906 research outputs found
Enantiopure double ortho-oligophenylethynylene-based helical structures with circularly polarized luminescence activity
In this paper, we describe the optical and chiroptical properties of an enantiopure multipodal ortho-oligophenylethynylene (S,S,S,S)-1 presenting four chiral sulfoxide groups at the extremes. The presence of these groups together with alkynes allows the coordination with carbophilic Ag(I), and/or oxophilic Zn(II) cations, yielding double helical structures in an enantiopure way. In this sense, different behaviors in absorption, fluorescence, ECD and CPL spectra have been found depending on the stoichiometry and nature of the metal. We have observed that Zn(II) coordination favors an intensity increase of the electronic circular dichroism (ECD) spectra of compound (S,S,S,S)-1 yielding an M-helicity in the ortho-oligophenylene ethynylene (o-OPE) backbone. On the other hand, ECD spectra of final Ag(I) complex shows two different bands with an opposite sign to the free ligand, thus giving the P-helical isomer. In addition, circularly polarized luminescence (CPL) exhibit an enhanced intensity and negative sign in both complexes. Computational studies were also carried out, supporting the experimental result
Enantiopure Double ortho-Oligophenylethynylene-Based Helical Structures with Circularly Polarized Luminescence Activity
We thank the Ministerio de Economia y Competitividad (CTQ2017-85454-C2-1-P and CTQ2017-85454-C2-2-P), Ministerio de Ciencia e Innovacion (PID2020-113059GB-C21 and PID2020-113059GB-C22) and Junta de Andalucia (P20.00162) (Spain) for funding and P.R. and A. O. G. also for FPU contracts. Funding for open access charge is acknowledged to Universidad de Granada / CBUA.We also thank Big&Open Data Innovation Laboratory (BODaI-Lab), University of Brescia, granted by Fondazione Cariplo and Regione Lombardia, for access to resources of Computing Center CINECA (Bologna), Italy. Support from the Italian MIUR (Grant No. 2017A4XRCA) is also acknowledged.In this paper, we describe the optical and chiroptical properties
of an enantiopure multipodal ortho-oligophenylethynylene
(S,S,S,S)-1 presenting four chiral sulfoxide groups at the
extremes. The presence of these groups together with alkynes
allows the coordination with carbophilic Ag(I), and/or oxophilic
Zn(II) cations, yielding double helical structures in an enantiopure
way. In this sense, different behaviors in absorption,
fluorescence, ECD and CPL spectra have been found depending
on the stoichiometry and nature of the metal. We have
observed that Zn(II) coordination favors an intensity increase of
the electronic circular dichroism (ECD) spectra of compound
(S,S,S,S)-1 yielding an M-helicity in the ortho-oligophenylene
ethynylene (o-OPE) backbone. On the other hand, ECD spectra
of final Ag(I) complex shows two different bands with an
opposite sign to the free ligand, thus giving the P-helical
isomer. In addition, circularly polarized luminescence (CPL)
exhibit an enhanced intensity and negative sign in both
complexes. Computational studies were also carried out,
supporting the experimental results.Spanish Government CTQ2017-85454-C2-1-P
CTQ2017-85454-C2-2-PInstituto de Salud Carlos III
Spanish Government
European Commission PID2020-113059GB-C21
PID2020-113059GB-C22Junta de Andalucia
European Commission P20.00162University of Brescia / CBUAFondazione CariploMinistry of Education, Universities and Research (MIUR) 2017A4XRCARegione Lombardi
Recommended from our members
Catalytic Metal IonâSubstrate Coordination during Nonenzymatic RNA Primer Extension
Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3âČ-hydroxyl on the adjacent phosphate of a 5âČ-5âČ-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5âČ-5âČ-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction
Reactivity of Gold Hydrides: O2 Insertion into the AuâH Bond
Dioxygen reacts with the gold(I) hydride (IPr)AuH under insertion to give the hydroperoxide, (IPr)AuOOH, a long-postulated reaction in gold catalysis and the first demonstration of O2 activation by Au-H in a well-defined system. Subsequent condensation gave the peroxide (IPr)Au-OO-Au(IPr) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene). The reaction kinetics are reported, as well as the reactivity of Au(I) hydrides with radical scavengers
Recommended from our members
Carbon-sulfur bond strength in methanesulfinate and benzenesulfinate ligands directs decomposition of Np(v) and Pu(v) coordination complexes.
Gas-phase coordination complexes of actinyl(v) cations, AnO2+, provide a basis to assess fundamental aspects of actinide chemistry. Electrospray ionization of solutions containing an actinyl cation and sulfonate anion CH3SO2- or C6H5SO2- generated complexes [(AnVO2)(CH3SO2)2]- or [(AnVO2)(C6H5SO2)2]- where An = Np or Pu. Collision induced dissociation resulted in C-S bond cleavage for methanesulfinate to yield [(AnVO2)(CH3SO2)(SO2)]-, whereas hydrolytic ligand elimination occurred for benzenesulfinate to yield [(AnVO2)(C6H5SO2)(OH)]-. These different fragmentation pathways are attributed to a stronger C6H5-SO2-versus CH3-SO2- bond, which was confirmed for both the bare and coordinating sulfinate anions by energies computed using a relativistic multireference perturbative approach (XMS-CASPT2 with spin-orbit coupling). The results demonstrate shutting off a ligand fragmentation channel by increasing the strength of a particular bond, here a sulfinate C-S bond. The [(AnVO2)(CH3SO2)(SO2)]- complexes produced by CID spontaneously react with O2 to eliminate SO2, yielding [(AnO2)(CH3SO2)(O2)]-, a process previously reported for An = U and found here for An = Np and Pu. Computations confirm that the O2/SO2 displacement reactions should be exothermic or thermoneutral for all three An, as was experimentally established. The computations furthermore reveal that the products are superoxides [(AnVO2)(CH3SO2)(O2)]- for An = Np and Pu, but peroxide [(UVIO2)(CH3SO2)(O2)]-. Distinctive reduction of O2- to O22- concomitant with oxidation of U(v) to U(vi) reflects the relatively higher stability of hexavalent uranium versus neptunium and plutonium
Transition metal triflate catalyzed conversion of alcohols, ethers and esters to olefins
Herein, we report an efficient transition metal triflate catalyzed approach to convert biomass-based compounds, such as monoterpene alcohols, sugar alcohols, octyl acetate and tea tree oil, to their corresponding olefins in high yields. The reaction proceeds through C-O bond cleavage under solvent-free conditions, where the catalytic activity is determined by the oxophilicity and the Lewis acidity of the metal catalyst. In addition, we demonstrate how the oxygen containing functionality affects the formation of the olefins. Furthermore, the robustness of the used metal triflate catalysts, Fe(OTf)(3) and Hf(OTf)(4), is highlighted by their ability to convert an over 2400-fold excess of 2-octanol to octenes in high isolated yields.Peer reviewe
On the intrinsic dynamic nature of the rigid UiO-66 metal-organic framework
UiO-66 is a showcase example of an extremely stable metal-organic framework, which maintains its structural integrity during activation processes such as linker exchange and dehydration. The framework can even accommodate a substantial number of defects without compromising its stability. These observations point to an intrinsic dynamic flexibility of the framework, related to changes in the coordination number of the zirconium atoms. Herein we follow the dynamics of the framework in situ, by means of enhanced sampling molecular dynamics simulations such as umbrella sampling, during an activation process, where the coordination number of the bridging hydroxyl groups capped in the inorganic Zr-6(mu(3)-O)(4)(mu(3)-OH)(4) brick is reduced from three to one. Such a reduction in the coordination number occurs during the dehydration process and in other processes where defects are formed. We observe a remarkable fast response of the system upon structural changes of the hydroxyl group. Internal deformation modes are detected, which point to linker decoordination and recoordination. Detached linkers may be stabilized by hydrogen bonds with hydroxyl groups of the inorganic brick, which gives evidence for an intrinsic dynamic acidity even in the absence of protic guest molecules. Our observations yield a major step forward in the understanding on the molecular level of activation processes realized experimentally but that is hard to track on a purely experimental basis
- âŠ