9,846 research outputs found

    Assessing the coherence in biological and environmental drivers of young sea bass abundance across important estuarine nursery areas of the northern European sea bass stock

    Get PDF
    Year class strength is an important determinant of fish population size, but the drivers are often unknown. The northern stock of European sea bass (Dicentrarchus labrax) is an important target species for both commercial and recreational fisheries. Scientific assessments showed a rapid decline in spawning stock biomass from 2010-18 attributed to a combination of fishing mortality and poor year class strength. Recruitment to the adult stock is linked to the abundance and temporal dynamics of young bass in estuarine nursery areas, but little is known about the relative importance of environmental and biological drivers on the survival of these young life stages. In this study, we use Generalised Linear Models to attempt to identify important local environmental (sea surface temperature and river flow) and biological (chlorophyll-a concentration and predator abundance) drivers of young sea bass abundance. We focus on seven British and Irish estuarine areas that are important to the northern stock of European sea bass. In four English estuarine areas there were good model fits to the abundance of young sea bass, but predictors differed amongst these suggesting that drivers of abundance may differ among individual nursery areas. This was further demonstrated by poor fits of models generated for English estuaries to interannual patterns of abundance in the Irish nursery areas tested. The differences found in the most important abundance drivers amongst areas highlight the complex and differing dynamics between estuaries. If the number of young bass that eventually join the adult stock is dependent on survivors from a diverse set of unique nursery area conditions, then endeavours to incorporate this knowledge into fisheries management should be further explored

    Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons

    Get PDF
    The impact of internal and barotropic tides on the vertical and horizontal temperature structure off the Amazon River was investigated during two highly contrasted seasons (AMJ: April–May–June; ASO: August–September–October) over a 3-year period from 2013 to 2015. Twin regional simulations, with and without tides, were used to highlight the general effect of tides. The findings reveal that tides have a cooling effect on the ocean from the surface (∼ 0.3 ∘C) to above the thermocline (∼ 1.2 ∘C), while warming it up below the thermocline (∼ 1.2 ∘C). The heat budget analysis indicates that the vertical mixing is the dominant process driving temperature variations within the mixed layer, while it is associated with both horizontal and vertical advection to explain temperature variations below. The increased mixing in the simulations including tides is attributed to breaking of internal tides (ITs) on their generation sites over the shelf break and offshore along their propagation pathways. Over the shelf, mixing is driven by the dissipation of the barotropic tides. In addition, the vertical terms of the heat budget equation exhibit wavelength patterns typical of mode-1 IT. The study highlights the key role of tides and particularly how IT-related vertical mixing shapes the ocean temperature off the Amazon. Furthermore, we found that tides impact the interactions between the upper ocean interface and the overlying atmosphere. They contribute significantly to increasing the net heat flux between the atmosphere and the ocean, with a notable seasonal variation from 33.2 % in AMJ to 7.4 % in ASO seasons. This emphasizes the critical role of tidal dynamics in understanding regional-scale climate.</p

    Transport dynamics in a complex coastal archipelago

    Get PDF
    The Archipelago Sea (in the Baltic Sea) is characterised by thousands of islands of various sizes and steep gradients of the bottom topography. Together with the much deeper Åland Sea, the Archipelago Sea acts as a pathway to the water exchange between the neighbouring basins, Baltic proper and Bothnian Sea. We studied circulation and water transports in the Archipelago Sea using a new configuration of the NEMO 3D hydrodynamic model that covers the Åland Sea–Archipelago Sea region with a horizontal resolution of around 500 m. The results show that currents are steered by the geometry of the islands and straits and the bottom topography. Currents are highest and strongly aligned in the narrow channels in the northern part of the area, with the directions alternating between south and north. In more open areas, the currents are weaker with wider directional distribution. During our study period of 2013–2017, southward currents were more frequent in the surface layer. In the bottom layer, in areas deeper than 25 m, northward currents dominated in the southern part of the Archipelago Sea, while in the northern part southward and northward currents were more evenly represented. Due to the variation in current directions, both northward and southward transports occur. During our study period, the net transport in the upper 20 m layer was southward. Below 20 m depth, the net transport was southward at the northern edge and northward at the southern edge of the Archipelago Sea. There were seasonal and inter-annual variations in the transport volumes and directions in the upper layer. Southward transport was usually largest in spring and summer months, and northward transport was largest in autumn and winter months. The transport dynamics in the Archipelago Sea show different variabilities in the north and south. A single transect cannot describe water transport through the whole area in all cases. Further studies on the water exchange processes between the Baltic proper and the Bothnian Sea through the Archipelago Sea would benefit from using a two-way nested model set-up for the region.</p

    Investigating the dynamics of Greenland's glacier-fjord systems

    Get PDF
    Over the past two decades, Greenland’s tidewater glaciers have dramatically retreated, thinned and accelerated, contributing significantly to sea level rise. This change in glacier behaviour is thought to have been triggered by increasing atmospheric and ocean temperatures, and mass loss from Greenland’s tidewater glaciers is predicted to continue this century. Substantial research during this period of rapid glacier change has improved our understanding of Greenland’s glacier-fjord systems. However, many of the processes operating in these systems that ultimately control the response of tidewater glaciers to changing atmospheric and oceanic conditions are poorly understood. This thesis combines modelling and remote sensing to investigate two particularly poorly-understood components of glacier-fjord systems, with the ultimate aim of improving understanding of recent glacier behaviour and constraining the stability of the ice sheet in a changing climate. The research presented in this thesis begins with an investigation into the dominant controls on the seasonal dynamics of contrasting tidewater glaciers draining the Greenland Ice Sheet. To do this, high resolution estimates of ice velocity were generated and compared with detailed observations and modelling of the principal controls on seasonal glacier flow, including terminus position, ice mélange presence or absence, ice sheet surface melting and runoff, and plume presence or absence. These data revealed characteristic seasonal and shorter-term changes in ice velocity at each of the study glaciers in more detail than was available from previous remote sensing studies. Of all the environmental controls examined, seasonal evolution of subglacial hydrology (as inferred from plume observations and modelling) was best able to explain the observed ice flow variations, despite differences in geometry and flow of the study glaciers. The inferred relationships between subglacial hydrology and ice dynamics were furthermore entirely consistent with process-understanding developed at land-terminating sectors of the ice sheet. This investigation provides a more detailed understanding of tidewater glacier subglacial hydrology and its interaction with ice dynamics than was previously available and suggests that interannual variations in meltwater supply may have limited influence on annually averaged ice velocity. The thesis then shifts its attention from the glacier part of the system into the fjords, focusing on the interaction between icebergs, fjord circulation and fjord water properties. This focus on icebergs is motivated by recent research revealing that freshwater produced by iceberg melting constitutes an important component of fjord freshwater budgets, yet the impact of this freshwater on fjords was unknown. To investigate this, a new model for iceberg-ocean interaction is developed and incorporated into an ocean circulation model. This new model is first applied to Sermilik Fjord — a large fjord in east Greenland that hosts Helheim Glacier, one of the largest tidewater glaciers draining the ice sheet — to further constrain iceberg freshwater production and to quantify the influence of iceberg melting on fjord circulation and water properties. These investigations reveal that iceberg freshwater flux increases with ice sheet runoff raised to the power ~0.1 and ranges from ~500-2500 m³ s⁻¹ during summer, with ~40% of that produced below the pycnocline. It is also shown that icebergs substantially modify the temperature and velocity structure of Sermilik Fjord, causing 1-5°C cooling in the upper ~100 m and invigorating fjord circulation, which in turn causes a 10-40% increase in oceanic heat flux towards Helheim Glacier. This research highlights the important role of icebergs in Greenland’s iceberg congested fjords and therefore the need to include them in future studies examining ice sheet – ocean interaction. Having investigated the effect of icebergs on fjord circulation in a realistic setting, this thesis then characterises the effect of submarine iceberg melting on water properties near the ice sheet – ocean interface by applying the new model to a range of idealised scenarios. This near-glacier region is one which is crucial for constraining ocean-driven retreat of tidewater glaciers, but which is poorly-understood. The simulations show that icebergs are important modifiers of glacier-adjacent water properties, generally acting to reduce vertical variations in water temperature. The iceberg-induced temperature changes will generally increase submarine melt rates at mid-depth and decrease rates at the surface, with less pronounced effects at greater depth. This highlights another mechanism by which iceberg melting can affect ice sheet – ocean interaction and emphasises the need to account for iceberg-ocean interaction when simulating ocean-driven retreat of Greenland’s tidewater glaciers. In summary, this thesis has helped to provide a deeper understanding of two poorly-understood components of Greenland’s tidewater glacier-fjord systems: (i) interactions between subglacial hydrology and ice velocity, and; (ii) iceberg-ocean interaction. This research has enabled more precise interpretations of past glacier behaviour and can be used to inform model development that will help constrain future ice sheet mass loss in response to a changing climate."I must express my gratitude to the University of St Andrews and to the Scottish Alliance for Geoscience, Environment and Society (SAGES) for funding and supporting me as a research student."-- Fundin

    Acoustic estimates of sperm whale abundance in the Mediterranean Sea as part of the ACCOBAMS Survey Initiative

    Get PDF
    Acoustic surveys for sperm whales (Physeter macrocephalus) were conducted in the Mediterranean Sea in summer 2018 as part of the vessel-based component of the ACCOBAMS Survey Initiative (ASI). Equal-spaced zigzag transects provided uniform coverage of key sperm whale habitats and were surveyed using a towed hydrophone array deployed from a research vessel at speeds of 5-8 knots. A total of 14,039 km of tracklines were surveyed in the western basin, Hellenic Trench and Libyan waters, with an acoustic coverage of 10% realised for sperm whales. During these surveys, 254 individual sperm whales were detected on the trackline, with an additional 66 individuals off-track. Sperm whales were only seen ten times on-track, with an additional 16 off-track sightings. Estimates of slant range to echolocating whales were used to derive density estimates through both design- and model-based distance sampling methodologies. An acoustic availability of 0.912 (sd = 0.036) was derived from via published models. When correcting for availability bias, a design-based abundance estimates of 2,673 individuals (95% CI 1,739-4,105; CV = 0.21) was derived for the surveyed blocks, which incorporated most known sperm whale habitat in the Mediterranean Sea. The equivalent model-based estimate was 2,825 whales (2,053-3,888; CV = 0.16). Over 97% of detected whales were in the western basin, with highest densities in the Algerian and Liguro-Provencal Basins between Algeria and Spain/France. In the eastern basin, detections were sparse and concentrated along the Hellenic Trench. A density surface modelling (DSM) exercise identified location and benthic aspect as being the most instructive covariates for predicting whale abundance. Distance sampling results were used in a power analysis to quantify the survey effort required to identify population trends. In the most extreme scenario modelled (10% per annum decline with decennial surveys), the population could have dropped by 90% before the decline was identified with high statistical power. Increasing the regularity of surveys would allow population trends to be detected more expediently. Mediterranean sperm whales are listed as Endangered on the IUCN’s Red List and the need for urgent conservation measures to reduce injury and mortality remains paramount for this unique sub-population

    Significant human health co-benefits of mitigating African emissions

    Get PDF
    Future African aerosol emissions, and therefore air pollution levels and health outcomes, are uncertain and understudied. Understanding the future health impacts of pollutant emissions from this region is crucial. Here, this research gap is addressed by studying the range in the future health impacts of aerosol emissions from Africa in the Shared Socioeconomic Pathway (SSP) scenarios, using the UK Earth System Model version 1 (UKESM1), along with human health concentration–response functions. The effects of Africa following a high-pollution aerosol pathway are studied relative to a low-pollution control, with experiments varying aerosol emissions from industry and biomass burning. Using present-day demographics, annual deaths within Africa attributable to ambient particulate matter are estimated to be lower by 150 000 (5th–95th confidence interval of 67 000–234 000) under stronger African aerosol mitigation by 2090, while those attributable to O3 are lower by 15 000 (5th–95th confidence interval of 9000–21 000). The particulate matter health benefits are realised predominantly within Africa, with the O3-driven benefits being more widespread – though still concentrated in Africa – due to the longer atmospheric lifetime of O3. These results demonstrate the important health co-benefits from future emission mitigation in Africa.</p

    Oceanographic Variability in Cumberland Bay, South Georgia, and Its Implications for Glacier Retreat

    Get PDF
    South Georgia is a heavily glaciated sub-Antarctic island in the Southern Ocean. Cumberland Bay is the largest fjord on the island, split into two arms, each with a large marine-terminating glacier at the head. Although these glaciers have shown markedly different retreat rates over the past century, the underlying drivers of such differential retreat are not yet understood. This study uses observations and a new high-resolution oceanographic model to characterize oceanographic variability in Cumberland Bay and to explore its influence on glacier retreat. While observations indicate a strong seasonal cycle in temperature and salinity, they reveal no clear hydrographic differences that could explain the differential glacier retreat. Model simulations suggest the subglacial outflow plume dynamics and fjord circulation are sensitive to the bathymetry adjacent to the glacier, though this does not provide persuasive reasoning for the asymmetric glacier retreat. The addition of a postulated shallow inner sill in one fjord arm, however, significantly changes the water properties in the resultant inner basin by blocking the intrusion of colder, higher salinity waters at depth. This increase in temperature could significantly increase submarine melting, which is proposed as a possible contribution to the different rates of glacier retreat observed in the two fjord arms. This study represents the first detailed description of the oceanographic variability of a sub-Antarctic island fjord, highlighting the sensitivity of fjord oceanography to bathymetry. Notably, in fjords systems where temperature decreases with depth, the presence of a shallow sill has the potential to accelerate glacier retreat

    Researching animal research: What the humanities and social sciences can contribute to laboratory animal science and welfare

    Get PDF
    Every year around 80 million scientific procedures are carried out on animals globally. These experiments have the potential to generate new understandings of biology and clinical treatments. They also give rise to ongoing societal debate.This book demonstrates how the humanities and social sciences can contribute to understanding what is created through animal procedures - including constitutional forms of research governance, different institutional cultures of care, the professional careers of scientists and veterinarians, collaborations with patients and publics, and research animals, specially bred for experiments or surplus to requirements.Developing the idea of the animal research nexus, this book explores how connections and disconnections are made between these different elements, how these have reshaped each other historically, and how they configure the current practice and policy of UK animal research

    Gabriel Harvey and the History of Reading: Essays by Lisa Jardine and others

    Get PDF
    Few articles in the humanities have had the impact of Lisa Jardine and Anthony Grafton’s seminal ‘Studied for Action’ (1990), a study of the reading practices of Elizabethan polymath and prolific annotator Gabriel Harvey. Their excavation of the setting, methods and ambitions of Harvey’s encounters with his books ignited the History of Reading, an interdisciplinary field which quickly became one of the most exciting corners of the scholarly cosmos. A generation inspired by the model of Harvey fanned out across the world’s libraries and archives, seeking to reveal the many creative, unexpected and curious ways that individuals throughout history responded to texts, and how these interpretations in turn illuminate past worlds. Three decades on, Harvey’s example and Jardine’s work remain central to cutting-edge scholarship in the History of Reading. By uniting ‘Studied for Action’ with published and unpublished studies on Harvey by Jardine, Grafton and the scholars they have influenced, this collection provides a unique lens on the place of marginalia in textual, intellectual and cultural history. The chapters capture subsequent work on Harvey and map the fields opened by Jardine and Grafton’s original article, collectively offering a posthumous tribute to Lisa Jardine and an authoritative overview of the History of Reading

    Human norovirus emergence and circulation in humans and animals

    Get PDF
    corecore