727,258 research outputs found

    Mössbauer Spectrometry

    Get PDF
    Mössbauer spectrometry gives electronic, magnetic, and structural information from within materials. A Mössbauer spectrum is an intensity of Îł-ray absorption versus energy for a specific resonant nucleus such as ^(57)Fe or ^(119)Sn. For one nucleus to emit a Îł-ray and a second nucleus to absorb it with efficiency, both nuclei must be embedded in solids, a phenomenon known as the “Mössbauer effect.” Mössbauer spectrometry looks at materials from the “inside out,” where “inside” refers to the resonant nucleus. Mössbauer spectra give quantitative information on “hyperfine interactions,” which are small energies from the interaction between the nucleus and its neighboring electrons. The three hyperfine interactions originate from the electron density at the nucleus (the isomer shift), the gradient of the electric field (the nuclear quadrupole splitting), and the unpaired electron density at the nucleus (the hyperfine magnetic field). Over the years, methods have been refined for using these three hyperfine interactions to determine valence and spin at the resonant atom. Even when the hyperfine interactions are not easily interpreted, they can often be used reliably as “fingerprints” to identify the different local chemical environments of the resonant atom, usually with a good estimate of their fractional abundances. Mössbauer spectrometry is useful for quantitative phase analyses or determinations of the concentrations of resonant element in different phases, even when the phases are nanostructured or amorphous. Most Mössbauer spectra are acquired with simple laboratory equipment and a radioisotope source, but the recent development of synchrotron instrumentation now allow for measurements on small 10 ”m samples, which may be exposed to extreme environments of pressure and temperature. Other capabilities include measurements of the vibrational spectra of the resonant atoms, and coherent scattering and diffraction of nuclear radiation. This article is not a review of the field, but an instructional reference that explains principles and practices, and gives the working materials scientist a basis for evaluating whether or not Mössbauer spectrometry may be useful for a research problem. A few representative materials studies are presented

    Assessing depleted uranium (DU) contamination of soil, plants and earthworms at UK weapons testing sites

    Get PDF
    Depleted uranium (DU) weapons testing programmes have been conducted at two locations within the UK. An investigation was therefore carried out to assess the extent of any environmental contamination arising from these test programmes using both alpha spectrometry and mass spectrometry techniques. Uranium isotopic signatures indicative of DU contamination were observed in soil, plant and earthworm samples collected in the immediate vicinity of test firing points and targets, but contamination was found to be localised to these areas. The paper demonstrates the superiority of the 235U:238U ratio over the 234U:238U ratio for identifying and quantifying DU contamination in environmental samples and also describes the respective circumstances under which alpha spectrometry or mass spectrometry may be the more appropriate analytical tool

    Recovery and reanalysis of archived airborne gamma spectrometry data from the 1991 Dounreay survey

    Get PDF
    Archived Airborne Gamma Spectrometry (AGS) data from the 1991 NIREX characterisations of Caithness have been recovered. The separate gamma spectrometry and positional data streams for approximately 120000 measurements have been combined into a single data stream using the European Radiometrics and Spectrometry (ERS) data format. An analysis using working calibration coefficients and spectral stripping procedure has verified that the original survey recorded high quality data. The converted data stream is in a format more accessible to future research use, including evaluation of environmental change in the Caithness region

    Etalon Array Reconstructive Spectrometry.

    Get PDF
    Compact spectrometers are crucial in areas where size and weight may need to be minimized. These types of spectrometers often contain no moving parts, which makes for an instrument that can be highly durable. With the recent proliferation in low-cost and high-resolution cameras, camera-based spectrometry methods have the potential to make portable spectrometers small, ubiquitous, and cheap. Here, we demonstrate a novel method for compact spectrometry that uses an array of etalons to perform spectral encoding, and uses a reconstruction algorithm to recover the incident spectrum. This spectrometer has the unique capability for both high resolution and a large working bandwidth without sacrificing sensitivity, and we anticipate that its simplicity makes it an excellent candidate whenever a compact, robust, and flexible spectrometry solution is needed

    Characterization of Polyphosphoesters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Get PDF
    FT-ICR mass spectrometry, together with collision-induced dissociation and electron capture dissociation, has been used to characterize the polyphosphoester poly[1,4-bis(hydroxyethyl)terephthalate-alt-ethyloxyphosphate] and its degradation products. Three degradation pathways were elucidated: hydrolysis of the phosphate–[1,4-bis(hydroxyethyl)terephthalate]bonds; hydrolysis of the phosphate–ethoxy bonds; and hydrolysis of the ethyl–terephthalate bonds. The dominant degradation reactions were those that involved the phosphate groups. This work constitutes the first application of mass spectrometry to the characterization of polyphosphoesters and demonstrates the suitability of high mass accuracy FT-ICR mass spectrometry, with CID and ECD, for the structural analysis of polyphosphoesters and their degradation products

    Utility of mass spectrometry for the diagnosis of the unstable coronary plaque.

    Get PDF
    Mass spectrometry is a powerful technique that is used to identify unknown compounds, to quantify known materials, and to elucidate the structure and chemical properties of molecules. Recent advances in the accuracy and speed of the technology have allowed data acquisition for the global analysis of lipids from complex samples such as blood plasma or serum. Here, mass spectrometry as a tool is described, its limitations explained and its application to biomarker discovery in coronary artery disease is considered. In particular an application of mass spectrometry for the discovery of lipid biomarkers that may indicate plaque morphology that could lead to myocardial infarction is elucidated

    Detection of Trace Amounts of Toxic Metals in Environmental Samples by Laser-excited Atomic Fluorescence Spectrometry

    Get PDF
    Results for the direct determination of trace amounts of Pb and Cd in Antarctic and Greenland ancient ice and recent snow by laser-excited atomic fluorescence spectrometry (LEAFS) are presented. The whole procedure starting from field sampling, mechanical decontamination of the samples in an ultra-clean laboratory and final analysis of the decontaminated samples is described. The measured concentrations varied in the ranges 0.1–3 pg ml^(–1) for Cd and 0.3–30 pg ml^(–1) for Pb. The results for direct analysis by LEAFS agree favourable with those obtained by isotope dilution mass spectrometry and electrothermal atomic absorption spectrometry, which require time-consuming pre-treatment and pre-concentration stages

    Isotope ratio - Mass spectrometry

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32166This article summarizes the configurations involving isotope ratio mass spectrometry (IRMS) technology available at the CCiTUB and the wide range of possible applications. Some examples of these applications are shown
    • 

    corecore