24 research outputs found

    sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression

    Get PDF
    Since the original publication of sRNAtoolbox in 2015, small RNA research experienced notable advances in different directions. New protocols for small RNA sequencing have become available to address important issues such as adapter ligation bias, PCR amplification artefacts or to include internal controls such as spike-in sequences. New microRNA reference databases were developed with different foci, either prioritizing accuracy (low number of false positives) or completeness (low number of false negatives). Additionally, other small RNA molecules as well asmicroRNA sequence and length variants (isomiRs) have continued to gain importance. Finally, the number of microRNA sequencing studies deposited in GEO nearly triplicated from 2014 (280) to 2018 (764). These developments imply that fast and easy-to-use tools for expression profiling and subsequent downstream analysis of miRNAseq data are essential to many researchers. Key features in this sRNAtoolbox release include addition of all major RNA library preparation protocols to sRNAbench and improvements in sRNAde, a tool that summarizes several aspects of small RNA sequencing studies including the detection of consensus differential expression. A special emphasis was put on the user-friendliness of the tools, for instance sRNAbench now supports parallel launching of several jobs to improve reproducibility and user time efficiency.European Union [765492 to M.H.]; Spanish Government [AGL2017-88702-C2-2-R to M.H., J.L.O.]; Instituto de Salud Carlos III, FEDER funds [PIE16/00045 to J.A.M.]; Chair ‘Doctors Galera-Requena in cancer stem cell research’ to JMA and by the Ministry of Education of Spain [FPU13/05662 to R.L., IFI16/00041 to E.A.]; Strategic Research Area (SFO) program of the Swedish Research Council (to V.R.) through Stockholm University (to B.F.). Funding for open access charge: SpanishGovernment [AGL2017-88702-C2-2-R]

    Genetic Variants Regulating MicroRNA Expression in the Developing Human Neocortex

    Get PDF
    Genome-wide association studies (GWAS) have revealed several genomic loci associated with risk for neuropsychiatric disorders and brain-related traits, but for many of these loci, the causal mechanisms are unknown. Using expression quantitative trait loci (eQTL) data, many of the risk loci can be linked to protein-coding genes or long non-coding RNAs. However, the mechanism underlying a significant proportion of loci remain unexplained. MicroRNAs (miRNAs) are poorly measured in standard eQTL studies yet have important influences on neurogenesis and have been found to be differentially expressed in brain tissue from patients with neuropsychiatric disorders. By linking miRNA-eQTLs to previously defined mRNA-eQTLs and genome-wide significant loci for brain traits, I aimed to reveal causal mechanisms by which common genetic variation influences gene regulation and inter-individual differences in brain-related traits. Additionally, I sought to find evidence for novel early brain-expressed miRNAs and define an expanded set of miRNAs associated with human neocortical neurogenesis and neuron maturity. Here, in 212 mid-gestation neocortical tissue samples, I profiled expression of 907 miRNAs, discovering 111 novel miRNAs and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707-3p expression with educational attainment and head size phenotypes, where the miRNA expression increasing allele was associated with decreased head size. After increasing expression of miR-4707-3p in primary human neural progenitor cultures and their differentiated progeny, I detected an increase in both proliferative and neurogenic gene markers by qPCR and ICC assays, implying an early cell-cycle exit and an increase in neurogenic divisions. Using 17 neocortical tissue samples micro-dissected into progenitor rich germinal zone and neuron rich cortical plate, I identified 504 miRNAs associated with neurogenesis or neuron maturity. Finally, I was able to prioritize these neurogenesis associated miRNAs by looking at the differential expression of their predicted mRNA targets. In summary, this work shows how miRNA-eQTLs and neurogenesis associated miRNAs in developing neocortical tissue yielded insight into the causal mechanisms by which genetic variants influence brain traits.Doctor of Philosoph

    A bioinformatics approach to microRNA-sequencing analysis

    Get PDF
    The rapid expansion of Next Generation Sequencing (NGS) data availability has made exploration of appropriate bioinformatics analysis pipelines a timely issue. Since there are multiple tools and combinations thereof to analyze any dataset, there can be uncertainty in how to best perform an analysis in a robust and reproducible manner. This is especially true for newer omics applications, such as miRNomics, or microRNA-sequencing (miRNA-sequencing). As compared to transcriptomics, there have been far fewer miRNA-sequencing studies performed to date, and those that are reported seldom provide detailed description of the bioinformatics analysis, including aspects such as Unique Molecular Identifiers (UMIs). In this article, we attempt to fill the gap and help researchers understand their miRNA-sequencing data and its analysis. This article will specifically discuss a customizable miRNA bioinformatics pipeline that was developed using miRNA-sequencing datasets generated from human osteoarthritis plasma samples. We describe quality assessment of raw sequencing data files, reference-based alignment, counts generation for miRNA expression levels, and novel miRNA discovery. This report is expected to improve clarity and reproducibility of the bioinformatics portion of miRNA-sequencing analysis, applicable across any sample type, to promote sharing of detailed protocols in the NGS field

    MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size

    Get PDF
    Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-coding RNAs known to play a role in human brain development and neurogenesis. Here, we performed small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, measured 907 expressed miRNAs, discovering 111 of which were novel, and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707–3p expression with educational attainment and brain size phenotypes, where the miRNA expression increasing allele was associated with decreased brain size. Exogenous expression of miR-4707–3p in primary human neural progenitor cells decreased expression of predicted targets and increased cell proliferation, indicating miR-4707–3p modulates progenitor gene regulation and cell fate decisions. Integrating miRNA-eQTLs with existing GWAS yielded evidence of a miRNA that may influence human brain size and function via modulation of neocortical brain development

    Visualization of the small RNA transcriptome using seqclusterViz

    Get PDF
    The study of small RNAs provides us with a deeper understanding of the complexity of gene regulation within cells. Of the different types of small RNAs, the most important in mammals are miRNA, tRNA fragments and piRNAs. Using small RNA-seq analysis, we can study all small RNA types simultaneously, with the potential to detect novel small RNA types. We describe SeqclusterViz, an interactive HTML-javascript webpage for visualizing small noncoding RNAs (small RNAs) detected by Seqcluster. The SeqclusterViz tool allows users to visualize known and novel small RNA types in model or non-model organisms, and to select small RNA candidates for further validation. SeqclusterViz is divided into three panels: i) query-ready tables showing detected small RNA clusters and their genomic locations, ii) the expression profile over the precursor for all the samples together with RNA secondary structures, and iii) the mostly highly expressed sequences. Here, we show the capabilities of the visualization tool and its validation using human brain samples from patients with Parkinson's disease

    A mouse tissue atlas of small noncoding RNA

    Get PDF
    Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease

    Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach

    Get PDF
    Despite the broad variety of available microRNA (miRNA) prediction tools, their application to the discovery and annotation of novel miRNA genes in domestic species is still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA identification in the yet poorly annotated porcine genome and demonstrated the usefulness of implementing a motif search positional refinement strategy for the accurate determination of precursor miRNA boundaries. The small RNA fraction from gluteus medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of novel miRNA loci. Additionally, we selected the human miRNA annotation for a homology-based search of porcine miRNAs with orthologous genes in the human genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle transcriptome and 27 additional novel porcine miRNAs were also detected by homology-based search using the human miRNA annotation. The existence of three selected novel miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse transcription quantitative real-time PCR analyses in the muscle and liver tissues of Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current work allowed us to expand the catalogue of porcine miRNAs and showed better performance than other commonly used miRNA prediction approaches. More importantly, the flexibility of our pipeline makes possible its application in other yet poorly annotated non-model species.info:eu-repo/semantics/acceptedVersio

    Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors

    Get PDF
    MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called �competing endogenous RNA� (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future. © 2021, The Author(s)

    From tools and databases to clinically relevant applications in miRNA research

    Get PDF
    While especially early research focused on the small portion of the human genome that encodes proteins, it became apparent that molecules responsible for many key functions were also encoded in the remaining regions. Originally, non-coding RNAs, i.e., molecules that are not translated into proteins, were thought to be composed of only two classes (ribosomal RNAs and transfer RNAs). However, starting from the early 1980s many other non-coding RNA classes were discovered. In the past two decades, small non-coding RNAs (sncRNAs) and in particular microRNAs (miRNAs), have become essential molecules in biological and biomedical research. In this thesis, five aspects of miRNA research have been addressed. Starting from the development of advanced computational software to analyze miRNA data (1), an in-depth understanding of human and non-human miRNAs was generated and databases hosting this knowledge were created (2). In addition, the effects of technological advances were evaluated (3). We also contributed to the understanding on how miRNAs act in an orchestrated manner to target human genes (4). Finally, based on the insights gained from the tools and resources of the mentioned aspects we evaluated the suitability of miRNAs as biomarkers (5). With the establishment of next-generation sequencing, the primary goal of this thesis was the creation of an advanced bioinformatics analysis pipeline for high-throughput miRNA sequencing data, primarily focused on human. Consequently, miRMaster, a web-based software solution to analyze hundreds sequencing samples within few hours was implemented. The tool was implemented in a way that it could support different sequencing technologies and library preparation techniques. This flexibility allowed miRMaster to build a consequent user-base, resulting in over 120,000 processed samples and 1,5 billion processed reads, as of July 2021, and therefore laid out the basis for the second goal of this thesis. Indeed, the implementation of a feature allowing users to share their uploaded data contributed strongly to the generation of a detailed annotation of the human small non-coding transcriptome. This annotation was integrated into a new miRNA database, miRCarta, modelling thousands of miRNA candidates and corresponding read expression profiles. A subset of these candidates was then evaluated in the context of different diseases and validated. The thereby gained knowledge was subsequently used to validate additional miRNA candidates and to generate an estimate of the number of miRNAs in human. The large collection of samples, gathered over many years with miRMaster was also integrated into a web server evaluating miRNA arm shifts and switches, miRSwitch. Finally, we published an updated version of miRMaster, expanding its scope to other species and adding additional downstream analysis capabilities. The second goal of this thesis was further pursued by investigating the distribution of miRNAs across different human tissues and body fluids, as well as the variability of miRNA profiles over the four seasons of the year. Furthermore, small non-coding RNAs in zoo animals were examined and a tissue atlas of small non-coding RNAs for mice was generated. The third goal, the assessment of technological advances, was addressed by evaluating the new combinatorial probe-anchor synthesis-based sequencing technology published by BGI, analyzing the effect of RNA integrity on sequencing data, analyzing low-input library preparation protocols, and comparing template-switch based library preparation protocols to ligation-based ones. In addition, an antibody-based labeling sequencing chemistry, CoolMPS, was investigated. Deriving an understanding of the orchestrated regulation by miRNAs, the fourth goal of this thesis, was pursued in a first step by the implementation of a web server visualizing miRNA-gene interaction networks, miRTargetLink. Subsequently, miRPathDB, a database incorporating pathways affected by miRNAs and their targets was implemented, as well as miEAA 2.0, a web server offering quick miRNA set enrichment analyses in over 130,000 categories spanning 10 different species. In addition, miRSNPdb, a database evaluating the effects of single nucleotide polymorphisms and variants in miRNAs or in their target genes was created. Finally, the fifth goal of the thesis, the evaluation of the suitability of miRNAs as biomarkers for human diseases was tackled by investigating the expression profiles of miRNAs with machine learning. An Alzheimer's disease cohort with over 400 individuals was analyzed, as well as another neurodegenerative disease cohort with multiple time points of Parkinson's disease patients and healthy controls. Furthermore, a lung cancer cohort covering 3,000 individuals was examined to evaluate the suitability of an early detection test. In addition, we evaluated the expression profile changes induced by aging on a cohort of 1,334 healthy individuals and over 3,000 diseased patients. Altogether, the herein described tools, databases and research papers present valuable advances and insights into the miRNA research field and have been used and cited by the research community over 2,000 times as of July 2021.Während insbesondere die frühe Genetik-Forschung sich auf den kleinen Teil des menschlichen Genoms konzentrierte, der für Proteine kodiert, wurde deutlich, dass auch in den übrigen Regionen Moleküle kodiert werden, die für viele wichtige Funktionen verantwortlich sind. Ursprünglich ging man davon aus, dass nicht codierende RNAs, d. h. Moleküle, die nicht in Proteine übersetzt werden, nur aus zwei Klassen bestehen (ribosomale RNAs und Transfer-RNAs). Seit den frühen 1980er Jahren wurden jedoch viele andere nicht-kodierende RNA-Klassen entdeckt. In den letzten zwei Jahrzehnten sind kleine nichtcodierende RNAs (sncRNAs) und insbesondere microRNAs (miRNAs) zu wichtigen Molekülen in der biologischen und biomedizinischen Forschung geworden. In dieser Arbeit werden fünf Aspekte der miRNA-Forschung behandelt. Ausgehend von der Entwicklung fortschrittlicher Computersoftware zur Analyse von miRNA-Daten (1) wurde ein tiefgreifendes Verständnis menschlicher und nicht-menschlicher miRNAs entwickelt und Datenbanken mit diesem Wissen erstellt (2). Darüber hinaus wurden die Auswirkungen des technologischen Fortschritts bewertet (3). Wir haben auch dazu beigetragen, zu verstehen, wie miRNAs koordiniert agieren, um menschliche Gene zu regulieren (4). Schließlich bewerteten wir anhand der Erkenntnisse, die wir mit den Tools und Ressourcen der genannten Aspekte gewonnen hatten, die Eignung von miRNAs als Biomarker (5). Mit der Etablierung der Sequenzierung der nächsten Generation war das primäre Ziel dieser Arbeit die Schaffung einer fortschrittlichen bioinformatischen Analysepipeline für Hochdurchsatz-MiRNA-Sequenzierungsdaten, die sich in erster Linie auf den Menschen konzentriert. Daher wurde miRMaster, eine webbasierte Softwarelösung zur Analyse von Hunderten von Sequenzierproben innerhalb weniger Stunden, implementiert. Das Tool wurde so implementiert, dass es verschiedene Sequenzierungstechnologien und Bibliotheksvorbereitungstechniken unterstützen kann. Diese Flexibilität ermöglichte es miRMaster, eine konsequente Nutzerbasis aufzubauen, die im Juli 2021 über 120.000 verarbeitete Proben und 1,5 Milliarden verarbeitete Reads umfasste, womit die Grundlage für das zweite Ziel dieser Arbeit geschaffen wurde. Die Implementierung einer Funktion, die es den Nutzern ermöglicht, ihre hochgeladenen Daten mit anderen zu teilen, trug wesentlich zur Erstellung einer detaillierten Annotation des menschlichen kleinen nicht-kodierenden Transkriptoms bei. Diese Annotation wurde in eine neue miRNA-Datenbank, miRCarta, integriert, die Tausende von miRNA-Kandidaten und entsprechende Expressionsprofile abbildet. Eine Teilmenge dieser Kandidaten wurde dann im Zusammenhang mit verschiedenen Krankheiten bewertet und validiert. Die so gewonnenen Erkenntnisse wurden anschließend genutzt, um weitere miRNA-Kandidaten zu validieren und eine Schätzung der Anzahl der miRNAs im Menschen vorzunehmen. Die große Sammlung von Proben, die über viele Jahre mit miRMaster gesammelt wurde, wurde auch in einen Webserver integriert, der miRNA-Armverschiebungen und -Wechsel auswertet, miRSwitch. Schließlich haben wir eine aktualisierte Version von miRMaster veröffentlicht, die den Anwendungsbereich auf andere Spezies ausweitet und zusätzliche Downstream-Analysefunktionen hinzufügt. Das zweite Ziel dieser Arbeit wurde weiterverfolgt, indem die Verteilung von miRNAs in verschiedenen menschlichen Geweben und Körperflüssigkeiten sowie die Variabilität der miRNA-Profile über die vier Jahreszeiten hinweg untersucht wurde. Darüber hinaus wurden kleine nichtkodierende RNAs in Zootieren untersucht und ein Gewebeatlas der kleinen nichtkodierenden RNAs für Mäuse erstellt. Das dritte Ziel, die Einschätzung des technologischen Fortschritts, wurde angegangen, indem die neue kombinatorische Sonden-Anker-Synthese-basierte Sequenzierungstechnologie, die vom BGI veröffentlicht wurde, bewertet wurde, die Auswirkungen der RNA-Integrität auf die Sequenzierungsdaten analysiert wurden, Protokolle für die Bibliotheksvorbereitung mit geringem Input analysiert wurden und Protokolle für die Bibliotheksvorbereitung auf der Basis von Template-Switch mit solchen auf Ligationsbasis verglichen wurden. Darüber hinaus wurde eine auf Antikörpern basierende Labeling-Sequenzierungschemie, CoolMPS, untersucht. Das vierte Ziel dieser Arbeit, das Verständnis der orchestrierten Regulation durch miRNAs, wurde in einem ersten Schritt durch die Implementierung eines Webservers zur Visualisierung von miRNA-Gen-Interaktionsnetzwerken, miRTargetLink, verfolgt. Anschließend wurde miRPathDB implementiert, eine Datenbank, die von miRNAs und ihren Zielgenen beeinflusste Pfade enthält, sowie miEAA 2.0, ein Webserver, der schnelle miRNA-Anreicherungsanalysen in über 130.000 Kategorien aus 10 verschiedenen Spezies bietet. Darüber hinaus wurde miRSNPdb, eine Datenbank zur Bewertung der Auswirkungen von Einzelnukleotid-Polymorphismen und Varianten in miRNAs oder ihren Zielgenen, erstellt. Schließlich wurde das fünfte Ziel der Arbeit, die Bewertung der Eignung von miRNAs als Biomarker für menschliche Krankheiten, durch die Untersuchung der Expressionsprofile von miRNAs anhand von maschinellem Lernen angegangen. Eine Alzheimer-Kohorte mit über 400 Personen wurde analysiert, ebenso wie eine weitere neurodegenerative Krankheitskohorte mit Parkinson-Patienten an mehreren Zeitpunkten der Krankheit und gesunden Kontrollen. Außerdem wurde eine Lungenkrebskohorte mit 3.000 Personen untersucht, um die Eignung eines Früherkennungstests zu bewerten. Darüber hinaus haben wir die altersbedingten Veränderungen des Expressionsprofils bei einer Kohorte von 1.334 gesunden Personen und über 3.000 kranken Patienten untersucht. Insgesamt stellen die hier beschriebenen Tools, Datenbanken und Forschungsarbeiten wertvolle Fortschritte und Erkenntnisse auf dem Gebiet der miRNA-Forschung dar und wurden bis Juli 2021 von der Forschungsgemeinschaft über 2.000 Mal verwendet und zitiert

    Correction to: RNA Bioinformatics.

    Get PDF
    n/
    corecore