795 research outputs found

    Paleoseismic and Slip-Rate Observations along the Honey Lake Fault Zone, Northeastern California, USA

    Get PDF
    The Honey Lake fault is a major strike-slip fault in northeastern California that accommodates northwest-directed right-lateral shear in the northern Walker Lane. We reexamine the fault’s paleoseismic history and slip rate by evaluating a natural stream bank exposure of the fault and offset terrace riser. Structural and stratigraphic relations within the modern stream cut, radiocarbon ages, and a detailed topographic survey of the offset terrace riser are used to estimate a Holocene fault slip rate of 1.7–0.6 mm/yr or more. We also interpret the occurrence of at least four surface-rupturing earthquakes during the last 7025 calendar years before present (B.P.). Three of the surface-rupturing earthquakes occurred prior to 4670 calendar years B.P. and have interevent times that range between 730 and 990 yr. The stratigraphic record is limited after ~4670 calendar years B.P., and records evidence for at least one more subsequent surface-rupturing earthquake

    Estimating the upper limit of prehistoric peak ground acceleration using an in situ, intact and vulnerable stalagmite from Plavecka priepast cave (Detrekoi-zsomboly), Little Carpathians, Slovakia-first results

    Get PDF
    Earthquakes hit urban centres in Europe infrequently, but occasionally with disastrous effects. Obtaining an unbiased view of seismic hazard (and risk) is therefore very important. In principle, the best way to test probabilistic seismic hazard assessments (PSHAs) is to compare them with observations that are entirely independent of the procedure used to produce PSHA models. Arguably, the most valuable information in this context should be information on long-term hazard, namely maximum intensities (or magnitudes) occurring over time intervals that are at least as long as a seismic cycle. The new observations can provide information of maximum intensity (or magnitude) for long timescale as an input data for PSHA studies as well. Long-term information can be gained from intact stalagmites in natural caves. These formations survived all earthquakes that have occurred over thousands of years, depending on the age of the stalagmite. Their 'survival' requires that the horizontal ground acceleration (HGA) has never exceeded a certain critical value within that time period. Here, we present such a stalagmite-based case study from the Little Carpathians of Slovakia. A specially shaped, intact and vulnerable stalagmite in the Plavecka priepast cave was examined in 2013. This stalagmite is suitable for estimating the upper limit of horizontal peak ground acceleration generated by prehistoric earthquakes. The critical HGA values as a function of time going back into the past determined from the stalagmite that we investigated are presented. For example, at the time of Joko event (1906), the critical HGA value cannot have been higher than 1 and 1.3 m/s(2) at the time of the assumed Carnuntum event (similar to 340 AD), and 3000 years ago, it must have been lower than 1.7 m/s(2). We claimed that the effect of Joko earthquake (1906) on the location of the Plavecka priepast cave is consistent with the critical HGA value provided by the stalagmite we investigated. The approach used in this study yields significant new constraints on the seismic hazard, as tectonic structures close to Plavecka priepast cave did not generate strong earthquakes in the last few thousand years. The results of this study are highly relevant given that the two capitals, Vienna and Bratislava, are located within 40 and 70 km of the cave, respectively.Web of Science2151130111

    Paleoliquefaction in the Bajo Segura basin (eastern Betic Cordillera)

    Get PDF
    The Bajo Segura basin, in the eastern Betic Cordillera, displays a seismic activity characterized by small-magnitude earthquakes (1.5-4.5 mb), with some occasional moderate to high-magnitude events (> 5.0 mb). These earthquakes are produced by the activity of blind faults without surface ruptures. For this reason, the detection of paleoearthquakes in the geological record is limited to indirect evidence of paleoseismicity, mainly liquefaction features. Moreover, such evidence is abundant in the historical record of the 1829 Torrevieja earthquake, in some of its aftershocks and in the 1919 Jacarilla earthquake. In this study several layers of Holocene seismites previously described in the basin were analyzed, and correlated with various radiometric 14C datings. This analysis enabled a recurrence period of approx. 1000 yr to be established for the moderate to high-magnitude earthquakes in the Bajo Segura basin.La cuenca del Bajo Segura, localizada en la Cordillera Bética oriental, tiene una actividad sísmica caracterizada principalmente por terremotos de pequeña magnitud (1.5-4.5 mb), aunque ocasionalmente han ocurrido terremotos de magnitud moderada-alta (> 5 mb). Estos terremotos están producidos por la actividad de fallas que no presentan ruptura en superficie (fallas ciegas). Por este motivo, el reconocimiento de paleoterremotos en el registro geológico se limita a las evidencias indirectas de paleosismicidad entre las que destacan las estructuras de licuefacción sísmica. Además se tiene constancia de numerosas manifestaciones de licuefacción en el terremoto histórico de Torrevieja de 1829, en alguna de sus réplicas y en el terremoto de Jacarilla de 1919. En este trabajo se han analizado varios niveles de sismitas holocenas descritos previamente en la cuenca, y se han correlacionado con varias dataciones radiométricas de 14 C . Este análisis ha permitido establecer un periodo de recurrencia de terremotos de magnitud moderada-alta en la cuenca del Bajo Segura, de aproximadamente 1000 años

    Potential secondary events caused by early Holocene paleoearthquakes in Fennoscandia – a climate-related review

    Get PDF
    During the last deglaciation of Fennoscandia, large earthquakes may have induced secondary effects on the high-latitude coastal regions and continental margins primarily from surface rock avalanches, large and small submarine slides, local and regional flooding, and tsunamis. In this overview, we show that the climate-earthquake-slide-tsunami causal sequence is particularly important, as is structural inheritance and rejuvenation. However, there are potential earthquake-generating early Holocene faults also beyond the previously defined Lapland Fault Province. Thus, we introduce the term the Greater Lapland Fault Province. Earthquakes in the expanded fault province are candidates for triggering the 8.1 ka Storegga Megaslide and/or its predecessors and coeval tsunamis. The events might have released other submarine slides, gas hydrate expulsion leaving large pockmark fields, rock avalanches and submarine mass wasting in fjord and lake settings. Moreover, the seismic events may also have triggered local and regional flooding by breakup of ice and sediment barriers.publishedVersio

    Paleoliquefaction in the Bajo Segura basin (eastern Betic Cordillera)

    Get PDF
    The Bajo Segura basin, in the eastern Betic Cordillera, displays a seismic activity characterized by small-magnitude earthquakes (1.5-4.5 mb), with some occasional moderate to high-magnitude events (> 5.0 mb). These earthquakes are produced by the activity of blind faults without surface ruptures. For this reason, the detection of paleoearthquakes in the geological record is limited to indirect evidence of paleoseismicity, mainly liquefaction features. Moreover, such evidence is abundant in the historical record of the 1829 Torrevieja earthquake, in some of its aftershocks and in the 1919 Jacarilla earthquake. In this study several layers of Holocene seismites previously described in the basin were analyzed, and correlated with various radiometric 14C datings. This analysis enabled a recurrence period of approx. 1000 yr to be established for the moderate to high-magnitude earthquakes in the Bajo Segura basin

    Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    Get PDF
    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr− 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment

    Paleoearthquakes of the Düzce fault (North Anatolian Fault Zone): implications for earthquake recurrence

    Get PDF
    The November 12, 1999, Mw 7.1 earthquake, ruptured the Düzce segment of the North Anatolian Fault Zone and produced ca. 40 km-long surface ruptures. To learn about recurrence of large surface faulting earthquakes on this fault, we undertook paleoseismological trench investigations. We found evidence for repeated surface faulting paleoearthquakes pre-dating the 1999 event. Dating was based on radiocarbon and 210Pb analyses as well as on archaeological considerations. By merging information obtained from all the trenches we reconstructed the seismic history of the Düzce fault for the past millennium. We correlated coeval events between different trench sites under the assumption that, similarly to the 1999 event, paleoearthquakes ruptured the whole Düzce fault. Besides the 1999 earthquake, prior surface faulting earthquakes are dated as follows: AD1685-1900 (possibly end of 19th century); AD1685-1900 (possibly close to AD 1700); AD1185-1640; AD685-1220 (possibly AD800-1000). Thus, the AD1719, AD1878 and AD1894 historical earthquakes, may have ruptured the Düzce fault and not the faults they are usually associated to or, alternatively, a cascade of events occurred on the Düzce and nearby faults (similarly to the Izmit and Düzce 1999 earthquakes). Five events since AD 685-1220 (possibly AD800-1000), would yield an average recurrence time for the Düzce fault, of 200-325 yr (possibly 250-300 yr). The three most recent earthquakes, including 1999, occurred within 300 yr and may be suggestive of clustering. Assuming that the average 1999 slip is characteristic for this fault, the above recurrence times yield slip rates of 6.7-13.5 mm/yr

    Ground-Rupturing Earthquakes on the Northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    Get PDF
    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes
    corecore