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Highlights 23 

 Motif search improved pre-miRNA reconstruction from mature microRNA 24 

sequences. 25 

 Semi-supervised methods outperformed canonical supervised classification 26 

algorithms. 27 

 The presence of multiple isomiRs in the porcine muscle miRNA repertoire was 28 

uncovered. 29 

 A total of 47 novel microRNA genes were identified in the porcine genome. 30 

 RT-qPCR analyses allowed us to confirm the existence of three novel porcine 31 

microRNAs. 32 

 33 

 34 

Abstract 35 

Despite the broad variety of available microRNA (miRNA) prediction tools, their 36 

application to the discovery and annotation of novel miRNA genes in domestic species is 37 

still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA 38 

identification in the yet poorly annotated porcine genome and demonstrated the 39 

usefulness of implementing a motif search positional refinement strategy for the accurate 40 

determination of precursor miRNA boundaries. The small RNA fraction from gluteus 41 

medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of 42 

novel miRNA loci. Additionally, we selected the human miRNA annotation for a 43 

homology-based search of porcine miRNAs with orthologous genes in the human 44 

genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle 45 
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transcriptome and 27 additional novel porcine miRNAs were also detected by homology-46 

based search using the human miRNA annotation. The existence of three selected novel 47 

miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse 48 

transcription quantitative real-time PCR analyses in the muscle and liver tissues of 49 

Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current work 50 

allowed us to expand the catalogue of porcine miRNAs and showed better performance 51 

than other commonly used miRNA prediction approaches. More importantly, the 52 

flexibility of our pipeline makes possible its application in other yet poorly annotated 53 

non-model species. 54 

 55 

Keywords: MicroRNA discovery; Motif search; Porcine skeletal muscle; Semi-56 

supervised learning; Small RNA-seq. 57 

 58 

 59 

Introduction 60 

The accurate annotation of a comprehensive set of miRNAs in different species has been 61 

challenging since the first genome assemblies were published, although an ever-62 

increasing amount of knowledge about miRNA diversity across species has been 63 

accumulating during the past years, being available in public databases [1-3]. Despite 64 

these advances, many commonly studied domestic species still lack a complete and 65 

reliable set of annotated miRNAs in their genomes [1]. 66 

The computational prediction of miRNAs in sequenced genomes initially relied on the 67 

strong conservation of mature miRNA sequences across closely related species [4,5], 68 

taking advantage of homology-based comparisons between well annotated genome 69 
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assemblies and other poorly annotated organisms [6-8]. Other approaches focused on 70 

rule-based classification, integrating other sources of information such as sequencing data 71 

or structural features to identify novel miRNAs [9-12]. More recently, several Machine 72 

Learning (ML) approaches have been proposed for miRNA prediction. Different tools 73 

have addressed the problem of correctly classifying miRNAs by training ML algorithms 74 

with a set of positive (annotated miRNAs) and negative (other non-miRNA sequences) 75 

data sets. [13-16]. Nevertheless, despite the broad array of available tools for novel 76 

miRNA identification, their application to the discovery and annotation of novel miRNAs 77 

in domestic species is still limited [17-25]. Moreover, the majority of miRNA surveys 78 

carried out in domestic species do not generally take into account several issues regarding 79 

miRNA genes prediction that have recently emerged. For instance, the set of positive 80 

training annotated miRNAs often include misclassified sequences [26,27], whereas the 81 

negative class is sometimes not clearly defined, i.e. different types of sequences have 82 

been used as negative data sets (coding regions, pseudo-hairpins, non-coding hairpins or 83 

artificial randomized miRNA sequences). Despite some efforts [28], obtaining a truly 84 

representative negative class is still challenging and few approaches have critically 85 

addressed this important issue [29-31]. Besides, miRNAs are thought to encompass a 86 

small percentage of the total non-coding transcriptomic repertoire, with thousands of 87 

other non-miRNA hairpin-like RNA molecules that represent a major fraction of it. This 88 

circumstance contributes to create a high class-imbalance between positive and negative 89 

sequences. Different approaches have dealt with such phenomenon [32], but recent 90 

studies have shown that commonly used techniques for solving the high-class imbalance 91 

problem in microRNA prediction may not be suited to a real-case classification scenario 92 

[15]. 93 
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In this study we present eMIRNA, a bioinformatics pipeline for miRNA discovery and 94 

annotation in sequenced genomes. The proposed pipeline implements a semi-supervised 95 

transductive learning approach to predict and annotate novel microRNAs in the porcine 96 

genome, overcoming several of the drawbacks outlined above. In order to validate the 97 

performance of our pipeline in a real-case scenario, we have applied it to the analysis of 98 

a data set comprising the small RNA fraction of gluteus medius skeletal muscle from a 99 

population of 48 Duroc gilts [33,34]. Furthermore, making use of the better annotated H. 100 

sapiens miRNAome, an additional set of novel porcine miRNA genes were identified 101 

based on a homology-based search approach. Finally, some of the identified novel porcine 102 

miRNA candidates were independently validated in a Göttingen minipig population, 103 

investigating their expression in skeletal muscle and liver tissues. 104 

 105 

 106 

Materials and methods 107 

A detailed flow chart depicting all steps described in the eMIRNA pipeline is shown 108 

in Figure 1. Additional instructions and modular scripts needed for the implementation of 109 

eMIRNA are available at: https://github.com/emarmolsanchez/eMIRNA/. 110 

Positive and negative training data sets 111 

To define the corresponding positive (annotated miRNAs) data set required for novel 112 

miRNA prediction, two approaches were considered: 113 

1) The annotated pre-miRNA coordinates in Sscrofa11.1 genome assembly were obtained 114 

from Ensembl repositories, release version 97 115 

(http://www.ensembl.org/info/data/ftp/index.html), and the corresponding sequences 116 

were extracted from the pig reference genome by using the BEDTools suite v2.27.0 117 

https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#f0005
https://github.com/emarmolsanchez/eMIRNA/
http://www.ensembl.org/info/data/ftp/index.html
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software [35]. miRNA loci located in scaffolds were removed from further analyses, 118 

resulting in a total of 484 annotated porcine miRNA genes. Sequence repeats from pre-119 

miRNA duplicated elements were removed from the retrieved positive data set by using 120 

the CD-HIT Suite [36] with a 0.9 sequence identity cut-off value (i.e. sequences showing 121 

a similarity ≥ 90% to each other were removed and only unique representative pre-122 

miRNA candidates were retained). Moreover, to avoid the inclusion of miss-annotated 123 

miRNA loci, an additional filtering based on secondary structure folding was applied. To 124 

this end, the RNAfold tool from the ViennaRNA Package 2.0 [37] was used to select 125 

sequences with canonical pre-miRNA hairpin secondary structures (stem-loop 126 

conformation with one single terminal loop and two stems). Sequences that failed to 127 

comply with required folding structure pre-requisites were removed. 128 

2) In the second approach, the curated miRNA annotation for Sscrofa11.1 available in the 129 

miRCarta database [2] was retrieved, and the same pre-filtering criteria based on sequence 130 

identity and secondary structure employed in the analysis of the Ensembl data set were 131 

applied. The miRCarta database [2] integrates one of the most comprehensive and curated 132 

databases for miRNA annotation and functional activity, aiming to overcome the 133 

limitations of other widely used miRNA databases such as miRBase [1]. 134 

Regarding the negative data set (other hairpin-like sequences), two different data sources 135 

were used. First, the annotated non-coding transcripts in Ensembl repositories were 136 

retrieved and non-miRNA sequences were retained. Analogously to what was 137 

implemented for the positive data set, identity by sequence and secondary structure pre-138 

filters were applied, and non-miRNA non-coding hairpin-like unique sequences were 139 

obtained. Only sequences ranging from 50 up to 150 nucleotides (nt) were retained, thus 140 

removing hairpin-like long non-coding RNAs from the negative data set. Additionally, a 141 

set of unlabeled sequences within the porcine reference genome (Sscrofa11.1) were 142 
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generated by extracting candidate pre-miRNA-like sequences from random blocks of 1 143 

Megabase (Mb) in each of the chromosomes of the porcine assembly with 144 

the HextractoR package [38], and the previously described pre-filters for the negative 145 

class were subsequently applied. 146 

 147 

Obtaining putative miRNA candidate sequences from the porcine genome 148 

In order to test our method with pig transcriptomic data, a small RNA-seq data set was 149 

generated by sequencing the muscle transcriptome of 48 gilts used in two previous studies 150 

[33,34]. Upon collection, muscle samples were individually submerged in RNAlater and 151 

snap-frozen in liquid nitrogen. Samples were pulverized and homogenized in 1 ml of TRI 152 

Reagent (Thermo Fisher Scientific, Barcelona, Spain). Total RNA was isolated with the 153 

RiboPure kit (Ambion, Austin, TX). A Nanodrop ND-100 spectrophotometer (Thermo 154 

Fisher Scientific, Barcelona, Spain) was used to assess RNA concentration and quality. 155 

RNA integrity expressed in RNA Integrity Number (RIN) units was measured with a 156 

Bionalyzer-2100 equipment (Agilent Technologies Inc., Santa Clara, CA). High quality 157 

RNA samples were then submitted to Sistemas Genómicos S.L. 158 

(https://www.sistemasgenomicos.com) for small RNA sequencing. Library preparation 159 

for each individual sample was carried out with the TruSeq Small RNA Sample 160 

Preparation Kit (Illumina Inc., USA) and small RNA libraries were single-end sequenced 161 

(1 × 50 bp) in a HiSeq 2500 platform (Illumina Inc., CA). 162 

FASTQ sequence files were subjected to a quality control check as reported by Cardoso 163 

et al. [33]. After preliminary quality-based filtering, sequencing adaptors were trimmed 164 

with the Cutadapt software [39] and an acceptance sequence window of 15–30 nt per read 165 

was established. Processed FASTQ files from all sequenced samples (N = 48) were 166 

pooled and collapsed to unique FASTA sequences with the FASTQ collapser tool from 167 

https://www.sistemasgenomicos.com/
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0165
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0195
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FASTX-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Unique FASTA sequences 168 

represented by >10 reads-per-million (RPM) were considered to be significantly 169 

expressed above the background noise [40], and thus selected for further analyses (File 170 

S1). The CD-HIT Suite [36] was employed to build sequence clusters with >0.9 sequence 171 

identity. 172 

Furthermore, the human mature miRNA coordinates were obtained from Ensembl 173 

repositories and the corresponding sequences were retrieved from the GRCh38.p12 174 

assembly. Pre-filtering based on sequence identity was applied and a set of non-redundant 175 

human mature miRNAs was generated for homology-based search in the Sscrofa11.1 176 

porcine assembly (File S2). 177 

 178 

Pre-miRNA reconstruction by sequence elongation and motif search 179 

Once putative mature miRNA candidate sequences from the small RNA-seq data set and 180 

the human mature miRNA sequences were retrieved, they were aligned against the 181 

porcine reference assembly (Sscrofa11.1) with the Bowtie aligner [41] and the following 182 

specifications for short reads: 1) allowing 2 mismatches within the entire aligned 183 

sequence with respect to the reference assembly, 2) removing reads with >50 putative 184 

mapping sites and 3) reporting first single best stratum alignment (bowtie -n 2 -l 25 -m 50 185 

-k 1 --best --strata). Reported alignment genome positions for successfully mapped 186 

putative mature miRNAs were elongated upstream and downstream, thus ensuring an 187 

adequate pre-miRNA reconstruction. As no prior knowledge about the 3p or 5p identity 188 

of putative mature miRNA sequences was available for porcine small RNA-seq data, two 189 

candidate pre-miRNA structures were generated for each expressed sequence. The same 190 

procedure was applied to human mature miRNAs when 3p or 5p identity was not 191 

specified. Candidate sequences that were aligned and extracted from overlapping regions 192 

http://hannonlab.cshl.edu/fastx_toolkit/
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0200
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#ec0005
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#ec0005
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0180
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#ec0010
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0205
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corresponding to other annotated non-miRNA non-coding loci were discarded from 193 

further analyses. 194 

Elongation patterns were based on previously reported pre-miRNA favored size, with a 195 

stem length of ~35 ± 3 nt and an apical loop ≥10 nt [42,43]. With these specifications, we 196 

established two upstream and three downstream elongation pattern combinations: 1) from 197 

the starting genome position of each aligned sequence, 15 and 30 nt were added upstream, 198 

beginning from each mature miRNA sequence start position. 2) Additionally, 60, 70 and 199 

80 nt were added from each miRNA end position, resulting in the following elongation 200 

pattern combinations for each candidate sequence: 15/60, 30/60, 15/70, 30/70, 15/80 and 201 

30/80 added nt (i.e. we generated a total of 12 putative elongated pre-miRNA candidates 202 

per each aligned sequence). Besides, the presence of flanking microprocessor motifs was 203 

assessed for positionally correcting the elongated pre-miRNA candidate sequences. 204 

Downstream CNNC and upstream UG motifs were assessed within the 30/60, 30/70 and 205 

30/80 elongated candidates for each sequence, as described in [44], whereas downstream 206 

mismatched GHG and upstream CHC motifs were searched in 15/60, 15/70 and 15/80 207 

candidates [42]. 208 

To determine the most prevalent positional range of flanking processing motifs 209 

surrounding pre-miRNA sequences in the porcine genome, 30 and 15 nt were added at 210 

the flanking positions of annotated porcine pre-miRNAs available at the curated 211 

miRCarta database [2]. The presence of CNNC and UG motifs within flanking ±30 nt, as 212 

well as GHG and CHC motifs within ±15 nt was hence assessed. According to positional 213 

results (Figure 2A), the CNNC and UG flanking motifs appeared more prominently 214 

located 18 nt after miRNA gene ending and 12 nt before miRNA starting points, 215 

respectively. Therefore, when downstream CNNC or upstream UG motifs were found 216 

within ±30 nt flanking windows along pre-miRNA candidates, −18 and +12 nt positions 217 

https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0210
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0215
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0220
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0210
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#bb0010
https://www.sciencedirect.com/science/article/pii/S0888754319304884?via%3Dihub#f0010
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were added from CNNC and UG motifs location, respectively, so as to establish accurate 218 

miRNA genes boundaries determined by the microprocessor machinery. In the event that 219 

none of the aforementioned motifs within flanking upstream and/or downstream defined 220 

regions were found, the original elongated pre-miRNA candidates with no motif-based 221 

positional refinement were kept. 222 

 223 

Selecting putative pre-miRNA candidate sequences based on structural integrity 224 

To better assess the optimal elongation pattern for each candidate sequence, the structural 225 

stability of the 12 pre-miRNA candidates per single sequence was determined based on 226 

the randfold algorithm [45]. This approach assumes the estimated minimum free energy 227 

(MFE) of the folded pre-miRNA hairpin to be consistently lower than that of other 228 

random sequences resembling hairpin-like folded structures [45]. Based on this property 229 

of pre-miRNA sequences, we implemented a Monte Carlo randomization test to select 230 

the most stable hairpin, i.e. those having the least folding minimum free energy (MFE) 231 

values among the 12 previously generated candidates during pre-miRNA elongation 232 

reconstruction for each of the analyzed sequences. To this end, we generated a total of 233 

100 randomized sequences per candidate by shuffling their nucleotide distribution while 234 

maintaining k-let counts [46]. The corresponding MFE values for each shuffled and 235 

original hairpin-folded sequences were calculated with the RNAfold tool [37] and the 236 

structural integrity score (p) was defined as: 237 

 238 

𝑝 =
𝑅

𝑁 + 1
 239 

 240 
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where R is the number of randomized sequences having an MFE value equal or smaller 241 

than that of the MFE value of the original sequence and N is the number of generated 242 

iterations (100 in this study). 243 

Subsequently, the candidate sequence showing the higher structural integrity (i.e. the one 244 

showing the smallest p score) among all 12 generated pre-miRNA candidates per 245 

sequence was selected. The proportion of the most structurally stable sequences for each 246 

elongation pattern is shown in Figure 2B. When two or more sequences had equal p scores 247 

(i.e. they had equivalent structural stability irrespective of the elongation pattern) the 248 

reconstructed candidates belonging to the motif-corrected (if available) and shortest 249 

elongation pattern were retained. The proportion of each elongation pattern selected as 250 

the most structurally stable among all 12 tested patterns from expression-based and 251 

homology-based data is shown in Figure 2C and D, respectively. 252 

 253 

Candidates classification with semi-supervised transductive learning 254 

After defining training and candidate data sets, we selected a total of 100 features 255 

representing structural and statistical properties from each pre-defined sequence. These 256 

extracted features have been previously reported in other state-of-the-art methods and 257 

thoroughly reviewed in [47]. A complete list of all used features is shown in Table 1. 258 

For pre-miRNA classification, the miRNAss algorithm proposed by Yones et al. [31] was 259 

applied. This method implements a semi-supervised transductive learning scheme by 260 

using well defined labeled cases, either positives (annotated pre-miRNAs) or negatives 261 

(comprising other annotated non-coding hairpin-like sequences and unlabeled cases with 262 

unknown hairpins), in order to draw a graph-based representation of each sequence based 263 

on input features. Each node in the graph represents a sequence, whereas the 264 
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corresponding edges account for the expected similarities among them. In order to 265 

accurately represent the spatial distribution and connections of each node, the feature 266 

importance is obtained by applying the Relief-F algorithm [48,49], where k-nearest 267 

predictors are weighted based on conditional dependencies among all the considered 268 

features and the response vector of labels. This algorithm penalizes those predictor 269 

features giving different values to k-neighbors from the same label class and vice versa. 270 

After graph construction, a prediction score is assigned to each sequence node [31]. 271 

Sscrofa11.1 pre-miRNA sequences from Ensembl and miRCarta databases were 272 

evaluated and different imbalance ratios between positive (taken as reference) and 273 

negative data sets were applied to assess the performance of the classification algorithm 274 

for miRNA discovery in the porcine genome (i.e. 1:1, 1:2, 1:10, 1:20, 1:40, 1:60, 1:80, 275 

1:100, 1:150 and 1:200 imbalance ratios were considered). Labeled sequences comprised 276 

annotated pre-miRNAs (+1) as positive sequences, while other non-coding hairpin-like 277 

transcripts (−1) were considered as negative. Genome-wide randomly extracted hairpins 278 

were assigned as unlabeled cases (0) within the negative data set. 279 

Testing subsets were randomly assigned from all proposed imbalanced training data set 280 

combinations using a 0.25 ratio. The performance of the classification algorithm for 281 

miRNA identification was assessed with a total of 100 random Monte Carlo iterations 282 

and average performance measures based on Sensitivity (SE), Specificity (SP), Accuracy 283 

(Acc), F-1 score (F1) and Adjusted Geometric-mean (Agm) [50] were estimated (Figure 284 

3A). Furthermore, we evaluated the performance for each imbalance scenario by 285 

computing the corresponding Receiver Operating Characteristics (ROC) curves and the 286 

Precision-Recall (PR) curves. PR curves can be more informative than ROC curves for 287 

highly imbalanced data sets [51]. ROC and PR curves as well as the corresponding Areas 288 

under the curve (AUC) estimates are shown in Figure S1 and Table S1. The ability of the 289 
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algorithm to correctly classify the list of Ensembl and miRCarta annotated porcine 290 

miRNAs was also assessed by incorporating the positive data set as unlabeled candidate 291 

sequences during the classification process in each of the defined imbalance scenarios. 292 

Results for annotated porcine miRNAs assignment are shown in Table S2. 293 

Finally, the reconstructed expressed candidate sequences from the porcine small RNA-294 

seq data and H. sapiens homologous miRNAs detected in the porcine genome were used 295 

for identifying putative novel miRNAs. For this purpose, annotated pre-miRNAs from 296 

the Ensembl database were used as positive class and other hairpin-like sequences were 297 

considered as either negative or unlabeled sequences. Candidates classification was 298 

implemented with all previously proposed imbalance ratios. In order to reduce the false 299 

positive rate (i.e. reducing the misclassification of non-miRNA short hairpins as true 300 

miRNA candidates), the Ensembl miRNA data set was defined as the positive class, due 301 

to its higher overall reported specificity (Figure 3A and B). Prediction of novel miRNA 302 

candidates was carried independently with every defined imbalance ratio. Only 303 

candidates consistently reported as putative miRNAs in all imbalance scenarios were kept 304 

in order to minimize the number of false positive miRNA candidates, albeit probably at 305 

the expense of increasing the false negative rate. 306 

Besides, for homology-based predicted novel pre-miRNA candidates, we calculated the 307 

proportion of shared neighboring genes (setting a 2 Mb window before and after each 308 

annotated human miRNA detected in the porcine genome) present in both S. scrofa and 309 

H. sapiens assemblies and expressed as a Neighborhood Score (N): 310 

 311 

 312 

𝑁 =  
𝐺𝑟  ∩  𝐺𝑖

𝐺𝑟
 313 
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 314 

where Gr is the number of orthologous genes within the 4 Mb window in the model 315 

species (H. sapiens) and Gi is the number of genes within the same window in the species 316 

of interest (S. scrofa). Only homology-based novel pre-miRNA candidates with N > 0.1 317 

were considered for further analyses, based on the assumption that microRNAs residing 318 

in genomic regions with surrounding and/or host genes phylogenetically conserved across 319 

species are more prone to be integrated in biologically relevant transcriptional networks 320 

[52]. 321 

Benchmarking for miRNA prediction performance 322 

One of the most cited and used prediction miRNA algorithms is miRDeep. This tool was 323 

developed by Friedländer et al. [53], and further improvements were made in subsequent 324 

updates [11,54]. This algorithm implements a series of heuristics to compute a score for 325 

each miRNA candidate expressing the log-odds probability of a sequence being a true 326 

miRNA gene against the probability of being a miRNA-like pseudo-hairpin [53]. In order 327 

to benchmark the eMIRNA pipeline compared with the widely used miRDeep approach, 328 

we used the miRDeep2 algorithm [54] to identify novel and annotated miRNAs by using 329 

the same small RNA-seq data set employed for de novo miRNA identification with the 330 

eMIRNA pipeline. To ensure a fair comparison, the arf alignment file needed for running 331 

the miRDeep2 software was generated from the eMIRNA alignment pipeline using the 332 

bowtie tool (bowtie -n 2 -l 25 -m 50 -k 1 --best --strata) on pre-filtered expressed small 333 

RNA sequences generated in this study. After running the miRDeep2 algorithm, both 334 

novel and already annotated pre-miRNA candidates were compared with those obtained 335 

with the eMIRNA pipeline. The positional accuracy of the annotated pre-miRNA 336 

candidates concurrently identified with both approaches was then determined using the 337 
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Ensembl annotation available for the Sscrofa11.1 assembly. To further determine which 338 

of the two approaches provided a better positional annotation of predicted miRNAs, the 339 

deviation rate (dr) of each miRNA gene commonly detected was calculated for both 340 

eMIRNA and miRDeep2, expressed as the average number of upstream and downstream 341 

overhanging nucleotides compared with the latest porcine miRNA Ensembl annotation 342 

(v97). The differential deviation estimate (∆D) was assessed separately for each predicted 343 

pre-miRNA candidate, as follows: 344 

 345 

∆𝐷 =  𝑒𝑀𝐼𝑅𝑁𝐴𝑑𝑟 − 𝑚𝑖𝑅𝐷𝑒𝑒𝑝2𝑑𝑟 346 

 347 

Additionally, the performance statistics of the semi-supervised transductive learning 348 

method [31] implemented in the eMIRNA pipeline was compared with other canonical 349 

widely used state-of-the-art supervised ML approaches for miRNA prediction, such as 350 

Support Vector Machine (SVM), Random Forest (RF), K-nearest Neighbors (KNN), 351 

Naïve Bayes (NB), Extreme Gradient Boosting Trees (XGB) and Light Gradient Boosting 352 

Trees (lGBM). Only labeled positive and negative data sets were used for comparison 353 

between semi-supervised and supervised algorithms. Training and testing subsets were 354 

randomly generated with a 0.25 ratio for testing data and commonly used with all the 355 

proposed methods. No imbalance correcting procedure was applied. The comparative 356 

performance of these tools was assessed on the basis of SE, SP, F1-score, ROC and PR 357 

curves obtained for each algorithm implementation. SVM, RF, KNN and NB algorithms 358 

were trained allowing 10 iterations for parameter tuning and a 10-fold cross-validation 359 

scheme, using built-in functions included in the caret R package [55]. The xgboost [56] 360 

and lightgbm (https://github.com/microsoft/LightGBM/tree/master/R-package) R 361 

https://github/
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packages with default parameters were employed for the training of XGB and lGBM 362 

classifiers, respectively. 363 

 364 

Experimental confirmation of novel identified porcine miRNAs through the RT-365 

qPCR analysis of an independent Göttingen minipig population 366 

In order to investigate the existence of several of the novel putative predicted miRNAs in 367 

the porcine genome, three well established orthologous novel miRNA candidates detected 368 

by homology-based search and not previously annotated in the Sscrofa11.1 assembly 369 

were selected (hsa-miR-483-3p, hsa-miR-484-5p and hsa-miR-200a-3p). The existence 370 

of miRNA genes orthologous to hsa-miR-483-3p and hsa-miR-484-5p was supported by 371 

the identification of the corresponding expressed mature miRNA sequences in our small 372 

RNA-seq data set. Transcripts corresponding to hsa-miR-200a-3p were detected at very 373 

low expression levels (RPM < 10) in the porcine skeletal muscle transcriptomic data, so 374 

they were not considered as biologically relevant or functionally active in our 375 

experimental conditions. Longissimus dorsi muscle and liver RNA samples were 376 

collected from an independent Göttingen minipig population [57]. A total of 7 extracted 377 

RNA samples from muscle and liver tissues were randomly selected and cDNA synthesis 378 

was carried out as reported by Balcells et al. [58]. Primers for the qPCR amplification of 379 

miRNAs were designed with the miRprimer software [59] according to described 380 

protocols [60] and they are indicated in Table S3. 381 

MiRspecific qPCR was performed on a MX3005P machine (Stratagene, USA). Briefly, 382 

1 μl of cDNA diluted 8 fold, 5 μl of 2× QuantiFast SYBR Green PCR master mix (Qiagen, 383 

Germany) and 250 nM of each primer (Table S3) were mixed in a final volume of 10 μl. 384 

Cycling conditions were: 95 °C for 5 min followed by 40 cycles of 95 °C for 10 s and 385 

60 °C for 30 s. Melting curve analyses (60 °C to 99 °C) were performed after completing 386 
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amplification reaction to ensure the specificity of the assays. Data were processed with 387 

the MxPro qPCR associated software. Assays were considered successful when: 1) the 388 

melting curve was specific (1 single peak) and 2) the samples had Cq values <33 cycles 389 

(i.e. sufficiently expressed to be considered biologically functional). Finally, amplified 390 

products for muscle and liver samples were visually inspected by electrophoresis in a 3% 391 

agarose gel. 392 

 393 

 394 

Results 395 

Motif-based positional refinement enhances structural stability of pre-miRNA 396 

candidates 397 

We have evaluated the usefulness of previously reported flanking motifs that enhance 398 

pre-miRNA processing [42,44] as possible novel determinants for pre-miRNA 399 

reconstruction from mature sequences. The presence of UG and CHC motifs in upstream 400 

flanking regions as well as of downstream CNNC and GHG motifs was assessed in the 401 

curated porcine miRNA annotation available in the miRCarta database [2] (Figure 2A). 402 

Consistent with data reported by Fang et al. [42] and Auyeung et al. [44], the most 403 

common flanking upstream positions for UG and CHC motifs from the 5′ start of the 404 

porcine pre-miRNA genes were −13/−12 and −7/−5, respectively, whereas for 405 

downstream CNNC and GHG motifs, the most common position from the 3’end of the 406 

pre-miRNA genes were +18/+21 and +4/+6 (Figure 2A). 407 

Moreover, we determined the percentage of annotated porcine miRNAs that were 408 

surrounded by the aforementioned processing motifs, allowing ±2 nt of positional 409 

variation from their corresponding expected sites. From a total of 328 confidently 410 
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annotated porcine pre-miRNAs in the miRCarta database [2], CNNC, UG, GHG and 411 

CHC flanking motifs were found in 53.05%, 42.68%, 30.79% and 33.54% of the 412 

sequences, respectively. The high frequency of the CNNC motif agrees well with its key 413 

role in the correct Drosha ribonuclease III (DROSHA) positioning through the 414 

recruitment of Serine and Arginine rich splicing factor 3 (SRSF3) at the basal junction of 415 

the processed pri-miRNA [61]. The proportion of the three other flanking motifs were 416 

also consistent with previously reported surveys [42,44]. 417 

To further elucidate the contribution of each motif to better delineate the boundaries of 418 

pri-miRNA processing, we compared the structural stability (i.e. the estimated p score of 419 

the hairpin secondary structure with the randfold approach [45]) for every pre-miRNA 420 

candidate in each of the 12 generated elongation patterns per sequence (15/60, 30/60, 421 

15/70, 30/70, 15/80 and 30/80, with and without taking into account motif search 422 

positional refinement). As depicted in Figure 2B, predictions of candidate miRNA 423 

sequences based on positional information obtained through processing motif search 424 

showed a consistently increased structural stability compared with non-positionally 425 

corrected original sequences. This phenomenon was less evident for shorter elongation 426 

patterns, where the structural stability of the positionally corrected hairpins resembled 427 

that of non-corrected candidates (Figure 2B). In certain cases, both approaches resulted 428 

in equally stable secondary structures. Furthermore, shorter elongation patterns appeared 429 

to be more favored than their longer counterparts, showing higher overall structural 430 

stability both in small RNA-seq and homology-based derived candidate sequences 431 

(Figure 2C and D). This result highlights that the preferred length for pre-miRNA 432 

processed transcripts would be approximately in the range of 80 to 90 nt, with few cases 433 

showing longer stable hairpin structures. Interestingly, this favored pre-miRNA length 434 

interval coincides with that reported by Roden et al. [43], who determined a preferred 2× 435 
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stem length of 35 nt and a terminal loop of ~10 nt, accounting for a total pre-miRNA 436 

sequence length of ~80 nt. Indeed, the average length of annotated pre-miRNAs in the 437 

porcine genome after filtering for secondary structure and sequence similarity was 438 

84.63 nt, also in accordance with results obtained after selecting the most structurally 439 

stable elongation pattern from all generated candidates per sequence. 440 

 441 

Classifier performance and feature importance 442 

For assessing the performance of transductive semi-supervised miRNA classification on 443 

the porcine transcriptome, Ensembl and miRCarta positive pre-filtered porcine miRNA 444 

data sets (415 Ensembl and 244 miRCarta non-redundant hairpin-like stable annotated 445 

miRNAs) were tested against selected non-coding hairpin-like sequences (252 annotated 446 

non-coding hairpin-like RNAs other than miRNAs) and different imbalance ratios were 447 

applied by incorporating genome-wide randomly extracted hairpins (unlabeled). Overall, 448 

SE and SP obtained with the Ensembl miRNA data set (Figure 3A) were slightly better 449 

than those inferred for the miRCarta data set (Figure 3B). Ensembl average SE and SP 450 

were 0.9199 and 0.9101 respectively, whereas results obtained with the miRCarta data 451 

set were slightly worse (SE = 0.8975, SP = 0.9019). Optimal performance was achieved 452 

by using a balanced ratio between positive and negative classes, with a slightly 453 

descending trend in the classifier performance when increasing the imbalance ratio 454 

(Figure 3A and B), a result that was also observed when analyzing the ROC and PR curves 455 

(Figure S1). When we compared the performance of the semi-supervised approach vs that 456 

of other supervised algorithms, the miRNAss algorithm [31] implemented in the eMIRNA 457 

pipeline outperformed the rest of supervised approaches, with the exception of lGBM, 458 

which showed similar performance results (Table 2). SP, as well as AUROC and AUPR 459 

estimates obtained with the miRNAss method [31] showed its high ability to discard false 460 
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positives miRNA candidates, at the cost of a lower SE (Table 2). Additionally, after 461 

evaluating the ability of the algorithm to correctly identify the annotated porcine miRNA 462 

loci in all defined imbalance scenarios, a total of 399 (89.92%) and 213 (87.30%) 463 

annotated miRNAs were consistently classified as miRNA sequences using Ensembl 464 

(415) and miRCarta (244) positive databases, respectively. 465 

The improved performance achieved with the Ensembl data set was expected because 466 

Ensembl annotation includes a more diverse and complete miRNA catalogue (415) than 467 

miRCarta (244). However, these differences are probably due to a more strict miRNA 468 

annotation procedure in the case of miRCarta database [2], which only includes manually 469 

curated bona fide miRNA genes. Nevertheless, the slight increase in overall performance 470 

observed in the Ensembl miRNA data set evidenced that even when reducing the set of 471 

positive sequences to a more stringent annotation, as that available in the miRCarta 472 

database [2], the ability of the eMIRNA pipeline to accurately distinguish miRNA 473 

sequences from other non-miRNA hairpins remained almost unaltered. 474 

Besides, we determined the importance of the set of calculated features for classifying the 475 

miRNA candidates with the relief-F algorithm [48,49]. The estimated importance of the 476 

30 most discriminant features is depicted in Figure 3C. The estimated impact of each 477 

feature on the accuracy of miRNA is shown in Table S4. Structural stability-related 478 

features accounted for the most important variables for classifying miRNAs correctly 479 

(MFEadj, EFEadj, MFE, EFE, MEAFE, MFEadj.GC and CFE). All of these parameters 480 

represented different hairpin structure folding statistics and they were highly 481 

intercorrelated (Figure 3D). The discriminant power of structural stability features is 482 

better exemplified in Figure 3E, where Ensembl annotated pre-miRNA sequences had an 483 

overall higher structural stability (i.e. lower MFEadj values) compared with that of other 484 

non-coding hairpin-like RNA sequences. These results clearly show the outmost 485 
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importance of the structural folding configuration in order to discriminate true miRNA 486 

candidates from other hairpin-like sequences, hence supporting the need of a careful 487 

determination of pre-miRNA boundaries. 488 

 489 

Novel porcine miRNA identified in the muscle transcriptome and by homology-490 

based search 491 

After microRNA identification from the porcine small RNA-seq data set, a total of 1,403 492 

reconstructed pre-miRNA candidates from expressed transcripts were successfully 493 

identified as putative novel miRNAs in the porcine gluteus medius transcriptome, which 494 

corresponded to 160 unique miRNA loci after assigning clustered isomiRs to consensus 495 

single miRNA genes. Among these, 140 consensus candidates (87.5%) overlapped 496 

already annotated miRNAs in the porcine genome, whereas the 20 remaining ones 497 

(12.5%) were classified as novel miRNA candidates. 498 

Regarding homology-based search miRNA discovery in the porcine assembly 499 

(Sscrofa11.1), a total of 310 annotated human miRNAs had orthologous miRNA genes 500 

in the porcine genome. The already annotated miRNAs in the porcine genome comprised 501 

281 (90.64%) of the 310 homologous miRNAs detected with eMIRNA (File S3), and the 502 

29 (N > 0.1) remaining candidates were classified as novel non-previously annotated 503 

homologous miRNAs in the porcine assembly (Table 3). The miR-483 and miR-484 504 

genes were also identified as novel expressed miRNA candidates in the gluteus medius 505 

muscle transcriptome generated in our small RNA-seq experiment. A complete list of the 506 

novel miRNA candidates obtained with de novo and homology-based approaches is 507 

shown in Table 3. The full list of detected miRNAs that had been already annotated and 508 

all isomiRs associated with novel miRNA sequences can be found in File S3. The 509 

existence of multiple isoform candidates for single predicted miRNA loci, either 510 
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displaying polymorphisms within the mature miRNA sequence or corresponding to 5′ or 511 

3′-trimming variations (File S3), evidenced the wide variety of isomiR sequences 512 

expressed at significant levels in our gluteus medius muscle transcriptomic data set. 513 

 514 

The eMIRNA pipeline accurately recalls miRNA loci 515 

The same gluteus medius skeletal muscle transcriptomic data from the small RNA-seq 516 

experiment employed for de novo miRNA discovery with the eMIRNA pipeline was used 517 

for running the miRDeep2 algorithm [54]. A total of 148 transcripts belonging to 134 518 

unique annotated miRNA loci were identified with miRDeep2. These numbers were 519 

slightly smaller than the 140 annotated porcine miRNAs recovered as expressed 520 

transcripts by the eMIRNA pipeline. Among these, 126 annotated miRNAs (85.14%) 521 

were consistently recovered with eMIRNA and miRDeep2, 14 (9.46%) were only 522 

reported by eMIRNA, and 8 (5.41%) were exclusively predicted by miRDeep2 (Table 523 

S5). 524 

Regarding novel candidates, miRDeep2 was able to recover a total of 11 putative novel 525 

candidates belonging to 10 unique loci (Table S6). Seven of these candidates displayed 526 

an estimated probability of being a true positive miRNA above 19% (miRDeep2 527 

score ≥ 4, Table S6). Noteworthy, two of the putatively true miRNAs detected by 528 

miRDeep2 spanned other previously annotated non-coding RNAs in the porcine assembly 529 

and were hence considered as miRNA-like false positives (Table S6). Among the 5 530 

remaining candidates, 4 of them (miR-193a, miR-26a, miR-106b and miR-17) spanned 531 

other already annotated miRNAs in the porcine assembly and were thus wrongly 532 

classified as novel miRNAs by miRDeep2. The remaining candidate corresponded to 533 

miR-483, which had already been identified with the eMIRNA pipeline (Table 3, Table 534 

S6). 535 
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When comparing the accuracy of miRNA loci boundaries determined by the eMIRNA 536 

pipeline and miRDeep2, the eMIRNA approach demonstrated an overall better capability 537 

to accurately assign miRNA boundaries according to data from porcine miRNA loci 538 

annotated in the Ensembl database. A total of 103 out of 126 (81.74%) annotated miRNA 539 

genes detected by both eMIRNA and miRDeep2 showed reduced ∆D values (Table S7). 540 

This result implies that genomic positions of miRNA precursors predicted with the 541 

eMIRNA pipeline were more concordant with the annotation of the Sscrofa11.1 assembly 542 

than those predicted with miRDeep2. This outcome illustrates the effectiveness of motif 543 

search positional correction for reconstructing pre-miRNA candidates with a higher 544 

reliability than the fixed elongation patterns strategy used by miRDeep2 [54]. Three of 545 

the miRNA candidates showed no differences in positional accuracy between both 546 

approaches, while the positions of the remaining sequences (15.87%) were more 547 

accurately predicted with miRDeep2 (Table S7). 548 

 549 

Experimental confirmation of the existence of three novel miRNAs in the muscle 550 

and liver tissues of Göttingen minipigs 551 

The RT-qPCR analyses allowed us to detect the expression of the novel ssc-miR-483, 552 

ssc-miR-484 and ssc-miR-200a candidates in both longissimus dorsi skeletal muscle and 553 

liver tissues (Figure S2A and B) retrieved from Göttingen minipigs. Both ssc-miR-483 554 

and ssc-miR-484 were also detected as consistently expressed in the skeletal muscle of 555 

Duroc gilts from our small RNA-seq experiment. The ssc-miR-200a was also detected in 556 

our generated data set but at very low expression levels. Nevertheless, its expression was 557 

further confirmed independently by RT-qPCR analyses. Amplification profiles and 558 

melting curves for the three novel miRNA candidates detected by RT-qPCR are shown 559 

in File S4. 560 
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Discussion 561 

In the discovery of novel miRNA genes, one essential issue is the generation of pre-562 

miRNA sequence candidates, given that the majority of miRNA prediction tools are based 563 

on feature extraction from the well-defined pre-miRNA hairpin structure [62]. At the 564 

cellular level, the most abundant and stable miRNA transcripts are the mature miRNA 565 

forms. Indeed, precursor stages, such as pri or pre-miRNAs, are much less abundant and 566 

have shorter half-lives than mature miRNAs [63,64]. Therefore, the accurate definition 567 

of pre-miRNA boundaries reconstructed from mature miRNAs is a crucial issue in order 568 

to predict folding structure and minimum free energy (MFE) estimates in a robust manner. 569 

Noteworthy, the majority of state-of-the-art methods for miRNA prediction are solely 570 

focused on the miRNA classification of predefined candidate sequences. Moreover, many 571 

of them do not contemplate the generation of such candidates for the identification of 572 

unannotated miRNAs. On the contrary, they rely on well-known hairpins or on sets of 573 

manually curated candidate sequences that are embedded in their prediction pipelines 574 

[30,31,65-72]. 575 

Several other algorithms take advantage of the automated generation of hairpin 576 

candidates, adopting fixed defined elongation patterns in order to reconstruct pre-miRNA 577 

candidates from mature miRNA sequences [9,11,73,74]. However, fixed assumptions 578 

about elongation patterns do not take into consideration the expected variable length of 579 

pre-miRNA loci, and tend to generate candidate sequences that, despite harboring mature 580 

miRNAs, might have unreliable boundaries. This may lead to inaccuracies in the folding 581 

prediction and thus to an augmentation of the false negative rate. Even worse, non-582 

miRNA hairpin-like sequences strongly resembling pre-miRNAs may be generated 583 

through the blind elongation of short sequences, which could result in the emergence of 584 

false positive candidates. This situation is particularly critical when analyzing the 585 
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reliability of miRNA annotation in public databases [27,75,76]. Other approaches have 586 

also adopted a multiple hairpin candidate search for each query sequence to further select 587 

those showing a higher structural stability [77-79]. By using this strategy, we explored 588 

the influence of flanking processing motifs on the accurate determination of the length 589 

and boundaries of pre-miRNA candidates. By doing so, we have demonstrated that the 590 

inclusion of processing motif search criteria for the estimation of pre-miRNA boundaries 591 

resulted in an improved ability to better assess the optimal candidate sequences to be used 592 

for miRNA prediction. 593 

Compared with miRDeep2 [54], the eMIRNA pipeline showed an improved ability to 594 

better assess the already annotated miRNA loci boundaries after pre-miRNA sequence 595 

reconstruction. However, the presence of embedded processing motifs within the 596 

boundaries of miRNA genes is not a universal feature, with a non-negligible amount of 597 

miRNA loci lacking the well-known CNNC and UG motifs [44], as well as the CHC and 598 

GHG mismatches [42] in their proximal surroundings. Additional work is needed to better 599 

characterize other processing motifs or structural determinants that may also contribute 600 

to miRNA maturation. 601 

In contrast with pre-existing supervised methods for miRNA discovery, few semi-602 

supervised methods have been developed for such purpose [31,80]. From a biological 603 

perspective, the scarce miRNA annotation typically found in non-model species poses a 604 

great challenge when attempting to predict novel miRNA loci uniquely based on labeled 605 

data. This happens because the amount of unknown non-miRNA sequences with hairpin-606 

like secondary structures is expected to be hundreds of times larger than the number of 607 

confidently annotated miRNAs to be used for training supervised algorithms. Despite the 608 

fact that good performance statistics may be obtained after classifier training, supervised 609 

algorithms heavily depend on the existence of an extensive miRNA annotation. Indeed, 610 
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the ability of such classifiers to detect unannotated miRNA sequences is mainly driven 611 

by the amount and diversity of positive and negative instances used for learning training. 612 

On the contrary, semi-supervised transductive approaches [31] are able to overcome such 613 

limitation by incorporating unlabeled cases to the training process, with the aim of 614 

increasing the variability of the data used for target sequences classification. In fact, 615 

allowing the classifier to check hundreds or thousands of unknown unlabeled sequences 616 

has proven to increase the validity of microRNA prediction over other methods solely 617 

based on labeled data [31], a result that was also verified when comparing the semi-618 

supervised approach used in this study with other broadly reported supervised methods 619 

(Table 2). This strategy is particularly reliable when few positive data are available and 620 

the annotated negative data set only represent a small proportion of the whole non-621 

miRNA class. Besides, in classification problems where the negative class is expected to 622 

be dozens or hundreds of times larger than the positive class, the accurate identification 623 

of false positives is crucial. Indeed, such scenario is completely applicable to miRNAs, 624 

where thousands of non-miRNA sequences exist compared with the few hundreds of 625 

reliably annotated miRNA genes, and the annotation of negative hairpin-like sequences 626 

only represents a small proportion of the whole non-miRNA class. 627 

After miRNA prediction, the detection of multiple isoforms for each single predicted 628 

miRNA loci evidenced the existence of a broad array of isomiR sequences expressed at 629 

significant levels in our gluteus medius muscle transcriptomic data set (File S3). Previous 630 

studies have highlighted the importance of isomiRs in expanding the biological diversity 631 

of miRNA function [81-84]. Like canonical miRNAs, isomiRs are also evolutionary 632 

conserved [81]. Both 5′ and 3′ miRNA isoforms can be generated either from alternative 633 

processing sites of DROSHA and Dicer [43,85] or from post-transcriptional 634 
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modifications, influencing miRNA half-lives as well as their interactions with RNA-635 

binding proteins (RBPs) [86,87]. 636 

More recently, other integrative approaches have addressed the detection of isomiRs and 637 

the potential functional influence that subtle modifications in the 3′ and 5′ boundaries of 638 

mature miRNA sequences might have on target recognition [88-91]. Other studies have 639 

also reported 5′ alternative processing events in a large number of miRNAs, contributing 640 

to the expansion of their target repertoire at a higher rate than previously thought [92]. 641 

Despite these promising results, the biological implications of miRNA alternative 642 

processing events leading to the generation of isomiRs are still poorly understood and 643 

further research is needed in order to exclude potential biases in isomiR quantification 644 

and functional validation, as variations in 3′ or 5′ ends of mature miRNAs can strongly 645 

affect the reliability of stem-loop qPCR amplification protocols [93]. 646 

One potential limitation of our study is that 17 of the novel miRNAs predicted with 647 

eMIRNA and based on muscle transcriptomic data have not been further investigated in 648 

order to confirm their existence by RT-qPCR, so their experimental validation is still 649 

pending. Indeed, we only investigated 3 out of 20 predicted novel porcine miRNAs. 650 

Noteworthy, the three selected miRNAs were successfully confirmed as bona fide 651 

miRNAs by RT-qPCR thus suggesting that eMIRNA predictions are accurate. 652 

Among the three validated miRNAs, it is worth mentioning miR-483, which has been 653 

functionally associated with cell growth regulation [94] as well as with insulin resistance 654 

and metabolic syndrome susceptibility likely due to its strong implication in the 655 

regulation of glucose metabolism [95,96]. Additionally, the expression of miR-483, 656 

whose coding sequence maps to the second intron of the insulin growth factor 2 (IGF2) 657 

gene, has been tightly associated with an enhancement of IGF2 gene expression. This is 658 

achieved through the binding of miR-483 to transcription factors in a positive feed-back 659 
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loop [97], although other authors have questioned such dependence [98]. Other relevant 660 

successfully profiled miRNAs were ssc-miR-200a and ssc-miR-484. The miR-200a gene 661 

has been mainly reported as a regulator of cell growth and differentiation through 662 

targeting several protein-encoding transcripts like the growth factor receptor-bound 2 663 

(GRB2), α-smooth muscle actin (α-SMA) or the fibroblast-specific protein-1 (FSP-1), thus 664 

hampering the endothelial-mesenchymal transition [99]. Furthermore, miR-484 has been 665 

associated with the inhibition of Fis1-mediated mitochondrial fission and apoptosis 666 

signaling [100]. 667 

 668 

 669 

Conclusions 670 

In this study we have implemented an end-to-end pipeline that may facilitate the 671 

identification of novel miRNAs in the porcine genome. We have tested the eMIRNA 672 

pipeline by following a homology-based approach making use of the well annotated 673 

human microRNA transcriptome. Besides, we have analyzed the presence of non-674 

annotated miRNAs in the porcine genome using data from a small RNA-seq experiment 675 

comprising muscle samples from 48 Duroc gilts. We have also taken into consideration 676 

several issues that are critical to robustly predict miRNA genes, such as the accurate 677 

reconstruction of candidate pre-miRNAs, the correct definition of negative training data 678 

sets and the evaluation of the high class-imbalance phenomenon, which is not fully 679 

addressed in many miRNA-prediction studies. In parallel, we have established hard-680 

threshold filtering steps to keep false positive predictions at a minimum. We have also 681 

demonstrated the usefulness of positional refinement through flanking motif search to 682 

better determine the boundaries of pre-miRNA hairpin-like candidate sequences. The 683 
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expression of several of the novel miRNAs described in this work was further confirmed 684 

by RT-qPCR analyses. In the light of these results, we believe that the eMIRNA pipeline 685 

will facilitate the discovery and annotation of novel miRNAs, thus broadening the 686 

miRNA catalogue of non-model species with yet poorly annotated genome assemblies. 687 
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 993 

 994 

Figure 1: eMIRNA pipeline scheme for homology-based miRNA prediction using data 995 

from closely related species and de novo miRNA prediction from small RNA-seq data. 996 

(1) Positive, negative and unlabeled data are filtered based on size and secondary folding 997 

structure and a set of features is extracted for each sequence. (2) Mature miRNA 998 

sequences from small RNA-seq data or related model species are mapped against the 999 

selected genome assembly and elongated to reconstruct putative pre-miRNA candidates. 1000 

(3) Candidate precursors are filtered based on size and secondary folding structure and a 1001 

set of features is extracted for each candidate sequence. Optionally, sequences showing 1002 

unstable secondary structure are removed. (4) Candidate sequences are embedded in the 1003 

semi-supervised transductive classifier and a list of putative miRNAs is predicted. (5) 1004 
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Predicted miRNAs are either assigned to already annotated miRNA loci in the provided 1005 

reference assembly or classified as putative novel miRNAs genes. 1006 

 1007 

 1008 

 1009 

 1010 

 1011 
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Figure 2: Processing motifs distribution and structural stability metrics. (A) Positional 1012 

distribution of upstream and downstream motifs across annotated pre-miRNA boundaries 1013 

in the porcine genome. (B) Proportion of candidate sequences for each elongation pattern 1014 

showing the most stable folding structure according to randfold p score. The proportion 1015 

of sequences for which the structural stability was higher in motif corrected candidates 1016 

or, conversely, in non-corrected (native) candidates are shown as red and green bars, 1017 

respectively. The proportion of sequences for which the structural stability was equivalent 1018 

between motif corrected and native candidates were labeled as equally stable (blue). (C) 1019 

Proportion of selected pre-miRNA candidates detected in the porcine gluteus medius 1020 

muscle small RNA-seq data and (D) Proportion of selected pre-miRNA candidates 1021 

detected through a H. sapiens homology-based miRNA search strategy, according to the 1022 

most structurally stable elongation pattern tested. If two or more pre-miRNA sequences 1023 

showed equivalent stability, the shortest motif-corrected candidate was selected. 1024 

 1025 
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 1026 

 1027 

Figure 3: Classification performance and feature importance statistics. Performance 1028 

metrics for Sensitivity (SE), Specificity (SP), Accuracy (Acc), F1-score (F1) and 1029 

Adjusted Geometric-mean (Agm) across incremental imbalance-ratios by using positive 1030 

miRNAs from (A) Ensembl and (B) miRCarta databases. (C) Thirty most discriminant 1031 

features according to the relief-F algorithm. (D) Pearson’s correlation coefficient among 1032 

the seven most discriminant features associated with secondary structure stability metrics. 1033 

(E) Comparison of the folding structure stability between annotated miRNAs and other 1034 

hairpin-like non-coding RNA sequences present in the porcine genome. Stability is 1035 

expressed as the scaled Minimum Free Energy of the folded hairpins adjusted by sequence 1036 

length (MFEadj). 1037 
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Tables 1038 

Table 1: List of calculated features extracted from candidate hairpins. 1039 

Sequence Features Symbol 

Number 

of variables 

Triplet Elements by SVM-Triplet T1 … T32 32 

Sequence Length Length 1 

G+C/Length GC 1 

A+U/G+C AU.GCr 1 

A, U, G, C/Length Ar, Ur, Gr, Cr 4 

Dinucleotide/Length Aar, GGr, CCr … 16 

Secondary Structure metrics Symbol 

Number of 

variables 

Hairpin loop Length Hl 1 

5’ and 3’ Stems Length Steml5, Steml3 2 

Basepairs in Secondary Structure BP 1 

Matches in 5’ and 3’ Stems BP5, BP3 2 

Mismatches in 5’ and 3’ Stems Mism5, Mism3 2 

Bulges in 5’ and 3’ Stems B5, B3 2 

Bulges in 5’ and 3’ Stems of types 1 to 7 mismatches BN1.5, BN1.3 … 14 

A-U, G-C and G-U basepairs Aup, GCp, Gup 3 

Structural Statistics Symbol 

Number of 

variables 

Minimum Free Energy MFE 1 

Ensemble and Centroid Free Energy EFE, CFE 2 

Centroid Distance to Ensemble CDE 1 

Maximum Expected Accuracy MEA, MEAFE 2 

BP/Length BPP 1 

MFE Ensemble Frequency Efreq 1 
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Ensemble Diversity ED 1 

MFE/Length, EFE/Length and CDE/Length MFEadj, EFEadj, Dadj 3 

Shannon Entropy/Length Seadj 1 

MFE-EFE/Length DiffMFE.EFE 1 

MFEadj/GC and MFEadj/BP MFEadj.GC, MFEadj.BP 2 

MEAFE/Length and ED/Length MEAFEadj, Edadj 2 

 1040 

 1041 

Table 2: Comparative benchmarking between the semi-supervised transductive learning 1042 

approach employed by the miRNAss algorithm and other state-of-the-art supervised 1043 

algorithms (i.e. SVM: Support Vector Machine, RF: Random Forest, KNN: k-Nearest 1044 

Neighbors, NB: Naïve Bayes, XGB: Extreme Gradient Boosting and lGBM: light 1045 

Gradient Boosting Tree) for miRNA classification. Only labeled positive and negative 1046 

data sets were used for training. 1047 

SE: Sensitivity; SP: Specificity; F-1: F-score measure of the harmonic mean of the 1048 

precision and recall; AUROC: Area under the Receiver Operating Characteristics (ROC) 1049 

curve; AUPR: Area under the Precision-Recall curve. 1050 

Statistic SVM RF KNN NB XGB lGBM miRNAss 

SE 0.932 0.932 0.9223 0.9126 0.9515 0.9223 0.8835 

SP 0.8413 0.9524 0.9524 0.9683 0.9365 0.9048 0.9683 

F-1 0.9187 0.9505 0.9453 0.9447 0.9561 0.9314 0.9226 

AUROC 0.6428 0.7246 0.5757 0.4291 0.7063 0.9781 0.9783 

AUPR 0.7222 0.8489 0.6751 0.5818 0.8509 0.9873 0.987 

 1051 

 1052 
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Table 3: Novel porcine miRNA genes predicted through a homology-based comparison 1053 

with human miRNA annotation and on the basis of data generated by sequencing small 1054 

RNAs expressed in the gluteus medius muscle of Duroc pigs. 1055 

Chr: Chromosome; N: Neighborhood score. 1056 

Chr Start End Strand ID N 

1 191218572 191218651 + miR-3529 0.33 

1 268816970 268817050 + miR-219b 0.92 

2 32718 32792 + miR-6743 0.82 

2 1473428 1473495 - miR-483 0.84 

2 1474436 1474513 - 3229-4643 - 

2 40104336 40104403 - 1325-14520 - 

2 134660802 134660897 - 1323-14559 - 

3 7180536 7180603 - miR-484 0.1 

3 40421320 40421409 + 427-63874 - 

3 40772345 40772445 + 176-178526 - 

4 22195784 22195880 + 2340-6855 - 

5 3397056 3397130 - 1111-18619 - 

5 17410008 17410122 + 1794-9841 - 

5 95548384 95548458 + miR-3059 1 

6 56426941 564267012 - miR-520e 0.3 

6 63490755 63490822 + miR-200a 0.6 

8 1205684 1205760 - miR-4800 0.85 

9 52087075 52087155 + 1864-9314 - 

9 114528009 114528076 + miR-3120 0.7 

10 27079413 27079489 - miR-24-1 0.79 

11 1824995 1825062 + 504-51258 - 

11 49808356 49808431 - miR-3665 0.86 

12 1538011 1538119 + 337-84973 - 
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12 1601453 1601506 - miR-3065 0.82 

12 18989584 18989651 + 399-69074 - 

12 45088806 45088863 + miR-451b 0.78 

12 45597382 45597459 + miR-4523 0.81 

12 46211527 46211594 - miR-3184 0.61 

12 48162620 48162704 - miR-132 0.84 

12 56201226 56201300 - 518-49963 - 

13 30242047 30242114 + 772-29980 - 

13 33152284 33152383 + miR-4787 0.83 

13 197168804 197168901 + miR-6501 0.97 

14 87673881 87673954 + 3552-4147 - 

14 109233945 109234032 - miR-3085 0.95 

14 122706280 122706361 + miR-6715a 0.96 

14 122706285 122706353 - miR-6715b 0.96 

14 127016706 127016794 - miR-9851 0.83 

14 140979533 140979627 + 3525-4198 - 

15 128165751 128165827 - miR-5702 0.86 

17 61915309 61915376 + 1544-12001 - 

X 41793240 41793315 + 451-58980 - 

X 43716471 43716538 + miR-502 0.73 

X 59551153 59551220 + miR-374c 0.8 

X 94122543 94122610 + miR-1264 0.83 

X 96979691 96979765 + miR-1277 0.68 

X 124724889 124724956 - miR-718 0.89 

 1057 

 1058 

 1059 

 1060 
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Supplementary Materials 1061 

Figure S1: (A) Receiver Operating Characteristics (ROC) and (B) Precision-Recall (PR) 1062 

curves computed for each pre-defined imbalance scenario using porcine Ensembl 1063 

annotation for positive (miRNAs) and negative (other hairpin-like non-coding RNAs) 1064 

data sets. 1065 

Figure S2: RT-qPCR results of selected novel miRNAs. Successfully profiled novel 1066 

miRNAs in (A) the longissimus dorsi skeletal muscle and (B) liver tissues from 7 1067 

Göttingen minipigs. 1068 

File S1: FASTA file of collapsed expressed sequences (RPM > 10) used in the de novo 1069 

discovery of miRNAs expressed in the porcine gluteus medius skeletal muscle. 1070 

File S2: Non-redundant annotated mature miRNA sequences obtained from the H. 1071 

sapiens GRCh38.p12 genome assembly used as a reference in the homology-based search 1072 

of novel miRNAs in the current release of the porcine genome (Sscrofa11.1). 1073 

File S3: List of already annotated miRNAs and all isomiRs detected as expressed (RPM 1074 

> 10) in the porcine gluteus medius skeletal muscle. 1075 

File S4: Amplification profiles and melting curves for the three novel miRNA candidates 1076 

subjected to confirmation by RT-qPCR analyses. 1077 

Table S1: Area under the curve (AUC) computed for each pre-defined imbalance 1078 

scenario using Ensembl annotation for positive and negative data sets. 1079 

Table S2: True positive ratio of porcine miRNA loci annotated in the Ensembl and 1080 

miRCarta databases and identified by the eMIRNA pipeline in all considered imbalance 1081 

scenarios. 1082 
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Table S3: Mature miRNAs and primers used for RT-qPCR confirmation of selected 1083 

novel miRNA candidates. 1084 

Table S4: Feature importance according to the relief-F algorithm. 1085 

Table S5: Previously annotated miRNAs genes that are correctly classified as miRNAs 1086 

by eMIRNA and miRDeep2. 1087 

Table S6: miRDeep2 algorithm results for miRNA prediction using the gluteus medius 1088 

muscle small RNA-seq data generated in the present study. 1089 

Table S7: Deviation rates (dr) and Differential deviation (∆D) estimates for miRNA 1090 

genomic positional prediction with eMIRNA and miRDeep2. 1091 
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