54,166 research outputs found

    The Relationship between Well-Being and Technology among Senior Citizens in Indiana

    Get PDF
    Across America technology has become an ever present requirement for day-to-day living. Senior citizens for this study were those who were 50 years of age and older and were often hindered in understanding and using technology. The purpose of this research study was to determine if there is a statistical significant correlation between the number of technology classes a senior citizen takes and general well-being. Senior citizens were surveyed to determine if understanding of technology changed level of well-being. A paper survey was used with a convenience sample of seniors who take technology based courses through an organization designed to teach the aging population how to use technology. Well-being was measured using two different instruments. The first was the Quality of Life and Enjoyment and Satisfaction Questionnaire- Short Form. The second was the Warwick-Edinburgh Mental Well-being Scale. A Spearman’s rho correlation was used to determine if there is a relationship between well-being and the number of technology courses taken by seniors. The researcher found that there was a statistically significant moderate-to-strong positive correlation between the number of technology courses completed and overall score on the Quality of Life and Enjoyment and Satisfaction Questionnaire- Short Form. The researcher found there was a statistically significant moderate-to-strong positive correlation number of technology course completed and overall score on the Warwick-Edinburgh Mental Well-being Scale

    Plasmodium yoelii infection of BALB/c mice results in expansion rather than induction of CD4+ Foxp3+ regulatory T cells

    Get PDF
    Recently, we demonstrated elevated numbers of CD4(+) Foxp3(+) regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3(+) Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios(+) Foxp3(+) Treg cells remained unchanged. Both Foxp3(+) Nrp‐1(+) and Foxp3(+) Nrp‐1(−) Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3(−) T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3(+) Treg cells

    Regulatory T cell proliferative potential as novel marker to investigate immune tolerance and clinical progression in Multiple Sclerosis

    Get PDF
    In autoimmune disorders such as Multiple Sclerosis (MS) one of the determining alteration is the breakdown of self-antigen immune-tolerance. Peripheral immune tolerance is maintained, at least in part, by Regulatory T cells (Treg). Several studies have shown that either defects in the frequency or the suppressive capacity of Treg cells can contribute to the development of break of self-tolerance, and that in animal models of autoimmunity, adoptive transfer of Treg cells was able to stop disease process. Treg cells are known to be anergic in vitro to T cell receptor-induced (TCR) stimulation and this state correlates with their in vitro suppressive capacity. It has been reported that there are differences in the number of Treg cells in MS patients when compared with healthy controls. However there is also extensive evidence indicating a defect in the suppressive function of Treg cells from MS patients. In previous studies we showed that Treg cells produce an higher amount of leptin when compared with effector T cells and that leptin acts as a negative signal for the proliferation of Treg cells. In vitro leptin neutralization results in Treg cells proliferation. Although in last few years several studies have been performed to understand the molecular mechanism leading to autoimmune disorders development, there are no surrogate markers to predict the clinical progression of autoimmune diseases and the clinical response to the classical therapeutic regimes

    Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo

    Get PDF
    Objective: Gut homing of lymphocytes via adhesion molecules has recently emerged as new target for therapy in inflammatory bowel diseases. We aimed to analyze the in vivo homing of effector (Teff) and regulatory (Treg) T cells to the inflamed gut via α4β7 and GPR15. Design: We assessed the expression of homing receptors on T cells in peripheral blood and inflamed mucosa. We studied the migration pattern and homing of Teff and Treg cells to the inflamed gut using intravital confocal microscopy and FACS in a humanized mouse model in DSS-treated NSG (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) mice. Results: Expression of GPR15 and α4β7 was significantly increased on Treg rather than Teff cells in peripheral blood of patients with ulcerative colitis (UC) as compared to Crohn´s disease and controls. In vivo analysis in a humanized mouse model showed augmented gut homing of UC Treg cells as compared to controls. Moreover, suppression of UC (but not control) Teff and Treg cell homing was noted upon treatment with the α4β7 antibody vedolizumab. In contrast, siRNA blockade of GPR15 had only effects on homing of Teff cells but did not affect Treg homing in UC. Clinical vedolizumab treatment was associated with marked expansion of UC Treg cells in peripheral blood. Conclusion: α4β7 rather than GPR15 is crucial for increased colonic homing of UC Treg cells in vivo, while both receptors control UC Teff homing. Vedolizumab treatment impairs homing of UC Treg cells leading to their accumulation in peripheral blood with subsequent suppression of systemic effector T cell expansion

    Oral tolerance to cancer can be abrogated by T regulatory cell inhibition

    Get PDF
    Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue – JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups - this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the gut

    Differential Responses of Human Regulatory T Cells (Treg) and Effector T Cells to Rapamycin

    Get PDF
    Background: The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory\ud T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-c chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.\ud Methodology/Principal Findings: CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21)\ud using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/ mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p,0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg6RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/ mTOR pathway.\ud Conclusions/Significance: RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation

    Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion.

    Get PDF
    Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60–70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-γ responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90− cells was also enhanced in infected mice. Interestingly, a potent induction of TNF- and IFN-γ production by CD4+ and CD90− lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system

    IL-2 Therapy Diminishes Renal Inflammation and the Activity of Kidney-Infiltrating CD4+ T Cells in Murine Lupus Nephritis

    Get PDF
    An acquired deficiency of interleukin-2 (IL-2) and related disturbances in regulatory T cell (Treg) homeostasis play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Low-dose IL-2 therapy was shown to restore Treg homeostasis in patients with active SLE and its clinical efficacy is currently evaluated in clinical trials. Lupus nephritis (LN), a challenging organ manifestation in SLE, is characterized by the infiltration of pathogenic CD4+ T cells into the inflamed kidney. However, the role of the Treg-IL-2 axis in the pathogenesis of LN and the mode of action of IL-2 therapy in the inflamed kidneys are still poorly understood. Using the (NZB × NZW) F1 mouse model of SLE we studied whether intrarenal Treg are affected by a shortage of IL-2 in comparison with lymphatic organs and whether and how intrarenal T cells and renal inflammation can be influenced by IL-2 therapy. We found that intrarenal Treg show phenotypic signs that are reminiscent of IL-2 deprivation in parallel to a progressive hyperactivity of intrarenal conventional CD4+ T cells (Tcon). Short-term IL-2 treatment of mice with active LN induced an expansion the intrarenal Treg population whereas long-term IL-2 treatment reduced the activity and proliferation of intrarenal Tcon, which was accompanied by a clinical and histological amelioration of LN. The association of these immune pathologies with IL-2 deficiency and their reversibility by IL-2 therapy provides important rationales for an IL-2-based immunotherapy of LN.DFG, SFB 650, Zelluläre Ansätze zur Suppression unerwünschter Immunreaktionen - From Bench to Bedsid
    corecore