.10  Final Extracted Buildings 

Thresholds determined using Normal QQ Plots were applied to the reconstructed build-

ing objects to remove remaining trees. The determined mean building object values for 

classification are given in Table 24 .  
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Parameter ≤ Thresholds  

Surface Roughness 90 

LRV 15 

Variance of Surface Normals 203 

Anisotropic Diffusion 192 

Table 24: Thresholds Determined from LiDAR Parameters 

In order to avoid harsh thresholding, a technique similar to multi-agent based modelling 

was utilized, which softened the effect of the applied thresholds. This was done by add-

ing an additional object attribute using four classification cues. For example, if an object 

has been classified as a tree by three classification cues but not so by the fourth one, its 

score is 3 out of 4 (75%). Another way is to assign weights to each attribute. However; 

in this research only the first technique was used. An object to be classified as a tree 

should score at least 75%.  

 SR LRV VSN AD 

SR 24 11 4 13 

LRV 11 19 3 11 

VSN 4 3 12 5 

AD 13 11 5 46 

Table 25: Confidence Matrix (Development Area) 
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A matrix was developed to see which classification cue has classified most objects as 

trees and what the extent of overlap between different cues is. For example, 24 objects 

were classified as trees that exist in the reconstructed building layer using SR threshold. 

Out of these 24 objects, 11, 4 and 13 objects have also been classified using LRV, VSNs 

and AD respectively. This suggests that a single parameter was not sufficient for proper 

classification. 

Anisotropic diffusion was the best one amongst the selected classification cues as can be 

seen from Table 25. It classified 46 objects as trees which were previously classified as 

buildings.  

 

Figure 68: Final Extracted Buildings 
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Figure 68 shows the final extracted buildings in the development area using NDVI, 

nDSM and the four classification cues determined from LiDAR. The buildings with an 

area greater than or equal to 30 m2 are shown. Buildings smaller than 30 m2 are gener-

ally sheds outside main buildings and in open fields. Such structures are even not part of 

the OSI vector data. These small regions also occur from vegetation without leaves. In 

every building extraction technique a size threshold has been used to get rid of stand-

alone pixels or segments (Rottensteiner et al., 2007; Matikainen et al., 2009). 

5.2 Building Heights 

Extracted building have to be assigned with appropriate height attribute necessary for 

generating 3D building model, an important requirement of noise mapping. Most of the 

National mapping agencies are facing challenges to extract and store this information 

along with 2D buildings model. After extracting building outlines, two methods have 

been evaluated to determine building heights. 

5.2.1 Building Centroid 

Building polygons centroid were determined and heights at these centroids were deter-

mined from nDSMs using bilinear interpolation. These building heights were evaluated 

by a ground truth survey using reflectorless total station (Leica 1200).  

5.2.2 Descriptive Statistics 

Instead of computing centroid from extracted building outline, three heights i.e. maxi-

mum and average and median had been determined from nDSM. Figure 69 shows how 

height varies along (a) and across (b) the roof in the nDSM. 



Method Development   

— 137 — 

 

   

Figure 69: Cross Section Showing Building Roof Height Variation 

5.3 Vegetation Extraction 

The buildings and not trees are an important component of a noise model. The trees 

therefore need to be masked out for successful building extraction. However, trees are 

an important component of every 3D city model. All green areas extracted using the 

method given in Figure 70 were referred to as vegetation. After the vegetation was ex-

tracted, it was further classified into single trees, tree clusters and hedges‟ depending 

upon the shape attributes and distance from the nearest tree peaks. 

[a] 

[b] 
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Figure 70: Vegetation Extraction Method 
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5.3.1 NDVI Image 

The process of vegetation extraction initiated with the same threshold value as was used 

for building separation from NDVI. However; at this instance, the values above the 

threshold were retained. This was so because after the application of the threshold, the 

NDVI Image mostly contained vegetation and those buildings having spectral character-

istics similar to vegetation (Figure 71). A threshold of 2.5 m on nDSM was also retained 

for vegetation extraction. The binary raw vegetation image was created using binary 

nDSM and binary thresholded NDVI. This image represents those pixels where vegeta-

tion was present in the nDSM (Figure 72). 

 

Figure 71: Binary Thresholded NDVI Image for Vegetation Extraction 

Black = Non Vegetation 
White = Vegetation 
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Figure 72: Binary Raw Vegetation Image 

5.3.2 Gap Filling in Vegetation 

It was necessary to fill small gaps among the vegetation pixels due to artefacts that oc-

curred especially over the vegetation during orthophoto generation. Figure 73 (a) shows 

the captured RGB image having a pixel size and radiometric resolution of 15 cm and 

16-bit respectively. Figure 73 (b) shows the generated orthophoto at a reduced spatial 

and radiometric resolution (50 cm & 8-bit). Tree trunks can be seen for some of the 

trees which were tilting away from the projection centre suggesting that these trees did 

not have a lot of leaves. However; in the generated orthophoto, tree structures were de-

stroyed and it seems that the tree shadows are overlying the  trees. This results in a low 

NDVI value which subsequently results in gaps/holes in the vegetation segments after 

the thresholding of the NDVI image. 

Black = Non Vegetation 
White = Vegetation 
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Figure 73: Subset of RGB Image in Development Area (a) RGB Image (b) Ortho 

RGB Image  

Multiresolution image segmentation was used to divide the binary raw vegetation image 

(Figure 72) into small segments. The ratio of the relative border of non vegetation seg-

ment was used as a criteria to merge them with the vegetation segments, similar to the 

method used during building reconstruction process. Vegetation smaller than 5 m2 was 

also ignored. The vegetation segments that were fully enclosed by extracted buildings or 

[a] 

[b] 
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around edges need to be removed. This is because of the forward looking NIR (18°) 

band and nadir Red band combination for calculating NDVI after orthophoto generation 

using LiDAR DSM (pixel size 0.5 m). This results in some distortions around building 

edges and  ridges especially for high buildings. Figure 74 (a) shows a high building in 

the development area and Figure 74 (b) shows a subset of the corresponding raw binary 

vegetation image (Figure 72).  

A threshold was used to extract vegetation having a border of less than 0.25  relative to 

the buildings and not completely surrounded by building boundaries (Figure 75). 

  

Figure 74:  (a) Ortho RGB Image (b) Vegetation Segments on Building Roof and 

Around Edges 

[a] [b] 
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Figure 75: Extracted Vegetation (Development Area) 

5.3.3 Extraction of Non-Vegetation Objects 

After filling the gaps and removing artefacts created at the time of orhtophoto 

generation, the potential vegetation areas (Figure 75) were searched for the buildings 

that were present amongst vegetaion (Figure 76). The shape parameters such as 

rectangularity, compactness, roundness and shape index were analysed to separate the 

buildings from vegetation but without success. However; combining these with the four 

classification cues (VSNs, LRV, SR and AD) used previously for spearating trees that 

existed in classified buildings proved useful in separating buildings from vegetation. 

Same thresholds values were used for classification cues obtained from LiDAR as listed 

in Table 24. The used shape parameters were rectangularity (>0.85), compactness (>1) 

and shape index (>1).  
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An additonal parameter (classification cue) was also generated from the used 

classifiation cues as was done perviously for building extraction to soften the effect of 

stringent thresholdings. This included the four cues from LiDAR and three cues from 

shape analysis. Building candidate region scoring at least 6 out of 7 (85%) were finally 

selected and separated from vegetation. 

 

Figure 76: Buildings Separated from Vegetation (Development Area)  

Figure 76 shows the buildings that exist amongst vegetation because of NDVI values in 

the range used for vegetation extraction. These were successfully separated using the 

explained methodology and added back to the buildings that were extracted previously. 

5.3.4 Hedge Extraction 

The hedges along roads and around dwellings and fields were separated from the ex-

tracted vegetation using a shape parameter i.e. length to width ratio (>5). The extracted 

hedges are shown in Figure 77 overlaying the ortho RGB image. 
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Figure 77: Extracted Hedges in the Development Area 

5.3.5 Single Tree Extraction 

A pixel based analysis was carried out for extracting single trees or tree clusters from 

the extracted vegetation using pixel height values. The vegetation pixel height was re-

versed, so the high points (tree peaks) became the lowest points (ditches) and vice versa. 

Hydrological analysis was performed to segment out pixels representing ditches (tree 

peaks), where the flow accumulated from the neighbouring pixels. The steps performed 

in the extraction of single trees can be seen from the flowchart in Figure 78.  These 

Extracted Hedges 
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segments were extracted and finally converted to the points representing tree peaks 

(Figure 79). 

 

 

Figure 78: Method for Single Tree Extraction 
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Figure 79: Extracted Tree Peaks Overlaying Ortho RGB Image  

5.3.6 Tree Clusters 

In order to extract tree clusters, a distance matrix was calculated representing the dis-

tance of each single point (tree crown) from all the other points (trees). In this way, the 

distance between each individual tree and its 7 closest neighbouring trees was calcu-

lated. Finally, all those trees placed at a distance of less than 3 m from their neighbours 

were selected and categorized as tree clusters (Figure 80). The number of neighbours 

and the distance between the tree clusters may vary. However; it is not fundamentally 
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important as the purpose here is to provide a workable solution for extracting tree clus-

ters, if required.  

 

Figure 80: Extracted Tree Clusters Overlaying RGB Image 

5.4 Road Extraction 

It is important to identify different surface types for effective noise modelling. It is so 

because the extent of noise reflection varies with the change in surface material thus 

affecting noise propagation. Road surfaces are either made up of asphalt or concrete 

with varying sound reflection properties.  
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Aerial images are always captured during daytime, when there are maximum road users. 

These road users, different types of road markings, overarching trees and the similarity 

of road surface to building roofs present the biggest challenges in road classification. 

With the help of the LiDAR sensor, the detailed road geometry can be captured during 

night time. The height information from LiDAR can be used to separate roads from 

building roofs. However; the problem of large trees overarching the roads remains. 

These trees can affect the quality of the generated DTM, especially if the point cloud 

density is low. 

The roads were part of the extracted DTM as has been explained in chapter 4, along 

with other surface objects such as grass, drive ways, footpaths and paved or unpaved 

surfaces. If DTM has to be used then the holes in it, which occurred due to above-terrain 

object filtration, should not be filled with the interpolated value from their neighbours. 

The pixel value of these holes should be set to 0. However; it is preferable to use in-

verted binary nDSM where the value 1 represents the ground having zero height as 

shown in Figure 81. 
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Figure 81: Inverted Binary nDSM (Development Area) 

Roads are generally part of the ground surface with the exception of bridges. These 

were extracted by fusing LiDAR intensity and NDVI images. The ground has been clas-

sified into three surface types i.e. roads including car parking lots, grass covered sur-

faces and barren or ploughed surfaces as shown in Figure 82. The method for road ex-

traction is shown in Figure 83. 

White = Ground 
Black = Above Terrain Objects 
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Figure 82: Different Ground Surface Types (a) Barren Surface/Construction site 

(b) Ploughed Ground 

LiDAR intensity information was uniform over the roads. It was used to separate roads 

especially from the barren surface/ploughed ground in combination with the previously 

thresholded NDVI image, used for building extraction. 

Multi-resolution segmentation was used to generate small segments which when com-

bined after classification do not alter object boundaries a lot as was the requirement dur-

ing building extraction. Parameters used for multi-resolution segmentation are shown in 

Figure 84. 

[a] [b] 
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Figure 83: Road Extraction Method 

 

Figure 84: Multi-resolution Parameters used for Road Extraction 
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A scale parameter equal to 3 was used to generate small segments. Reducing it further 

generates segments equal to the pixel size (0.5m). In addition it utilizes considerable 

memory resulting in software crashes. More weight was assigned to colour rather than 

the shape in order to use LiDAR intensity and NDVI values for segmentation. Com-

pactness and smoothness depend upon the shape value (0.2) which was set low for road 

extraction to generate long thin segments better representing the road boundaries.  

The raw road surface was extracted by selecting NDVI and LiDAR intensity values be-

low 146. The values were selected by investigating the mean values of these two pa-

rameters over a few road segments. The reason for calling it a raw surface the presence 

of holes in it. These might have occurred due to road users, overarching trees or trees in 

between a dual carriage way, partitioning barrier etc. These holes need to be filled. This 

is of particular importance if the road centre line has to be extracted. A new method was 

developed to fill such holes.  

Holes in the raw road surfaces were filled by reversing the extracted raw road binary 

image. By doing so, small gaps appeared as noise. These gaps were filled by using mor-

phological operation opening. Figure 85 (a) shows a subset binary image of the raw road 

surface (white pixels) in the development area before the hole filling operation and Fig-

ure 85 (b) shows the resulting final road surface. 

Figure 86 shows the extracted road surface. Roads or hard surfaces covering an area less 

than 250 m2 as well as long narrow roads in the open country can be ignored as per the 

recommendations of the working group and have been listed in chapter 1.  The extrac-

tion of road segments provide the initial input required for extracting road vector data 

such as centre line, longitudinal and cross sectional slope etc. In order to extract road 

centre line, the maximum road width in the project area needs to be known before hand. 
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This helps in separating drive ways and car parking areas from the main road. However; 

the extraction of road centreline is not possible for those road segments which are under 

dense vegetation as shown in Figure 86 (red polygon). The object-oriented techniques 

for processing vector data extend the determined road centreline on both sides of the 

gaps depending upon the maximum allowable limit as set by the operator. However; the 

results were not good in cases when the roads are at a curve or in the case of large gaps.  

Road centrelines and edges have already been digitized by the OSI as line features. 

These are available to the NRA and were not further researched. The developed method 

will help in incorporating different man made surfaces into the noise model which have 

reflection properties different from natural surfaces. 
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Figure 85: Morphological Operation (Opening) for Holes Filling (a) Raw Road 

Surface (Before) (b) Final Road Surface (After) 

[a] 

[b] 
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Figure 86: Extracted Road Surface (Development Area) 

Ploughed, barren or construction site surfaces were also extracted using the same meth-

odology as was used for road surface extraction with an additional input i.e. the ex-

tracted road surface itself. Appropriate thresholds were selected for NDVI (110 

<NDVI< 163) and LiDAR (>135) intensity after inspecting some segmented regions. 

The extracted segments were checked against previously extracted roads to insure that 

they don‟t overlap. Extracted surfaces are shown in Figure 87. 
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Figure 87: Extracted Ploughed, Barren or Construction Site Surfaces Different 

from Natural Ground and Roads and Greater than 250 m2 

5.4.1 Longitudinal Road Gradient 

Gradient is an important parameter as traffic noise increases at sharp slopes. It was 

stored as an additional attribute along with the road centreline. Gradient is defined as   

         
  

 
 

Gradient was calculated using Hawth‟s tool in ArcGIS (Beyer, 2004). The generated 

DTM was used to determine the slope of the area. The length weighted mean (Figure 

88) and standard deviation (Figure 89) were then determined for each section of the road 
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centre line. Length weighted mean shows the slope mean value over the course of each 

road section. However; if there is a sharp change in slope in a particular road section, 

this can be better identified using standard deviation. It also eliminates the need of digi-

tising these sections as a separate new line. Figure 89 shows that in the development 

area there are very few sections where there is a sharp change in the road slope. 

 

Figure 88: Road Length Weighted Mean Gradient 
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Figure 89: Road Length Weighted Standard Deviation 

5.5 Noise Barrier Extraction 

Noise barriers are an important component of any noise model. These are built specifi-

cally closer to the source of sound to dampen the noise before it propagates. These bar-

riers are thin (Figure 90 (a)) and continuous along the road (Figure 90 (b)).  

   

Figure 90: Example of a Highway Noise Barrier 

(http://www.archidose.org/Blog/AE002a.jpg) http://www.soundfighter.com/photo_gallery.asp 

[a] [b] 

http://www.archidose.org/Blog/AE002a.jpg
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Any noise barrier should be at least as tall as the line-of-sight between the noise source 

and the receiver, plus 30%. Therefore, if the line-of-sight is 3 m high, then the barrier 

should be at least 4 m tall for optimal performance (Sound Fighter Systems, 2010). 

These noise barriers because of their geometry are not visible in the low density LiDAR 

data, especially if these are perpendicular to the flight direction. The developed methods 

of object extraction (buildings and roads) using airborne sensor data were able to extract 

hedges along the road and dwellings. However; these were not able to extract boundary 

walls because of their thickness i.e. 15 cm. This is the same as the GSD of the available 

ADS40 sensor data. The orthophotos were used for object extraction with a reduced 

spatial resolution (0.5 m) further dropping the chances of a wall or noise barrier extrac-

tion. 

5.5.1 Noise Barrier Extraction Method 

5.5.2 Point Cloud Classification 

Mobile Laser Scanner (MLS) data was only available for the Test Area-2 and has been 

described in chapter 3 (section 3.3). A method was developed for the semi-automatic 

extraction of noise barriers using the trajectory of the MLS. As explained in the chapter 

3, no purpose built noise barrier existed in the area. However; a continuous wall along 

the road connecting Maynooth and Leixlip towns was considered as a possible noise 

barrier. 

The process starts by extracting the ground points from MLS data or using classified 

ground points from airborne LiDAR extracted for DTM. Ground is needed to extract 

those points which are in the height range of 0.5 to 4 m (possible noise barrier height as 

mentioned earlier) from the ground to narrow down the object search space. The points 
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below 0.5 m were not considered as these could be because of small vegetation in front 

of the noise barrier. 

A second classification cue was used calculated using MLS trajectory during the data 

acquisition. The perpendicular distance of previously filtered point (0 - 4 m) from the 

trajectory was calculated. The perpendicular distance from a point       to the line 

          is given by: 

  
         

      
 

This formula is applicable to straight road stretches. However; if they lie on curves, 

small road stretches should be used to minimize the deviation of the noise barrier from 

the sensor trajectory. On the other hand it is not practical to process all MLS data at one 

time, necessitating the need to sub divide it into several smaller subsections. These sub-

sections can be so selected that the road segment is straight in each section.  Purpose 

built noise barriers generally have a constant distance from the road centreline or MLS 

trajectory. However; this is not applicable to walls. 

Moreover, depending upon the type of material they are made of, the noise barriers have 

unique reflectance properties recorded as intensity of the returning pulse. However; it is 

quite possible that over time these get covered by vegetation (plants that grow as vines) 

resulting in variable intensity values. 

5.5.3 Principal Component Analysis 

The classification cues (perpendicular distance from the road trajectory and intensity) 

were analysed using Principal Component Analysis (PCA) for the filtered point cloud. 

PCA is a technique that takes a collection of data and transforms it such that the new 
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data has certain given statistical properties. The statistical properties are chosen such 

that the transformation highlights the importance of data elements. Thus, the trans-

formed data can be used for classification by observing the important components of the 

data (Nixon and Aguado, 2002). 

The first and second principal components were determined in MATLAB and were 

thresholded to extract those points that belong to the noise barrier. Different weights can 

also be assigned to these classification cues in PCA, if the intensity is not uniform or if 

the barrier is not parallel to the sensor trajectory. However; in this research no weights 

were used for classification cues. This was mainly due to the fact that the versatility of 

the data was limited by only a single wall making it difficult to run various scenarios. 

5.5.4 Line Fitting 

Robust Least squares fitting method was used to fit a straight line into the points classi-

fied as a noise barrier because of the sensitivity of linear least squares to outliers. Out-

liers have a large influence on the fit because squaring the residuals magnifies the ef-

fects of these extreme data points. MATLAB curve fitting toolbox provides these two 

robust regression methods: 

Least Absolute Residuals (LAR): The method finds a curve that minimizes the absolute 

difference of the residuals, rather than the squared differences. Therefore, extreme val-

ues have a lesser influence on the fit. 

Bisquare Weights: This method minimizes a weighted sum of squares, where the weight 

given to each data point depends on how far the point is from the fitted line. Points near 

the line get full weight. Points farther from the line get reduced weight. Points that are 

farther from the line than would be expected by random chance get zero weight. 
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For most cases, the Bisquare weight method is preferred over LAR because it simulta-

neously seeks to find a curve that fits the bulk of the data using the usual least squares 

approach, and it minimizes the effect of outliers (MathWorks, 2010). 

The         and         commands in MATLAB were used initially for a regular linear 

fit to the candidate points after PCA. To fit a line (n = 1) through the data      , the 

corresponding MATLAB command is  

                     

The output of this function call is a vector        which includes the coefficients    and 

   of the line fit             . To evaluate and plot this line, values of x must be 

chosen. The         command uses the coefficients generated from         to generate 

the   values of the polynomial fit at the desired values of  . After determining the initial 

fit (regular linear fit), Bisquare weights method was used for robust least squares fitting. 

The process continues until the fit converges. 

 

Figure 91: Extracted Noise Barrier 
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Figure 91 shows a section of the road for which a continuous wall along the road was 

extracted. This wall was tested against the previously extracted building boundaries to 

make sure that the two do not overlap (especially building façade) and that it is an inde-

pendent structure with in the road neighbourhood. The developed method for noise bar-

rier extraction is summarized in Figure 92. 

 

Figure 92: Noise Barrier Extraction Method 
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5.6 Accuracy Assessment 

To evaluate the accuracy of extracted objects (buildings, trees and roads) using the de-

veloped method, the OSI vector data was used as a reference. The reason for choosing 

the OSI data was to examine the accuracy in real world rather than digitizing the objects 

in house using orthophotos or Digital Photogrammetric Work Station. Three different 

methods used for estimating building extraction accuracy are explained in the following 

sections. These have been discussed here from the perspective of buildings. This is so 

because, later on, only the pixel-based method and the area overlap method were used 

for the extraction of roads and vegetation respectively. This is because of the non avail-

ability of reference data for vegetation and the nature of extracted road objects.  

Accuracy measures such as completeness, correctness and quality were calculated to 

determine the success of the extraction method (Heipke et al., 1997). 

             
  

     
 

            
  

     
 

        
  

        
 

                                    are generally expressed in percentage. 

An entity classified as an object that also corresponds to an object in the reference is 

called a True Positive (  ). A False Negative (  ) is an entity corresponding to an object 

in the reference that is classified as background. A false Positive (  ) is an entity classi-

fied as an object that does not correspond to an object in the reference. 
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5.6.1 Building Centroid 

In building centroid method, building polygons were used and their centroids were cal-

culated. These centroids might lie outside the building regions and need to be corrected. 

Building representation in the provided OSI data and our extracted buildings is very 

different. The buildings with common roofs were extracted as one whereas they exist as 

separate buildings in the OSI data as has been touched upon earlier in chapter 3 (section 

3.5). Internal borderlines not visible from the top were marked through the ground sur-

vey. Moreover, the operator also used his own judgment in marking the borders between 

buildings having common roofs with the help of back or front garden walls between the 

buildings. This method requires a lot of manual work with the extracted or reference 

data to make both datasets correspond before beginning the actual comparison process. 
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Figure 93: Different Building Representations (a) Ortho RGB Image (b) OSI 

Vector (c) Extracted Buildings 

Figure 93 (a) shows buildings in RGB orthophoto (b) shows OSI vector and (c) shows 

the extracted building boundaries. The buildings which are very close have been ex-

tracted as single buildings (Figure 93 (c)). Instead of comparing the building centroids, 

[a] 

[b] 

[c] 
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the extracted buildings that intersect with the OSI buildings were considered as a suc-

cessful extraction (true positive). That is why this method has been referred to as build-

ing intersection from here onwards. 

The analysis was based on the number of buildings in the OSI data and the extracted 

buildings; intersecting buildings in both datasets (  ); the number of buildings missed 

that exist in the OSI data (   ); and the extracted buildings that do not exist in the OSI 

data (  ). Table 26 shows the details of building intersection method based on extracted 

and reference object intersection in the development area. 

OSI Building Vector No. of Buildings 
Area > 30 m2 1074 

Area (15 to 30) m2 72 
Area < 15 m2 190 

Total OSI Buildings 1336 

Building  ≥ 30 m2 Overlapping Extracted Buildings (  ) 1017 

Missed Large Buildings 1074-1017=57 
New Buildings in 2009 Vector Data 6 

Buildings Missing in OSI Data 1 
Total Missed Buildings (  ) 57-6-1=50 

Extracted Buildings not Matching OSI (  ) 74 

Table 26:              Determination Based on Building Intersection Method 

(Development Area) 

The number of buildings in the OSI vector data was far more than the extracted build-

ings because of the marked internal boundaries. 57 extracted buildings did not match 

with the buildings in the OSI data. This was due to some vegetation been extracted as 

buildings and different definitions of buildings in the OSI data. The OSI data did not 

include some temporary structures or industrial installations which were extracted as 

buildings. The containers placed outside the loading bay at construction sites were also 
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detected. The buildings with an area more than 30 m2 were considered as a threshold in 

the extraction process, however; there were only 10 buildings that were extracted over-

lapping the OSI building vector with an area between 15 and 30 m2. The building size 

threshold can be reduced to 15 m2 but it would increase the noise in the extraction proc-

ess resulting in a reduced overall accuracy. 

Large trees overarching building roofs or buildings surrounded by high dense vegetation 

reduce the accuracy of the extraction process. However; these buildings were digitized 

in the OSI vector data (Figure 94) by the operator. Figure 94 (a) shows buildings in or-

tho photo and (b) shows the OSI building vectors and the extracted building polygons. 

 

Figure 94: Trees Overhanging Building Roofs (a) Ortho RGB Image (b) Ex-

tracted Buildings (Blue) and OSI Vector (Red) 

[a] [b] 
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Figure 95: (a) and (b) are New Buildings and (c) Missing Buildings in OSI Data 

The OSI vector data corresponds to the year 2009 whereas the images and LiDAR data 

were captured in 2007. Some new buildings were constructed in the mean time. Figure 

95 (a) and (b) show these new buildings whereas (c) shows an extracted building that 

was not present in the OSI data. This building has either not been digitized or has been 

demolished. Such buildings were removed from the OSI building vector and the ex-

tracted buildings. 

5.6.2 Pixel-Based 

In the pixel-based accuracy assessment method, each pixel in the extracted building is 

compared with the reference building, generated by converting the OSI building vector 

to raster. This requires good registration of the reference and the extracted buildings, 

and is a prerequisite for using this method. 

The pixel based method for accuracy assessment is more stringent than the building 

intersection method as each pixel in the reference image (OSI) is compared with the 

extracted building image. Figure 96, Figure 97 and Figure 98 show the determined    

  , and    images in the development area using the pixel-based method. The number of 

white pixels in each of these images was computed to calculate the accuracy measures 

(completeness, correctness and quality). 

[a] [b] [c] 



Method Development   

— 171 — 

Spaces between the buildings were filled because of morphological operations or be-

cause of relative border criteria used to fill gaps in the building segments resulting in 

white pixels around building edges in   , and   . Since the OSI vector data was con-

verted to raster, this also results in rough object edges. 

 

Figure 96: Successfully Extracted Building Pixels (  )  
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Figure 97: Building Pixels Missed by the Extraction Process (     

 

Figure 98: Non Building Pixels Extracted by the Developed Method (  ) 
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The pixel-based method was also used to measure road extraction accuracy.  

  

Figure 99:  (a) Extracted Roads and (b) OSI Roads  

Figure 99 (a) shows the extracted roads using the developed method and the Figure 99 

(b) shows the data available from the OSI for accuracy assessment. The OSI data does 

not include all surfaces having reflectance similar to roads. 

Figure 100 shows the pixel-based comparison of reference and extracted roads. Figure 

100 (a) shows that most of the road pixels were successfully extracted (white pixels). 

However; the method fails to extract the road under overarching trees resulting in gaps 

Figure 100 (b). Figure 100 (c) shows the hard ground surface extracted using the devel-

oped method and was not digitized as road in the OSI data. However; these areas are 

important for noise modelling. 

 

[a] [b] 
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Figure 100:              Binary Images for Accuracy Assessment (Development Area) 

 

[a] [b] [c] 
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5.6.3 Area Overlap  

A third method was used to determine the percentage overlap of the extracted and the 

OSI buildings. A threshold has to be selected based on the percentage overlap to deter-

mine the buildings that were extracted successfully.  

   was determined using OSI building polygons and calculating the area it covers in the 

corresponding extracted building polygons and then summing up all these areas. For   , 

the calculated total overlapping area was subtracted from the total OSI building area.    

was determined from the area overlapped by the OSI building vector minus the total 

area of the extracted building. The percentage overlap of each of the OSI building vec-

tor with the extracted building polygon was calculated.  

 

Figure 101:      , and    using Area Overlap Method  
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The percentage overlap threshold that should be considered to identify     extraction is 

again debatable. That is why different overlap percentages have been considered for 

accuracy assessment in the development and the test areas. Figure 101 shows the three 

parameter values determined by considering different percentage overlaps as successful 

extraction. Considering 90% area overlap to be regarded as a successful extraction is not 

very realistic, given that there are many small buildings in the area. However; 70 or 

50% area overlap can be considered as a suitable threshold to separate those objects that 

have been extracted successfully.  
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6 Results 

The results of object extraction in the development area and the two test areas are pre-

sented (3D model) using the methods developed in the previous chapter. The chapter 

also shows the results obtained for each object in its corresponding section. These re-

sults are analysed in depth in the following chapter. 

6.1 Development Area 

 

 

Figure 102: 3D Model of Development Area 

The model extracted as a result of the object extraction method developed in chapter 5 is 

shown in Figure 102. The model shows buildings with individual heights, trees and 

roads overlaying the DTM. The steps for extracting each object of interest in the devel-

opment area and the intermediate results were presented in chapter 5. Therefore, only 

the final 3D model has been presented here. Building height is an important attribute of 
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noise modelling. The selected height is compared with the actual building heights meas-

ured using ground survey in chapter 7. 

6.2 Test Area-1 

 

Figure 103: 3D Model Sligo (Test Area-1) 

 SR LRV VSNs AD 

SR 33 10 8 6 

LRV 10 64 7 27 

VSNs 8 7 20 3 

AD 6 27 3 30 

Table 27: Confidence Matrix (Test Area-1) 
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The developed method was also tested objectively in Test Area-1 using the available 

Sligo data. Table 27 shows the developed confidence matrix to examine the effective-

ness of each classification cue obtained from the LiDAR data for the extraction of final 

buildings. These classification cues were thresholded using the Normal QQ plot in Ar-

cGIS.  Figure 103  shows the final generated 3D model for Test Area-1. Intermediate 

results are shown in Annexure-II. 

6.3  Test Area-2 

In the Test Area-2, ADS40 and LiDAR data were available to test the developed method 

of object extraction along a road connecting Maynooth and Leixlip towns. NIR band 

was not available for Test Area-2 and is compensated by using returned LiDAR pulse 

intensity value for NDVI determination. 

 A continuous wall along the road was extracted as a noise barrier using MLS data in 

Test Area-2 using the method explained in chapter 5. Intermediate results are shown in 

Annexure-III. 

 AD SR LRV VSNs 

AD 2918 528 180 33 

SR 528 1119 70 157 

LRV 180 70 514 145 

VSNs 33 157 145 169 

Table 28: Confidence Matrix (Test Area-2) 
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Vegetation segmentation in the reconstructed buildings was removed again using cues 

obtained from LiDAR. Table 28 shows how helpful these classification cues. Figure 104 

shows the final 3D model for the Test Area-2 covering 500 m on either side of the road. 

Figure 105 shows the continuous wall extracted along the road, using MLS data.  

  

 

Figure 104: 3D Model (Test Area-2) 
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Figure 105: Extracted Noise Barrier (Wall along Maynooth Leixlip Road (R148)) 

6.4 Accuracy Assessment for Extracted Buildings 

6.4.1 Building Intersection 

Table 29 shows the accuracy assessment based on the building intersection method for 

the development and the test areas. 

 Area Completeness Correctness Quality 

Development Area 95.31 93.21 90.48 

Test Area-1 97.26 96.91 94.34 

Test Area-2 89.18 69.44 64.05 

Table 29: Accuracy Assessment Based on Building Intersection Method 

6.4.2 Pixel-based 

Table 30 shows the obtained results in the development and the test areas using the 

pixel-based method of accuracy assessment. 

Noise Barrier 

Noise Barrier 
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Area Completeness Correctness Quality 

Development Area 88.28 76.81 69.70 

Test Area-1 87.65 82.52 73.92 

Test Area-2 81.77 70.93 61.24 

Table 30: Accuracy Assessment Based on Pixel-based Method 

6.4.3 Area Overlap 

 Table 31 and the graphs in Figure 106 show the accuracy assessment results obtained 

using the area overlap method. Different area overlaps were considered to (0 to 90%) 

for the selection of an appropriate threshold to draw a line between successful extraction 

and failure using the developed method for building extraction.  
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% Overlap > 
Development Area Test Area-1 Test Area-2 

Completeness Correctness Quality Completeness Correctness Quality Completeness Correctness Quality 

90 57.03 52.66 37.70 59.54 56.55 40.85 60.67 51.35 38.52 

70 81.87 75.60 64.76 79.82 75.81 63.62 79.94 67.65 57.83 

50 84.44 77.97 68.18 82.83 78.67 67.64 83.35 70.54 61.83 

30 84.75 78.26 68.60 83.49 79.29 68.54 83.81 70.93 62.38 

10 84.88 78.38 68.78 83.96 79.74 69.20 83.91 71.01 62.50 

0 84.89 78.39 68.79 84.04 79.81 69.30 83.92 71.02 62.52 

Table 31: Accuracy Assessment Considering Different Percentage Overlap 

   

Figure 106: Graphs Representing Accuracy Measures using Area Overlap Method 

Development Area Test Area-1 Test Area-2 
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6.5 Building Heights 

Table 32 and Table 33 shows the comparison of the measured building heights during 

ground truth survey and the heights computed using the building centroid (bilinear in-

terpolation) and descriptive statistical measures in the building regions. 

In the Test Area-2 it was not possible to measure ground height close to the building 

(private housing) as was done in the development area. The orthometric height of the 

building roof was subtracted from the ground height (DTM) to obtain the actual build-

ing height. 

6.6 Vegetation Extraction 

Vegetation is not required by the NRA and nothing is mentioned about it in the report 

(Assessment of Exposure to Noise) prepared by the European working group. However; 

vegetation needs to be separated in order to extract buildings. Therefore, these are 

generated as a by product useful for many other applications. 

The buildings that appeared in the extracted vegetation were considered as an error in 

vegetation extraction. The overlapping areas of the OSI building vector and the 

extracted vegetation were calculated. The correctness measure of accuracy assessment 

was determined indirectly by the area overlap method using the OSI building vector and 

the extracted vegetation. The completeness and quality measures were not possible to 

measure because of the non availability of  the reference vegetation data. Table 34 

shows the perecentage success in separating vegetation from the buildings in the 

development and the test areas. 
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 Buildings 
Roof Ridge 

Height 
 (1) 

Ground  
 Height 

 (2) 

Building  
Height 

 (3) 

Centroid 
Height 

 (4) 

Max. 
Height 

 (5) 

Avg. 
Height 

 (6) 

Median 
Height 

 (7) 

Difference (m) 

[3-4] [3-5] [3-6] [3-7] 

1 17.83 8.96 8.87 8.33 8.58 6.32 6.56 0.54 0.29 2.55 2.31 

2 21.13 9.09 12.04 11.73 11.84 9.53 10.08 0.31 0.20 2.51 1.96 

3 19.16 11.20 7.96 7.55 7.92 6.17 6.56 0.41 0.04 1.80 1.40 

4 15.79 4.39 11.40 10.88 12.09 9.19 9.84 0.52 -0.69 2.21 1.56 

5 13.63 3.60 10.04 9.56 10.07 8.04 9.50 0.47 -0.03 2.00 0.54 

6 18.20 10.14 8.07 7.61 11.07 7.12 7.06 0.46 -3.00 0.95 1.00 

7 18.67 10.44 8.23 7.65 7.71 6.62 6.69 0.59 0.52 1.61 1.54 

8 19.13 10.45 8.68 7.73 7.91 5.11 6.04 0.95 0.77 3.57 2.64 

9 18.11 10.32 7.79 6.77 8.12 5.64 6.69 1.03 -0.33 2.15 1.10 

10 18.09 9.98 8.11 7.10 10.29 6.98 7.35 1.01 -2.18 1.13 0.76 

Table 32: Building Height Determination (Development Area) 

 Buildings 
Orthometric 

Height 
 (1) 

DTM  
 Height 

 (2) 

Building  
Height 

 (3) 

Centroid 
Height 

 (4) 

Max. 
Height 

 (5) 

Avg. 
Height 

 (6) 

Median 
Height 

 (7) 

Difference (m) 

[3-4] [3-5] [3-6] [3-7] 

1 48.91 40.23 8.68 8.69 8.79 6.37 6.71 -0.01 -0.11 2.31 1.96 

2 48.70 40.51 8.19 8.42 8.65 6.35 6.69 -0.23 -0.46 1.84 1.49 

3 48.75 40.82 7.92 7.34 11.85 6.36 6.82 0.58 -3.93 1.57 1.10 

4 48.93 41.11 7.83 7.56 8.50 6.45 6.75 0.27 -0.67 1.37 1.08 

5 49.11 41.35 7.76 7.85 8.10 6.38 6.56 -0.09 -0.34 1.38 1.20 

6 49.63 41.52 8.10 8.52 8.66 6.34 6.65 -0.42 -0.56 1.76 1.46 

7 50.23 42.01 8.21 7.90 9.08 6.62 7.00 0.31 -0.87 1.59 1.21 

Table 33: Building Height Determination (Test Area-2)
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Accuracy Assessment Correctness % 

Development Area 98.92 

Test Area-1 97.84 

Test Area-2 99.42 

Table 34: Accuracy Assessment of Extracted Vegetation Using Area Overlap 

Method 

6.7 Road Extraction 

The used OSI vector data includes road boundaries. However; parking lots, carpeted 

drive ways and other surfaces which are part of DTM having reflectance properties very 

similar to a road, were not available. Accuracy measure completeness was only possi-

ble. It was considered appropriate to determine the extent to which the extracted infor-

mation matches with the available data (completeness). If a method extracts most of the 

objects, it can be improved to achieve better classification. However; if a method fails in 

identifying the potential road areas altogether, then it does not leave a possibility for 

improvement.  

The pixel-based method of accuracy assessment was used for road extraction and the 

results are shown in Table 35.  

Area Completeness 

Development Area 81.29 

Test Area-1 79.45 

Test Area-2 65.92 

Table 35: Road Accuracy Assessment Results 
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7 Analysis 

This chapter weighs the final results of this research against the initial objectives set in 

chapter 1 (section 1.6). In doing so, it also looks at the various issues that were dealt 

with during the course of this study. The chapter is laid out to address and analyse each 

objective one by one in the light of the findings. It however; does not include the last 

objective which is related to making relevant recommendations. The potential recom-

mendations that have transpired out of this research and are hoped to provide useful 

direction to future studies in the area are presented as a separate section in the following 

chapter. 

7.1 Devise an automatic or semi-automatic approach using a combination of clas-

sification techniques for object extraction. 

The initial efforts to devise a fully automatic process during this research did not prove 

potentially successful or practical. It was realized that it is not possible to establish a 

fully automatic system for each and every involved step.  

This objective of the research was therefore accomplished by developing a method 

which is semi-automatic in its essence and requires operator inputs. The software used 

and the areas requiring operator input at different stages are listed in Appendix-IV. It is 

not possible to set a single value for a particular parameter or classification cue owing to 

the heterogeneous nature of objects and characteristics of the available datasets. For 

example, classification of DTM from LiDAR point cloud in TerraScan requires an input 

parameter of maximum building size in the project area.  

It is a step by step procedure and needs to be followed as such, so that a macro can be 

developed. These macros can be created using Definiens Ecognition or the Expert clas-
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sifier and Spatial modeller in Erdas Imagine. This enables the process to be automated 

to a large extent requiring minimal operator inputs at only a few points. 

The developed method is a combination of different classification techniques namely 

knowledge-based, object-oriented, pixel-based and multi-agent (to avoid strict thresh-

olds) based modelling. If it was possible to extract all objects using one technique then 

off the shelf solutions could have been available however; this is not the case. Depend-

ing upon the accuracy, details and the type of object required for a particular applica-

tion, a combination of different techniques is more useful. 

7.2 Test the method objectively using separate test and development areas and 

Strive for a high degree of accuracy and robustness in the object extraction 

method that is verified by experiments. 

The second and third objectives have been discussed together primarily because it cre-

ates a logical flow and a better understanding by addressing the two side by side. These 

objectives were achieved by objectively testing the developed method in two areas and 

following a comprehensive approach to evaluate the accuracy of the results. Three 

methods were used to provide full confidence over the accuracy measures for buildings. 

However, in the case of vegetation and roads, accuracy assessment was carried out us-

ing only one method for a number of reasons which have been explained in detail in 

chapter 5 (section 5.6) . The extracted objects and their accuracy assessment results us-

ing the OSI vector data as presented in the previous chapter are analysed in the follow-

ing sections. 

7.2.1 Building Extraction 
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The results of the three accuracy assessment methods are summarized in Table 36. In 

the area overlap method, the minimum overlap of 50% was selected as a threshold to 

select   . 

High accuracy results were achieved for the developed and the Test Area-1 using the  

building intersection method, however; this was not the case for the Test Area-2. This is 

because of a large number of    as the method relies only on the number of objects 

rather than the size or comparison of individual pixels. However; the correctness value 

remains the same for the Test Area-2 for all  methods i.e. around 70%. This is due to the 

non availability of the NIR band as has been discussed in the preceding chapters. 

The accuracy measures obtained using the pixel-based and the area overlapping 

methods are close. Both pixel-based and areal overlaping methods were affected by the 

artifacts in the building roofs created at the time of orthophoto generation. This is 

because of the single available aerial strip of NIR forward looking and nadir Red images 

which were used to create orthophotos and subsequently for NDVI. This and the related 

issues affecting the quality of the orthophotos and therefore necessitating a gap filling 

procedure to make up for errors, have already been explained in detail in chapter 5, 

during building and vegetation extraction. 

The combination of the thresholded NDVI and nDSM image removed most of the 

vegetation. This greatly helps in analyzing the shape parameters and classification cues 

obtained from LiDAR to separate the remaining vegetation segments. 

Anisotropic classificaiton cue developed and used in this research was extremly useful 

in removing trees as can be seen from the results of the confidence matrix in chapter 5 

(section 5.1.8) and chapter 6 (section 6.1 and 6.2). This was particularly true for the 
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trees the classified building regions especially in the Test Area-2 where the initial 

classfication was poor because of the non availability of the NIR band and coarse 

LiDAR intensity that was used.  

Errors in building boundaries also occur when converting the OSI vector data to raster 

image and vice versa for the extracted building regions. Therefore, the ´simplify poly-

gon´ option was used when converting objects from raster to vector in order to avoid a 

zigzag pattern in the building boundaries. This caused variation in the results obtained in 

the area overlap method and the pixel-based method. Theoretically, both should be the 

same for an overlap greater than zero, however; in this case they differ by 3 to 4 percent 

(Table 36). 

The results indicate that there is quite a large variation in the accuracy assessment, de-

pending upon the method used. It is important to clearly explain the method and any 

underlying assumptions one uses to determine the accuracy measures. The pixel-based 

method is easier to implement and gives a quick over view of the object extraction suc-

cess. The results can vary up to 30%, depending upon the method used (Rutzinger et al., 

2009).  
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Area 
Building Intersection Method Pixel-based Method Area Overlap Method ≥ 50% 

Completeness Correctness Quality Completeness Correctness Quality Completeness Correctness Quality 

Development Area 96.31 93.21 90.48 88.28 76.81 69.70 84.44 77.97 68.18 

Test Area-1 97.26 96.91 94.34 87.65 82.52 73.92 82.83 78.67 67.64 

Test Area-2 89.18 69.44 64.05 81.77 70.93 61.24 83.35 70.54 61.83 

Table 36: Summary of Accuracy Assessment Results (Building Extraction) 
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7.2.2 Building Height 

Building attribute i.e. height is of utmost importance for noise modelling and extracted 

height is compared with that measured during the ground truth survey as has already 

been shown in Table 32 and Table 33 for the development and Test Area-2 respectively. 

 

Figure 107: Height Difference with Reference to Surveyed Height (Development 

Area) 

Overall, the building heights are determined within the permissible limit of noise map-

ping which is 1m (as per the guidelines provided by the European Working Group) by 

considering the centroid height. This can be seen from the blue line labelled centroid 

height in which stays in the permissible range for all the plotted buildings. 

Figure 107 and Figure 108 shows the difference between the estimated heights using 

nDSM and the measured heights for each building. The maximum height value is very 

close to the height at the centroid of the polygon. However; this is not applicable to 
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those buildings which are very close to the trees or in case of trees overarching a portion 

of the building roofs such as buildings 6 and 10 (Figure 107) and building 3 (Figure 

108) . The centroid represents the centre of a minimum bounding rectangle that best fits 

the irregular building shapes. It is quite possible that the centroid might be outside the 

building region in which case it will require a correction. In such a case, a spatial query 

provided in ArcGIS makes it possible to identify all those buildings whose centroids lie 

outside and to subsequently correct them. 

 

Figure 108: Height Difference with Reference to Surveyed Height (Test Area-2) 

The average and median building height values have large differences with reference to 

the measured heights as compared to the maximum and the centroid heights. For noise 

modelling, it is recommended to be on the safer side by choosing those building heights 

which are slightly less than the actual (Avg. or Median Height) or centroid building 

heights. 
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7.2.3 Vegetation Extraction 

Table 34 in the preceding chapter shows that the NDVI index was useful in separating 

vegetation from buildings in all areas that were part of the thresholded nDSM (≥ 2.5 m). 

This raises the question, why the accuracy of the results for building extraction was 

lower, had all the vegetation been separated successfully? This has been addressed in 

the following lines.  

Only two to three percent of the extracted vegetation lies over the OSI building vectors, 

which suggests that most of the errors that occurred in building extraction were not be-

cause of trees but because of the wrongly classified pixels around the building edges. 

This could be because of two reasons: 

1. Thresholding of the NDVI image 

2. The quality of the orthophotos 

The factors affecting the quality of orthophotos have been explained previously. The 

sections of the building roofs facing the sun have a different NDVI as compared to those 

under shadow as shown in Figure 109. This might result in some parts of the buildings 

being classified as vegetation. The thresholding of the NDVI image is a critical step in 

the developed method and necessary to achieve good results. That is the reason behind 

evaluating different methods. However; it is important to know that the thresholding 

criteria can vary with the content of the scene and flight characteristics. 
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Figure 109: NDVI Thresholding 

7.2.4 Road Extraction 

A completeness value of approximately 80% was achieved using the developed method 

for the development and the Test Area-1 but not for the Test Area-2 (Table 35). The 

completeness is 65% for the Test Area-2 and this is attributed to the large number of 

trees overarching small roads in the towns of Maynooth and Leixlip and the road con-

necting them. In the developed method, LiDAR intensity information was used to sepa-

rate these segments but for the Test Area-2 it was also used for NDVI calculation. 

A high completeness value suggests that most of the roads were identified successfully. 

The correctness value is low because of parking lots, drive ways, footpaths and other 

surfaces which are not regarded as roads and were not part of the used reference data. 

7.3 Evaluate factors influencing the performance of the method such as: 

a. Optimal classification parameters for buildings, trees, vegetation and road 

classification. 
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b. Registration issues between LiDAR and aerial images for better fusion. 

c. Performance of different object extraction softwares such as Terra Solid, Er-

das Imagine, E-Cognition, LiDAR Analyst available for processing LiDAR 

and aerial images with respect to the effective fusion of data and quality of 

the results. 

(a) The NDVI is very helpful in the initial separation of buildings and vegetation seg-

ments, however; some vegetation is classified as buildings and vice versa. This was cor-

rected later using shape parameters and classification cues obtained from LiDAR. It is 

difficult to select one particular set of classification cues. Additional cues can also be 

used such as Gaussian and mean curvature, fitting plane to LiDAR point and the differ-

ence between the first pulse and the last pulse depending upon the density and character-

istics of the used LiDAR sensor. However; the main issue is related to how these should 

be grouped together for extracting a particular object of interest.   

(b) The registration of LiDAR and aerial images is important. In this research the DSM 

was used twice. Firstly, for orthophoto generation and secondly, for fusing nDSM with 

NDVI. To resolve the registration issue between LiDAR and the aerial images, a new 

method was developed. This method is applicable to line scanning and other image cap-

turing sensors and the results are shown in chapter 4 (section 4.7) for the data used in 

this research and that of the EuroSDR project. 

Figure 110 and Figure 111 show the planimetric and rotational accuracy of the devel-

oped registration method respectively for the EuroSDR project in comparison with con-

tributions from other project partners against the reference data (TLS). 

The developed method of transformation was based on the common points matched 

between the two DSMs i.e. the LiDAR DSM and the DSM from aerial images (using 
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image matching techniques), each of which had a resolution of 0.5 m. The RMSE for 

transformation on matched points was of the order of 0.3 m.  Therefore, the results indi-

cated in the preliminary report are consistent with this (0.2 m). 

   

  

Figure 110: Planimetric Accuracy of the Developed Method for Registration 

The correction values were also determined for the development and the Test Area-1 

(chapter 4, section 4.7.2). The determined X mean shift (-0.80 m) for the development 

area was more than the pixel size of the used DSMs for registration. The registration 

accuracy of the developed method is in the range of ± 0.20 and ± 0.30 m. The deter-
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mined transformation parameters were applied to correct the DSM from LiDAR, al-

though the determined change in the shift values was very small.    

    

 

 

 

Figure 111: Rotation Accuracy of the Developed Method for Registration 

 (c) Till today, there is no single technique or software available that can extract objects 

of interest with highest accuracy and robustness. The softwares used in this research are 

listed in Appendix-IV and suggest that no single software is capable of performing all 

steps even semi-automatically. For example, the softwares used for image processing 

cannot handle LiDAR point cloud as efficiently as can be done using specialist software 

such as Terrasolid. 

Terrasolid and LiDAR analyst extension of ArcGIS have the capability to extract DTM, 

buildings and trees only from LiDAR data. However; these results vary a lot because of 
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the LiDAR density. For extracting building planes, the minimum required density is 4 

points/m2 (Fritsch, 2010). 

Terrasolid and LiDAR analyst were tested with high density LiDAR data (16 points/m2) 

from FLI-MAP corridor mapping system in the initial stages of this research. The pur-

pose was to check the quality and automation of these specialist softwares. In Terra-

solid, building roofs can be modelled semi-automatically by selecting LiDAR points 

that belong to the building roofs allowing the software to fit planes to these points. Op-

erator intervention is required to remove wrongly detected planes or adjusting plane 

boundaries. If building foot prints are available then the step of roof points´ selection is 

eliminated. 

Figure 112 shows a few buildings with LoD 2 (Level of Detail 2) according to OGC 

standard using high density LiDAR data. Such a detailed roof model is not a require-

ment of noise modelling and additionally, high density LiDAR data is expensive to ac-

quire for 4,000 km of roads, 500 m on either side as per the requirement of noise model-

ling. Moreover, specialist routines are still not available to extract each object of interest 

automatically. 

Figure 113 and Figure 114 show buildings, trees and forest patches` extraction using the 

same high density FLI-MAP data by LiDAR analyst, but tree clusters were still ex-

tracted as buildings. The results have not been analysed quantitatively because of the 

non availability of such data over a longer road stretch also covering the required area of 

interest on both sides of the road. 
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Figure 112: Building Roof Modelling in Terrasolid (Terrasolid) 

 

Figure 113: Building Boundary Extraction Using LiDAR Analyst 

 

Figure 114: Tree and Forest Extraction Using LiDAR Analyst 

Objective, an extension available in Erdas Imagine for object oriented analysis uses su-

pervised or unsupervised classification to identify the initial object segments. After con-
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verting these to vector, it further classifies them into other objects of interest. However; 

object oriented analysis requires operator knowledge of the area, limiting its applicabil-

ity for full automation. Apart from the height information, other object geometric attrib-

utes that can be derived from LiDAR data require new modules to be created in Erdas 

Imagine or E-Cognition. In this research, these attributes were mostly determined in 

MATLAB and were incorporated in these image processing softwares to improve object 

classification. This presents a potentially important hindrance in the fusion of LiDAR 

and aerial images. 

7.4 Explore the potential of high density image matching for the generation of 

point clouds as an alternative to LiDAR. 

Direct georeferencing quality of ADS40 sensor data was evaluated using GCPs and the 

results are presented in chapter 4 (section 4.4). These suggest its applicability to projects 

with planimetric accuracy requirement of ± 0.3 m and vertical accuracy of ± 0.5 m. 

However; the accuracy can be further improved by aerial triangulation even if 4 or 8 

GCPs are available. 

The quality of DSM obtained using image matching techniques is dependent upon the 

software used. Match-T and LPS were used for DSM generation and their vertical qual-

ity was accessed using GCPs along with the DSM from LiDAR (chapter 4, section 4.6). 

The vertical accuracy of DSMs from image matching is comparable to LiDAR DSM but 

the quality is poor (LPS), especially over the trees, buildings and regions that are under 

shadow or are occluded. The quantitative analysis (chapter 4, section 4.5) was per-

formed using the simple difference between LiDAR DSM and image DSMs to find the 

percentage of points which are in the range of 1m to LiDAR DSM. This suggested the 

superiority of Match-T software over LPS. Building shape and height are an important 
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component of noise model and quality of LiDAR DSM is better than the DSMs gener-

ated from image matching. However; DSM generated from image matching is good for 

DTM extraction in which objects above ground are filtered out. 

Recently, EuroSDR has started a project “Benchmarking of image matching approaches 

for DSM computation” which suggests the importance of DSM generated by image 

matching rather than using another sensor data for its acquisition. The benchmarking 

study aims at highlighting the pros and cons of the considered image matching tech-

niques. This will help in better understanding of the potential application ranges of these 

techniques. 

The German society of photogrammetry, remote sensing and Geoinformation (DGPF) 

also initiated a research project to analyse the performance of new photogrammetric 

digital airborne cameras for generating DSM and subsequently DTM using image 

matching (Haala, 2009). The results were promising but require multiple overlapping 

images. This makes it unsuitable for noise modelling where roads and their environment 

(500 m) are of major interest. Instead of capturing multiple overlapping images, fusion 

of LiDAR and aerial images available from the OSI is a good alternative. 

7.5 Explore the potential of incorporating MLS data in the extraction process, 

particularly in relation to the detection of noise barriers. 

Noise barriers are purposely constructed close to the roads for sound dampening. No 

purpose built noise barrier exists in the project areas. Walls may also be considered as 

noise barriers as they also have a significant impact on noise propagation. The thickness 

of outer boundary walls is generally 45 cm which is much higher than the noise barrier 

(15 cm).  No walls were detected because of the low resolution of LiDAR data and sub-
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sequently generated orthophotos (50 cm) which makes it difficult to extract such struc-

tures. The minimum required resolution to detect these walls is 8 points/m2 (O‟Neill, 

2009). 

A vertical wall was extracted in the Test Area-2 using MLS data even when arched by 

trees and covered with vines using the method explained in chapter 5 (section 5.5). This 

suggests the applicability of MLS to extract objects in road environment that are diffi-

cult or impossible through airborne sensor data. 

The developed method is only applicable in situations where walls and barriers are par-

allel, have a uniform intensity and are of a certain height. If any of these classification 

cues vary the weighted PCA as suggested in the chapter 5 (section 5.5) should be em-

ployed as an alternative to achieve better results. 

7.6 Devise and evaluate a method for detecting changes in roadside objects. 

Three possible methods to update the noise model every five years are explained below. 

All three methods have the potential to identify the regions where changes have oc-

curred depending upon the type of data available. Unfortunately, for both project areas, 

the aerial data acquired at different times was not available to check the stated methods. 

7.6.1 DSM Difference 

Changes can occur because of vegetation growth, new or demolished buildings and due 

to changes in the terrain because of new roads. A simple difference between the two 

DSMs from LiDAR at different times can highlight the changes. No such temporal Li-

DAR data was available for the development and the test areas and it was therefore de-

cided to create an artificial one. Four buildings that exist in the development area were 
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deleted from the DSM (Figure 115 (a)) and the difference between the original and the 

altered DSM highlighted the changes (Figure 115 (b)). 

  

Figure 115: Simple Difference between Temporal DSMs for Change Detection 

7.6.2 Cross Correlation 

Cross correlation was used to determine changes in the two DSMs (original and altered) 

created for the first method.  

      
                  

 
   

   
 

        
     

    
 

Where, 

Z - value of a cell 

i,j – are the two DSMs 

μ- is the mean in a window of 3*3 

N- is the number of cells (9) 

k - denotes a particular cell 

   and    are standard deviations in a window of 3*3 

[a] [b] 



Analysis 

— 205 — 

Mean and standard deviation were determined in the two DSMs for each pixel by con-

volution using a 3*3 matrix and the result is shown in Figure 116. 

 

Figure 116: Change Detection using Cross Correlation 

7.6.3 Using Vector Data 

Instead of DSMs, this method used the extracted and the reference objects. The avail-

able OSI data corresponds to the year 2009 and the images and LiDAR data were cap-

tured in early 2007. Any changes that might have occurred during this time are updated 

in the OSI data but not in the objects extracted using the developed method. 

The area overlap method used for accuracy assessment was used again for change detec-

tion by calculating the percentage overlap. If the buildings in the OSI data do not over-

lap the extracted buildings, the overlap value is zero, highlighting potential changes. 

Depending upon the percentage overlap, different classes can be made. For example 
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new buildings, partially changed and demolished buildings (where an extracted building 

does not overlap any OSI building, then it might have been demolished). 

  

Figure 117: Change Detection using Area Overlap Method (New buildings in off-

white colour)

A simple difference between two DSMs acquired at different times can identify the pix-

els where changes have occurred. However; it needs further investigation to identify 

those segments where changes have occurred in the buildings and not in the vegetation. 

The cross correlation method requires temporal images. The objects classified in one 

dataset can then be compared with the other unclassified data. This eliminates the whole 

exercise of object extraction a second time. However; the change detection accuracy 

depends upon the accuracy of the previous classification.   

The area overlap method of building change detection is appropriate where vector data 

is available from another source or extracted from the newly acquired dataset to identify 

changes. The newly acquired dataset should be of better or at least comparable quality 

to extract desired objects and later used for change detection. 
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The mentioned change detection techniques can guide the operator to those regions 

where changes are significant to make the data updating process faster and economical 

as concluded in the EuroSDR project (Champion and Everaerts, 2009).   
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8 Conclusion and Recommendations 

The previous chapter analyzed the findings of this research in context of the set objec-

tives. This chapter provides an overall conclusion of the study by highlighting the prin-

cipal findings, discussing some limitations and providing potential recommendations for 

future research. 

8.1 Conclusions 

In order to provide an overall conclusion to this study, it makes sense to look at what 

has been achieved in context of the initial aims as were set in chapter 1 (section 1.5). 

The principal overarching aim of this research was to devise a method with a high de-

gree of automation for the extraction of features and objects that are crucial to noise 

modelling. This research presented a semi automatic method for doing so that is based 

on a series of recommended steps which need to be followed as such for achieving op-

timal results. The reasons behind not pursuing a fully automatic approach beyond a cer-

tain point in this research are described in detail in chapter 7 (4th objective). A related 

aim of this research was to make use of nationally available datasets so that a practical 

and an economical solution may be worked out. The datasets used in this study were 

provided by the OSI. The research aims also involved developing the said method in 

context of the spatial needs of the NRA which are detailed in chapter 1 (section 1.2). 

This research addresses these needs by proposing a developed method which provides 

information about the ground surface type, building heights and extents, vegetation and 

noise barriers in specific context of the requirements of the European Working Group.  

Specific conclusions pertaining to this study are described in the following paragraphs.  
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High spatial and radiometric resolution of the multi-spectral images captured using 

ADS40 sensor was found to be insufficient on its own for urban classification. This was 

due to the uncertainty in discriminating between trees and grass, misclassification of 

buildings caused by diverse roof compositions, shadow effects and their spectral resem-

blance with roads and difficulty in distinguishing cars on the roads. Classification accu-

racy was not satisfactory even after the incorporation of NIR band for vegetation separa-

tion. Object height obtained from LiDAR nDSM and objects´ geometric attributes sig-

nificantly improved the accuracy of the extraction process and estimation of building 

heights when fused with aerial images. Using available low density LiDAR data alone 

for object classification also proved unsuccessful in discriminating trees from buildings. 

This research has simultaneously utilized knowledge, pixel and object-based classifica-

tion techniques for object extraction. Using any of these techniques on its own will not 

have generated results to the desired level of accuracy. 

The developed method is semi-automatic, however; the statistical methods used for 

thresholding can guide the operator to their appropriate values depending upon the pro-

ject area. 

Classification cues can vary depending upon the type and nature of data. For example, 

high density Optech sensor data provides two range images i.e. the first and the last 

pulse. The difference between these two range images can eliminate most of the vegeta-

tion as it can record large differences compared to buildings. Moreover, the plane fitting 

to LiDAR data can also be tested to filter out any remaining vegetation.  

Proper registration of LiDAR and aerial images is a pre-requisite for the fusion of two 

datasets. In this research, it is crucial for generating orthophotos. The method used to 
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ensure their proper registration provided results within the acceptable tolerances re-

quired for noise mapping as verified in the EuroSDR project and also by the ground 

truth surveys. 

Creation of true orthophoto requires multiple overlaps and is not a viable option for 

NRA. However; in the ROI, buildings are also not high and the errors mostly occur at 

strip edges which might be beyond the noise mapping border, if aerial images are ac-

quired specifically for the roads. Accuracy could have been better if true orthophotos 

were available. 

Only buildings of size greater than or equal to 30 m2 were considered in this study for 

the extraction because of certain reasons which are explained further. A size threshold is 

required to separate small identified building regions. These mostly occur because of 

temporary structures in the fields or small huts behind main buildings in the back yards. 

Such small regions can also occur because of previously mentioned reasons i.e. non 

availability of nadir NIR band and multiple overlapping images for orthophoto genera-

tion. Trees without leaves are also a source of possible noise. That is why classification 

cues obtained from LiDAR and geometric attributes were unable to separate these re-

gions from buildings. However; accuracy of building extraction increases considerably 

by increasing the size threshold (Rutzinger et al., 2009). Most building extraction algo-

rithms consider buildings which are greater than 30 m2 (Rottensteiner et al., 2007).  In 

noise modelling, buildings of all sizes should be incorporated to generate an accurate 

noise model. Considering buildings greater than 30 m2 might result in an error of 1 to 

3db in the estimated noise values (WG-AEN, 2006). 

Noise barriers are not extractable from the available airborne sensor data. They were 

initially visible in the aerial images but not anymore after orthophoto generation having 
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a spatial resolution of 0.5 m. The developed method for noise barrier extraction using 

MLS data has proven MLS potential for road side asset management and geometric 

modelling. This is because of different objects` representation and high density point 

cloud, not achievable using currently available airborne LiDAR sensors on a routine 

basis. 

A new operator with a basic knowledge of remote sensing can be trained in a relatively 

short time to implement the developed method. The determination of the NDVI and 

classification cue thresholding as suggested in this research requires experience. How-

ever, this can be acquired in handful projects of similar nature. This applies to nearly 

every image classification software. 

8.2 Innovation in the Proposed Method 

A number of innovative aspects of this research are described as follows. 

1. The utilization of airborne line scanner data (ADS40) and its fusion with LiDAR 

(ALS50-II) data for object extraction is not common.  Most of the past interna-

tional research has used digital frame cameras and Optech LiDAR sensor data. 

2. Methodology development, implementation and testing were focused on a real- 

world application meeting specific needs of the NRA using only nationally 

available data sets. To the best knowledge of the researches, this study is the first 

of its kind in the ROI from the perspective of utilizing the available airborne 

sensor data and investigating its usefulness in terms of object extraction for noise 

modelling. Most international tests have focused on single object extraction e.g. 

roads, buildings or vegetation as mentioned in the literature review in the respec-

tive sections. Developed method is unique in extracting all three together and 
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with a specific end use in mind. The developed method is also not restricted to 

the ROI and noise modelling. It can be used for object classification using dif-

ferent sensors‟ data but the results might vary up to 30%. This is because of dif-

ferent sensors‟ specifications and flight characteristics used for acquiring LiDAR 

and aerial images. 

3. The utilization of multiple echoes to improve building and tree classification. 

4. Resolving registration problems between LiDAR and aerial images. A method-

ology has been developed for checking their co-registration and, where an 

anomaly exists, how it can be rectified. The developed method is applicable to 

line scanning and digital frame cameras. The method performs well compared to 

other methods used in Europe and is uniquely the only one to use the developed 

approach. 

5. Accuracy assessment of DSMs generated using LiDAR and stereoscopic image 

matching techniques available in LPS and Match-T softwares using independent 

ground control points. This was done to check which one is superior and should 

be used for orthophoto generation and noise modelling. 

6. The integration of MLS with airborne sensor data for the detection of noise bar-

riers. 

7. Providing potential solutions for updating noise models using change detection 

methods. 

8.3 Recommendations 

The final objective of this research is addressed in this section. The final objective was:  
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Make recommendations for the best application of airborne and MLS based sensor 

data and existing GIS data to noise modelling in the environment of Irish roads 

It has been found out during the research that NIR band is not a part of the data process-

ing chain of OSI and also not been archived. That is why no NIR data was available for 

the Test Area-2. However, the data has been downloaded and processed for the devel-

opment and Test Area-1 upon request. NIR band has proven its potential in object clas-

sification, vegetation studies and should be at least archived for its potential usage in 

studies requiring temporal data. 

If possible, simultaneous capturing of aerial images and LiDAR data should be pre-

ferred over separate acquisition or otherwise with minimum possible gap. Depending 

upon the type of objects to be extracted, data should be captured during such time of the 

day and year when maximum classification cues can be determined. For example, if 

roads are the object of interest then the LiDAR data should be captured at night, when 

there is minimum traffic on road and in late autumn or early spring, when trees are 

without leaves. This results in maximum reflections from ground. However, multi-

spectral images cannot be captured at night and if required to be acquired separately 

from LiDAR, then the latter should be captured at night.  

NRA Ireland is currently acquiring LiDAR data for roads with a minimum point density 

of 2 points/m2. However, OSI is acquiring data with an intention to develop DTM with a 

resolution of 2 m accurate to 25 cm for urban areas and 5 to 10 m resolution for rural 

areas accurate to 50 cm. Integrating newly acquired LiDAR data from NRA will poten-

tially improve the accuracy of the developed classification method. 
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Most LiDAR sensors are capable of capturing the intensity of the returned pulse which 

is in the near infra red range. This information is useful in separating different ground 

types i.e. bare earth, road, ploughed surface and cobble stone roads etc. when used alone 

or in combination with multi-spectral images. A project is ongoing in EuroSDR to de-

velop a feasible, cost-effective technique for intensity calibration. The outcome of this 

project should be incorporated for the improvement of the object classification results, 

especially for the extraction of roads from LiDAR data which is still in its infancy (Shan 

and Toth, 2008). 

Customization of available spatial data processing softwares is required to develop a 

system where new classification cues can be integrated and used for robust object ex-

traction. This would be a leap forward towards the automation of the whole process. 
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Appendix-I: Calculations for DSM Vertical Accuracy Assessment using GCPs (Static GPS Survey) 

 

Appendix-I 

LPS DSM 

 

Image 
DSM 

Height 
(m) 

GPS Z 
(m) 

∆h 
(m) 

 

Maximum 
Difference 

(m) 

N 
(number 

of 
tested 
points) 

RMSE 
(m) 

Blunders 
Definition 

S>3*RMSE 
(m) 

Maximum 
Difference * 3 

(m) 

Number 
of 

Blunders 

Number 
of 

Points 
without 

Blunders 

∆h 
without 

Blunders 
(m) 

Mean 
(m) 

Standard 
Deviation 

(m) 

3.432 3.341 0.091 0.091 13  0.489   1.468 0.272 3 10 0.091 -0.102 0.200 
3.695 3.658 0.037 0.037 

   
0.112 

  
0.037 

 
  

30.054 30.02 0.034 0.034 
   

0.103 
  

0.034 
 

  
11.350 11.21 0.140 0.140 

   
0.420 

  
0.140 

 
  

12.972 13.275 -0.303 0.303 
   

0.910 
  

-0.303 
 

  
4.876 6.035 -1.159 1.159 

   
3.477 

  
 xxxx 

 
  

6.435 7.437 -1.002 1.002 
   

3.007 
  

 xxxx 
 

  
31.209 31.616 -0.407 0.407 

   
1.221 

  
-0.407 

 
  

32.975 33.359 -0.384 0.384 
   

1.152 
  

-0.384 
 

  
30.512 31.061 -0.549 0.549 

   
1.648 

  
 xxxx 

 
  

17.837 17.854 -0.017 0.017 
   

0.051 
  

-0.017 
 

  
9.485 9.651 -0.166 0.166 

   
0.499 

  
-0.166 

 
  

15.198 15.24 -0.042 0.042 
   

0.125 
  

-0.042 
 

  

 

 



Appendix-I: Calculations for DSM Vertical Accuracy Assessment using GCPs (Static GPS Survey) 

 

 

 

 

Match-T DSM 

 
Images 
DSM 

Height 
(m) 

GPS Z 
(m) 

∆h 
(1-3) 
(m) 

Maximum 
Difference 

N 
(number 

of 
tested 
points) 

RMSE 
(m) 

Blunders 
Definition 

S>3*RMSE 
(m) 

Maximum 
Difference * 3 

(m) 

Number 
of 

Blunders 

Number 
of Points 
without 

Blunders 

∆h 
without 

Blunders 
(m) 

Mean 
(m) 

Standard 
Deviation 

(m) 

3.502 3.341 -0.161 0.161 10 0.321 0.962 0.482 2 8 -0.161 -0.001 0.160 
3.748 3.658 -0.090 0.090      0.270   -0.090    
30.038 30.02 -0.018 0.018      0.054   -0.018    
11.329 11.21 -0.119 0.119      0.356   -0.119    
13.002 13.275 0.273 0.273      0.820   0.273    
33.137 33.359 0.222 0.222      0.667   0.222    
30.511 31.061 0.550 0.550      1.650    xxxx    
17.908 17.854 -0.054 0.054      0.162   -0.054    
8.912 9.651 0.739 0.739      2.217    xxxx    
15.303 15.24 -0.063 0.063      0.188   -0.063    

 

 

 

 



Appendix-I: Calculations for DSM Vertical Accuracy Assessment using GCPs (Static GPS Survey) 

 

 

 

LiDAR DSM 

 
LiDAR 
DSM 

Height 
(m) 

GPS Z 
(m) 

∆h 
(1-3) 
(m) 

Maximum 
Difference 

(m) 

N 
(number 

of 
tested 
points) 

RMSE 
(m) 

Blunders 
Definition 

S>3*RMSE 
(m) 

Maximum 
Difference * 3 

(m) 

Number 
of 

Blunders 

Number 
of Points 
without 

Blunders 

∆h 
without 

Blunders 
(m) 

Mean 
(m) 

Standard 
Deviation 

(m) 

47.704 48.384 -0.680 0.680 14 0.444 1.333 2.039 5 9 xxxx -0.035 0.109 
3.824 3.341 0.483 0.483 

   
1.448 

  
xxxx 

  3.747 3.658 0.089 0.089 
   

0.267 
  

0.089 
  29.914 30.02 -0.106 0.106 

   
0.318 

  
-0.106 

  11.234 11.21 0.024 0.024 
   

0.073 
  

0.024 
  13.295 13.275 0.020 0.020 

   
0.059 

  
0.020 

  6.048 6.035 0.013 0.013 
   

0.039 
  

0.013 
  7.464 7.437 0.027 0.027 

   
0.080 

  
0.027 

  31.606 31.616 -0.010 0.010 
   

0.031 
  

-0.010 
  32.362 33.359 -0.997 0.997 

   
2.990 

  
xxxx 

  31.781 31.061 0.720 0.720 
   

2.161 
  

xxxx 
  18.525 17.854 0.671 0.671 

   
2.012 

  
xxxx 

  9.553 9.651 -0.098 0.098 
   

0.293 
  

-0.098 
  14.965 15.24 -0.275 0.275 

   
0.826 

  
-0.275 

  
 



Appendix-II Intermediate Results in the Object Extraction Process for Test Area-1 
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RGB Orthophoto LiDAR DSM LiDAR DTM nDSM 

nDSM ≥ 2.5m NDVI NDVI ≤ 152.742 Raw Buildings (Brown) 



Appendix-II: Intermediate Results in the Object Extraction Process for Test Area-1 
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AD 
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Appendix-II: Intermediate Results in the Object Extraction Process for Test Area-1 

 

 

 

   

 

  

Extracted Buildings 

Vegetation (Green) Trees Overlaying Orthophoto 

Classified Road (Red) and Ground (Green) Roads (Red) Overlying Orthophoto 



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

Appendix-III 

       

       

 

RGB (Test-Area 2)  LiDAR DSM 

LiDAR DTM LiDAR Intensity 



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

 

       

 

        

 

nDSM nDSM ≥2.5m 

NDVI ≤154 NDVI  



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

 

       

 

       

 

Raw Buildings (Red) Reconstructed Buildings (Brown) 

AD AD Normal QQ Plot 



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

  

       

 

       

 

SR 

LRV 

SR Normal QQ Plot 

LRV Normal QQ Plot 



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

 

   

 

VSNs 

Extracted Buildings 

VSNs Normal QQ Plot 



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

 

 

 

Extracted Vegetation (Green) 

Extracted Tree Points (Green) Overlying Orthophoto 



Appendix-III: Intermediate Results in the object extraction process for Test Area-2  

 

 

 

 

Extracted Road (Red) and Ground 

Extracted Road (Red) Overlaying Orthophoto 



Appendix-IV: Softwares used in Object Extraction 

 

Appendix-IV 

LiDAR Data Processing 

DSM Point cloud exported from TerraScan and 

height image was created in Erdas Imagine 

after the adjustment of LiDAR strips. 

DTM Point cloud filtering in TerraScan to ex-

tract ground and raster image was created 

in Erdas Imagine. Operator knowledge of 

the area required for setting ground extrac-

tion parameters. 

LiDAR Intensity Image TerraScan 

nDSM and thresholding (≥ 2.5 m) Erdas Imagine 

Local Range Variation Erdas Imagine 

Anisotropic Diffusion Terrasolid and MATLAB 

Variance of Surface Normals MATLAB and Erdas Imagine 

Surface Roughness Erdas Imagine 

Aerial Image Processing 

ADS40 Data Processing and Orthophotos Leica Photogrammetric Suite (GPro and 

Orima) 

Building Extraction 



Appendix-IV: Softwares used in Object Extraction 

 

NDVI image and its thresholding Erdas Imagine and MATLAB  

Raw Building Regions Erdas Imagine 

Building Reconstruction and mean value 

calculation of LiDAR classification cues in 

the building segments greater than 30 m2 

and exported as shape files 

Definiens Ecognition 

Thresholding of LiDAR classification cues 

for removing vegetation in the building 

segments 

Normal QQ Plot in ArcGIS for selecting 

the appropriate thresholds and extracting 

final building objects 

Vegetation Extraction 

Raw vegetation from thresholded NDVI 

and nDSM images 

Erdas Imagine 

Final Extracted Vegetation 

 Multi-resolution Segmentation 

 Gap filling 

 Size ≥ 5 m2 

 Shape for separating buildings and 

hedges 

 Vegetation relative border to build-

ings and not fully enclosed by 

buildings 

Definiens Ecognition 
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Tree Extraction  

Inverted vegetation segments by reversing 

the height values 

Erdas Imagine 

Hydrological analysis for flow direction 

and accumulation 

Identifies of tree peaks 

Polygons to points 

Single tree and tree clusters 

ArcGIS 

Road Extraction  

Multi-resolution segmentation of nDSM, 

LiDAR intensity and thresholded NDVI 

image for extracting road surfaces 

Definiens Ecognition 

Gap filling Erdas Imagine 

Road Gradient ArcGIS 

Noise Barrier Extraction  

Candidate points using ground extracted 

from airborne LiDAR 

TerraScan 

Principal component analysis 

Robust Least Square fitting 

MATLAB 

Accuracy Assessment  



Appendix-IV: Softwares used in Object Extraction 

 

Building intersection 

Pixel-based Comparison 

Area Overlap 

ArcGIS 

Erdas Imagine 

ArcGIS 



Appendix-V: Development Area GCPs using Network RTK System 

 

Appendix-V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area-1 (39 Points)   
 

Area-2 (17 Points)   

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

 

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

569525.964 837455.573 13.386 
 

570474.605 837218.641 30.063 

569395.23 837512.074 9.583 
 

570475.388 837224.569 29.993 

569372.012 837468.82 9.595 
 

570509.094 837216.6 30.097 

569369.838 837457.082 9.535 
 

570488.453 837191.687 30.373 

569368.145 837461.093 9.506 
 

570489.444 837202.172 30.417 

569366.297 837466.634 9.345 
 

570488.802 837203.213 30.411 

569371.631 837467.118 9.495 
 

570484.798 837205.325 30.397 

569372.809 837461.959 9.619 
 

570482.431 837209.086 30.33 

569373.907 837456.824 9.644 
 

570482.343 837213.417 30.184 

569373.873 837456.811 9.644 
 

570484.801 837217.29 30.076 

569382.154 837457.422 9.748 
 

570488.596 837219.063 30.017 

569382.257 837462.589 9.738 
 

570493.006 837218.672 30.043 

569389.58 837463.496 9.873 
 

570496.596 837215.987 30.091 

569390.444 837458.491 9.9 
 

570498.105 837211.757 30.22 

569396.933 837459.107 10 
 

570497.07 837207.423 30.336 

569397.199 837464.364 9.97 
 

570493.881 837204.376 30.455 

569403.694 837464.844 10.141 
 

570490.047 837203.366 30.43 

569404.692 837459.933 10.149 
    569411.952 837460.939 10.218 
    569411.644 837468.835 10.225 
    569406.415 837468.971 10.2 
    569406.1 837476.484 10.086 
    569410.663 837477.151 10.065 
    569410.168 837484.052 9.98 
    569405.205 837484.017 9.994 
    569404.537 837493.048 9.87 
    569409.167 837495.938 9.805 
    569408.684 837502.776 9.722 
    569403.552 837502.78 9.728 
    569402.637 837509.935 9.569 
    569407.833 837510.893 9.595 
    569406.736 837518.979 9.494 
    569402.164 837518.765 9.422 
    569395.654 837518.266 9.314 
    569396.163 837513.054 9.44 
    569402.071 837512.697 9.534 
    569525.932 837455.6 13.345 
    



Appendix-V: Development Area GCPs using Network RTK System 

 

 

Area-3 (37 Points)   
 

Area-4 (30 Points)   

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

 

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

570610.019 836711.486 10.496 
 

569896.165 836682.742 3.783 

570673.945 836692.54 10.877 
 

569908.773 836673.817 3.478 

570729.28 836686.344 11.322 
 

569919.444 836666.118 3.389 

570729.801 836690.509 11.369 
 

569902.848 836680.628 3.717 

570720.551 836691.933 11.344 
 

569938.161 836651.95 3.333 

570720.003 836687.513 11.181 
 

569947.839 836664.032 3.333 

570727.624 836684.095 11.123 
 

569934.769 836674.128 3.517 

570721.833 836683.976 11.15 
 

569922.889 836682.871 3.51 

570715.194 836684.988 11.025 
 

569904.869 836695.639 3.693 

570709.873 836688.709 11.158 
 

569913.442 836706.55 3.694 

570710.132 836693.163 11.216 
 

569931.867 836695.547 3.542 

570700.499 836694.284 11.105 
 

569944.228 836686.505 3.606 

570699.829 836689.842 11.034 
 

569956.52 836677.604 3.442 

570690.255 836691.109 10.883 
 

569965.633 836689.514 3.412 

570690.535 836695.389 11.018 
 

569952.883 836699.533 3.469 

570681.303 836696.619 10.981 
 

569940.905 836708.148 3.458 

570680.038 836692.052 10.799 
 

569952.029 836725.001 3.328 

570671.748 836694.089 10.808 
 

569973.373 836703.434 3.43 

570672.037 836698.619 10.836 
 

569962.945 836714.698 3.391 

570663.133 836700.502 10.822 
 

569976.27 836705.835 3.433 

570661.601 836696.151 10.668 
 

569986.104 836683.973 3.607 

570652.435 836697.87 10.626 
 

569976.637 836671.971 3.713 

570653.063 836702.408 10.733 
 

569967.725 836659.732 3.66 

570644.115 836704.836 10.649 
 

569958.383 836647.1 3.603 

570642.621 836700.482 10.543 
 

569947.879 836632.67 3.649 

570634.004 836703.095 10.551 
 

569938.16 836652.251 3.318 

570634.975 836707.421 10.59 
 

569925.411 836661.554 3.471 

570626.676 836710.282 10.531 
 

569913.714 836670.196 3.449 

570624.553 836706.163 10.448 
 

569900.995 836682.803 3.707 

570617.219 836709.227 10.441 
 

569943.608 836644.75 3.408 

570618.638 836713.443 10.487 
    570612.732 836715.411 10.424 
    570611.535 836711.658 10.393 
    570609.691 836706.246 10.28 
    570615.682 836703.756 10.299 
    570621.457 836701.82 10.371 
    570628.132 836699.266 10.418 
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Area-5 (44 Points)   
 

Area-5     

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

 

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

569889.161 837216.911 8.956 
 

569882.497 837214.536 8.913 

569889.096 837214.444 8.904 
 

569882.576 837217.032 8.97 

569889.037 837211.961 8.873 
 

569885.926 837219.491 9.058 

569889.004 837209.45 8.863 
 

569885.748 837210.597 8.955 

569888.946 837207.005 8.906 
 

569885.577 837201.839 9.06 

569888.935 837206.052 8.913 
 

569885.402 837191.993 9.062 

569888.893 837203.544 8.948 
 

569885.262 837181.735 9.198 

569888.837 837201.042 8.985 
 

569885.124 837172.997 9.414 

569888.777 837198.526 9.028 
    569888.73 837196.045 8.987 
    569888.695 837193.534 9.035 
    569888.654 837191.067 9.01 
    569888.603 837188.631 9.041 
    569888.583 837187.675 9.043 
    569888.565 837185.177 9.08 
    569888.488 837182.672 9.184 
    569888.455 837180.17 9.239 
    569888.412 837177.706 9.282 
    569888.363 837175.218 9.349 
    569881.881 837175.371 9.333 
    569881.907 837177.866 9.243 
    569881.967 837180.363 9.206 
    569882.013 837182.851 9.111 
    569882.079 837185.347 9.035 
    569882.077 837187.69 9.015 
    569882.098 837188.681 8.974 
    569882.155 837191.219 8.979 
    569882.212 837193.722 8.971 
    569882.254 837196.217 9.013 
    569882.27 837198.697 9.007 
    569882.317 837201.205 8.972 
    569882.347 837203.707 8.906 
    569882.353 837206.11 8.879 
    569882.403 837207.05 8.846 
    569882.417 837209.466 8.855 
    569882.483 837212.073 8.898 
    



Appendix-VI: Test Area-2 GCPs using Network RTK System 

 

Appendix-VI 

Area-1 (44 Points)   
 

Area-2 (35 Points)   

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

 

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

694285.252 737716.458 57.27 
 

699782.824 736799.088 40.045 

694288.524 737713.473 57.35 
 

699783.141 736799 40.043 

694291.845 737713.673 57.337 
 

699793.482 736796.452 39.835 

694297.066 737713.884 57.385 
 

699786.994 736795.344 39.979 

694295.729 737707.414 57.452 
 

699786.982 736795.368 39.965 

694274.772 737706.35 57.442 
 

699784.019 736793.965 40.055 

694267.425 737705.853 57.421 
 

699770.85 736786.893 40.399 

694261.597 737705.49 57.432 
 

699770.855 736786.898 40.407 

694252.89 737705.004 57.432 
 

699763.767 736784.465 40.565 

694245.949 737704.627 57.424 
 

699757.426 736782.007 40.731 

694241.054 737704.391 57.434 
 

699752.37 736772.898 40.927 

694230.273 737703.621 57.456 
 

699747.722 736774.478 40.937 

694220.874 737703.289 57.449 
 

699742.31 736775.239 40.739 

694223.215 737693.833 57.43 
 

699732.576 736776.268 40.358 

694228.938 737694.167 57.418 
 

699733.842 736784.12 40.157 

694235.733 737694.49 57.42 
 

699728.443 736790.991 39.915 

694242.343 737694.89 57.438 
 

699722.73 736798.387 39.603 

694249.99 737695.344 57.413 
 

699712.243 736802.06 39.352 

694259.355 737695.757 57.446 
 

699713.418 736810.097 39.263 

694266.188 737696.076 57.441 
 

699705.352 736809.125 39.179 

694275.311 737696.514 57.474 
 

699710.738 736824.388 39.598 

694283.722 737696.923 57.489 
 

699714.96 736826.352 39.683 

694295.004 737697.643 57.522 
 

699721.374 736827.538 40.039 

694293.003 737672.994 57.429 
 

699726.28 736824.559 40.417 

694284.752 737672.475 57.251 
 

699731.741 736824.539 40.699 

694275.27 737672.047 57.185 
 

699740.353 736821.888 41.273 

694267.962 737671.557 57.142 
 

699745.193 736823.174 41.306 

694252.213 737670.817 57.196 
 

699751.866 736818.643 41.751 

694242.407 737670.32 57.204 
 

699758.198 736816.884 41.849 

694242.08 737673.581 57.174 
 

699760.97 736814.018 41.945 

694239.652 737673.296 57.157 
 

699761.316 736808.311 41.948 

694239.775 737670.313 57.226 
 

699765.264 736805.86 41.934 

694237.935 737655.395 57.2 
 

699770.368 736806.239 41.76 

694238.253 737647.443 57.209 
 

699774.819 736807.459 41.512 

694236.92 737639.729 57.204 
 

699777.914 736803.867 41.051 

694242.622 737638.275 57.209 
 

   694248.266 737631.995 57.221 
 

   694252.072 737623.378 57.209 
 

   
 



Appendix-VI: Test Area-2 GCPs using Network RTK System 

 

Area-1  
 

   694267.001 737623.33 57.223 
 

   694283.409 737624.083 57.27 
 

   694284.301 737633.982 57.248 
 

   694283.021 737649.794 57.305 
 

   694283.754 737666.019 57.277 
 

   694291.794 737675.492 57.391 
 

   
 

Area-3 (52 Points)   
 

Area-3      

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

 

Easting 
(m) 

Northing 
(m) 

Ortho. 
Height 

(m) 

698773.037 736716.169 56.004 
 

698777.3 736715.3 56.002 

698770.019 736717.508 56.057 
 

698777.2 736715.2 56.032 

698771.011 736719.79 56.019 
 

698779.1 736713.9 56.055 

698771.854 736722.146 56.031 
 

698780.8 736715.8 56.054 

698772.795 736724.477 56.051 
 

698784.8 736717.9 56.067 

698773.702 736726.773 56.076 
 

698789.1 736720.4 56.109 

698774.689 736729.04 56.106 
 

698795 736722.1 56.135 

698777.297 736735.273 56.082 
 

698802.2 736721.2 56.089 

698785.804 736732.212 56.12 
 

698805.5 736712.6 56.083 

698788.067 736731.254 56.106 
 

698801.5 736705.3 56.019 

698790.376 736730.306 56.095 
 

698799.8 736701.7 56.079 

698792.619 736729.362 56.103 
 

698798.2 736693.8 56.084 

698795.038 736728.36 56.092 
 

698793.6 736695.3 56.082 

698797.235 736727.467 56.052 
 

698788.3 736696.8 56.064 

698799.552 736726.465 56.046 
 

698781.3 736698.4 56.072 

698801.923 736725.493 56.055 
 

698774.7 736701.4 56.097 

698804.216 736724.563 56.051 
 

698766 736704.2 56.09 

698806.548 736723.567 56.07 
 

698761.6 736707.2 56.078 

698808.748 736722.695 56.142 
 

698754.2 736709.8 56.043 

698811.185 736721.67 56.127 
 

698747.9 736712.1 56.036 

698813.498 736720.71 56.081 
 

698744.6 736718 56.031 

698815.683 736719.8 56.1 
 

698745 736724.9 56.05 

698818.083 736718.731 56.017 
 

698746.8 736729.9 56.109 

698820.368 736717.795 56.029 
 

698751.8 736742.8 56.035 

698822.715 736716.88 56.1 
 

   698815.021 736712.322 56.113 
 

   698814.045 736710.356 56.273 
 

   698814.054 736710.118 56.212 
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