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Preface

In the last two decades, genomics and transcriptomics have been deeply transformed by
massive sequencing technologies. In a few hours, researchers can profile nucleotide variants
or quantify hundreds of genes in multiple experiments. In this era, dominated by Big Data
and Omic Sciences, bioinformatics and computational biology play pivotal roles. Increas-
ingly efficient algorithms are required to handle and store huge amounts of data and extract
from them relevant biological information. Looking at main database resources for high-
throughput sequencing (such as the Short Read Archive or the European Nucleotide
Archive), it appears that a significant fraction of sequencing data is devoted to the study of
RNA, a very versatile molecule with a plethora of functional roles, all indispensable to ensure
cell homeostasis. Thanks to omics data and high performance servers, we are now able to
explore entire transcriptomes of living organisms at unprecedented resolution and appreci-
ate, one more time, the importance of investigating RNA molecules and the RNA world in
general.

The aim of this book is to provide an overview of novel bioinformatics resources for
exploring diverse aspects of RNA biology. Differently from the previous edition, here we
focus on methods dealing with noncoding RNA (miRNAs, circRNAs, or lncRNAs), RNA
modifications (m6A or RNA editing), single cell RNA-seq, and statistical models to handle
count data from RNA-seq experiments. Nonetheless, the book also includes chapters based
on the classical RNA bioinformatics methods, such as those for deciphering secondary and
tertiary RNA structures, but revised taking into account deep sequencing data. Finally, we
have inserted chapters describing methods to analyze RNA sequencing data from emerging
third-generation sequencing technologies that could provide interesting insights into the
transcriptional process and its regulation.

We really hope that this novel edition could fulfill the reader expectations. This book is
the sum of different contributions from outstanding researchers in the field of RNA
bioinformatics that I personally thank for their efforts. A special “thank you” is devoted to
my double As (Angela and Adele) for their support and much patience.

Bari, Italy Ernesto Picardi
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Chapter 1

Advanced Design of Structural RNAs Using RNARedPrint

Yann Ponty, Stefan Hammer, Hua-Ting Yao, and Sebastian Will

Abstract

RNA design addresses the need to build novel RNAs, e.g., for biotechnological applications in synthetic
biology, equipped with desired functional properties. This chapter describes how to use the software
RNARedPrint for the de novo rational design of RNA sequences adopting one or several desired secondary
structures. Depending on the application, these structures could represent alternate configurations or
kinetic pathways. The software makes such design convenient and sufficiently fast for practical routine,
where it even overcomes notorious problems in the application of RNA design, e.g., it maintains realistic
GC content.

Key words RNA design, Kinetic landscapes, Riboswitches

1 Introduction

RNA design targets a wide diversity of biological functions and, as
such, encompasses of a wide array of computational tasks. Two
dominant paradigms dominate current computational approaches:

– Negative design focuses on the specificity of produced
sequences for “design targets.” This can comprise the attempt
to avoid functions, interactions, structures, or other properties
that differ from the targeted ones. Such tasks correspond to
inverse combinatorial problems and can be computationally
intractable (NP-hard) even when their direct version can be
optimized in polynomial time [1].

In the context of structural RNA design, negative design is
usually referred to as the inverse folding problem [9] and
consists in producing nucleotide sequences that uniquely fold
into the target structure with respect to the minimum free
energy (MFE) criterion. Variants of the inverse folding problem
consider the minimization of various notions of defects [5],
notably including the ensemble defect [12], the expected base

Ernesto Picardi (ed.), RNA Bioinformatics, Methods in Molecular Biology, vol. 2284, https://doi.org/10.1007/978-1-0716-1307-8_1,
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pair distance between the target, and a random structure in the
Boltzmann-Gibbs distribution.

An example of RNA design for a single-target structure is
provided in Fig. 1, showing the results from our first running
example of the Methods section. As natural extension of single-
structure design, we will moreover discuss RNA design for
multiple structural targets (cf. Fig. 3).

– Positive design can be loosely defined as focusing on the pro-
pensity of produced RNAs to achieve a certain function. In a
structural context, positive design usually involves generating
one or several sequences having good affinity (i.e., high stability
� low free energy) for a targeted structure. Functionally, design
constraints will also include the presence/absence of sequences
motifs, a controlled affinity toward interactions with molecules,
or a control of composition biases, such as the GC-content [10].

Recently, the objectives of positive design have been
extended to include sampling of sequences in a controlled dis-
tribution induced by the design objective [7, 8, 10]. Interest-
ingly positive design approaches implementing a controlled
sampling strategy can be used to empirically tackle negative
design objectives, by coupling a random generation of

CCGGGCCAAAGCGCUAAUUAUAGGCGCUAUUUGGGGGGCAAAUUUCCCCGGCCCGGU
(((((((..((((((.......))))))....((((((.....))))))))))))).
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Fig. 1 The target RNA structure of our running example for single-target design, together with the finally
designed sequence. We show its representation as as 2D plot (top, rendered using VARNA [3]) and
dot-bracket string (below). The latter represents base pairs by balanced parentheses
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sequences, filtered to only retain good candidates for the nega-
tive design. Indeed, as shown in Fig. 2, negative design objec-
tives, such that the Boltzmann probability of the target
structure, or the distance of the MFE to the target, tend to
correlate well with positive design objectives, such as the free
energy of the target structure.

1.1 Applications of

RNA Design

From a molecular biology perspective, designing RNAs represents
the ultimate stress-test of our understanding of how RNA folds
and acts on its environment. In this setting, one designs RNA
sequences expected to fold into a predefined structure with respect
to a folding prediction model. Synthesizing the resulting
sequences, and using experimental methods to verify the actual
adoption of the desired structure, one either validates the model
or reveals some of its flaws, fueling and prioritizing further devel-
opments. Indeed, misfolding designed RNAs reveal gaps in our
energy models and descriptors of the conformation spaces used
by predictive algorithms. A similar strategy can be more generally
used to test functional hypotheses involving the structure
of RNA.

Molecular design also represents one of the primitives of syn-
thetic biology, and RNAs have been used in multiple roles,

a) Boltzmann probability vs
Free-energy of target

b) GC content vs distance of MF to
target structure.

Fig. 2 (a) Boltzmann probability vs free energy of target (b) GC content vs distance of MFE to target structure.
Negative design can be addressed by positive design in Boltzmann-weighted distributions on sequences.
Distribution of Boltzmann probability, free energy of target (a), GC content, and distance of MFE to target
structure (b). For a target structure ((((((( . . .((((( . . .. . ..))))) . . ...((((( . . .. . ..)))
) ) ) ) ) ) ) ) ) ., 1000 sequences were generated, either uniformly or in the Boltzmann distribution
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notoriously including biosensors [6], regulators, and nano-
materials. Some naturally occurring RNAs are sufficiently stable to
fold in a modular fashion, enabling a copy/paste approach that
simply combines existing RNAs into complete architectures. How-
ever, such a strategy is hindered, in an in vivo context, by the
competition of artificial and endogenous RNAs and by the intrin-
sic difficulty to produce orthogonal constructs over a limited
number of available architectures. A rational design, coupled
with an experimental filtering phase, is thus likely to represent
the method of choice for future endeavors in RNA-based synthetic
biology.

At a (primarily) sequence-based level, design is essential for
future developments of RNA-based therapeutics. For instance,
the recent discovery of viable treatments based on RNA interfer-
ence is fueled by an understanding of how small RNAs can interfere
with selected messenger RNAs to activate or inhibit them. In this
context, an optimization of the nucleotide sequence of small inter-
fering RNAs, akin to a design task, is crucial to ensure its efficacy
and selectivity, mitigating the risk of side effects for the drugs.
Similarly, the specificity of genetic contents targeted by CRISPR-
based editing, and thus its limited toxicity, is ensured by a redesign
of guide RNAs. More generally, the adoption of a stable structure is
very often a prerequisite for the interaction of RNAs with selected
proteins [4] and is therefore crucial for the functionality of
designed RNAs in a cellular context.

Design also helps in the search for homologous RNAs.
Indeed, in many RNA families, selective pressure mostly applies at
the structure level. This aggravates the discovery of new occur-
rences of given RNA genes within the same organism (paralogs)
or across available genomes (orthologs). If a structural model is
known, and if the number of identified homologs is limited, a
natural approach is to enrich homologs with sequences designed
as to fold into the shared structure, in order to cover a larger
proportion of the (neutral) sequence space.

1.2 Overview In this chapter, we describe how to install and apply RNARedPrint
[8] to perform positive and negative RNA design. The method
was designed to simultaneously account for the constraints
induced by multiple RNA secondary structures. Its core capability
is to generate sequences that achieve predefined thermodynamic
stabilities for the target structures while controlling the GC con-
tent. Consequently, we start by discussing the design for single
RNA structures and go on to the design of RNAs that fold into
multiple structures. We demonstrate how to take advantage of
RNARedPrint’s versatility, for tackling a large variety of RNA
design tasks.
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2 Material

2.1 Installing

RNARedPrint and Its

Dependencies

RNARedPrint can be conveniently installed using the package
manager Conda For Linux or macOS systems, we highly recom-
mend this way of installing the software and provide detailed
instructions below. For other systems or other types of installation,
it is possible to install directly from the source code at https://
github.com/yannponty/RNARedPrint following the provided
instructions. In this chapter, we describe the release 0.3 of the
software.

2.1.1 Package Manager

Conda Installation

You may skip this section if Conda is already installed and set.
Otherwise, one can install Conda by installing Miniconda from
https://conda.io/en/latest/miniconda.html. This could also be
done from command line for Linux users

wget \
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86\_64.sh

or if you have macOS, use

wget \
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh Miniconda3-latest-MacOSX-x86_64.sh

It is moreover convenient to set up several Conda channels
(i.e., repositories for Conda packages), by

conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda

We require the bioconda channel, a Conda channel dedicated
to bioinformatics software, which contains the RNARedPrint
package.

2.1.2 RNARedPrint

Installation

After following the instructions above, RNARedPrint can be
installed using the command

conda install rnaredprint

This will install the tool RNARedPrint and three complemen-
tary Python scripts, design-energyshift.py, design-mul-
tistate.py, and calcprobs.py. Make sure to activate the
Conda environment before calling the programs:

conda activate
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3 Methods

3.1 General Usage For typical advanced design tasks, our software package provides
easy-to-use Python scripts as high-level front ends to the computa-
tional engine of the software, implemented in the program RNAR-
edPrint. It implements the package’s core functionality of
sampling RNA sequences from a specific distribution controlled
by multiple targets.

The script design-energyshift.py generates RNA
sequences with highly specific GC content and energies for the
given secondary structures. For this purpose, it implements a mul-
tidimensional Boltzmann sampling strategy on top of RNARed-
Print. Our second script desing-multistate.py samples
start structures for further optimization according to negative
design objectives like probability or ensemble defect. Such optimi-
zation can be performed, e.g., using the classical tool RNAinverse
[9] (included in the already installed Vienna RNA package) or the
recent software RNABluePrint [7]. Only the latter is equipped to
handle the general and more complex case of multi-target design.
To directly select sequences with high probabilities of the target
sequences, a typical negative design criterion, we provide the script
calcprobs.py. In the following, we provide concrete examples of
the usage of all these tools in the two scenarios: first, the design for
a single-target structure, and second, the design for multiple struc-
tural targets. All these tools can be invoked from the command line
of a terminal. The command line interface lets the user flexibly
control the various options of the tools and, for advanced usage,
enables integrating them into larger workflows.

3.1.1 The Tool

RNARedPrint

This workhorse of our software supports generating sequences
from a multidimensional Boltzmann distribution controlled by
weights of the GC content and for the energies of one or several
RNA secondary structures.

Our high-level scripts that can be used to address typical design
scenarios rely on this tool performing the main computation. Here,
the tool serves us as quick test of the installation. Make sure that
RNARedPrint is installed and found in your search path by run-
ning

RNARedPrint --version

If the software was installed successfully (if you install via
Conda as described above, do not forget to activate Conda), it
reports its version in the form

RNARedPrint 0.3
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Generally, the tools of the package provide usage information
via the command line argument –help. Please have a look at the
output of the command

RNARedPrint --help

to get a brief, complete overview of the usage of the tool. We
will demonstrate the main usage in the subsequent sections.

3.2 Designing for a

Single-Target

Structure

Themost common case of RNA sequence design asks for sequences
that fold well into a single RNA structure. While RNARedPrint is as
well prepared to handle the more challenging task of multi-
structure design, we will start with this simpler case to introduce
the software. Thus, let us demonstrate how to design RNA
sequences for our example target structure illustrated in Fig. 1.

Target secondary structures are given as a “dot-bracket string,”
where each pair of balanced parentheses describes a base pair. This is
the typical secondary structure linearization prominently popular-
ized by the Vienna RNA package. We will use this representation
throughout our explications and in the input and output of our
design tools.

A popular approach to RNA sequence design is to efficiently
generate start sequences, also called seeds, that are subsequently
optimized using local search strategies. Our software allows to
design “good” seed sequences, where we have strong control
over the GC content of the sequences and their energies for the
target structure. Recall that the design of such start sequences is a
case of positive design.

3.2.1 Positive Design for

a Single-Target Structure

with RNARedPrint

Let us start by calling RNARedPrint from the command line
(again, from the installation directory) as

RNARedPrint --num 4 --weights 5 --gcw 0.5 \
"(((((((...(((((.......))))).....(((((.......))))))))))))."

With these arguments, we ask the tool to sample four sequences
S (--num) with probabilities proportional to

5�EbpðSÞ � 0:5#GCðSÞ, ð1:1Þ
where Ebp(S) denotes the energy of the sequence and the target
structure in the simple base pair energy model (cf. Sect. 4.0.7) and
#GC(S) denotes the number of bases G and C in the sequence.
Note how the weights are set by options –gcw and –weights and
affect the distribution due to Equation 1. Without such options,
the tool would use default weights of 1.
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A typical example of the output produced by the tool is

CGUCCACGAUACCCGUACGCUAUGGGUGGUGUGCCCCUCAAAAUGGGGCGUGGAUGA GC=0.59 E1=-22.87
CCGCGUCUGUAGCCCCGAUAACGGGUUUAUACAGGUUAUAUUAUGGCUUGACGUGGC GC=0.51 E1=-19.22
GUUGGUUUUGGUCUACGAAGCGUAGACAGGUACCCCAUAUGUAGUGGGGAACCAAUA GC=0.48 E1=-16.52
GGGGGCGAACGUCCAUAUCGGAUGGACUAUUUGCCCGUCUUAAGCGGGCCGCCUUUU GC=0.57 E1=-23.11

By changing the weights, the distributions and thereby the
means of the energy and the GC content can be changed. Increas-
ing the energy weight causes the generation of sequences with
better energy. In tendency, due to RNA thermodynamics, these
sequences have higher GC content. At the same time, lowering the
GC-weight (–gcw) allows counteracting and keeping the GC con-
tent controlled. To observe this effect, e.g., compare the outputs of
the following two calls

RNARedPrint --num 10 --weights 20 --gcw 0.5 \
"(((((((...(((((.......))))).....(((((.......))))))))))))."

and

RNARedPrint --num 10 --weights 20 --gcw 0.2 \
"(((((((...(((((.......))))).....(((((.......))))))))))))."

3.2.2 Targeting Specific

GC Content and Free

Energy

Playing around with different weights for RNARedPrint in an
attempt to target specific (mean) GC content or specific energies
quickly reveals that this is not at all trivial, since the different targets
are not independent. For this purpose, we provide the script
design-energyshift.py, which solves the optimization prob-
lem of finding weights, such that specific energies and GC content
are targeted by multidimensional Boltzmann sampling.

Notably, the script supports targeting specific energies in the
accurate Turner energy model [11], whereas the tool RNARedPrint
samples based on energies in a simple model (by default, the base
pair energy model).

This script allows specifying targets, e.g., GC content of 60 per-
cent and (Turner) energy of �28 kcal/mol, for the designed
sequences in a call like

design-energyshift.py --num 4 --gc 0.6 -e=-28 \
<<<"(((((((...(((((.......))))).....(((((.......))))))))))))."

By this call, the script produces output similar to

CCGGGCCAAAGCGCUAAUUAUAGGCGCUAUUUGGGGGGCAAAUUUCCCCGGCCCGGU GC=0.59 E1=-28.70
CGCCAGCUGCCCUCUAUACAUUAGAGGAAUUUGCGCGUAUCCGUCGCGCGCUGGCGA GC=0.59 E1=-27.00
GGCCCGUUCUGCGCCGAUAUUAGGCGCUCACACGCCGUGUUAGUCGGUGAUGGGCCA GC=0.62 E1=-27.70
CCGCCACAUAGCGCUCGUGAAUAGCGCAAGGAGCGCCAUCAAAAGGCGCGUGGCGGA GC=0.62 E1=-28.90
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3.2.3 Negative Design for

a Single Target

The RNA sequences generated by the script design-energy-
shift.py, while targeting low energies, are typically good designs
for the target structure even according to negative design criteria
like MFE or even probability and ensemble defect (cf. Fig. 2). To
quickly test this for concrete examples, one can fold the designs
using RNAfold. Let us demonstrate this for the first of the above
designs.

RNAfold \
<<<CCGGGCCAAAGCGCUAAUUAUAGGCGCUAUUUGGGGGGCAAAUUUCCCCGGCCCGGU

RNAfold reports the MFE structure together with additional
information about the RNA structure ensemble.

CCGGGCCAAAGCGCUAAUUAUAGGCGCUAUUUGGGGGGCAAAUUUCCCCGGCCCGGU
(((((((..((((((.......))))))....((((((.....))))))))))))). (-30.80)

We observe that the distance between MFE and target struc-
ture (i.e., theMFE defect) is only two base pairs; the structures look
almost identical. The next design even yields optimal MFE defect of
zero. This suggests that negative design can be performed rather
effectively by screening through a series of (positive) designs by
RNARedPrint. Even more effective is the use of such designs of
start structures in a local optimization according to negative design
objectives. Such optimization is possible using tools like RNAin-
verse or RNABluePrint.

To apply the former, we feed it with our target structure and,
e.g., our first designed sequence

echo -e \
"(((((((...(((((.......))))).....(((((.......)))))))))))).\n\
CCGGGCCAAAGCGCUAAUUAUAGGCGCUAUUUGGGGGGCAAAUUUCCCCGGCCCGGU"\
| RNAinverse -Fp

The given option causes RNAinverse to optimize the probabil-
ity of the target structure. On this input, RNAinverse succeeds
quickly, returning a very good design for the target structure.

UUAGAUCAAAUAGGAGUCGAUGUCCUGGGGGUACGUGAAACAAGCACGUGAUUUAGU 23
GGCCGGCGAAGGGGCGAAUAAAGCCCCAAAAACCCGCGAAAAAAGCGGGGCCGGCCA 47 (0.989619)

The finally designed sequence (last row) forms the target struc-
ture with a probability of 0.99. Notably, the GC content of the
design—which used to be hard to control by classic design meth-
ods—is fairly close to the start sequence.

For harder designs than our running example, these observa-
tions suggest an automated two-step approach to negative design.
First, a set of start sequences is systematically generated using
positive design. Second, these sequences are optimized, e.g.,
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using RNAinverse, as shown above. Similar strategies have been
discussed in the literature, e.g., by the early approach INFO-RNA
[2] or using the tool IncARNation [10]. The latter is implementing
the exact the same ideas of Boltzmann sampling for positive RNA
design, including the control of GC content. Due to our software
RNARedPrint, which easily covers single-structure design as a spe-
cial case, this approach to single-target design got even more acces-
sible and flexible.

3.3 Multi-target

Design

3.3.1 Positive Design by

RNARedPrint

Let us demonstrate the use of RNARedPrint for multi-target
design by running the tool for a small instance (sequence length
40) with three target structures. As preparation, we create the file
targets.txt containing the target structures (one per line)

((((((((....))))))))((((((((....))))))))
((((((((..((((((((...))))))))...))))))))
(((((((((((((((((...)))))))))))))))))...

Then, we call the tool by

RNARedPrint --weights 1,2,5 --gcw 0.5 --num 5 $(cat targets.txt)

This call specifies three target secondary structures and asks for
five sequences that have the same length as the structures. The call
sets the weights for the three target structures (respectively 1, 2,
and 5) and the weight for the GC content. The tool automatically
seeds its random number generator, such that repeated calls pro-
duce different output. The output should look like

((((((((....))))))))((((((((....))))))))
((((((((..((((((((...))))))))...))))))))
(((((((((((((((((...)))))))))))))))))...
GGAGGGGGCCCCCUCCUUUUGGGGGGGGGCCCCUUCCUUC GC=0.73 E1=-18.29 E2=-21.07 E3=-28.83
GAGGGGGGCUCCCCCUCUUUGGGGGGGGGCCCCCCUUUUC GC=0.73 E1=-19.51 E2=-22.29 E3=-28.49
GGGGGGGGCUCCCCCUCUCCGGGGGGGGGCCCCCCCCUCC GC=0.86 E1=-25.96 E2=-26.30 E3=-31.29
GGGGGGGGUCCUUCCCUUUCGGGGGGGGGUCCCCCCCCCU GC=0.77 E1=-23.86 E2=-23.86 E3=-27.98
GGGGGGGGCCCCCCCCCCUUGGGGGGGGGCCUCCCCCCUU GC=0.84 E1=-24.74 E2=-27.18 E3=-32.51

As in the single-target case, decreasing (or increasing) the
weight ‘–gcw’ will produce sequences with, in tendency, lower
(or, respectively, higher) GC content. Similarly, decreasing
(or increasing) the weight of some secondary structure generates
sequences with higher (or lower, i.e., better) energy. Thus, chang-
ing the weights allows shifting the distribution means of the differ-
ent features of the generated sequences (i.e., the GC content and
energies for the different structures).

3.3.2 Targeting Multiple

Specific Energies and GC

Content

Targeting very specific values of several features again requires the
support of advanced automatized methods—here, this is even more
important than for single-target design. Again, the corresponding
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hard optimization problem is solved performing multidimensional
Boltzmann sampling by the script design-energyshift.py.

In generalization of the single-target case, the script allows
generating sequences with sharply defined values of the multiple
targeted features. For example, we can ask for sequences with
respective Turner energies of �18, �22, and �20 for the three
previously introduced target structures. At the same time, we want
aim at GC contents of about 65 percent.

To obtain five such sequences, one calls the script as

design-energyshift.py -i targets.txt --num 5 \
--gc 0.65 --energies="-18,-22,-20"

which produces five designs like

GGGGGGGGUUCCUCUCUCUUGGAGGGGGGUUUUCUCCUCC GC=0.64 E1=-17.30 E2=-22.20 E3=-19.40
GGGGGGGGCUUCCUUUCCUUGGGGGGGGGUUUUCCCUCCC GC=0.68 E1=-19.00 E2=-21.90 E3=-20.40
GGGGGGGAUCCCUUCUCCUUGGGGGGGGGUUUUCUUCCCC GC=0.66 E1=-17.60 E2=-22.30 E3=-20.50
GGGAGGGGUUCCCUUCUCUUGGGGGGGGGUCUUUCCUCCC GC=0.66 E1=-17.20 E2=-22.60 E3=-19.70
GGGGGGAGUUCCCUUUCCUUGGGGGGGGGCUUCUUUCCCC GC=0.66 E1=-17.30 E2=-22.10 E3=-20.60

By default, the script tolerates deviations from the targets by as
much as 1 kcal/mol. We can define the tolerance, e.g., more strictly
as �0.5 kcal/mol using the additional argument –tolerance
0.5. Similarly, the tolerance of the GC content can be selected,
and the operation of the tool can be fine-tuned in various other
ways. When called with option –help, the script provides a full
overview of available arguments.

3.3.3 Aiming at Negative

Design Criteria

As we already discussed before, a major motivation for positive
design is to produce sequences that perform well according to
negative design criteria. From a sample of such sequences, one
can either already satisfy negative design requirements or find
good start sequences for further refinement, e.g., by stochastic
local search.

A typical requirement for good designs in the case of single-
target design can be expressed in slight simplification as “good
stability, avoiding extreme GC contents.” In the multi-structure
case, we additionally aim at specific relations between the energies.
This is possible with our tool design-energyshift.py by tar-
geting energies for each structure.

The script design-multistate.py was written to design
sequences, where all structures have highly similar energies, which
is a common objective in RNA design. Let us demonstrate this for
the previously introduced three target structures (in file targets.
txt).

To produce five designs targeting similar energy for all three
targets, while controlling the GC content at about 0.65, the script
is called as
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design-multistate.py -i targets.txt --num 5 --gc 0.65

It returns the designs together with their GC content and
Turner energies:

GGGGGGGGUCUUCCCUUCUUAGGGGGGGGUUCUCCCCCCU GC=0.68 E1=-24.20 E2=-22.90 E3=-24.00
AGGGGGGGUUCUCCCCUCUUAGGGGGGAGUUUUCCCUCUU GC=0.59 E1=-22.30 E2=-23.80 E3=-22.70
GGGGGGGGUCUCCCUUUCUCGGAGGGGGGUUUCUCCCUCC GC=0.68 E1=-22.80 E2=-22.40 E3=-22.30
GGGGGGGAUUUCUCCCUCUCGGGGGGGGAUUUUCCUCUCC GC=0.64 E1=-23.10 E2=-23.60 E3=-22.70
GGGGGGGAUUCUUCCCUUCUAGGGGGGAGUUUUUCCCCCU GC=0.59 E1=-23.70 E2=-23.10 E3=-23.00

Similar to the script design-energyshift.py, further
options provide additional control over the script operation, and
an overview of arguments can be produced by running the script
with the –help option.

3.3.4 Negative Design

Due to Positive Design

Sequences as designed above can be used as start sequences for
refinement due to negative design criteria, which cannot be directly
targeted by the sampling engine.

Refinement by local optimization can be performed using
third-party software. For the case of single-target design, we
demonstrated the use of RNAinverse, as the “classic” tool for this
purpose. However, different to the single-target case,
corresponding software for multi-structure design is rare. One
good choice would be the design software RNABluePrint.

In many cases, good solutions to negative design criteria can be
found by screening a larger number of positive designs. This mainly
requires us to re-evaluate sequences as generated by using our
scripts according to negative criteria. We demonstrate this for the
criterion of accumulated probability of the target structures. Fig-
ure 3 shows good negative designs for our three target sequences
(as well as, for comparison, one single-target design) that we
obtained following this strategy.

For the purpose of re-evaluating the positive designs, we pro-
vide the script calcprobs.py. It can be used to post-process the
output of our design scripts. For each sequence in the output, it
annotates the corresponding output line. For example, when
reading the lines

AGGGGGAGUUUCCUCCCCCUGGGGGGGGACUUCUCCUCCU GC=0.66 E1=-26.90 E2=-27.10 E3=-27.10
AGGGGGGGUUUCCUCUCCCUGGGAGGGGACUUCCCCUCCU GC=0.66 E1=-26.90 E2=-27.10 E3=-27.20

the script calculates the minimum free energy (MFE) and the
ensemble energy of the sequences (EE). Then it computes the
probabilities of each target for the sequences (Pi) and their sum
(Psum). Consequently, it extends the lines to report this informa-
tion by the respective strings

MFE=-27.10 EE=-28.05 P1=0.16 P2=0.21 P3=0.21 Psum=0.58
MFE=-27.20 EE=-28.05 P1=0.15 P2=0.21 P3=0.25 Psum=0.62
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The above two lines correspond to the two last designs of
Fig. 3. They were obtained as best negative designs, according to
Psum, after generating and annotating 1000 samples by

design-multistate.py -i targets.txt --num 1000 \
--gc 0.7 --energy="-27" --tolerance=0.2 \
| calcprobs.py -i targets.txt

where calcprobs.py is used in a pipeline with the design
script.

4 Notes

4.1 Boltzmann

Distributions as

Generated by

RNARedPrint

The fundamental computational task in the RNARedPrint is the
generation of Boltzmann samples of sequences. This allows
controlling the frequencies of feature values, namely, the GC con-
tent and the energies of the target structures (in a simple energy
model). The distribution of the different features is furthermore
controlled by weights for each of the features. Consequently, each
sequence is generated with a probability that is proportional to the
sum of “feature weight to the power of the feature value” over all
features. In Eq. 1, we gave an example for the simple case of a single
structure.

93% 7%

Design 1 - CCGGGGCCAUUAGGCCCCGGCCCCUGCCAUAUGGCAGGGG

4% 79% 17%

Design 2 - GGAGGGGGUCUCCCCCCUCCGGGGGGGGAUUUCCUCCUCC

16% 21% 21% 42%

Design 3 - AGGGGGAGUUUCCUCCCCCUGGGGGGGGACUUCUCCUCCU

15% 25% 39%

Design 4 - AGGGGGGGUUUCCUCUCCCUGGGAGGGGACUUCCCCUCCU
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Fig. 3 Negative design for three target structures. For three target structures, inducing disjoint sets of base
pairs (A – left), sequences are designed as to simultaneously optimize the Boltzmann probabilities (B – right) of
the first (Design 1), third (Design 2), and second (Designs 3 and 4) target structures. For the two latter
sequences, the probabilities of the three targets were designed to be comparable, e.g., in order to address the
need for a switching behavior at the thermodynamic equilibrium
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4.2 Uniform

Sampling of

Sequences

Uniform sampling is a special case of Boltzmann sampling. If we
set all weights to 1, which is the default of RNARedPrint, then it
produces a uniform sample of the sequences. Effectively, this turns
off the influence of feature values (since 1x equals 1, such that the
proportionality factor is constant for all sequences).

4.3 Simple Energy

Model as Efficient

Proxy for the Turner

Model

For efficient sampling in RNARedPrint, we utilize simple energy
models that approximate the highly accurate nearest neighbor
Turner RNA energy model. For this purpose, we trained para-
meters [8] such that the energies even in the base pair model
show good linear correlation to the Turner energies (Fig. 4). The
base pair model evaluates energies as a sum of energy terms for each
base pair that depend only on the type of the base pair (“AU,”
“CG,” or “GU”) and furthermore distinguishes stacked and
non-stacked base pairs. For details, see [8], which as well discusses
the slightly more complex stacking energy model.

The strong correlation between energies in the two models
allows us to much more efficiently target energies in the simple
model for the purpose of finally targeting energies in the realistic
Turner model. Utilizing the simple model as proxy for the realistic
model is indeed a crucial aspect for the viability of our method.
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1. Bonnet É, Rzażewski P, Sikora F (2018)
Designing RNA secondary structures is hard.
In: Raphael BJ (ed) Research in computational
molecular biology – 22nd annual international

conference, RECOMB 2018. Lecture Notes in
Computer Science, Paris, vol 10812. Springer,
pp 248–250

−70 −60 −50 −40 −30 −20 −10

−
60

−
50

−
40

−
30

−
20

Turner Energy

B
as

e 
P

ai
r 

E
ne

rg
y

Fig. 4 Strong correlation of 0.95 between energies in the simple base pair model and Turner energies reported
by the Vienna RNA package; determined for 5000 uniform random RNA sequences and their MFE structures

14 Yann Ponty et al.



2. Busch A, Backofen R (2006) INFO-RNA—a
fast approach to inverse RNA folding. Bioin-
formatics 22(15):1823–1831

3. Darty K, Denise A, Ponty Y (2009) VARNA:
interactive drawing and editing of the RNA
secondary structure. Bioinformatics 25
(15):1974–1975

4. de Groot NS, Armaos A, Graña-Montes R,
Alriquet M, Calloni G, Martin Vabulas R, Tar-
taglia GG (2019) RNA structure drives inter-
action with proteins. Nat Commun 10(1)

5. Dirks RM, Lin M, Winfree E, Pierce NA (2004)
Paradigms for computational nucleic acid
design. Nucleic Acids Res 32(4):1392–1403

6. Findeiß S, Etzel M, Will S, Mörl M, Stadler PF
(2017) Design of artificial riboswitches as bio-
sensors. Sensors (Basel, Switzerland) 17(9):
E1990

7. Hammer S, Tschiatschek B, Flamm C,
Hofacker IL, Findeiß S (2017) RNAblueprint:
flexible multiple target nucleic acid sequence
design. Bioinformatics (Oxford, England)
33:2850–2858

8. Hammer S, Wang W, Will S, Ponty Y (2019)
Fixed-parameter tractable sampling for RNA
design with multiple target structures. BMC
Bioinformatics 20(1):209

9. Hofacker IL, Fontana W, Stadler PF, Bonhoef-
fer LS, Tacker M, Schuster P (1994) Fast fold-
ing and comparison of RNA secondary
structures. Monatshefte für Chemie/Chemical
Monthly 125(2):167–188

10. Reinharz V, Ponty Y, Waldispühl J (2013) A
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Chapter 2

Modeling and Predicting RNA Three-Dimensional Structures

Vladimir Reinharz, Roman Sarrazin-Gendron, and Jérôme Waldispühl

Abstract

Modeling the three-dimensional structure of RNAs is a milestone toward better understanding and
prediction of nucleic acids molecular functions. Physics-based approaches and molecular dynamics simula-
tions are not tractable on large molecules with all-atom models. To address this issue, coarse-grained
models of RNA three-dimensional structures have been developed. In this chapter, we describe a graphical
modeling based on the Leontis–Westhof extended base pair classification. This representation of RNA
structures enables us to identify highly conserved structural motifs with complex nucleotide interactions in
structure databases. We show how to take advantage of this knowledge to quickly predict three-dimensional
structures of large RNA molecules and present the RNA-MoIP web server (http://rnamoip.cs.mcgill.ca)
that streamlines the computational and visualization processes. Finally, we show recent advances in the
prediction of local 3D motifs from sequence data with the BayesPairing software and discuss its impact
toward complete 3D structure prediction.

Key words Tertiary structure, RNA motifs, Extended secondary structure, Base pair classification,
Modeling, Prediction

1 Introduction

RNAs perform a broad range of catalytic and regulatory functions
in cells, which often use the folding properties of these molecules.
RNA structures are typically described at two levels of organization.
The secondary structure, which enumerates the Watson–Crick and
Wobble base pairs that create the backbone of the molecular struc-
ture, and the tertiary structure, which indicates the positions of
each atom in the molecule.

The study of secondary structures and base pairing properties
can reveal fundamental insights into the functional mechanisms of
RNAs such as frameshift elements [1] and riboswitches [2]. How-
ever, the information provided by this representation is sometimes
not sufficient to describe the complexity of inter- and intra- molec-
ular interactions that govern RNA functions. A seminal example is
the sarcin-ricin factor-binding loop, which possesses a sophisticated
tertiary structure [3].
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Classical approaches to predict and analyze three-dimensional
molecular structures make use of molecular dynamic simulations
[4]. This methodology has the potential to perform calculations on
all-atom models, but suffers from high computational complexity.
Straightforward applications are thus limited to small molecules
(approximately 50 nt.) on a short period of time with very small
body motion. Coarse-grained modeling of RNA structures enables
us to overcome some of these limitations [5–7], but the practical
impact and theoretical horizon of these technologies remain
unchanged. In addition, molecular dynamic simulations often
require fine-tuning and can be challenging to run and interpret
for nonexperts.

Recently, several research groups developed alternate strategies
to model and predict RNA three-dimensional structures. One of
the most successful approach, applied in the MC-Fold|MC-Sym
pipeline [8], RNA2D3D [9], or 3dRNA [10], consists in
predicting a secondary structure first, and use it to build a three-
dimensional model. Other programs have employed fragment-
assembly [11, 12] or conditional random fields techniques
[13]. It is worth noting that, as we saw in a previous chapter,
comparative modeling techniques can also be applied to RNA
molecules if one structural homolog has been already
identified [14].

In this chapter, we introduce a versatile model for RNA
structures, which enables us to describe essential features and
fine-grained details of RNA three-dimensional structures while
preserving the complexity of the representation to a minimum.
This methodological advance is key to large-scale analysis and to
better understanding of critical features of RNA molecular struc-
tures. In turn, this knowledge enables us to define new computa-
tional techniques to quickly and easily predict three-dimensional
structures of large RNA molecules.

First, we describe the base pair classification at the base of this
model [15], and present rnaview [16]—a program that annotates
automatically RNA three-dimensional structures. Then, we intro-
duce the concept of RNA structural motifs and present recent
databases and online resources based on this definition
[17, 18]. Finally, show how to use this knowledge to predict
RNA three-dimensional structures. The pipeline described in this
chapter works in two steps. First, we predict secondary structures
with RNAsubopt [19] and expand the prediction to a full base-
pairing interaction network with RNA-MoIP [20]. Next, we use
this graphical representation to build the three-dimensional struc-
ture of the RNA with MC-Sym [8].
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2 Material

2.1 Sequence and

Structure Data

The Nucleic Acids Database [21] is a repository of experimentally
determined three-dimensional RNA structures maintained at Rut-
gers University, which is available at http://ndbserver.rutgers.edu.
This is a specialized version of the Protein Data Bank [22], which is
available at http://www.rcsb.org/pdb. The structures are typically
stored in files with the extension “.pdb”. In particular, the PDB files
store the spatial coordinates of each atom in the molecule. Plain
sequences can also be downloaded separately under the FASTA
format.

In this chapter, we illustrate our methods on the sequence and
experimentally determined tertiary structures of tRNA(Cys) of
Archaeoglobus fulgidus [23] (see Note 1). The PDB ID of this
molecule is 2DU3.

2.2 Automatic

Annotation of 3D

Structures

The rnaview software is used to identify all base-pairing interactions
that represent in a RNA tertiary structure [16]. This program can
be downloaded at: http://ndbserver.rutgers.edu/ndbmodule/
services/download/rnaview.html and is currently available for
Linux, UNIX, SUN, and MAC systems.

2.3 RNA Secondary

Structure

Prediction Tools

The prediction of RNA secondary structures is performed with the
RNAfold program available in the Vienna RNA package
[19, 24]. The software suite is available at http://www.tbi.univie.
ac.at/RNA/ and can runs under LINUX, UNIX, MAC, and WIN-
DOWS systems. In this chapter, we used the version 2.1.2 of the
Vienna RNA package. Web services are also available at http://rna.
tbi.univie.ac.at/.

2.4 Insertion of RNA

Motifs in Secondary

Structure

We perform the insertion of RNA motifs inside predicted RNA
secondary structures with the RNA-MoIP software [20] available at
http://csb.cs.mcgill.ca/RNAMoIP/. Noticeably, this software
requires installing the Gurobi solver (http://www.gurobi.com/),
which is free for academic users.

2.5 Building RNA 3D

Structures from a RNA

Interaction Graphs

We use the MC-Sym software to build tertiary structure from a
base-pairing interaction network [8]. MC-Sym is part of the
MC-tools package available at: http://www.major.iric.ca/Major-
LabEn/MC-Tools.html.
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3 Methods

In this section, we will describe how to extract from a three-
dimensional structure, the list of all base pairing interactions.
Then, we will describe how to use databases of recurrent motifs
to predict the tertiary structure of large RNA molecules.

3.1 Classification of

Base Pairing

Interactions

Watson–Crick (C-G and A-U) andWobble (G-U) base pairs are the
most common type of interactions. They create a scaffold for the
tertiary structure. Nonetheless, the analysis of RNA crystal struc-
tures revealed a diversity of base pairing interactions that goes far
beyond these canonical base pairs. In order to facilitate the descrip-
tion of RNA structures, Leontis and Westhof proposed a complete
nomenclature of base pairing interactions [15] that aims to provide
a better description of the complexity of the tertiary structure. Key
to this model is to introduce a detailed representation of the base of
nucleotides, which in turn enables us to define a more sophisticated
classification of base-pairing interactions. Thereby, a base is
abstracted with a right triangle modeling all edges of the molecules
that can be potentially involved in an interaction with other nucleo-
tides (see Fig. 1). The three interacting edges are: the Watson–Crick
edge, the Hoogsteen edge, and the Sugar edge. The hypotenuse is
associated with the Hoogsteen edge, and the vertex created by the
Hoogsteen and Sugar edge represents the root of the base.

Base pairing interactions between nucleotides can now occur
between any of these edges. In addition, a complete description of
these interactions must also specify the relative orientation of the
bases (i.e., the glycosidic bond orientation). Hence, we indicate if
the bases are oriented in the same or in opposite directions. These
configurations are respectively named trans and cis configurations.

These parameters enable us to define a complete nomenclature
of all possible base-pairing interactions between nucleotides. This
catalog is shown in Fig. 1 and includes all 12 possible base pairs that
are found in RNA structures.

In secondary structure diagrams, base pairs are often repre-
sented with specific links. C-G base pairs are represented with two
parallel line, A-U base pairs with a single line and G-U base pairs
with a circle. Leontis and Westhof also assigned a symbol to each
base pairing interaction of their classification. Watson–Crick edges
are represented with a circle, Hoogsteen edges with a square and
Sugar edges with a triangle. In addition, black symbols represent a
cis orientation, and white symbols a trans orientation. This notation
is illustrated at the bottom of each base pair in Fig. 1.

Using this nomenclature, RNA tertiary structures can be
decomposed into a network of base-pairing interactions. Unlike
classical secondary structures, nucleotides are now no longer
restricted to interact with at most one other nucleotide. Instead,
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they can be involved in multiple interactions and create, for
instance, base triples. Crossing interactions are also permitted.
While this modeling does not obviously encompass all details of
three-dimensional atomistic structures, it appears to store most of
the information that one needs to reconstruct full tertiary
structures [8].

Fig. 1 Base modeling and Leontis–Westhof base pair classification. The base of a nucleotide is represented
with a right triangle. The hypotenuse represents the Hoogsteen edge (noted “H”), and the other sides are
associated with the Watson–Crick edge (noted “W”) and Sugar edge (noted “S”). This figure represents all
12 bp interactions with cis or trans orientation
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3.2 Annotation of

Base-Pairing

Interactions from RNA

3D Structures

The rnaview program annotates automatically of all base-pairing
interactions found in RNA tertiary structure using the Leontis–
Westhof classification [15]. It can also produce an image of the
interaction graph. The command line to run the program is:

rnaview –p input.pdb

where “input.pdb” is your input three-dimensional structure
and the “-p” flag is an optional parameter that indicates to the
program to create a visualization of the annotated structure.
Figure 2 shows the graphical output of rnaview on the tRNA
(Cys) from Archaeoglobus fulgidus.

The output files are stored in the same directory as the input
file. The list of base pairing interactions is stored in a new text file
named after the input file and appended with the suffix “.out”.
Similarly, if you used the “-p” option, rnaview also creates a post-
script file with a drawing of the base pairing interaction network.

The following code, calculated from the tRNA(Cys) from
Archaeoglobus fulgidus (2DU3), illustrates a typical output of
rnaview:

9_12, B: 9 U-G 12 B: S/W tran syn n/a

16_52, B: 16 U-A 52 B: W/H tran XXIV

18_51, B: 18 G-G 51 B: H/S tran n/a

18_53, B: 18 G-C 53 B: +/+ cis syn XIX

The first column gives the indices, separated by an underscore,
of the two nucleotides involved in the base pair. These indices are
calculated by rnaview and correspond to their positions in the
sequence(s) entered in the program. They may eventually differ
from the indices stored in the PDB file, which are given in the
third and fifth columns.

The letters in the second and sixth columns indicate the chain
of the two nucleotides. In our case, the RNA molecule has a single
chain named “B” in the PDB file. The types of the nucleotides
forming the base pair are indicated in the fourth column.

Finally, the seventh and eighth columns describe the edges
involved in the base pair (Watson–Crick, Hoogtseen, or Sugar
edge), followed by the orientation of their interaction (cis or
trans). For instance, in the example above the first row says that
“the nucleotide U at index 9, and the nucleotide G at position
12, form a trans base pair between the Sugar edge (S) of nucleotide
U and Watson–Crick edge (W) of the nucleotide G”. It is worth
noting that classical Watson–Crick base pairs are annotated with +/
+ (C-G base pair) or�/� (A-U base pair). More details on the base
pair notation, including “marginal” interactions, can be found in
[16] or [25].
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As expected, most base pairs represented in Fig. 2 are Watson–
Crick base pairs. Nonetheless, we note that noncanonical base pairs
tend to get concentrated in specific regions of the secondary struc-
ture backbone and create sophisticated local motifs. In fact, this
observation is recurrent in most annotated structures. It will give
rise to the notion of RNA motifs introduced in the next section.

Finally, it is worth noting that we can alternatively use the
programMC-Annotate [26] to perform similar annotations. How-
ever, the classification used by MC-Annotate differs slightly from
the one used in the motif databases described further.

Fig. 2 rnaview annotation of a crystal structure of tRNA(Cys) from Archaeoglobus
fulgidus [23]
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3.3 RNA Motifs The modeling of RNA tertiary structures into networks of base-
pairing interactions revealed recurrent motifs conserved across
families of structures. These structural patterns form a base toward
better understanding of complex organizations of nucleotides
inside hairpins, internal loops and beyond (see previous section
for a definition of the secondary structure elements). Several meth-
odologies and databases have been developed to mine and store
these data. Among the most popular repositories, we count the
RNA 3D Hub maintained by the Bowling Green State University
RNA group at http://rna.bgsu.edu/rna3dhub/ [18], and the
RNA 3D Motif database developed at the university of Paris-Sud
and available at http://rna3dmotif.lri.fr/ [17]. More recently, the
international institute for molecular and cell biology in Warsaw
introduced a novel motif database RNAbricks, available at
http://iimcb.genesilico.pl/rnabricks/.

Beside databases of annotated structures (i.e., the RNA Struc-
ture Atlas) and recurrent RNA 3D motifs (RNA 3D Motif Atlas),
the RNA 3DHub offers large suite of online tools and web services.
In particular, users can retrieve here local 3D motifs with
WebFR3D (http://rna.bgsu.edu/main/webapps/webfr3d/) or
align RNA tertiary structures with R3D Align (http://rna.bgsu.
edu/main/webapps/webr3dalign/).

Each database developed its own local 3D motif format
description, based on the Leontis–Westhof base pair classification.
RNA-MoIP use the format introduced with RNA3Dmotif [17]. An
example of an internal loop motif is provided below:

Bases: 26_G 27_A 28_G 29_A 30_G 39_U 40_G 41_G 42_U

( 39_U )--- C/C - ---( 40_G )

( 30_G )--- 5/5 s ---( 40_G )

( 30_G )--- +/+ c ---( 39_U )

( 40_G )--- C/C - ---( 41_G )

( 29_A )--- C/C - ---( 30_G )

( 28_G )--- 5/5 s ---( 41_G )

( 28_G )--- C/C - ---( 29_A )

( 41_G )--- C/C - ---( 42_U )

( 26_G )--- +/+ c ---( 42_U )

( 27_A )--- C/C - ---( 28_G )

( 26_G )--- C/C - ---( 27_A )
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The first line starting with the key word “Bases” indicates the
nucleotides involved in this motif. For each nucleotide, we display
its index and its type separated by an underscore. Each following
line describes a base pairing interaction in this motif. The syntax of a
base pair is structured as follows. On both ends of the row, the two
nucleotides (index and type) are shown between parentheses. Then,
the type of the interaction is shown in the middle, surrounded by
three dashes on each side. The first field indicates the edges
involved and the second the base pair orientation (“c” for cis, “t”
for trans, and “s” for a stacking). An interaction annotated “C/C”
stands for a backbone connection (i.e., consecutive nucleotides)
and thus may not be considered as a base pair in our discussion.
More information can be found at http://rna3dmotif.lri.fr/help.
html.

RNA-MoIP needs to decompose these motifs into components
to permit their insertion. Components are largest sequences of
contiguous nucleotides that belong to a motif. For instance, in
the example above, we have two components
([26_G,27_A,28_G,29_A,30_G] and
[39_U,40_G,41_G,42_U]). In fact, the definition of components
follows the classical secondary structure loop classification. Hair-
pins have one single component, bulges and internal loops have
two component and k-way junctions have k components. This
definition has been introduced with RNA-MoIP to facilitate the
description of integer programming equations.

Figure 3 illustrates the definition of motifs. In this example, we
identify two motifs (a hairpin and an internal loop) inserted into a
single stem. The figure shows the 3D structures and the base

Fig. 3 Example of 3D RNA motif insertions in a secondary structure. In green, we
show the position of the hairpin motif “1F7Y.B.6”, and in blue we indicate the
position of the internal loop motif “1FKA.A.51”. On the left side of the motif IDs,
we display a 3D structure of the motif together with its base pairing interaction
graph
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pairing interaction graphs of each motif. We observe that the
hairpin has one single component (i.e., one single stranded region),
while the internal loop has two.

3.3.1 Prediction of RNA

Tertiary Structures from

Sequence Data

Modeling RNA tertiary structure is the first step toward predicting
RNA 3D structures. We will now describe how the knowledge
accumulated in motif databases can be used together with RNA
secondary structure prediction methods to predict the structure of
large RNA molecules from sequence data only. This strategy pre-
sented here works in two steps. First, we predict a secondary
structure using classical software such as RNAfold [19] and refine
this prediction by inserting RNA 3D motifs and adding noncanon-
ical base pairs inside the predicted secondary structure with
RNA-MoIP [20]. Next, we use this extended secondary structure
to reconstruct three-dimensional models of the molecule using the
MC-Sym software [8].

3.4 Prediction of a

Secondary Structure

Scaffold

Our first objective is to create a base-pairing network from
sequence data. Since the majority of base pairs in RNA structures
are cis Watson–Crick base pairs, we first predict a secondary struc-
ture (without pseudoknots) that will be used to build a scaffold of
the interaction graph. Secondary structures (without pseudoknot)
can be deterministically predicted with RNAfold, or stochastically
generated with RNAsubopt. The command line used to predict the
minimum free energy (MFE) secondary structure with RNAfold is

RNAfold --noPS < input.fasta

where input.fasta is a text file (FASTA format recommended)
that stores your input sequence. The --noPS flag is not mandatory,
but it prevents the program from generating a postscript file draw-
ing the predicted secondary structure. The program returns the
input sequence with its MFE secondary structure in bracket format
on the line below.

However, as discussed in previous chapters, single energy mini-
mized structures do not always provide the best secondary struc-
ture prediction. Instead, it is recommended to perform a deeper
exploration of the conformational space and to consider suboptimal
structures [27, 28]. This approach to secondary structure predic-
tion, originally implemented in mfold [27, 29] and Sfold [30], is
available with the RNAsubopt program in the Vienna RNA pack-
age. The command line for running RNAsubopt is

RNAsubopt -e 3 < input.fasta

where the “-e” option specifies the depth of the suboptimal
search. More specifically, this argument indicates the range
(in kCal/mol) from the MFE, within which all suboptimal
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structures must be returned. Obviously, the values of that range
dependent of the MFE of the sequence, and should be adjusted on
a case-by-case basis. In our experiments, a value of 3 kCal/Mol
generated 25 secondary structures; which appears to provide a
good representation of the suboptimal conformational landscape.

The list of suboptimal secondary structures generated by RNA-
subopt (available at http://csb.cs.mcgill.ca/RNAMoIP) provides
us a description of the set of potential secondary structure back-
bones. It will be used as it in the next step.

It is worth noting that other software could have been used to
generate the initial secondary structures. RNAstructure [31],
mfold [29], or Sfold [30] make similar prediction than RNAsu-
bopt. Further, recent software such as MC-Fold [8] and RNAwolf
[32] have been developed to predict extended secondary structures
(including all noncanonical base pairs) directly from sequence data.

3.5 Prediction of a

Complete Base Pairing

Interaction Graph with

Motif Insertion

We describe how to use RNA-MoIP [20] to insert local motifs into
secondary structures generated with RNAsubopt. By default,
RNA-MoIP aims to inserts motifs from a repository build with
RNA3Dmotif [17]. This repository of nonredundant motifs is
included in the distribution of RNA-MoIP and named “No_Re-
dondance_DESC”. Nonetheless, advanced users can also either
build themselves an up-to-date motif repository using RNA3Dmo-
tif, or use databases available on the RNA 3D Hub [18].

RNA-MoIP is a flexible tool that allows modifications of the
secondary structure to permit the insertion of motifs. In particular,
the program has the capacity to remove a fixed amount of base pairs
from the input secondary structure. This feature is particularly
helpful if the predicted secondary structure has incorrectly pre-
dicted base pairs that prevent motifs to be inserted.

Let us assume that you work in a directory that contains the
RNA-MoIP program (i.e., the python script named “RNAMoIP.
py”) and that Gurobi has been properly installed. The command
line to insert motifs in the sequence and secondary structure with
RNA-MoIP is:

gurobi.sh RNAMoIP.py -s <sequence> -ss <structure_list> –d

<path_to_repository>

Where the argument <sequence> is a string representing the
primary structure of the RNA sequence, <structure_list> is the
name of the file that stores the secondary structures in bracket
format generated by RNAsubopt, and <path_to_repository> is
the location of the motif repository. It indicates the path to the
motif repository stored in the directory named “CATALOGUE”,
which is distributed with the RNA-MoIP package at http://csb.cs.
mcgill.ca/RNAMoIP/. Assuming that the directory “ CATA
LOGUE ” is in your current directory, the value of
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<path_to_repository> is the string “./CATALOGUE/No_Re-
dondance_DESC/”.

RNA-MoIP accepts an additional parameter to control the
maximum number of base pairs that can be removed. This parame-
ter can be adjusted with a float number (between 0 and 1) through
the option –r. By default, RNA-MoIP allows up to 30% (i.e., –r 0.3)
of base pairs to be removed. This is a reasonable choice as the base
pair prediction positive predictive value (PPV) is roughly 60% for
classical secondary structure predictors such as RNAfold and mfold
[33]. Nonetheless, users can decrease this value if they are confident
in their predicted secondary structure.

Let us now run a concrete example on the tRNA(Cys)
sequence, and let us call “RNAsubopt.out” the file storing the
output of RNAsubopt. Then, the RNA-MoIP command line is:

gurobi.sh RNAMoIP.py -s ‘ GCCAGGGUGGCAGAGGGGCUUUGCGGCGGACUGCA

GAUCCGCUUUACCCCGGUUCGAAUCCGGGCCCUGGC’-ss RNAsubopt.out -d ‘./

CATALOGUE/No_Redondance_DESC/’

The program outputs first the usual output of Gurobi (the
mathematical solver used by RNA-MoIP). We are interested by
the output produced after the line starting with “Best objective”.
It contains the secondary structure used to insert the motifs, the
IDs of the inserted motifs, the positions of the deleted base pairs,
and the score of the solution. The RNA-MoIP command above will
output the following results:

Solution for the secondary structure:

( ( ( ( ( ( ( . . ( ( ( ( ( ( . . . ) ) ) ) ) ) . ( ( ( ( ( . . . . . . . ) ) ) ) ) . . . . .

(((((.......))))))))))))

Optimal solution nb: 1

Corrected secondary structure: ((((((...(((.........)))..

((((.......))))......((((.........)))).))))))

C-2DU6.D.2-12-22-1

C-3CUL.D.6-51-61-1

C-2DU3.D.3-30-38-1

C-2DU5.D.1-6-10-1

C-2DU5.D.1-24-27-2

C-2DU5.D.1-41-48-3

C-2DU5.D.1-64-66-4

D-15-19

D-14-20

D-13-21

D-26-42

D-52-60

D-7-65
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The optimal solutions has as value:

-663.0

The first line starts with “Solution for the secondary structure”
and returns the best secondary structure extracted from the list of
suboptimal structure, which has been used to insert motifs. The
next line (starting with “Optimal solution nb”) indicates howmany
suboptimal structures have been used. In our case, only one struc-
ture can be used to build the optimal solution.

The line starting with “Corrected secondary structure” shows
the structure used by RNA-MoIP. Since RNA-MoIP may remove
some base pairs to insert motifs, this structure can be different to
the one returned on the first line.

Then, the program outputs information about the inserted
motifs and deleted base pairs. The rows starting with a “D” are
the positions of the deleted base pairs. Hence, here the output tells
us that the base pairs (15,19), (14,20), (13,21), (26,42), (52,60)
and (7,65) have been removed to insert the motifs. We highlight in
red the deleted base pairs.

( ( ( ( ( ( ( . . ( ( ( ( ( ( . . . ) ) ) ) ) ) . ( ( ( ( ( . . . . . . . ) ) ) ) ) . . . . .

(((((.......))))))))))))

As indicated in the third line, the secondary predicted
(or updated) by RNA-MoIP is:

( ( ( ( ( ( . . . ( ( ( . . . . . . . . . ) ) ) . . ( ( ( ( . . . . . . . ) ) ) ) . . . . . .

((((.........)))).))))))

The rows starting with a “C” display information about the
inserted motifs. Each row indicates where a component of a motif
(i.e., contiguous sequence of a local motif) has been used. The
syntax of these lines is

C-<ID>-<first_index>-<last_index>-<component_number>

where <ID> is the identifier (or name) of the inserted motif,
<first_index> is the first position, and <last_index> is the last
position of the insertion. The last value <component_number>
indicates which component of the motif has been used.

In our example, four motifs have been inserted: Three hairpins
and one 4-way junction. For each motif, Table 1 shows the ID,
type, and positions at which each component has been inserted.
Figure 4 illustrates these results and shows where the motifs and
components have been inserted by RNA-MoIP in the secondary
structure.
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The last line in the output returns the value of the objective
function that has been optimized by RNA-MoIP. In our example,
the value returned is �663.0. Details about this function can be
found in [20].

3.6 Reconstruction

of Tertiary Structures

from Base-Pairing

Interaction Networks

Now, we describe how to use a base pairing network to build three-
dimensional structures with the MC-Sym software [8]. This opera-
tion requires writing scripts that will be used to run MC-Sym at
http://www.major.iric.ca/MC-Sym/.

An MC-Sym script is composed of six parts. The first one
provides a description of the sequence that is going to be modeled,

Table 1
Description of motifs inserted by RNA-MoIP in the suboptimal secondary structures generated by
RNAsubopt for the tRNA(Cys) from Archaeoglobus fulgidus

Motif ID type indices of insertion sites

2DU6.D.2 Hairpin [12,22]

3CUL.D.6 Hairpin [51,61]

2DU3.D.3 Hairpin [30,38]

2DU5.D.1 4-Way junction [6,10],[24, 27],[41,48],[64,66]

Fig. 4 Location of RNA motifs inserted by RNA-MoIP in the secondary structure of
tRNA(Cys) from Archaeoglobus fulgidus. Three hairpins (2DU6.D.2 in green,
2CUL.D.6 in magenta, and 2DU3.D.3 in blue) and one four-way junction
(2DU5.D.1 in red) have been inserted. We note the four components of the
four-way junction, which correspond to the four single strands of the multiloop
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and the second indicates the set of fragments to be used. The third
part is the order in which the fragments will be merged. The fourth
and fifth parts describe geometrical constraints to satisfy during the
construction of the three-dimensional model. The last segment
defines a set of rules for space exploration. Every line starting
with ’//’ is a comment.

In this example, we show how to model the tRNA(Cys) mole-
cule of Archaeoglobus fulgidus, a 71-nucleotides long RNA into
which four motifs are inserted by RNAMoIP (see previous section).
Each part of the script is described and explained separately.

3.6.1 Part 1: Sequence

Definition

The first step defines the sequence we are modeling. The syntax is

// ==================== Sequence ====================

sequence( r A1 
GCCAGGGUGGCAGAGGGGCUUUGCGGCGGACUGCAGAUCCGCUUUACCCCGGUUCGAAU
CCGGGCCCUGGC )

// 
((((((...((((((...))))))..((((.......))))......(((((((...))
))))).))))))

// 
12345678901234567890123456789012345678901234567890123456789
012345678901

// 1 2 3 4 5 6 7

The keyword “sequence” states that we are defining a
sequence. The program requires three arguments that are indicated
between the parentheses. First, “r” specifies that we are working
with an RNA sequence. Next, “A1” sets as an identifier for the
sequence “A” and defines the first position as “1.” Finally, we end
by the sequence and close the parenthesis. The two lines of com-
ment that follows are just here to improve readability.

3.6.2 Part 2: Fragment

Definition

This is probably the most important and delicate step of the script.
In MC-Sym, the basic units are called cycles. The second step aims
to define which cycles and motifs will be used to build the structure.
Cycles, motifs and other structural elementary blocks used by
MC-Sym are called fragments. The order in which they entered is
not important, but we must ensure that every position is included
in a fragment and that all fragments overlap.

In the following example, we illustrate how to insert a basic
cycle (i.e., not a motif). Here, the cycle is a stack between two
consecutive base pairs. This is the most common usage of cycles as
most Watson–Crick andWobble base pairs are predicted by second-
ary structure predictors and thus not covered by RNA motifs. The
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code below indicates how and where to map this cycle. In this case,
a stacked base pairs at positions 1, 2, 70, and 71.

ncm_01 = library(

pdb( "MCSYM-DB/2_2/GCGC/*R20*.pdb.gz" )

#1:#2, #3:#4 <- A1:A2, A70:A71

rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

We start with a unique identifier (i.e., “ncm_01”), followed by
the keyword “library”. It indicates to MC-Sym where to retrieve
the basic fragments.

On the second line, we provide specifications of the files within
that library. Here, our library is composed of PDB files, followed by
the path “MCSYM-DB/2_2/GCGC/*_1.pdb.gz”. MCSYM-DB
is the location of all standard library fragments. MC-Sym fragments
are sorted according to the number of consecutive nucleotides in
each component. Here, we have two times two consecutive nucleo-
tides (1–2 and 70–71). Therefore, we must look into the subfolder
“2_2”. Next, we must explicitly tell which sequence of nucleotides
are involved, in the order 5’ to 3’. Since the nucleotides at positions
1, 2, 70 and 71 are respectively ‘G’, ‘C’, ‘G’, ‘C’, the next path is
“GCGC”. We end by “*.pdb.gz” to consider all possible structures
for this specific fragment. Specific subsets of those fragments can be
chosen as specified in the MC-Sym documentation.

On the third line, we provide detailed information on the
positions onto which the fragment will be mapped. The syntax is
composed of two parts, separated by the symbol “<-”. The left-
hand side indicates the segments associated with each consecutive
component. Segments are represented with an interval, and nucleo-
tides are numbered sequentially according to their position in the
motif. The right-hand side defines the specific positions (still as
intervals or segments) onto which these components/segments
must match. In our sample code, we have two stretches of two
nucleotides. We write it “#1:#2, #3:#4”, which also implies that the
first part is composed of the two first nucleotides and the second
one of the next two. On the right hand side, “A1:A2, A70:A71”
describes which sequence must be mapped. The nucleotides at
from position 1 to 2 for the first component, and the nucleotides
at from position 70 to 71 for the second component. “A” is a
unique identifier of the sequence to be used, as defined in the first
part. The last line is a set of constraints for this specific fragment.
Since this information is nonessential here, we kindly redirect the
reader to the MC-Sym documentation for more details. It is also
important to not forget to close the parenthesis opened after the
keyword “library.”

32 Vladimir Reinharz et al.



Now, we must specify how to declare the fragments inserted by
RNAMoIP. The simplest one is a hairpin. Let us start with the
hairpin “1DU6.D.2”, between positions “12” and “22.” The
code is:

pdbs_hairpin_1 = library(

pdb ("/u/reinharz/RNAMOIP-DB-VIEW3D/2DU6.D.2/*.pdb")

#1:#11 <- A12:A22

)

The syntax is very similar to those of the previous example. The
first line is the same as for the stacked base pair: a unique identifier
followed by the keyword “library.” However, the path to the library
is different. All RNA-MoIP motifs are contained in a repository
that is accessible with the path “/u/reinharz/RNAMOIP-DB-
VIEW3D/<Motif Identifier>”. The path must always end by “*.
pdb” to indicate that we want to consider all possible structures in
the folder. On the third line, we define the positions involved. In
this case, the motif contains 11 consecutive nucleotides, thus the
left hand side is “#1:#11”. Those nucleotides are at positions “12”
to “22” in our sequence, defining the right hand side. We end by
closing the parenthesis of “library.”

Finally, motifs with multiple stretches of consecutive nucleo-
tides are a slightly more complicated to specify. We illustrate that
case with the four-way junction "2DU5.D.1". Using the same
syntax as above, we write the code as follows.

pdbs_4_way = library(

pdb ("/u/reinharz/RNAMOIP-DB-VIEW3D/2DU5.D.1/*.pdb")

#1:#5, #6:#9, #10:#17, #18:#20 <- A6:A10, A24:A27, A41:A48,

A64:A66

)

In this case, our motif is composed of four components,
between positions “6” and “10,” “24” and “27,” “41” and “48,”
and “64” and “66” in the input sequence. Each component of
consecutive nucleotides needs to be described individually.

3.6.3 Part 3: Merging

Fragments

Once all fragments are specified, we must define in which order
they are going to be assembled together. One fragment must be
selected to start the construction. All others will be sequentially
added; with the constraint that each new fragment must overlaps
with any of the previous one. The syntax to assemble the first two
stacked base pairs, uses the unique names used in the fragment
definitions (i.e., ncm_01 and ncm_02), and is written as follows.
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structure = backtrack

(

ncm_01

merge( ncm_02 1.5 )

)

It is important to always start with the keywords “structure ¼
backtrack”. The assembly is indicated between two parentheses.
The starting point of our model is “ncm_01” and must be written
on the first line. On the second line. we use the keyword “merge”
followed, between parentheses, by an argument that indicates the
next fragment, and another argument that specifies an “error”
threshold that can be tolerated by the program to extend the
structure. By default we use a value of “1.5”. More information
on this parameter can be found in the MC-Sym documentation.

3.6.4 Parts 4 and 5:

Constraints

MC-Sym requires several general parameters and constraints to
perform the three-dimensional reconstruction. A standard set of
values is provided in the following code and can be used as it is.

/ / = = = = = = = = = = = = = = = = = = = B a c k t r a c k R e s t r a i n t s

===================

clash

(

structure

1.5 !( pse || lp || hydrogen )

)

backtrack_rst

(

structure

width_limit = 25%,

height_limit = 33%,

method = probabilistic

)

// =================== Ribose Restraints ===================

ribose_rst

(

structure

method = ccm,

pucker = C3p_endo,

threshold = 2.0

)
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3.6.5 Part 6: Space

Exploration Parameters

Finally, the last step is to determine the boundaries of the space to
explore. We also specify the time limit and the maximum number of
structures to output. MC-Sym will stop as soon as one of those
conditions is fulfilled. The other parameter options are standard
and can be found in the documentation of MC-Sym.

// =================== Exploration Initialization =========

explore

(

structure

option(

model_limit = 1000,

time_limit = 30m,

seed = 3210 )

rmsd( 3.0 sidechain && !( pse || lp || hydrogen ) )

pdb( "structure" zipped )

)

Where, the key word “model_limit” specifies the maximal
number of structure to generate, and “time_limit” the maximal
amount of time allowed to run MC-Sym. Here, we use an upper
bound of 30 min with a maximum of 1000 structures. The time
needed to generate structures can vary. In our benchmark [20], we
have seen that about half an hour of computation was often enough
to produce solutions with molecules with sizes up to one hundred
nucleotides. Within this time frame, the maximum number of
structures created will rarely reach one thousand in that time.
Importantly, motifs with a large number of components will highly
restrict the exploration of the space, thus the time needed to
explore the conformational space. In absence of any motif with
three or more components, increasing the time limit to 2 days is a
reasonable step. In that case, the number of structures could
increase to five or even ten thousands, and we can expect much
more diversity in the sample set.

It is difficult to determine in advance how many structure
samples are necessary to provide a good representation of the
conformational landscape. Numbers between 100 and 1000 are
good starts, but more might be occasionally needed. We acknowl-
edge that large numbers of structures are difficult to analyze. For-
tunately, as we will see in the next section, the MC-Sym server
offers several tools to facilitate these tasks.

The key word “seed” is a random number used to initialize
MC-Sym. Its value has little importance in the context of this
discussion, and users can modify it if they wish.

The complete source code of this MC-Sym script is available at
http://csb.cs.mcgill.ca/RNAMoIP/.
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3.7 Retrieving,

Optimizing, Analyzing

and Visualizing

Structures

Once submitted, the script will run on MC-Sym servers and the
URL of a result page will be returned to the user. This page offers
multiple options to optimize, analyze and retrieve the results. To
access these options, the user must access the web page “com-
mands.html” located in the results directory.

The energy minimization of the MC-Sym structure is probably
one of the most important options. We recommend any user to run
it before analyzing or visualizing the results. The “steepest descent”
option returns satisfactory results in a short time, but more sophis-
ticated and slower techniques (e.g., simulated annealing) are also
available.

Clustering of structures using the k-means algorithm is another
useful option that enables the user to automatically identify the
most significant structures in the set or structures returned by
MC-Sym.

A PDB model of all predicted structures is available at the root
of the directory. Each model can be visualized with a molecular
viewer such as PyMOL or Jmol. Figure 5 show an example of a
structure predicted with our RNA-MoIP and MC-Sym pipeline,
aligned with the experimental structure [23].

3.8 Web Server A web server is available with most functionalities at rnamoip.cs.
mcgill.ca [34]. It has two objectives. The first one is to help the user
to visualize the secondary structure and motif predictions of
RNA-MoIP. The second is to facilitate the production of complete
3D models with the automated generation of a script for MC-Sym
web server.

The basic input is an RNA sequence. For convenience, up to
five sequences can be given in the same file, which should use the
FASTA format. The user can adjust several parameters in the

Fig. 5 3D structure of the tRNA(Cys) from Archaeoglobus fulgidus predicted with
the RNA-MoIP+MC-Sym pipeline (in blue), aligned with its crystallographic
model [23]
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Advanced Optionsmenu, including (1) the maximal fraction of base
pairs that can be removed from the secondary structure (default
30%), (2) the complexity of junctions (by default only hairpin,
interior loops, and three way junctions are allowed but the user
can optionally choose to search for four way junctions), (3) the
maximal number of solutions to output (default 1), and (4) the
method to generate candidate secondary structures (i.e., the para-
meters to be used by RNAsubopt to sample the secondary struc-
tures or a custom list).

Figure 6 shows the main page of the web server output. Its
URL is available for at least 2 weeks. There are four main elements
in the output. The top bar (A) contains links to other optimal
RNA-MoIP predictions (i.e., other candidate secondary structures
with motifs insertions computed by RNA-MoIP). The middle
frame (B) contains the sequence and secondary structure in
dot-bracket notation as well as the graphical VARNA representa-
tion [35]. Below, a table (C) stores all inserted motifs with their
position in the sequence and links to visualize them separately in an
interactive 3D viewer. Finally, the footer (D) features links to
download a MC-Sym script that can be used on the MC-Sym web
server to generate 3D structures, and a tarball with the entire
RNA-MoIP output.

3.9 Prediction of RNA

3D Modules from

Sequence Data

In order to map an input sequence to a 3D structure, RNA-MoIP
identifies subsequences that match exactly to a known 3D structure
fragments. Since data must match with a 3D structure, the number
of covered sequences remains relatively low. While very robust, this
assumption has the downside of ignoring slightly different
sequences which can fold into the same 3D structure, but have
not been crystallized yet.

Alignments of RNA sequences with similar secondary structure
and function have been assembled and curated, and include, for
some motifs, hundreds of distinct sequences for which a crystal
structure is not yet available but can confidently be expected to
adopt the same three-dimensional structure. These alignments,
referred to as family alignments, are available in the Rfam database
[36]. RNA-MoIP cannot yet directly take advantage of this infor-
mation. Yet, we developed BayesPairing [37, 38] with the task of
scanning a sequence and identifying RNA 3D modules. It is a
python package that comes with a pretrained database of modules,
which should be sufficient to considerably enrich 3D structure
prediction. The software is available as a web server and as a
standalone tool, as long as a user manual, at bayespairing.cs.
mcgill.ca. With the stand-alone version, we use the following com-
mands to execute the program:

cd bayespairing/src
python parse_sequences.py -s input.fa -samplesize 1000

RNA Three-Dimensional Structures 37



Fig. 6 RNAMoIP web server output on the Archaeoglobus fulgidus sequence
(2DU3). In (A) there is the opportunity to toggle between different optimal
structures and solutions. We can see here that there are five insertion patterns
that are equivalent. In (B) there is the sequence and corrected secondary
structure—after base pairs removal—as a 2D VARNA representation of that
structure with the positions where modules are inserted colored. In (C) a table
shows all inserted modules with their positions in the sequence, and provides a
link to see the module in an interactive 3D window and download its PDB
description. Finally in (D) there are links to download the full raw output of
RNA-MoIP as the automatically generated script for MC-Sym
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where “input.fa” is a fasta file containing the sequences to
parse. BayesPairing then prints out predictions. If the secondary
structure of the tested sequences is known or has been previously
predicted by another software, it can be added to the input fasta file
as an extra line after the sequence under each entry. A typical output
looks like follows:

===========================================================
| MODULE   SCORE        MODULE POSITIONS         SEQUENCE
|
|  0        6.85       5-6,29-35,65-68         
CA*UUUGAAC*GGAG      |
|  0        2.46       25-26,42-48,72-75       
CA*UUUGAAC*GGAG      |
|  0        1.54       9-10,28-34,59-62        
CA*UUUGAAC*GGAG      |
|  1        5.17 5-9,35-38,43-44,69-72   
CAGGG*CCCU*AC*GGAG   |
=========================================================

where the first column contains the module ID in the default
BayesPairing database. This default database includes motifs that
can map to previously published module catalogues like Rna3dMo-
tif [17], the RNA 3D Motif Atlas [39], the RNAbricks database
[40], or caRNAval [41]. A description and graphical representation
of each module is available with BayesPairing. The second column
describes a probabilistic score, indicating how likely the presence of
the module is. The third column includes the predicted position of
the module in the input sequence, and the fourth column contains
the sequence at these positions.

BayesPairing 2 performs predictions by sampling the secondary
structure ensemble with RNAsubopt like RNA-MoIP, so both
software can be expected to perform well on the same type of
sequence. For sequences in the length range that can be accurately
predicted by RNA-MoIP and MC-Sym, we recommend using a
sample size of 1000 structures with the parameter -samplesize.

It is also possible to create a new model to scan for a specific
module of interest with BayesPairing. The inputs required are a
graph, which models the local 3D structure of the module (avail-
able with Rna3dmotif and the RNA 3DMotif Atlas), and a multiple
sequence alignment, which represents the different nucleotides that
can be adopted by the module at each position without significantly
affecting the final 3D structure.

BayesPairing can already be used to enhance RNA-MoIP pre-
dictions. Indeed, if an important module is not immediately found
by RNA-MoIP but is identified BayesPairing, a user can pass this
information to RNA-MoIP through a DESC structure file with
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sequence positions. This feature, only available in the command
line interface, allows RNA-MoIP to include any motifs identified
with other tools. BayesPairing can thus be used to verify, enhance
or complement module identifications performed by RNA-MoIP,
eventually contributing to a better 3D structure determination by
adding new constraints.

4 Notes

1. The motifs database used by RNA-MoIP includes motifs from
the PDB model 2DU3 (tRNA(Cys) from Archaeoglobus fulgi-
dus) database. In applications on other (new) molecules, it will
be very unlikely to have motifs from the same molecule in
the motif repository. Fortunately, even in the absence of motifs,
the benchmark performed in [20] shows that the quality of the
structure prediction remains high.
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Chapter 3

Motif Discovery from CLIP Experiments

Marco Pietrosanto, Gabriele Ausiello, and Manuela Helmer-Citterich

Abstract

RNA primary and secondary motif discovery is an important step in the annotation and characterization of
unknown interaction dynamics between RNAs and RNA-Binding Proteins, and several methods have been
developed to meet the need of fast and efficient discovery of interaction motifs. Recent advances have
increased the amount of data produced by experimental assays and there is no available method suitable for
the analysis of all type of results. Here we present a simple workflow to help choosing the more appropriate
method, depending on the starting situation, among the three algorithms that best cover the landscape of
approaches. A detailed analysis is presented to highlight the need for different algorithms in different
working settings. In conclusion, the proposed workflow depends on the nature of the starting data and on
the availability of RNA annotations.

Key words Motif discovery, RNA secondary structure, CLIP-Seq, High-throughput assay, RNA

1 Identification of Structural Motifs in Ensembles of RNA Molecules

We will start with a possible (and widely used) description of the
problem.

We have a set of RNA sequences, whose representation can be
thought as a string (for primary or even secondary structure [1]), all
of which are supposed to share a common feature (which may be a
common function, a common interactor, similar roles). These
RNAs are defined by their length Li and by their number N.
Moreover, in this problem, an assumption is used that requires an
additional layer of management, to specify whether or not one
expects to find the motif (whether in primary or secondary struc-
ture) in each RNA or only in a subset, and how many motif
instances one expects to find in each RNA harbouring the motif.
The ZOOPS model (that stands for Zero or One Occurrence Per
Sequence) assumes that in every RNA the number of occurrences of
the motif to be found is either 0 or 1. In other words, you may not
have two occurrences of the same motif in one single RNA (more
words will be spent about this later) and, more importantly, this
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super-problem requires the ability to find a subset of “correct”
RNAs that really contain the functional region.

In numbers the search space number of states Ω can be written
as

Ω N ,L
� � ¼ 22N

N þ 1

XL

l¼1

l L � l þ 1
� �

where L is the mean length of the analyzed RNAs.
Considering one section of the equation at a time: the problem

of finding which RNA contains the motif creates a series of possible
answers that are exactly 2N, the number of possible ways of subset-
ting a set of N items.

We now have to take into account the fact that the motif length
and its position in every RNA is unknown. This actually extends the
search space by a factor of

X�L

l¼1

l �L � l þ 1ð Þ

for each RNA, where �L is the mean length along the input set of
RNAs. However, this factor is understandably less problematic
since its quadratic dependence. This aspect is one of the possible
reasons why most methods focus on the research of patterns in
inputs that are characterized by a relatively low number of RNA
molecules (100–200), each one up to 2 kb long or more. In this
region of the input space the computational complexity becomes
feasible enough to think of efficient exhaustive searches.

On the other hand, moving toward the direction of more input
RNAs exponentially amplifies the problem (by a factor that is
proportional to 2N), thus making the state space unexplorable in
a complete way.

Let us clarify this with a plot: in Fig. 1 there is a sketch of the
approximated search space dimension (in Log2) with the number
of input RNAs (N) and the mean RNA sequence length (L ) as
variables.

It is quite clear how the increase in N is the dominant term
here. Existing methods for structural motifs, to the best of our
knowledge, fall in the left side of the input space plot, ranging
from lower left to upper left and they seldom overcome the limits
of few hundreds of RNAs. If they do so they are bound to increase
their needed time exponentially (CMfinder for example takes
~1 min to explore 100 RNAs with a mean length of 100 nt but
~20 min for a dataset of 500 RNAs of the same size), but that is
because they have very efficient specialized algorithms that are not
designed for those kinds of inputs.

The solution for the limitation of having only one occurrence
(and not more) per molecule can be approximated by
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superimposing another layer that can address this aspect afterward,
for example by searching the derived motif model in the input set
while dropping the ZOOPS assumption. Note that this does nei-
ther hinder nor slow the process since the exponential dependence
of the search space from the number of RNAs (2N as stated before)
is only present during the construction of a motif model (that is the
research of a common similar piece - sequence or structure, up to
now it is equivalent because the part of the problem that depends
on the structure has not been introduced—in a subset of the
input set).

The subsequent search of the motif model in the input set, that
can be used to refine the model or to catch all occurrences, is not
affected by exponential growth of the state space. This kind of
problem has in fact a number of states that have to be checked
that is roughly proportional to

L � l
� ��N

where l is the motif model length and L is the mean length of the
input set of RNAs. Since looking for all the possible candidates is
not exponential as it is in the model definition, it becomes feasible
to simply scan all the input set looking for possible occurrences of
the same motif.

Fig. 1 Base-2 logarithm of the number of states allowed by the problem of motif finding as characterized by
the ZOOPS assumption, with unknown motif Length and noise addition
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2 Available Methods

Many methods have been developed for the problem of motif
discovery (counting both primary and secondary structure focused
methods there are more than 30, for a recent review see the excel-
lent work from Sasse and colleagues [2]). Each offers a peculiar
approach on the problem modeling, ranging from standard PSSMs
to higher-order interactions (e.g., graphs, [3]), taking into account
secondary structures at different levels, from a simple context man-
aging [4] to complex structural dependencies encoded in the data
representation [5–8]. Moreover, a subset of these methods is devel-
oped to work on strong assumptions of conserved RNAs [8], or can
only be applied to in vitro RBP-RNA data [9, 10], or relies on
secondary structure prediction for the structural aspect of their
algorithm [6, 11]. The landscape is heterogeneous and no single
method is able to cover any working setting. However, some meth-
ods have shown to cover more possibilities than others, while
maintaining excellent performances. We are referring to CMfinder
[8], SMARTIV [12], and BEAM [5], which will be the focus of
this work.

CMfinder estimates covariance models for a set of aligned
RNAs, assuming their conservation. It is at the core of the RFAM
database [13]. The algorithm is highly efficient for long RNAs
(since it does not rely on single structure predictions) but extremely
slow for sets of RNAs with more than ~500 elements. Its algorithm
is deterministic but does not provide an explicit way of managing
noisy data. It does not rely on single secondary structure prediction
and estimates a consensus secondary structure of the resulting
covariance model that can be interpreted as a motif. This method
has not been explicitly developed for motif discovery tasks but in
practice it can be used with efficiency by searching for a suitable
alignment of your input set (with CMalign) and then computing
the covariance model with CMfinder.

SMARTIV explicitly uses data from in vivo binding techniques
such as CLIP-Seq assays, by exploiting the binding affinity to cut
the dataset into a target set (usually the highest 1000 scoring
RNAs) and a background set (the others). It relies on secondary
structure prediction (RNAfold by default [14]) to predict single
RNA conformations and uses a combined sequence-structure
encoding which maps each nucleotide into its secondary structure
state (paired or unpaired). The analysis is carried out by enumerat-
ing enriched k-mers. Authors do not explicitly cover the noise
managing but the assumption on the top ranking affinity score is
solid.

BEAM has been built to work on high numbers of elements.
The secondary structure is encoded with a high-order alphabet
which takes into account secondary structure elements and lengths,
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and uses a secondary structure elements substitution matrix (devel-
oped in [1]) to perform secondary structure alignments. It runs
parallel primary and secondary structure analyses by aligning local
secondary contexts to a Position Frequency Matrix (representing
the motif) which is built dynamically during the run and optimized
by means of a simulated annealing procedure. The algorithm is
however not deterministic and depending on the complexity of
the dataset can produce different suboptimal solutions. It has
been shown that it can manage noisy data making up to the 80%
of the dataset.

3 Workflow

The standard starting point is having a set of supposedly homo-
functional RNAs. If the data is produced by RBP-RNA binding
assays such as in vivo PAR-CLIP/HITS-CLIP it may be annotated
with RNAs estimated binding affinities. In that case SMARTIV is
the best tool since it explicitly exploits that part and directly uses the
BED file coming out from experimental assays. However, if this
annotation is not present, the experimenter wants to use a different
background data, or there is reason to ignore the affinity score, one
should select a subset of data (e.g., by cutting at a certain score
threshold, depending on the experimental conditions) and do as
follows: both BEAM and CMfinder need explicit RNA sequences/
structures, so there is need to extract the sequences from chromo-
somic intervals. This is best done by the bedtools suite software
bedtofa [15] (Fig. 2). If using BEAM, chromosomic intervals
coming out from these experiments are usually short (~30 nt),
and should secondary structure analysis be needed, a longer

Homofunctional
RNA data

Ranked
data?

Cut at
threshold

Genomic
coordinates to
Sequences and

Structures

Cmfinder, BEAM

N > 500?

BEAMSMARTIV

Yes

Yes

No

Yes No

No

Fig. 2 BED to Fasta suggested pipeline
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sequence is preferred (for structural prediction). With this regard
we suggest to extend chromosomic intervals by a fixed amount at
both sides (the BEAM server provides this service automatically
[16]) (Fig. 3). With this workflow one should not exceed ~500 nt
for the final length of each RNA since secondary structure predic-
tion tools are not efficient nor accurate over that threshold
[17]. While CMfinder works best for smaller datasets sizes
(it becomes computationally unfeasible for datasets bigger than
~500 elements), BEAM can work at any size provided (it has
been tested up to 100.000 elements) [6].

4 Comparison with CMfinder on Small Datasets

The workflow is well separated for different working conditions,
but a comparison between BEAM and CMfinder for smaller, non-
ranked datasets has been made in [5].

The test is as follows: consider the datasets that contained a
total of 100 structural inserts used to assess BEAM performances
on large inputs (about 104 molecules, described in [5]—main and
supplementary data—and available online at beam.uniroma2.it/
data), without added noise (i.e., where the insert is put in the
100% of the RNAs and with one occurrence per RNA). Since
CMfinder was designed for smaller RNA collections, sample
100 RNAs for every dataset 100 times (extraction with reinsertion)
ending with 100 noiseless datasets for every insert.

Both RNAfold+BEAM and CMfinder were run requesting
only one motif in output (using the following command lines:
CMfinder: perl -w cmfinder.pl -n 1 $file; BEAM: java -jar BEAM_-
release_1.5.1.jar -f $file -M 1 -R 1), and the output for every dataset
was compared to the reference structure using a structural gapless
alignment and the MBR substitution matrix as scoring function.
The test score is therefore a ratio of the structural alignment score
of the motif model in output against the reference structure with
the reference structure against itself (the maximum alignment score
possible). This score lies between 0 and 1 since negative scores due
to very bad alignments (very rare, 1 for each method) were forced
to 0. If the motif and the reference were of different lengths the

Fig. 3 Suggested workflow from raw data to motif discovery
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maximum scoring window was reported. The BEAM motif model
was considered as the highest individually scoring RNA in the
output. The CMfinder motif model was taken from the *.motif.
* file.

The results show that for small datasets BEAM performances
are very similar to those of CMfinder, with some outliers where
BEAM has higher performances: tolerating at most 5% difference
between scores, the test resulted in 50 times where BEAM went
better and 25 “ties” (this holds for the case where every point is the
mean of the insert-related dataset, that is the worst).

For what it regards wall-clock run-time, with inputs of about
100 RNAs both RNAfold plus BEAM and CMfinder alone take
around O(102) seconds to compute a single motif. To show how-
ever that BEAM could maintain performances while not affecting
running time, the same test was repeated with bigger datasets
(500 and 104 molecules). Performances were maintained for both
procedures, however CMfinder times took an average of about
35 min (2100 s) per run with input size 500 while BEAM 100 s,
revealing a faster execution time for extremely large datasets (such
as CLIP data). For larger datasets CMfinder execution times
became unfeasible and thus its usage in those conditions is discour-
aged (Table 1).

5 Output

Each suggested software has its own data format to provide as
output. It is useful to know what to expect when choosing which
one is more suitable for the available data.

SMARTIV reports a list of motifs as Position Weight Matrices
(PWMs) with both primary sequence and their most probable
paired/unpaired status, providing a sequence-focused Logo repre-
sentation and the matrix itself.

CMfinder *.motif.* file contains the information about the
motif model as a sequence PWM as well as files for the derived
Covariance model. This is well integrated with other InfeRNAl
software like CMsearch in order to provide further insights or
analyses of your motif.

Table 1
Wall-clock run-time for CMfinder and BEAM at different input sizes

Input size (#RNA) 100 500 10,000

CMfinder (s) ~150 ~3000 NA

BEAM (s) ~80 ~100 ~100
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BEAM outputs a list of sequences that match the putative motif
and PWMs for both primary and secondary structure composing
the result along with a Logo representation of the secondary
structure.

For both SMARTIV and BEAM there is currently no precon-
structed follow-up software and further work should be done by
analyzing the PWMs with in-house scripts.
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Chapter 4

Profiling of RNA Structure at Single-Nucleotide Resolution
Using nextPARS

Uciel Chorostecki, Jesse R. Willis, Ester Saus, and Toni Gabaldon

Abstract

RNA molecules play important roles in almost every cellular process, and their functions are mediated by
their sequence and structure. Determining the secondary structure of RNAs is central to understanding
RNA function and evolution. RNA structure probing techniques coupled to high-throughput sequencing
allow determining structural features of RNA molecules at transcriptome-wide scales. Our group recently
developed a novel Illumina-based implementation of in vitro parallel probing of RNA structures called
nextPARS.
Here, we describe a protocol for the computation of the nextPARS scores and their use to obtain the

structural profile (single- or double-stranded state) of an RNA sequence at single-nucleotide resolution.

Key words RNA secondary structure, Genome-wide enzymatic probing, RNA structurome, RNA
folding

1 Introduction

Knowledge of the secondary structure of RNAs both in vivo and
in vitro is crucial for understanding the regulatory roles that RNAs
exert in most cell functions, via characterizing their intramolecular
interactions, and how they can change depending on external con-
ditions, including interactions with other molecules [1]. Among
several approaches that have been described during the last years to
interrogate RNA structure using high throughput sequencing
technologies, nextPARS [2] is an enzymatic-based technique that
allows probing the secondary structure of RNAs in vitro at a
genome-wide scale. It is an adaptation of the previously developed
PARS [3] strategy to the Illumina sequencing platform, which
allows for sample multiplexing and higher throughput than the
original technique.

To obtain structural information of RNAs using nextPARS [2],
two μg of total or polyA-selected RNA of the species of interest are
first denatured, folded, and then enzymatically probed with RNase
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V1 to cleave double-stranded sites and with S1 nuclease in a sepa-
rate sample to cut single-stranded conformations. Some additional
RNA molecules of interest can be spiked in each of the samples, as
possible positive controls with known structure, for example.
Digested samples are library prepared using the TruSeq Small
RNA Sample Preparation Kit (Illumina), reverse transcribed,
PCR-amplified and finally sequenced in multiplex with Illumina
platform. The reads obtained are mapped to the reference genome
and the cutting points are determined at the 50end of the reads.
Further details on the experimental methodology can be found in
the original nextPARS publication [2].

In this chapter, we briefly describe nextPARS methodology and
report, using an illustrative example, how the nextPARS raw output
data is analyzed in order to go from sequencing reads to structural
profiles of RNAs present in a sample (Fig. 1).

2 Materials

2.1 Dataset

and Overview

Let us briefly describe the samples and formats for this work
(Fig. 1).

– Raw sequencing data: we obtained the sequencing data (raw
reads) from the SRA database (accession number

2
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transcript)
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of cuts per position of the
transcript filtered).

Fig. 1 nextPARS Pipeline. Flowchart showing the steps involved in the nextPARS
protocol to go from sequencing reads to structural profiles of RNAs present in a
sample
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PRJNA380612). The raw sequencing data is in standard Sanger
FASTQ format. Details on the experimental methodology can
be found in nextPARS publication [2].

– Preprocessing: we removed adapter sequences from sequencing
reads. The input and output data is in FASTQ format.

– Mapping of Illumina reads and determination of enzymatic
cleavage points. Illumina reads were aligned to the S. cerevisiae
reference genome and we concatenated the sequences of spike-
ins control molecules. We use S288C full chromosomes version
R64-2-1, released 18 Nov 2014 (fasta file) and features file from
the 16 nuclear chromosomes plus the mitochondrial genome
(gff file). The output is in .bam format.

– Parsing. For each read alignment, we retrieved the 50-end posi-
tion in the reference genome and compared this to the genome
annotation. The resulting digestion profile is stored as the num-
ber of cuts per position of the transcript. This is stored in csv,
comma-separated format (values for each position are separated
by semicolons).

– nextPARS score: To obtain the scores from nextPARS experi-
ments we used as an input the csv files described above (number
of cuts per position of the transcript), and we obtained a new csv
file. This file contains a structural profile of an RNA transcript
(single- or double-stranded state), with a score for each nucleo-
tide that ranges from �1.0 (highest preference for single strand)
to 1.0 (highest preference for double-strand).

2.2 Computational

Hardware

We tested the pipeline on a computer with Intel(R) Xeon(R) CPU
3.30GHz, with four cores and 32 GB of RAM. We use Linux
(Debian) on x86_64 Architecture. The size of the raw data, inter-
mediate files and final results are about 30 GB for this example.
Therefore, 100 GB of hard disk space is required for computing the
example data.

2.3 Computational

Software

Reproducibility facilitates peer review and ensures that the model,
application, and analysis you build can run without worrying about
details and software installation. Also, it facilitates collaboration and
sharing. Therefore, we built a Docker container based on Ubuntu
18 for nextPARS software. Docker is a tool designed to make it
easier to create and run applications by using containers. Contain-
ers allow developers to package up an application without the need
to make custom builds for different environments. As a result, the
application will run on any other Linux machine regardless of any
custom settings the machine may have that could differ from the
machine used to write and test the code.
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This protocol assumes users have a Unix-like operating system
(i.e., Linux or macOS X), with a bash shell or similar, thus all
commands have to be run in a terminal. Although it is possible to
follow this protocol with aMicrosoft Windows machine (e.g., using
the Unix-like Cygwin), the additional steps required are not
discussed here.

3 Methods

To illustrate this example, we will use six samples from S. cerevisiae
and additional RNA molecules from V1 and S1 nextPARS experi-
ment. The data can be downloaded from the publicly SRA database
(accession number PRJNA380612) (see Note 1). Most of the
examples are shown using one of the samples (1_S1), so you have
to repeat each step on the other five samples. In step 7, the scripts
were adapted to process all samples together.

In order to go from the fastq outputs of the nextPARS experi-
ments to a format that allows us to calculate scores, first map the
reads in the fastq files to a reference genome using the program of
your choice [4]. If you already did that you can omit steps 2 and
3. But, If you want to download the data from SRA with SRA
toolkit, trim the sequences with cutadapt and map to the genome
with STAR (see Note 2 and Subheadings 3.2 and 3.3).

This table shows the correlation of each sample run from the
SRA project and the sample name (V1’s and S1’s experiments).

# RUN SAMPLE_NAME
# SRR5422921 1_V1.fastq
# SRR5422920 2_V1.fastq
# SRR5422919 3_V1.fastq
# SRR5422926 1_S1.fastq
# SRR5422925 2_S1.fastq
# SRR5422924 3_S1.fastq

You can download the source code and the sample data from
GitHub (https://github.com/Gabaldonlab/nextPARS_docker)
and the docker container from Docker Hub (https://hub.docker.
com/nextpars).

3.1 Setup

the Pipeline: TIMING

<5 min

3.1.1 Clone the Git

Repository

git clone https://github.com/Gabaldonlab/nextPARS_docker.git

Download the last image version from Docker Hub.

docker pull cgenomics/nextpars
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3.1.2 Download and Run

Docker Container

Start a docker interactive session using the nextpars container.

docker run -it -v /path/to/nextpars/github/:/home/nextPARS

cgenomics/nextpars:latest bash

The /path/to/nextpars/github refers to the path from
your local machine where you have the nextPARS directory (clone
from github). Warning: Anything you do within the docker will be
reflected in the data folder!

Now you are working inside the docker container. First, cd into
bin/scripts directory and execute the configure bash script.

cd /home/nextPARS/bin/scripts

source configure.sh

3.1.3 Build Genome

Indexes (Optional)

Step 1.3, 2, and 3 are optional. If you want to trim and map the raw
reads with different software than cutadapt [5] and STAR [6],
proceed directly to Step 4 (Fig. 1).

STAR requires a reference genome index for mapping. We use
S. cerevisiae S288C as the reference genome that was downloaded
from Saccharomyces Genome Database (SGD) [7]. We build the
index by using the following command.

cd $DATAPATH/DB/saccharomyces_cerevisiae

STAR --runThreadN 4 \

--runMode genomeGenerate \

--genomeDir . \

--genomeFastaFiles saccharomyces_cerevisiae.fasta \

--sjdbGTFfile saccharomyces_cerevisiae.gff \

--sjdbGTFfeatureExon gene \

--sjdbGTFtagExonParentTranscript Parent

# --runThreadN Number of threads to be used for genome

generation

# --runMode genomeGenerate option directs STAR to run genome

indices generation job

# --genomeDir specifies the path to the directory where the

genome indices are stored

# genomeFastaFiles specified one or more FASTA files with the

genome reference sequences

# specifies the path to the file with annotated transcripts in

the standard GTF format

# --sjdbGTFfeatureExon tag name to be used as exons’ parents

for building transcripts

# --sjdbOverhang specifies the length of the genomic sequence

around the annotated junction to be used in constructing the

splice junctions database.
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3.2 Trimming

Sequence Adapters:

TIMING <3 min per

sample (Optional)

Raw sequencing reads likely to contain parts of the adapter
sequence. Therefore, these sequences must be identified and
trimmed. These adapters can be removed using a specialized
adapter removal tool and there is a more than large choice for the
appropriate published adapter trimming tools. Here, we use cuta-
dapt for this purpose. In fastq directory you should have the
6 samples from S. cerevisiae nextPARS experiments.

cd $DATAPATH

cutadapt -a TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC -m 18 -j 4 -o

$DATAPATH/trimming/1_S1.fastq.qz $DATAPATH/fastq/1_S1.fastq

# -a ADAPTER Regular 3’ adapter

# -m LENGTH Discard processed reads that are shorter than

LENGTH.

# -j N, where N is the number of cores to use.

# -o output file (output file formats are FASTA and FASTQ,

with optional compression and the output file format is

recognized from the file name extension).

3.3 Aligning

the Reads Against

the Genome using

STAR: TIMING <5 min

per Sample (Optional)

Mapping reads to the genome: TIMING <5 min per sample
The trimmed reads should be aligned to the reference genome.

Mapping results are in BAM format.

cd $DATAPATH

STAR --runThreadN 4 \

--genomeDir $DATAPATH/DB/saccharomyces_cerevisiae/ \

--readFilesIn $DATAPATH/trimming/1_S1.fastq.qz \

--outFileNamePrefix $DATAPATH/mapping/1_S1.fastq \

--outSAMtype BAM SortedByCoordinate \

--outTmpDir $TMP_DIR/1_S1.fastq

# --runThreadN Number of threads to use for mapping

# --genomeDir path of the STAR index

# ---readFilesIn name(s) (with path) of the files containing

the sequences to be mapped

# --outFileNamePrefix Output files name prefix (full or

relative path).

# --outSAMtype type of SAM/BAM output

# --readFilesCommand Command line to execute for each of the

input files.

# --outTmpDir path to a directory that will be used as

temporary by STAR.

Once you obtain the bam file, use nextPARSParser.py to count the
number of reads at each position (which indicates a cut site for the
enzyme in the file name).
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3.4 Parser: Number

of Reads Beginning

at Each Position:

TIMING <8 min per

Sample

If you skipped steps 1.3, 2 and 3, we assume that you have the
bam files in the data/mapping directory. As an alternative, you
can use already generated bam files (subsets from the originals),
that are in data/mapping_subset directory. To do so, you have
to change -b argument by modifying mapping by mapping_sub-
set on the following command.

cd $BINPATH

python nextPARSParser.py \

-b $DATAPATH/mapping/1_S1.fastqAligned.sortedByCoord.out.bam

\

-g $DATAPATH/DB/saccharomyces_cerevisiae/saccharomyces_cere-

visiae.gff \

-o $DATAPATH/tab/1_S1.tab \

-t gene

# -b Path to the SAM/BAM file containing the mapped reads

# -g Path to the GTF file containing the features

# -o The name given to the output file in csv format (.tab

extension)

# -t Feature type (3rd column in GTF file) to be used

(default, suitable for Ensembl GTF files: exon)

# -a Skip all reads with MAPQ alignment quality lower than the

given minimum value (default: 10). MAPQ is the 5th column of a

SAM/BAM file and its usage depends on the software used to map

the reads.

The output of this script is a csv file containing the name of the
molecule and the count values (number of inferred enzyme cuts)
for each position, separated by semicolons.

3.5 Filtered Out

Transcripts with Low

Counts: TIMING

<1 min per Sample

The reformat_PARSparser_output.py script filters out transcripts
with low counts and produces output in csv format.

cd $BINPATH

python reformat_PARSparser_output.py -t $DATAPATH/tab/1_S1.

tab -m 20

# -m Min average counts for a given transcript

# -tab csv file to be reformatted

3.6 nextPARS

Scores: TIMING

<1 min per Sample

To obtain the final scores from nextPARS experiments (from .tab
files), use the following command. For details on how to calculate
the scores, see Note 3.
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cd $BINPATH

python get_combined_score.py \

-i U1 \

-inDir ../data/tab \

-f ../data/fasta/U1.fa \

-o ../data/score/U1_score.RNN.tab

# -i to indicate the molecule for which you want scores (all

available data files will be included in the calculations --

molecule name must match that in the data file names)

# -inDir to indicate the directory containing the .tab files

with read counts for each V1 and S1 enzyme cuts

# -f to indicate the path to the fasta file for the input

molecule

# -s to produce an output Structure Preference Profile (SPP)

file. Values for each position are separated by semi-colons.

Here 0 = paired position, 1 = unpaired position, and NA =

position with a score too low to determine its configuration.

# -o to output the calculated scores, again with values for

each position separated by semi-colons.

# --nP_only to output the calculated nextPARS scores before

incorporating the RNN classifier, again with values for each

position separated by semi-colons.

# {-V nextPARS} to produce an output with the scores that is

compatible with the structure visualization program VARNA1

# {-V spp} to produce an output with the SPP values that is

compatible with VARNA.

# -t to change the threshold value for scores when determining

SPP values [default = 0.8, or -0.8 for negative scores]

# -c to change the percentile cap for raw values at the

beginning of calculations [default = 95]

# -v to print some statistics in the case that there is a

reference CT file available. If not, will still print nextPARS

scores and info about the enzyme .tab files included in the

calculations.

3.7 Automatization

of Steps

In order to simplify steps 2–5 (Fig. 1), there are different bash
scripts in the bin/scripts directory inside the container. These
scripts will help to automate the pipeline and to use a set of V1
and S1 samples. We assume that you have the .fastq files in the
data/fastq directory.

cd ~/bin/scripts

Trimming

./trimming.sh
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Mapping reads. Use the following script to do the mapping.
First, you have to generate the genome index (step 1.3).

./mapping.sh

If you want to start with the Parser step (count number of reads
beginning at each position), we assumed that you have the bam files
in the data/mapping directory. As an alternative, you can use
already generated bam files (subsets from the originals), that are
inside the data/mapping_subset directory. To do so, you have
to modify the FILE variable (changing mapping by mapping_-
subset) on the following script.

Parser

./nextPARSParser.sh

Filter out transcripts

./reformat_PARSParser.sh

4 Notes

1. Download SRA sequences.
How to download sequence data files using SRA Toolkit is

explained in detail here: https://www.ncbi.nlm.nih.gov/sra/
docs/sradownload/.

2. Trimming the data.
If you are not sure if you need to trim your data, fastp [8] is

a tool that has implemented methods that automatically detect
5’ or 3’ adapters for both paired and single-end data.

3. Computation of nextPARS scores.
We present here a summary of the main step of the next-

PARSmethodology, the computation of nextPARS scores from
csv (.tab) files (number of reads at each position, which indi-
cates a cut site for the enzyme). This is implemented in get_-
combined_score.py script. A more detailed description can be
found in [2].

Phase I: scores from raw experimental data (Sprofile).
There are five parts to the profile score (Sprofile) calculation:

(a) First, the digestion profiles are read from the .tab files.
This gives the number of cuts at each position, and it
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should include one or more .tab file for both the V1 and
S1 enzymes.

(b) These raw counts are capped at the maximum percentile
of the value. By default, this is 95%, so that any position
with more cuts than 95% of the other positions are set to
this 95th percentile value. This helps to dampen the skew
in cuts due to the few positions that may be preferentially
cleaved by either V1 or S1 at rates orders of magnitudes
greater than most other positions.

(c) The capped counts from each .tab file are then normalized
to its average so that each .tab now has a mean of 1 cut per
position. This corrects for (I) the different expression
levels for each molecule, (II) different sequencing depth
between runs of the nextPARS experiment, and (III) the
different rates of cleavage between the V1 and S1
enzymes, the latter of which cuts more frequently. Since
the final 50 positions do not have counts in a nextPARS
experiment of this example (50 bases long reads were
used), these are not included in the normalization.

(d) In the case that multiple replicates of the experiment were
performed, a single list of cuts is generated separately for
V1 and S1 by taking the average cuts at each position.

(e) Finally, a single combined S score is calculated to deter-
mine whether a position is likely to be paired or unpaired,
using the following steps. (I) The lists of average normal-
ized V1 and S1 cuts are each then normalized to a maxi-
mum of 1. (II) S1 values are subtracted from V1 values to
know if a position tends to be cut more by one enzyme or
the other. (III) The resulting positive values are then
normalized to a maximum of +1 while the negative values
are normalized to a minimum of -1, such that the range of
values is always from -1 to +1. In this way, we have a fixed
range to which we can apply threshold values for cuts per
position to determine those which can be confidently
called paired or unpaired.

Phase II: scores from a recurrent neural network (RNN)
classifier (SRNN).

The Sprofile calculation can then be complemented by recur-
rent neural network (RNN) classifier score (SRNN) which cal-
culates the probability that a position is paired or unpaired by
considering that nucleotide and its neighbors. The model is
trained on a database of known RNA secondary structures and
is constructed with a long term short memory (LTSM) layer
and a dense neural network layer [9, 10]. For details on the
training and implementation of the classifier model [2].

Use the RNN classifier separately.
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The RNN classifier that already incorporated into the next-
PARS scores can run separately, using a different experimental
score input (in .tab format), it can be run like so: python
predict2.py -f molecule.fasta -p scoreFile.tab -o
output.tab
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Chapter 5

RNA Framework for Assaying the Structure of RNAs by
High-Throughput Sequencing

Tycho Marinus and Danny Incarnato

Abstract

RNA structure is a key player in regulating a plethora of biological processes. A large part of the functions
carried out by RNA is mediated by its structure. To this end, in the last decade big effort has been put in the
development of new RNA probing methods based on Next-Generation Sequencing (NGS), aimed at the
rapid transcriptome-scale interrogation of RNA structures. In this chapter we describe RNA Framework,
the to date most comprehensive toolkit for the analysis of NGS-based RNA structure probing experiments.
By using two published datasets, we here illustrate how to use the different components of the RNA
Framework and how to choose the analysis parameters according to the experimental setup.

Key words RNA structure, RNA probing, High-throughput sequencing, DMS, SHAPE

1 Introduction

NGS-based methods for RNA structure probing are rapidly becom-
ing the standard for studying RNA structures under both in vitro
and in vivo conditions. These approaches take advantage of chemi-
cals that are either able to modify the Watson–Crick interface of
single-stranded nucleobases (i.e., dimethyl sulfate, CMCT,
kethoxal, EDC) or the 20-OH of the ribose moiety of structurally
flexible RNA residues (i.e., SHAPE reagents) [1].

The typical readout of these experiment is based on the detec-
tion of reverse transcription (RT) stop/drop-off events (due to the
inability of most RT enzymes to read through these modified
residues) [1]. More recently, mutational profiling (MaP)
approaches have been devised to enable RT read-through at these
modification sites [2–5], leading to their recording as mutations
within the resulting cDNA molecule.

Although these experimental methods are now becoming
widely employed to query RNA structures, no standard data analy-
sis approach has yet been defined. We have recently introduced the
RNA Framework as a generalized toolkit for the analysis of
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NGS-derived RNA structure probing experiments [6]. Herein we
describe a detailed procedure for the analysis of data derived from
both RT stop-based and MaP approaches, from read mapping to
RNA structure modeling, using RNA Framework. Particularly, we
will exploit two datasets generated by in vivo probing of Saccharo-
myces cerevisiae with dimethyl sulfate (DMS), an alkylating reagent,
that is able to readily permeate cell membranes, resulting in the
rapid methylation of respectively the N1 and N3 of adenosine
(A) and cytosine (C) residues.

2 Materials

2.1 RNA Framework RNA Framework is implemented in Perl and tested on Linux
(Fedora Core 21-30) and it can be obtained from our website
(http://www.rnaframework.com/). It requires a computer with a
64-bit architecture running Linux, Mac OS X or any other UNIX-
based operating system and Perl v5.12 (or greater), with ithreads
support.

The following software and packages are required by RNA
Framework:

l Bowtie v1.1.2 or greater (http://bowtie-bio.sourceforge.net/
index.shtml), and/or Bowtie v2.2.7 or greater (http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml).

l SAMTools v1.2 or greater (http://www.htslib.org/).

l BEDTools v2.0 or greater (https://github.com/arq5x/
bedtools2/).

l Cutadapt v2.1 or greater (http://cutadapt.readthedocs.io/en/
stable/index.html).

l ViennaRNA Package v2.4.0 or greater (http://www.tbi.univie.
ac.at/RNA/).

l Perl non-CORE modules (http://search.cpan.org/):
– DBD::mysql.

– RNA (installed by the ViennaRNA package).

– XML::LibXML.

– Config::Simple.

To install RNA Framework, it is sufficient to clone it from the
Git repository:

$ git clone https://github.com/dincarnato/RNAFramework

This will create the "RNAFramework" folder. Then, to add the
RNA Framework executables to your PATH, simply type:

$ export PATH=$PATH:$(pwd)/RNAFramework
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To obtain a detailed help, with a complete description of the
allowed parameters, each tool can be invoked with the "-h" (or "--
help") flag, for example:

$ rf-index -h

Alternatively, you can refer to the online manual (https://
rnaframework.readthedocs.io).

2.2 Datasets In order to walk the reader through the use of RNA Framework,
here we are going to use two published datasets, DMS-seq [7] and
DMS-MaPseq [4], obtained by in vivo probing of S. cerevisiae with
dimethyl sulfate (DMS). Datasets can be retrieved from the NCBI
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) and
converted to FastQ format using the NCBI SRA Toolkit (available
at https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/) and the
accession IDs reported in Table 1:

$ fastq-dump -A <SRA accession ID>

This will generate a FastQ file named after the provided
SRA file.

3 Methods

By default, RNA Framework relies on Bowtie v1 or Bowtie v2
[8, 9] for read mapping. It is however possible to use any other
aligner. In case alignment has been already performed, skip the next
two paragraphs and proceed directly with Subheading 3.3
("Counting per-base DMS modifications").

Table 1
List of datasets used in this chapter

Accession ID Description Reference

SRR815612 In vivo DMS-seq (S. cerevisiae, polyA+, DMS treated, biological replicate 1) [7]

SRR815613 In vivo DMS-seq (S. cerevisiae, polyA+, DMS treated, biological replicate 2) [7]

SRR815614 In vivo DMS-seq (S. cerevisiae, polyA+, DMS treated, biological replicate 3) [7]

SRR815615 In vivo DMS-seq (S. cerevisiae, polyA+, DMS treated, biological replicate 4) [7]

SRR3929621 In vivo DMS-MaPseq (S. cerevisiae, polyA+, DMS treated, biological
replicate 1)

[4]

SRR3929622
SRR3929623

In vivo DMS-MaPseq (S. cerevisiae, polyA+, DMS treated, biological
replicate 2)

[4]

SRR3929626 In vivo DMS-MaPseq (S. cerevisiae, polyA+, untreated control) [4]
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3.1 Reference Index

Creation

Bowtie v1 can only perform ungapped read alignment, thus it is
only suitable for the analysis of RT stop-based experiments (i.e.,
DMS-seq [7], Structure-seq [10], SHAPE-seq [11], CIRS-seq
[12]). It is rather advisable to use Bowtie v2 for the analysis of
mutational profiling (MaP) experiments (i.e., SHAPE-MaP [2],
DMS-MaPseq [4, 5]), as a substantial part of the mutational infor-
mation of these experiments is recorded within sequencing reads in
the form of insertions and deletions.

As we are going to illustrate the analysis of both DMS-seq and
DMS-MaPseq data, we will generate both Bowtie v1 and v2 indexes
for the S. cerevisiae transcriptome reference, using the rf-index
tool. rf-index automatically generates Bowtie reference indexes by
querying the UCSC genome database (https://genome.ucsc.edu)
for a given genome assembly and gene annotation. A complete list
of the available genome assemblies can be found at https://
genome.ucsc.edu/FAQ/FAQreleases.html. For example, available
gene annotations for the “sacCer3” S. cerevisiae genome assembly
can be listed through the “-la” parameter:

$ rf-index -g sacCer3 -la

To build the reference transcriptome index using the NCBI
RefSeq gene annotation, type:

$ rf-index -g sacCer3 -a ncbiRefSeq # Bowtie v1 index

$ rf-index -b2 -g sacCer3 -a ncbiRefSeq # Bowtie v2 index

rf-index will generate a folder named “sacCer3_ncbiRef-
Seq_bt” (or “sacCer3_ncbiRefSeq_bt2” if the “-b2” parameter
was specified), containing the reference genome’s FASTA file, the
gene annotation BED file, the reference transcriptome FASTA file
and the Bowtie index files.

Additionally, rf-index comes with a set of prebuilt indexes, that
can be listed through the “-lp” flag.

3.2 Read Mapping RNA Framework performs read mapping via the rf-map tool.
rf-map provides a streamlined interface for adapter clipping and
trimming of low-quality bases followed by read mapping. This step
will result in the generation of a sorted BAM file for each processed
FastQ file.

Optionally, prior to read mapping, it is advisable to inspect base
qualities. This can be easily performed using FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/).

3.2.1 Mapping

of DMS-Seq Reads

For the mapping of DMS-seq data we will use rf-map and Bowtie
v1:

$ rf-map -ca3 TCGTATGCCGTCTTCTGCTTG -bi sacCer3_ncbiRef-

Seq_bt2/sacCer3_ncbiRefSeq -bnr -bc 3200 -ba -bm 20 -o

rf_map_seq SRR81561*.fastq
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In this example, the four FastQ files belonging to four
biological replicates can be simultaneously processed through a
single rf-map command, as they are being mapped on the same
reference.

The “-ca3” parameter defines the adapter sequence to clip at
the 30 end of reads. With paired-end experiments, a 50 adapter
sequence can also be provided via the “-ca5” parameter (this
sequence will be automatically reverse-complemented).

By default, trimming of low-quality bases (Phred <20) is per-
formed only from the 30 end of reads (controlled by the “-cq3”
parameter). Quality trimming of bases from the 50 end (controlled
by the “-cq5” parameter) must be avoided when analyzing RNA
footprinting experiments based on the detection of RT stops (see
Note 1).

These trimming/clipping steps are optional and can be skipped
through the flags “-cqo”, to disable adapter clipping, and “-cp”, to
disable both adapter clipping and quality trimming.

The “-bi” parameter specifies the reference index (see Subhead-
ing 3.1). It is worth pointing out that Bowtie indexes consist of
multiple files. Only the basename common to all files must be
provided to rf-map (in this example, “sacCer3_ncbiRefSeq”).

The DMS-seq library prep strategy results in the sequencing of
reads having the same sequence of the RNA transcripts they have
originated from. As rf-index generates a transcriptome index, the
“-bnr” parameter is needed to instruct Bowtie to only allow reads
mapping to the forward reference strand.

By default, Bowtie v1 randomly reports a single mapping when
multiple equally-scoring mapping locations are possible. Use of the
“-ba” flag instructs Bowtie to report all these equally-scoring
mapping positions. The “-bm” parameter sets the maximum
allowed number of equally scoring positions for a read. If more
than this number of mappings are possible, the read is discarded.

3.2.2 Mapping

of DMS-MaPseq Reads

For the mapping of DMS-MaPseq data, we will use rf-map and
Bowtie v2 (enabled by the “-b2” flag):

$ rf-map -b2 -cq5 20 -ca3 TCGTATGCCGTCTTCTGCTTG -mp ’--very-

sensitive-local’ -bi sacCer3_ncbiRefSeq_bt2/sacCer3_ncbiRef-

Seq -o rf_map_mapseq SRR392962*.fastq

In this case the structure information is encoded within
sequencing reads in the form of mutations. Therefore, also quality
trimming of 50 end can be performed through the “-cq5”
parameter.

Since we are using Bowtie v2 for read mapping, it is important
to pick the right reference index folder (note the “_bt2” suffix).

Even though RNA Framework comes with a lot of built-in
options, specific mapping parameters can be provided to Bowtie
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through the “-mp” parameter. In this example, we are directly
invoking Bowtie v2 with the “--very-sensitive-local” preset, that
causes Bowtie to extensively look for the top-scoring local
alignment.

3.3 Counting

Per-base DMS

Modifications

Following mapping, rf-count calculates per-base RT stop/muta-
tion counts and read coverage for each transcript.

Counting of RT stops is the default behavior of rf-count. It is
worth remembering that it is essential to account for the eventual 50

end read trimming that could have been performed during the
mapping stage (see Note 2). DMS-seq samples are analyzed by:

$ rf-count -r -f sacCer3_ncbiRefSeq_bt/sacCer3_ncbiRefSeq.fa

-o rf_count_seq rf_map_seq/SRR81561*.bam

For the analysis of DMS-MaPseq samples, it is sufficient to
enable the “-m” flag to make rf-count perform mutation counting:

$ rf-count -r -f sacCer3_ncbiRefSeq_bt2/sacCer3_ncbiRefSeq.fa

-m -o rf_count_mapseq rf_map_mapseq/SRR392962*.bam

Counting requires input SAM/BAM files to be sorted lexico-
graphically by transcript ID, and numerically by position. This is the
case when mapping is performed with rf-map. In this case, specify-
ing the “-r” flag reduces the execution time by skipping BAM
sorting.

rf-count will produce an RNA Count (RC) file for each pro-
cessed BAM file. RC files are binary files optimized for fast random
access. For the full format specification, please refer to the online
documentation (https://rnaframework.readthedocs.io/en/latest/
rf-count/#rc-rna-count-format). Further manipulation of RC
files is made possible through the use of the rf-rctools utility (see
Note 3).

3.4 Reactivity

Normalization

Raw counts computed by rf-count need to be normalized in order
to use them for data-driven RNA folding. This is performed by the
rf-norm tool in two steps: calculation of raw scores, followed by
normalization of base reactivities to values ranging from 0 to
1 (or greater, depending on the normalization method).

3.4.1 Reactivity

Normalization of DMS-Seq

According to Rouskin et al. [7], DMS-seq is analyzed by
performing 90% Winsorizing (values above the 95th percentile are
set to the 95th percentile and every data point is divided by the
value of the 95th percentile) of raw RT stop counts in sliding
windows containing 50 A/C residues, by

$ for f in rf_count_seq/*.rc; do rf-norm -rb AC -sm 2 -nm 2 -dw

-ec 10 -n 10 -i rf_count_seq/index.rci -t $f; done
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The “-sm” and “-nm” parameters respectively define the scor-
ing and normalization methods to be used. In this example, scoring
method “2” and normalization method “2” respectively corre-
spond to the Rouskin et al., 2014 scoring scheme and 90%Winsor-
izing. For a complete list of the available scoring and normalization
schemes, please refer to the online documentation (https://
rnaframework.readthedocs.io/en/latest/rf-norm/).

The “-rb” parameter allows specifying reactive bases (in this
case, only As and Cs can be modified by DMS). By default, choice
of scoring method “2” enables windowed normalization with both
a window size and an offset of 50 nucleotides (respectively con-
trolled by the “-nw” and “-wo” parameters). As DMS can only
modify A/C residues and these might not be evenly distributed
along a transcript, this can result in windows containing very few
reactive bases, leading to normalization artifacts. Use of the “-dw”
flag prevents this by making rf-norm dynamically adjust the win-
dow size to include 50 A/C residues.

Normalization of lowly covered transcripts is skipped by setting
a threshold on the median read coverage through the “-ec” param-
eter. Additionally, the “-n” parameter sets the coverage threshold
for a base to be included in the reactivity profile (reactivities for
bases below this coverage will be reported as NaNs). Reactivity
profiles are reported in XML format.

3.4.2 Reactivity

Normalization

of DMS-MaPseq

For DMS-MaPseq experiments, raw reactivities are calculated as the
ratio between the number of mismatches at each base, divided by
the read coverage of the base [4], by:

$ for f in rf_count_mapseq/SRR392962*[^6].rc; do rf-norm -rb

AC -sm 4 -nm 2 -ec 1000 -n 1000 -i rf_count_seq/index.rci -t

$f; done

In this case, scoring method “4” is selected, corresponding to
the Zubradt et al., 2017 scoring scheme. Also, thresholds for
median read coverage and base coverage (“-ec” and “-n”) have
been increased to 1000X, as this coverage has been previously
proven to be necessary to obtain reliable reactivity profiles with
mutational profiling experiments [2].

When an untreated control is available, this can be used to
calculate background mutation frequencies, that will be then sub-
tracted from mutation rates in the DMS treated sample. As the
Zubradt et al., 2017 scoring scheme does not provide the possibil-
ity to account for an untreated control, the Siegfried et al., 2014
scoring scheme [2] (originally introduced for the analysis of
SHAPE-MaP data) can be used:

$ for f in rf_count_mapseq/SRR392962*[^6].rc; do rf-norm -rb

AC -sm 4 -nm 3 -ec 1000 -n 1000 -i rf_count_seq/index.rci -t $f

-u rf_count_mapseq/SRR3929626.rc; done
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With the Siegfried et al., 2014 scoring method (“-sm 3”),
box-plot normalization is recommended (“-nm 3”). The RC file
for the untreated control sample is provided through the parameter
“-u”.

Optionally, when available, a denatured control sample can also
be provided to account for maximum per-base reactivities, through
the parameter “-d”.

Experiments composed of multiple replicates can be further
compared (and combined) using the rf-correlate and rf-combine
tools (see Note 4).

3.5

Data-Constrained RNA

Structure Prediction

Once transcript reactivity profiles have been obtained, these can be
used to perform data-driven RNA structure inference. This is usu-
ally accomplished by converting base reactivities into pseudo free
energy contributions, that are then used to either reward or penal-
ize certain base-pairs [13]. The extent of the contribution of base
reactivities to free energies is determined by two parameters,
namely the slope and the intercept. Optimal slope and intercept
vary with the specific experimental setup (probing reagent used,
library construction strategy, etc.) and therefore it is advisable to
empirically determine them.

3.5.1 Grid Search

(Jackknifing) of Optimal

Folding Parameters

The process by which optimal slope/intercept values are deter-
mined is called grid search (or jackknifing) and it is performed
with the rf-jackknife tool. Given experimental probing data and a
reference RNA with a known (experimentally-validated) secondary
structure, rf-jackknife will perform structure prediction by varying
slope/intercept values in a user-defined range. For each predicted
structure, the positive predictive value (PPV), sensitivity, and the
geometric mean of the two are calculated with respect to the known
structure. The slope–intercept pair yielding the structure with the
highest PPV/sensitivity can be then used for all the other
transcripts.

Here we will show the jackknifing process using the structure of
16S and 23S ribosomal RNAs of E. coli, queried by DMS-MaPseq
(SRA ID: SRR8172706) [5]. Dataset was processed as follows:

$ rf-index -b2 -pb 5

$ rf-map -b2 -mp ’--very-sensitive-local’ -cq5 20 -bi Eco-

li_rRNA_bt2/reference SRR8172706.fastq

$ rf-count -r -m -f Ecoli_rRNA_bt2/reference.fa rf_map/

SRR8172706.bam

$ rf-norm -sm 4 -nm 3 -rb AC -ec 1000 -n 1000 -i rf_count/

index.rci -t rf_count/SRR8172706.rc

Jackknifing is performed by

$ rf-jackknife -r ecoli_rRNA.db -x -rp ’-nlp -md 600’

SRR8172706_norm/
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Reference RNA structures are passed through the “-r” param-
eter (E. coli rRNA reference structures can be downloaded from
http://www.rnaframework.com/data/publications/
Springer2020/ecoli_rRNA.db).

The “-x” parameter enables the use of more relaxed criteria for
structure comparison. Specifically, when calculating PPV/sensitiv-
ity, a base-pair between nucleotides i and j is considered correctly
predicted if the known structure contains a pair between i and
j, i + 1 or i � 1 and j, or i and j + 1 or j � 1 [13].

rf-jackknife will iteratively call rf-fold (see next paragraph) with
different slope–intercept value pairs. rf-fold parameters can be
adjusted through the “-rp” parameter (in this example, “-nlp”
disallows lonely base-pairs and “-md 600” sets the maximum
base-pairing distance to 600 nucleotides). Besides reporting the
best slope–intercept pair (slope: 2.4; intercept: -0.2), rf-jackknife
will generate a set of CSV files containing the PPV/sensitivity
(or their geometric mean) for each tested slope–intercept value pair.

The following R code can be used to generate a heatmap from
the resulting CSV files (Fig. 1):

library(gplots)

library(RColorBrewer)

csv<-read.csv("geometric_mean.csv", sep = ";", check.names =

FALSE)

row.names(csv)<-csv$Mean

csv<-csv[,-1]

csv<-data.matrix(csv)

heatmap.2(csv[nrow(csv):1,], col = rev(brewer.pal(11, "Spec-

tral")), trace = "none", cellnote = round(csv[nrow(csv):1,],

digits = 2), notecol = "black", Rowv = FALSE, Colv = FALSE,

dendrogram = "none", xlab = "Intercept (kcal/mol)", ylab =

"Slope (kcal/mol)", key = FALSE)

3.5.2

Transcriptome-Wide RNA

Structure Inference

RNA secondary structure prediction is performed with the rf-fold
tool. As an example, transcriptome-wide prediction of RNA struc-
tures for the DMS-MaPseq experiment can be performed by

$ rf-fold -sl 2.4 -in -0.2 -md 600 -nlp -dp -sh -g DMS-MaP-

seq_merge/

By default, rf-fold uses ViennaRNA as the algorithm for RNA
structure prediction [14] (this can be changed to RNAstructure
[15] through the “-m” parameter). Parameters “-sl” and “-in”
respectively set the slope and the intercept values (in this example,
the slope–intercept value pair found by jackknifing has been used).

The “-g” flag enables the generation of SVG files depicting base
reactivities, base-pairing probabilities, Shannon entropies and the
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secondary structure model for each analyzed transcript (Fig. 2).
The “-dp” and “-sh” flags respectively enable the generation of
base-pairing probability dot-plots and Wiggle tracks containing
per-base Shannon entropies. These files can be further loaded into
Integrative Genomics Viewer (http://software.broadinstitute.org/
software/igv/) for visualization. Regions of low Shannon entropy,
high base-pairing probability and low DMS reactivity can be used
to identify high-confidence helices [2, 5].

Structures predicted by rf-fold are by default pseudoknot-free.
Prediction of structures including pseudoknots can be enabled
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DMS-MaPseq data for E. coli 16S/23S rRNAs. The optimal slope–intercept value pair is highlighted in white
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Fig. 2 Reactivity profile, secondary structure model, Shannon entropy and base-pairing probabilities for
S. cerevisiae snoRNA snR37 (NR_132195). Structure predictions performed using either (a) DMS-seq or (b)
DMS-MaPseq data are shown
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through the “-pk” flag. It is worth noting that use of this option
will result in considerably longer computation times.

rf-fold allows for extensive customization. In this example, only
the essential parameters were presented. For a detailed list of all the
available options, please refer to the online documentation
(https://rnaframework.readthedocs.io/en/latest/rf-fold/).

4 Notes

1. When inspection by FastQC reveals the presence of low-quality
bases at the 50 end of reads, it might be beneficial to trim them
in order to facilitate mapping. Quality trimming of bases con-
trolled by the “-cq5” parameter is dynamic; thus, an arbitrary
number of bases can be trimmed from each read. In RT stop-
based experiments, the position immediately preceding the
start mapping coordinate of a read corresponds to the site of
modification by the probing reagent. It is therefore essential to
keep track of the exact number of bases trimmed from the 50

end of each read. This is however not possible when dynamic
quality trimming is performed. To this end, a static trimming of
a user-defined number of bases from the 50 side of all reads can
be performed using the “-b5” parameter.

2. If static 50 end read trimming has been performed during read
mapping (through the “-b5” parameter), it is necessary to
specify to rf-count the number of trimmed bases, through the
“-t5” parameter. Alternatively, only in case read mapping has
been performed with Bowtie, it possible to use the “-fh” flag to
make rf-count automatically detect the number of trimmed 50

bases for each sample from the SAM/BAM header.

3. Inspection of RC files can be performed using rf-rctools, by

$ rf-rctools view <RC file>

rf-rctools also allows merging multiple RC files, by

$ rf-rctools merge <RC file #1> <RC file #2> ... <RC file #n>

In our example, DMS-MaPseq data for biological replicate
#2 is provided in two independent datasets (SRR3929622 and
SRR3929623). As these datasets belong to the same biological
replicate, their RC files can be merged by

$ rf-rctools merge rf_count_mapseq/SRR392962[23].rc -o

rf_count_mapseq/SRR392962_2_3.rc
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4. For experiments containing multiple biological replicates, tran-
script level (and experiment level) pairwise Pearson correlations
can be assessed with the rf-correlate tool, by

$ rf-correlate -m 0.8 <XML folder #1> <XML folder #2>

The “-m” parameter sets the threshold for the minimum
number of covered bases needed to evaluate the correlation
between two replicates. When comprised between 0 and 1, this
value is interpreted as a fraction of the number of reactive bases
of a transcript.

Replicates can be further merged with rf-combine, by

$ rf-combine -m 0.8 <XML folder #1> <XML folder #2> ... <XML

folder #n>

A new folder containing merged XML reactivity profiles for
transcripts present in all the provided experiments will be gen-
erated. Only transcripts whose correlations exceed a user-
defined threshold (0.7 by default, controlled through the
“-c” parameter) will be merged.

In our example, the four biological replicates of DMS-seq
and the two biological replicates of DMS-MaPseq can be
respectively merged by

$ rf-combine -m 0.8 -o DMS-seq_merge/ SRR81561*_norm/

$ rf-combine -m 0.8 -o DMS-MaPseq_merge/ SRR392962*_norm/
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Chapter 6

Using RNentropy to Detect Significant Variation in Gene
Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq
Samples

Federico Zambelli and Giulio Pavesi

Abstract

RNA-Seq has become the de facto standard technique for characterization and quantification of transcrip-
tomes, and a large number of methods and tools have been proposed to model and detect differential gene
expression based on the comparison of transcript abundances across different samples. However, state-of-
the-art methods for this task are usually designed for pairwise comparisons, that is, can identify significant
variation of expression only between two conditions or samples. We describe the use of RNentropy, a
methodology based on information theory, devised to overcome this limitation. RNentropy can thus detect
significant variations of gene expression in RNA-Seq data across any number of samples and conditions, and
can be applied downstream of any analysis pipeline for the quantification of gene expression from raw
sequencing data. RNentropy takes as input gene (or transcript) expression values, defined with any measure
suitable for the comparison of transcript levels across samples and conditions. The output consists of genes
(or transcripts) exhibiting significant variation of expression across the conditions studied, together with
the samples in which they result to be over- or underexpressed. RNentropy is implemented as an R package
and freely available from the CRAN repository. We provide a detailed guide to the functions and parameters
of the package and usage examples to demonstrate the software capabilities, also showing how it can be
applied to the analysis of single-cell RNA sequencing data.

Key words Next-generation sequencing, RNA-seq, Single cell RNA-seq, Transcriptome quantifica-
tion, Differential gene expression, Tissue-specific genes, Marker genes

1 Introduction

Next generation sequencing technologies applied to RNA mole-
cules (RNA-Seq) have become the de facto standard for the char-
acterization and quantification of transcriptomes [1, 2], also at the
single-cell level [3]. RNA-Seq permits to estimate expression levels
either by first assembling transcripts and employing sequence reads
for quantification of the abundance of each transcript [4, 5], or by
mapping reads directly on a reference genome, providing expres-
sion estimates for available gene annotations [6, 7]. More recent
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approaches also bypass the need for mapping sequence reads on the
genome, resulting in a significantly faster quantification step com-
pared to alignment-based methods while maintaining comparable
reliability [8, 9].

The comparison of the estimated expression levels across sam-
ples and replicates is then the next logical step, in order to identify
those genes which, following a significant variation of abundance of
the transcripts they produce, can lead to an explanation of the
observed phenotypic differences among the conditions being inves-
tigated. The most challenging point of this step is to define and
model correctly significant variation from a statistical point of view,
since a certain degree of data variability has to be expected due both
to the inherent nature of biological systems [10] and to the techni-
cal noise introduced by experimental procedures [11]. Thus, a
fundamental challenge posed by RNA-seq data is how to normal-
ize correctly (i.e., make comparable) the estimated expression levels
in the samples, taking into account different transcript lengths,
different library sizes, and biases introduced by the sequencing
procedure [12], and then how to model the variability of normal-
ized expression values. These issues have led to the proliferation of
methods tackling normalization and/or differential expression
analysis using different approaches and statistical frameworks [13–
15].

In general, the most commonly used methods for differential
gene expression analysis have been designed for pairwise compar-
isons. That is, their approach is tailored to detect significant varia-
tion of gene expression levels when contrasting data from two
biological samples or conditions at a time [16]. Simultaneous com-
parisons on multiple samples and conditions are made problematic
by the difficulty of conceiving a unique definition for condition(s)-
specific genes. An example are tissue specificity metrics, that have
been introduced to tackle this issue when comparing samples from
different adult tissues for the identification of tissue-specific genes,
that can be adapted to other multicondition comparisons
[17]. However, these measures account only for relative variation
of expression, thus potentially introducing biases for lowly
expressed genes, that tend to show more intrinsic variability with
respect to highly expressed ones. Furthermore, technical [18] and
biological [19] variability still need to be correctly assessed across all
the conditions.

For this task, we introduced RNentropy, an approach designed
to tackle multisample RNA-Seq differential expression without
relying on multiple pairwise comparisons [20]. RNentropy can
work simultaneously on any number of conditions and replicates
to detect genes whose expression level changes significantly across
the samples, that is, genes that are under- or overexpressed in one
or more conditions with respect to their average expression level.
The input of RNentropy consists of a table of the normalized gene
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expression values associated with genes for each sample in the assay.
The normalized values can be obtained using any of the several
methods available for this task (e.g., [4–9]). The use of commonly
accepted measures (e.g., FPKM, RPKM, TPM, TMM) for the
normalization of gene expression values is recommended, and the
performance of RNentropy seems to be robust in this respect, with
only minor differences on the final output depending on the mea-
sure adopted [20] (see Note 1). The output of RNentropy reports
for each gene the sample(s) where it can be considered over- or
underexpressed, if any, together with the corresponding signifi-
cance p-value(s). Thus, RNentropy represents a suitable tool for
differential gene expression analysis for RNA-Seq assays involving
multiple conditions, in particular when it is more appropriate to
retrieve genes of interest considering all the samples simultaneously
instead of resorting to the design of pairwise comparisons followed
by intersections of differentially expressed gene sets. The ability to
detect significant changes in expression across any number of sam-
ples makes RNentropy a perfectly suitable approach also for the
analysis of single-cell RNA-Seq [21].

2 Materials

RNentropy’s home page can be accessed at http://www.beacon-
lab.it/RNentropy. Two implementations of RNentropy do exist.
The first one is a C++ implementation: executables for 64-bit Linux
platforms and source code can be downloaded directly from the
home page together with an installation guide and manual with
usage examples. The second implementation of RNentropy comes
in the form of an R package available on the CRAN repository at
https://cran.r-project.org/web/packages/RNentropy/index.
html. For the sake of brevity and clarity, from here on, we introduce
and describe the functions of the R implementation only, which is
also more feature-rich. The user interested in using the more basic
C++ implementation of RNentropy can easily map most of the
concepts herein described to that version.

RNentropy requires R (release 2.10 or newer) and can be used
on any operating system for which the R software environment is
available (a wide variety of UNIX platforms, Windows and macOS).
No other dependencies (e.g., other R packages) are required.
Datasets presented here as usage examples are already included in
the package.
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3 Methods

3.1 The Algorithm We present here a summary of the RNentropy algorithm. A more
comprehensive description can be found in [20].

3.1.1 Shannon’s Entropy The approach to finding differentially expressed genes is inspired
by information theory and is based on Shannon’s entropy (from now
on referred to simply as entropy). Its application to the problem of
differential expression analysis was indeed first suggested in [22]. At
a conceptual level, entropy can be defined as the “amount of
information” contained in a random variable (see [23] for a gentle
introduction). When a discrete random variable can havem possible
outcomes, entropy is defined from the frequency with which each
outcome is observed:

H ¼ �
Xm

k¼1

f k log f k

where fk is the frequency with which the random variable assumes
the kth value in the observations. We can use e as the logarithm
base. When the variable always assumes the same value k across all
the observations, then fk ¼ 1 and its entropy will be 0.On the other
extreme of the spectrum, all the m outcomes are observed with the
same frequency fk ¼ 1/m and the entropy is maximum.

3.1.2 Entropy and Gene

Expression Levels: The

Global Sample

Specificity Test

Let T be a gene and t1. . .tm its normalized expression levels in
m samples. Let tcum be the cumulative expression value of T given
by the sum of all the values ti with i going from 1 to m, and fi ¼ ti/
tcum. If we now apply the entropy formula to the fi values, the
entropy H(T) will be 0 when all the RNA produced by T comes
from a single sample, that is, the gene is expressed only in a single
condition, while will reach its maximum value of 1 when T has the
same expression value across all the samples.

Given an uniform expected value of bi ¼ 1/m, RNentropy
evaluates the variability of gene T with a G-test (goodness of fit
test) [24], based on the computation of relative entropy with
respect to the bi values. The test computes, given ti and the random
distribution with expected frequencies bi, the probability to obtain
the following G(T) value by chance:

GðT Þ ¼ 2
Xm

i¼1

t i log
f i
bi

¼ 2WREðT Þ:

G(T) follows a chi-square distribution with m-1 degrees of
freedom. We call this the global sample specificity test. For each
gene, we assume a uniform background distribution bi ¼ 1/m,
but, in principle, the same framework can be applied to identify
significant deviations from any other distribution of bi. The
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Benjamini–Hochberg [25] correction is employed to correct the p-
values obtained for multiple testing. Suitable thresholds of 0.01 or
0.05 for the corrected p-values can be employed to single out genes
whose expression has a significant variation from the uniform back-
ground distribution.

3.1.3 Identification

of Significant Samples: The

Local Sample

Specificity Test

Once the test just described shows that a gene T deviates signifi-
cantly from the expected distribution of its expression levels across
samples, we can single out in which samples it is over- or under-
expressed using a variation of the same test, in which the expression
of T in each sample is compared with its expression in the other
m� 1 samples. That is, the sum will consist only of two terms, with
expected values tcum/m for the sample considered and (m � 1)
tcum/m for the others. We call this the local sample specificity test.

Thus, a gene T that passes the global specificity test is consid-
ered to be significantly over- (sample expression higher than aver-
age expression) or under- (sample expression lower than average
expression) expressed in those samples where the local specificity
test yields a p-value lower than a given threshold.

3.1.4 Taking Replicates

into Account

RNentropy does not attempt to explicitly estimate the variance of
the expression values for the different replicates (technical or
biological) of the same condition but performs a test on each
replicate. That is, when n samples are defined as replicates of the
same condition c, a gene will be considered over- or underexpressed
in condition c if all the n replicates pass the local specificity test p-
value threshold. The only difference is that, when performing the
local specificity test for a replicate, the expected expression value is
computed without taking into account the expression values of all
the other replicates for the same condition. This approach is very
stringent since it requires all replicates of the same condition to pass
the local test, that is to be significantly expressed above (or below)
the gene average. For the correctness of the results, thus, the
definition of “replicates” is of the utmost importance. Our advice
is to define replicates for RNentropy only for technical replicates or
anyway cases where the variability of replicates is due mostly to
experimental and not biological variation (see Note 2).

3.1.5 Evaluating

Similarity Among

Conditions

After genes displaying a significant variation of expression across
samples have been identified, it becomes possible to compare the
different conditions in order to single out those that are more
similar and those that diverge the most in terms of gene expression.
The approach of RNentropy to this task relies on pointwise mutual
information (PMI) [26]. Given an assay with g genes and
c conditions (samples), a matrix M with g rows and c columns is
first built as follows: M(x,y) ¼ 0 if gene x is neither over- nor under-
expressed in condition y, M(x,y) ¼ 1 if gene x is overexpressed in
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condition y, and M(x,y) ¼ �1 when gene x is underexpressed in
condition y according to both global and local tests. PMI on over-
expressed genes between any two conditions (columns) i and j can
be defined as

PMI i, jð Þ ¼ log 2

f i, jð Þ
f ið Þf jð Þ ,

where f(i) is the fraction of rows with a value of 1 for the column
i ofM, f(j) the fraction of rows with a value of 1 for column j ofM,
and f(i,j) the fraction of rows with a value of 1 in both columns.
Positive PMI values indicate that the number of shared overex-
pressed genes between the two conditions is greater than expected,
vice versa, negative PMI values point to anticorrelation between the
two conditions.

3.2 Using RNentropy RNentropy is implemented as an R package containing both func-
tions and sample data. We will describe how to interact with the
software and employ the included data to provide examples. Basic
knowledge of the R environment and functions is recommended in
order to use the RNentropy package.

The install.packages function of R can be employed to install
RNentropy on the local R library without the need for manually
downloading the software package. From within the R console
type:

install.packages("RNentropy")

The installation needs to be performed only once. When it ends
(in a matter of seconds), it becomes possible to load the RNentropy
package within the current R workspace using the following
command:

library("RNentropy")

The same command can be used to load RNentropy in different
R workspaces.

3.2.1 Input The input of RNentropy consists of an R data frame object con-
taining the normalized gene expression values (expression table
from now on) and a binary matrix object describing the experi-
mental design (design matrix from now on). The design matrix is a
table with information about which condition each sample belongs
to, that is, used to define which samples should be considered to be
replicate experiments of the same condition. The expression table
includes a row for each gene or transcript and a column for each
sample. Univocal gene names or transcript IDs must be used to
label each row. When using transcript IDs as labels, it is possible to
have an additional column reporting the names (or symbols) of the
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genes to which each transcript belongs to. Expression levels can in
principle be defined using any of the commonly used normalized
metrics (e.g., FPKM, RPKM, TPM, TMM) since RNentropy seems
to provide consistent results independently of the measure
employed [20] (seeNote 1). Raw counts should instead be avoided
since RNentropy does not perform any normalization step by itself.

The design matrix has a row for each sample and a column for
each condition. For each row, a value of 1 is assigned to the
condition (column) for which the row is a replicate. All the other
columns on the same row contain 0’s. A simple way to check that no
replicates have been assigned wrongly to less or more than one
condition is to ensure that the sum of each row is precisely 1. In the
same way, the sum of the values in each column must match the
number of replicates in the corresponding condition. Finally, the
number of replicates should match the number of numeric columns
in the expression table. If no replicates are defined (see also Sub-
heading 3.1.4) (see Note 2), thus only one replicate for each
condition is available, it is possible to omit the design matrix
altogether. In this case, RNentropy will use a default square matrix
where each sample is considered to represent a different condition.

The following command can be used to load the “Brain”
illustrative dataset provided by the RNentropy package and its
corresponding experimental design matrix (Fig. 1):

data("RN_Brain_Example_tpm", "RN_Brain_Example_design")

Fig. 1 An example of design matrix. The matrix shown for the “Brain” dataset of
RNentropy describes three conditions constituted by three different individuals
labelled S12, S13, and S7, with three replicates each. More details on this
dataset can be found in [20] and accompanying supplementary material
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RN_Brain_Example_tpm is an expression table with over
78,000 rows and 10 columns. Each row corresponds to a transcript
in the UCSC gene annotation on the human genome (version
hg19). The first column of the table reports the gene symbol
associated with the transcripts of each row. The other nine columns
contain expression values for samples coming from three different
individuals, with three technical replicates each, defined as tran-
scripts per million (TPM). The first step of the RNentropy work-
flow consists in running the global and local sample specificity tests
on the input.

3.2.2 Running

RNentropy: the RN_calc

function

The RN_calc function is used to run both the global and the local
sample specificity tests of RNentropy. The syntax is as follows:

RN_calc(expression_table, design_matrix)

Since the returned value (results container from now on) is an
R list object composed of six elements, it is convenient to assign the
return value to a new variable. For example, to run RNentropy on
the “Brain” dataset type:

Brain_Results <- RN_calc(RN_Brain_Example_tpm, RN_Brain_Exam-

ple_design)

Depending on the number of samples (columns of the expres-
sion table), the processing time may vary from a few seconds to a
few minutes. The following objects are found within the results
container:

l expr: the original expression table.

l design: the original design matrix.

l gpv: a numeric vector reporting the –log10 of the p-values
obtained by each gene (or transcript) from the global sample
specificity test. Those genes for which it is not possible to
compute this value since their expression is zero in all the con-
ditions get a gpv of 0 (corresponding to a p-value of 1). Genes
with high gpv values are the ones passing the global specificity
test and therefore have an overall high variability of expression
across conditions.

l lpv: a data frame reporting the log10 of the p-values obtained by
each gene (or transcript) in each condition from the local sample
specificity test. Again, in those genes for which it is not possible
to compute gpv, lpv is set to zero in all the conditions. For any
sample, the lpv value of a gene is negative when underexpressed
in that sample w.r.t. its average expression (obtained excluding
the other replicates of the same condition of the sample, see
Subheading 3.1.4), positive otherwise.
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l res: the comprehensive results data frame obtained joining
together expr, gpv, and lpv.

l c_like: is like res, but formatted as the output obtained from the
C++ implementation of RNentropy. It can be safely ignored.

Genes obtaining high gpv values are those with the most sig-
nificant variation of expression across conditions (Fig. 2). For each
gene, the single samples that diverge the most from the average
expression obtain in turn the highest lpv absolute values.

3.2.3 Selecting

Significant Genes

Differentially Expressed

Across Conditions

The RN_select function can be employed to filter and output only
those genes (or transcripts) obtaining significant values according
to both gpv and lpv values. The syntax of RN_select is as follows:

RN_select(Results, gpv_t = 0.01, lpv_t = 0.01, method = "BH")

Results is the return value of the RN_calc function. Since the
returned value consists of the original Results list now containing
two additional objects, it is convenient to use it as in the following
example:

Brain_Results <- RN_select(Brain_Results)

Fig. 2 Expression values (in TPM) of transcripts passing the global and local sample specificity tests of
RNentropy in the “Brain” dataset. Red, blue, and yellow bars correspond to the three replicates for each of the
three individuals studied
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The gpv_t argument sets the threshold for the global sample
specificity test p-value for a gene to be considered differentially
expressed across samples and has a default value of 0.01. The lpv_t
argument sets the threshold for the local sample specificity test p-
value for a gene to be considered differentially expressed in a sample
and also has a default value of 0.01. The method argument selects
the p-value correction method for multiple testing that will be
employed and defaults to Benjamini and Hochberg (FDR), that
we recommend. Other available methods include “bonferroni” for
the eponymous method and “BY” for Benjamini and Yekutieli. The
complete list of multiple test correction methods is available con-
sulting the manual for p.adjust.methods in the R documentation.

The following two additional objects can be found in the
results container returned by RN_select:

l gpv_bh: is a numeric vector similar to gpv (see Subheading
3.2.2) but with values corrected for multiple testing. This
means that nonzero gpv_bh values will be lower than their
corresponding gpv values.

l selected: is a data frame and constitutes the main output of
RN_Select (Fig. 3). Only genes (or transcripts) with a corrected
global sample specificity test p-value lower than gpv_t are
reported in this table. The two columns “GL_LPV” and
“Corr. GL_LPV” report the gpv and gpv_bh values, respectively,
for the selected genes. One additional column is then present for
each of the conditions defined in the design matrix. Cells in
those columns can assume one of four flag values: 1,0, �1 and
NA. A value of 1 means that all the replicates for that condition
pass the local specificity test p-value threshold and have expres-
sion values higher than the average expression; thus, the gene
can be considered overexpressed in that condition. A value of�1
means that all the replicates for that condition pass the local
specificity test p-value threshold and have expression values
lower than the average expression; thus, the gene can be consid-
ered underexpressed in that condition. A value of 0means that at
least one of the replicates does not pass the local specificity test p-
value threshold, and therefore the condition cannot be consid-
ered over- and neither underexpressed. Finally, the NA flag
means that the local specificity test p-values of the different
replicates for that condition are not consistent. That is, at least
one replicate seems to be overexpressed, and at least another one
for the same condition results to be underexpressed.

3.2.4 Assessing

Similarity Among

Conditions Using RN_pmi

The RN_pmi function is used to compute the pointwise mutual
information scores between every pair of conditions, starting from
the genes over- or underexpressed in each. The function can be
used with the following syntax:
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RN_pmi(Results)

Results is the object returned by RN_calc or RN_select. In the
former case, RN_select will be automatically run on Results. For
example, we can use the RN_pmi function to quickly check if the
replicates for the same individual of the “Brain” dataset are consis-
tent among them:

Brain_Results <- RN_pmi(RN_calc(RN_Brain_Example_tpm))

Fig. 3 Top: examples from the ”selected” table returned by the RN_Select function applied on the “Brain”
dataset. For each transcript, the table reports the transcript and gene IDs, the global sample specificity test p-
value (GL_LPV), the multiple testing corrected global sample specificity test p-value (Corr. GL_LPV). An
additional column for each condition, in this case, the three individuals S12, S13, and S7, flags the over- (1) or
under- (�1) expression status of that condition. For example, transcript “uc002qde.3” results to be over-
expressed in S7, underexpressed in S13, and nether over- or underexpressed in S12. Bottom: plot of the
expression levels of transcript “uc002qde.3” (in TPM) across the three individuals. All the three replicates from
the third individual (yellow bars) are consistently overexpressed, while replicates from the second individual
(blue bars) are consistently underexpressed. The green horizontal line marks the uc002qde.3 average
expression level
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In this case, we are applying the RN_calc function without
explicitly providing the experimental design matrix. That is, we
are asking RNentropy to consider all the samples independently
since we want to ascertain how the different replicates correlate
among them. We expect replicates from the same individual to be
more similar among them than when compared with replicates of
the other two individuals.

The object returned by RN_pmi contains the same objects of
the one returned by RN_select and the following two additional
objects:

l pmi: a numeric matrix with pointwise mutual information for all
the possible pairwise comparisons among conditions. Positive
values point to correlation, negative values point to anticorrela-
tion, values close to zero means the two conditions are
independent.

l npmi: as above but using normalized pointwise mutual infor-
mation. Values close to 1 point to strong correlation, values close
to�1 point to strong anticorrelation, values close to 0means the
two conditions are independent.

Using heatmap() or a similar function of R or specialized
plotting packages on pmi (or npmi) it is possible to cluster the
conditions (or samples) and draw the resulting heatmaps (Fig. 4).

3.2.5 Usage Example:

Characterization of Gene

Expression Specificity

in Mouse Oligodendrocytes

A thorough characterization of the transcriptome of several mouse
brain cell types has been presented in [27] and the results collected
in a user-friendly database. In particular, the study focuses on gene
expression in different cell types: neurons, astrocytes, oligodendro-
cytes, microglia, and endothelial cells. Oligodendrocytes are in turn
split into three subtypes corresponding to three different matura-
tion stages, namely, precursor (OPC), newly formed (NFO), and
myelinating (MO). Two biological replicates obtained from pooled
purified cell populations were sequenced for each cell type, and
their expression values used to compute confidence intervals for
the expression levels, defined as FPKMs. Genes with unreliable
expression estimates were then excluded from further processing.
We will describe how RNentropy can be applied to this dataset
(BarresLab from now on) to find overexpressed genes in oligoden-
drocytes and characterize the markers of the different stages of
maturation.

Use the following command to load the BarresLab dataset into
the R environment

data("RN_BarresLab_FPKM")
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The dataset includes expression levels for genes with FPKM>0
in at least one sample (12,978 in all) in seven different cell types:
Astrocyte, Neuron, OPC, NFO, MO, Microglia, and Endothelial.
FPKM expression levels have been estimated in advance, merging
two replicates for cell type. As a consequence, there is just one
column for each cell type, and therefore the definition of replicates
through an experimental design matrix for RNentropy is not nec-
essary. Notice also that, since RNentropy does not need to estimate
the variance of gene expression levels across replicates, there is no

Fig. 4 Heatmap obtained using the R heatmap function on the pointwise mutual information matrix of the brain
example dataset. The plot clearly shows the high correlation among the replicates of each individual
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particular problem in using directly these values instead of the
original expression values for each replicate.

To use RNentropy on the data, run theRN_calc andRN_select
functions as follows:

Barres_Results <- RN_calc(RN_BarresLab_FPKM)

Barres_Results <- RN_select(Barres_Results)

We can verify that 6875 genes pass the RNentropy global
sample specificity p-value test with:

nrow(Barres_Results$selected)

In other words, those are the genes showing significant varia-
tion of expression in one or more cell types (Fig. 5).

To extract genes whose expression characterizes one or more of
the oligodendrocyte subtypes, proceed as follows:

colnames(Barres_Results$selected)[3:9] <- colnames(Barres_Results$expr)

Oligodendrocyte_genes <- row.names(Barres_Results$selected[(Barres_Results$selected$OPC == 1

| Barres_Results$selected$NFO == 1 

| Barres_Results$selected$MO == 1)

& Barres_Results$selected$Astrocyte != 1

& Barres_Results$selected$Neuron != 1

& Barres_Results$selected$Microglia != 1

& Barres_Results$selected$Endothelial != 1

,])

Fig. 5 Expression level (FPKM) of genes with (a) highest and (b) lowest expression identified by RNentropy as
being overexpressed in at least one sample across the seven cell types of the BarresLab dataset. Genes have
been ranked by average expression over the seven samples
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The first line of code sets the name of columns in the “selected”
table to match those of the input samples. This is convenient to
make the subsequent lines of code clearer. The second line of code
stores in the Oligodendrocyte_genes variable the names of the 1227
genes that are, according to RNentropy, at the same time over-
expressed in at least one of the oligodendrocyte subtypes and not
overexpressed in any of the other four non-oligodendrocyte cell
types (Fig. 6).

The final step consists in extracting, from the resulting
oligodendrocyte-specific gene set, those genes whose are overex-
pressed in only one of the three oligodendrocyte maturation stages.
Proceed as follows:

Fig. 6 Genes with highest expression values (FPKM) identified by RNentropy as being overexpressed in at least
one of the oligodendrocyte subtypes
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Selected_Oligodendrocytes  <- Barres_Results$selected[Oligodendrocyte_genes,]

OPC_Specific_Genes  <- row.names(Selected_Oligodendrocytes[Selected_Oligodendrocytes$OPC== 1

& Selected_Oligodendrocytes$NFO != 1 

& Selected_Oligodendrocytes$MO != 1

,])

NFO_Specific_Genes  <- row.names(Selected_Oligodendrocytes[Selected_Oligodendrocytes$OPC!= 1

& Selected_Oligodendrocytes$NFO == 1 

& Selected_Oligodendrocytes$MO != 1

,])

MO_Specific_Genes  <-row.names(Selected_Oligodendrocytes[Selected_Oligodendrocytes$OPC!= 1

& Selected_Oligodendrocytes$NFO != 1 

& Selected_Oligodendrocytes$MO == 1

,])

The first line of code defines a new variable storing the
“selected” table filtered for the oligodendrocyte-specific genes,
useful to simplify the rest of the code. Then, the names of the
OPC, NFO, and MO specific genes are stored respectively in the
variables OPC_Specific_Genes, NFO_Specific_Genes, and MO_Speci-
fic_Genes (Fig. 7). RNentropy identified 379, 214, and 190 genes
whose overexpression is significant and specific for only one of the
three cell subtypes OPC, NFO, and MO, respectively. The remain-
ing 444 oligodendrocyte-specific genes can then be considered
overexpressed in at least two of the three subtypes.

3.3 Applying

RNentropy

to Single-Cell

RNA-Seq Data

The computational and statistical framework RNentropy is based
on makes it perfectly suitable also for the analysis of single-cell
RNA-Seq data. In this case, every cell is a “condition” by itself,
and no replicates have to be defined. The output will indicate, for
each gene, if its expression changes in a significant way across all the
cells studied, and the list of cells in which the gene is considered to
be over- or underexpressed. Since the typical input for experiments
of this kind is made of thousands of cells, the output of RNentropy
over the whole dataset without no further pre- or postprocessing
would be of little use. Our suggestion is to couple RNentropy with
the commonly used strategies for scRNA-Seq analysis (for example
in [21]), either as a preprocessing step for the selection of the most
variable genes or as a final step after the individuation of cluster of
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cells defining putative subtypes, for the characterization of the
marker genes of each cluster.

For preprocessing, it has been shown that in several cases better
results can be obtained by considering only the most variable genes
across the cells studied for dimensionality reduction and clustering
[11]. This step is straightforward with RNentropy, by running the
global specificity test, and selecting genes passing the test with a p-
value lower than a given threshold or ranking genes according to
increasing p-values and selecting the top n.

For postprocessing, let us suppose that n clusters have been
determined by the analysis of a scRNA-Seq dataset after normaliza-
tion, dimensionality reduction, and clustering. Let ni be the num-
ber of cells assigned to cluster i, and N the overall number of cells
(samples) studied. As we stated above, expression data after nor-
malization can be processed as they are by RNentropy, considering
each cell a condition by itself with no replicates. For any gene G
passing the global specificity test, hence whose expression is signifi-
cantly variable across the samples, the number of cells in each
cluster in which the gene is overexpressed can be easily computed
by examining the results of the local specificity test. The idea is that
gene G can be considered to be a “marker” gene for a given cluster
(cell subtype) if it results from the local specificity test to be over-
expressed in a significant fraction of the cells of the cluster itself. In
order to avoid the definition of arbitrary thresholds for this step, we
can compute explicitly the probability of a gene to be found over-
expressed in a given number of cells of a cluster by chance. Let ui be
the number of cells of cluster i in which G is overexpressed, and let
U the total number of cells analysed in which the gene is

Fig. 7 Top panel: examples of expression variation in the seven cell types for genes overexpressed in (a) OPC
only, (b) NFO only, and (c) MO only. Bottom panel: distribution of expression levels across the seven cell types
for OPC (d), NFO (e), and MO (f) specific genes
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overexpressed. Since the fraction of cells belonging to cluster i is
defined by (ni/N), the expected value for ui can be defined as U x
(ni/N). If ui > U x (ni/N), then the probability of finding by
chance ui cells in cluster i where G is overexpressed can be calcu-
lated with Fisher’s exact test:

P uið Þ ¼
U
ui

� �
N�U
ni�ui

� �

N
ni

� � :

The same calculations can be repeated for every gene passing
the global specificity test and each cluster, obtaining for each cluster
the list of putative “marker” genes, with a p-value representing the
significance of each of the latter. That is, if the p-value returned by
the formula for a given gene G and a cluster i is lower than a typical
threshold like 0.01 (possibly corrected by the numbers of genes and
clusters tested), then G can be considered to be a “marker” for
cluster i. The same rationale can also be applied to down-regulated
genes, in order to single out genes whose expression seems to be
silenced in each of the clusters identified.

4 Notes

1. As mentioned in Subheading 3.2.1 and demonstrated in [20],
RNentropy shows consistent results independently of the nor-
malizationmetrics employed to quantify gene expression levels.
However, usually, TMM is considered to be more statistically
sound when comparing expression levels in different condi-
tions [14] and should be preferred, whenever possible, in
typical RNA-Seq assays where only a minority of the genes are
expected to be significantly differentially expressed among any
two conditions. In this case, the input values for RNentropy are
the “read per million” values after TMM normalization, that
can be for example performed by using the edgeR package
[14]. For single-cell RNA-Seq data, where metrics change
according to the platform and sequencing strategy employed,
we advise using the same values used in all the other analysis
steps, that is, for dimensionality reduction and clustering.

2. Biological replicates are of critical importance to any RNA-Seq
experiment [15]. However, the strict approach adopted by
RNentropy in the selection of significantly differentially
expressed genes (see Subheading 3.1.4) implies that the pres-
ence of just one outlier replicate in a condition could shadow
the presence of genuinely differentially expressed genes in that
condition, possibly increasing the ratio of false negatives. Also,
when replicates present high biological variability (e.g., come
from different individuals in a study designed on human or
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mouse), none of them will likely present the same exact pattern
of differentially expressed genes. To avoid this eventuality, it is
always better to process data also by keeping “replicates” sepa-
rate, also in order to verify the consistency of biological repli-
cates and eventually to discard inconsistent replicates whenever
possible. One approach to check the consistency of replicates is
the one described in Subheading 3.2.4, which is making a
preliminary run of RNentropy considering all the samples as
different conditions and computing the pointwise mutual
information table. Replicates for the same condition that do
not cluster together should be considered outliers. Another
way to perform the same check is to draw a principal compo-
nent analysis plot (e.g., using the prcomp function of R) on the
expression values of all the samples and, again, discard those
replicates for the same condition that do not cluster together.
When dealing with highly variable replicates of the same con-
dition, differentially expressed genes can be defined down-
stream of the analysis, for example by selecting those that
result differentially expressed in most of the replicates, accord-
ing to the conditions studied.
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Chapter 7

Statistical Modeling of High Dimensional Counts

Michael I. Love

Abstract

Statistical modeling of count data from RNA sequencing (RNA-seq) experiments is important for proper
interpretation of results. Here I will describe how count data can be modeled using count distributions, or
alternatively analyzed using nonparametric methods. I will focus on basic routines for performing data
input, scaling/normalization, visualization, and statistical testing to determine sets of features where the
counts reflect differences in gene expression across samples. Finally, I discuss limitations and possible
extensions to the models presented here.

Key words Count data, DESeq2, Gene expression, RNA-seq

1 Introduction

Here I will describe how count data, as often arises in RNA
sequencing (RNA-seq) experiments, can be modeled using count
distributions, as well as how nonparametric methods can be used to
analyze count data. The section will cover basic routines for
performing data input, scaling/normalization, visualization, and
statistical testing to determine sets of features where the counts
reflect differences in expression across samples. The final section
will cover limitations of the methods presented and extensions.

The code in this book includes the basic routines that can be
found in software vignettes of various Bioconductor packages,
including tximeta, DESeq2, and fishpond. Please see those package
vignettes for further details. Any specific questions about Biocon-
ductor software should be posted to the Bioconductor support site:

l https://support.bioconductor.org.

There are also two published workflows that are related to the
analysis steps and packages described here, but which explore dif-
ferent directions. These workflows are hosted on the Bioconductor
workflow site, and checked regularly to ensure they build correctly
and without error:

Ernesto Picardi (ed.), RNA Bioinformatics, Methods in Molecular Biology, vol. 2284, https://doi.org/10.1007/978-1-0716-1307-8_7,
© Springer Science+Business Media, LLC, part of Springer Nature 2021
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l rnaseqGene—gene-level exploratory analysis and differential
expression [1].

l rnaseqDTU—differential transcript usage [2].

Another related reference is Van den Berge et al. [3], which is a
review of RNA-seq expression analysis, written by a collection of
researchers who develop statistical models and software for
RNA-seq data.

2 Quantification

One key initial step in analyzing RNA-seq data is to quantify, or
estimate, the number of fragments in the experiment that can be
assigned to each feature, whether a gene or a transcript (an isoform
of a gene). Alongside quantification, it is strongly recommended to
perform quality control (QC) checks on the sequence files. Reports
spanning multiple samples can be generated with the MultiQC
software [4]. Here I will not start with quality control checks, but
instead move straight to quantification and import of estimated
counts into R, although an example quality control report can be
found in the extdata directory of the airway2 package on
GitHub (https://github.com/mikelove/airway2).

The data I will examine first in this section is from an experi-
ment of the effect of knocking down OCT4 and BRG1 in mouse
embryos [5]. In particular, I will examine the treatment effect of
knocking down OCT4. The experiment had four groups of sam-
ples, each replicated in triplicate. The RNA-seq data from the
experiment is available in the oct4 Bioconductor package.

I will use the Salmon software for estimating transcript abun-
dance [6]. Briefly, Salmon uses the sequenced reads and the refer-
ence transcripts, and constructs a generative model for the observed
data, which includes modeling of various technical biases that are
commonly observed in RNA-seq. Salmon then outputs the esti-
mated counts for each transcript, and an “effective length” of the
transcript, which is shorter than the full length of the transcript if it
was biased to having fewer reads due to technical artifact, and longer
than the full length of the transcript if it was biased to having more
reads. For details about the Salmon method and software, refer to
the Salmon website (https://combine-lab.github.io/salmon).

All 12 samples from the experiment were quantified using
Salmon. The jobs for processing the reads with Salmon were exe-
cuted via Snakemake [7], a convenient tool for scheduling and
executing repetitive rule-based operations on input data. The
exact lines of code can be seen in the Snakefile provided in the
scripts directory of the oct4 package.
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Most of the packages shown in this online book live within the
Bioconductor project [8]. Bioconductor objects are more complex
than basic objects in R, for example numeric, character, or other
simple objects, in that they often have attached metadata, such as
additional information about rows and columns, or other meta-
data. We will see how to make use of the metadata throughout the
various sections by examining, for example, colData for informa-
tion about the columns of a matrix, or mcols for metadata
columns.

I begin by loading some data in the Bioconductor package oct4.
Note that this step is not useful for a typical RNA-seqworkflow, as the
data will not be contained in an R package, but contained in some
directory on a server or compute cluster. So in lieu of the system.
file command below, which is used here to locate a file within an R
package, you could just specify the dir variable to be a path to the
files, for example, /path/to/data/dir. Note also that this and
other packages must be installed via the Bioconductor package instal-
lation instructions at https://bioconductor.org/install.

dir <- system.file("extdata", package="oct4", mustWork=TRUE)
list.files(dir)

## [1] "coldata.csv"     "list"            "quants"         
## [4] "SraRunTable.txt"

I will use the readr and dplyr packages to read in a CSV file with
information about the samples. Because we are typically working
with “tall” count matrices, with the rows representing genomic
features such as genes or transcripts, and columns representing
samples, the sample information is referred to as the column data
or coldata. For more information on dplyr, see the excellent dplyr
online documentation.

library(readr)
coldata <- read_csv(file.path(dir,"coldata.csv"))

## Parsed with column specification:
## cols(
##   names = col_character(),
##   line = col_character(),
##   condition = col_character()
## )

I next set the levels of the line and condition factor
variables so that OCT4 and untrt are the reference levels, and I
specify the path to the quantification files I want to read in.

In the last step of the mutate call, note I specify paths to the
quantification files quant.sf.gz. Typically, these files are not
gzipped, but I have compressed the quant.sf files to reduce the
size of the data package. Note also that, although I point only to the
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quant.sf files, the entire directory containing that file is required
for proper import of the quantification data. There are other meta-
data files that provide important information about the experiment,
including uncertainty information. The metadata files enable auto-
matic identification of the feature set, a computational reproduc-
ibility feature that will be described later in this section.

suppressPackageStartupMessages(library(dplyr))
coldata <- coldata %>%
mutate(line=factor(line, levels=c("OCT4","BRG1")),

condition=factor(condition, levels=c("untrt","trt")),
files=file.path(dir, "quants", names, "quant.sf.gz"))

All the files exist at the locations I specified, which in this case
have the pattern /<DIR>/quants/<NAMES>/quant.sf.gz.

all(file.exists(coldata$files))

## [1] TRUE

I will now use the Bioconductor package tximeta [9] to read in
the quantification data, and create a SummarizedExperiment
object. The SummarizedExperiment class is described by Huber
et al. [8], in particular diagrammed in Figure 2. Here, the txi-
meta function performs a number of operations on behalf of the
user, identifying the reference transcripts that were used to quantify
the RNA-seq reads, automatically downloading (or loading) the
relevant genomic locations of the transcripts, and attaching the
relevant genomic context (the genome version and chromosome
names and lengths). tximeta can perform these operations by lever-
aging the hash signature of the sequence of the transcripts, which is
stored when processing bulk RNA-seq with Salmon, or when pro-
cessing single cell RNA-seq with the alevin software [10]
(distributed with Salmon).

A small note: I specify dropInfReps¼TRUE, because I will be
performing gene-level analysis, and I will not make use of the
uncertainty information in this first analysis. I will show in a later
section how to make use of the inferential replicates computed by
Salmon during quantification.
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library(tximeta)

suppressPackageStartupMessages(library(SummarizedExperiment))

se <- tximeta(coldata, dropInfReps=TRUE)

## importing quantifications

## reading in files with read_tsv

## 1 2 3 4 5 6 7 8 9 10 11 12 
## found matching transcriptome:
## [ GENCODE - Mus musculus - release M20 ]
## loading existing TxDb created: 2020-03-25 23:26:23
## loading existing transcript ranges created: 2020-07-15 15:13:43
## fetching genome info for GENCODE

In the above output, we can see that tximeta identified that
the mouse reference transcripts, release M20, were used from
GENCODE [11]. This information would be automatically iden-
tified, even if the group that performed the quantification did not
document this when uploading processed expression data to a
public repository.
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We can see the matrices of data that have been compiled, and
examine the genomic locations of the features (rows):

assayNames(se)

## [1] "counts"    "abundance" "length"

rowRanges(se)

## GRanges object with 137271 ranges and 3 metadata columns:
##                        seqnames          ranges strand |
##                           <Rle>       <IRanges>  <Rle> |
##   ENSMUST00000193812.1     chr1 3073253-3074322      + |
##   ENSMUST00000082908.1     chr1 3102016-3102125      + |
##   ENSMUST00000162897.1     chr1 3205901-3216344      - |
##   ENSMUST00000159265.1     chr1 3206523-3215632      - |
##   ENSMUST00000070533.4     chr1 3214482-3671498      - |
##                    ...      ...             ...    ... .
##   ENSMUST00000082419.1     chrM     13552-14070      - |
##   ENSMUST00000082420.1     chrM     14071-14139      - |
##   ENSMUST00000082421.1     chrM     14145-15288      + |
##   ENSMUST00000082422.1     chrM     15289-15355      + |
##   ENSMUST00000082423.1     chrM     15356-15422      - |
##                            tx_id              gene_id
##                        <integer>      <CharacterList>
##   ENSMUST00000193812.1  1 ENSMUSG00000102693.1
##   ENSMUST00000082908.1         2 ENSMUSG00000064842.1
##   ENSMUST00000162897.1      4203 ENSMUSG00000051951.5
##   ENSMUST00000159265.1      4204 ENSMUSG00000051951.5
##   ENSMUST00000070533.4      4205 ENSMUSG00000051951.5
##                    ...       ...                  ...
##   ENSMUST00000082419.1    138833 ENSMUSG00000064368.1
##   ENSMUST00000082420.1    138834 ENSMUSG00000064369.1
##   ENSMUST00000082421.1    138825 ENSMUSG00000064370.1
##   ENSMUST00000082422.1 138826 ENSMUSG00000064371.1
##   ENSMUST00000082423.1    138835 ENSMUSG00000064372.1
##                                     tx_name
##                                 <character>
##   ENSMUST00000193812.1 ENSMUST00000193812.1
##   ENSMUST00000082908.1 ENSMUST00000082908.1
##   ENSMUST00000162897.1 ENSMUST00000162897.1
##   ENSMUST00000159265.1 ENSMUST00000159265.1
##   ENSMUST00000070533.4 ENSMUST00000070533.4
##                    ...                  ...
##   ENSMUST00000082419.1 ENSMUST00000082419.1
##   ENSMUST00000082420.1 ENSMUST00000082420.1
##   ENSMUST00000082421.1 ENSMUST00000082421.1
##   ENSMUST00000082422.1 ENSMUST00000082422.1
##   ENSMUST00000082423.1 ENSMUST00000082423.1
##   -------
##   seqinfo: 22 sequences (1 circular) from mm10 genome

Because the tximeta function has identified the correct
reference transcripts that were used for quantification,
and stored this as metadata in the SummarizedExperiment
object, I can obtain additional information, such as the
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correspondence of transcripts to genes. I can then perform a
summarization task, without having to look up this informa-
tion manually.

gse <- summarizeToGene(se)

## loading existing TxDb created: 2020-03-25 23:26:23

## obtaining transcript-to-gene mapping from database

## loading existing gene ranges created: 2020-03-25 23:26:26

## summarizing abundance

## summarizing counts

## summarizing length

Gene-level summarization of transcript-level quantification
data is described in the paper for tximport [12]. The tximeta
function internally calls methods from the tximport package during
its operation. Note that tximport provides similar functionality to
tximeta, but instead of returning a rich Bioconductor object, txim-
port returns a simple list of matrices.

Below I show some examples of operations that can be easily
performed because I have a SummarizedExperiment object with the
appropriate gene ranges attached. I can easily subset the genes
(rows) based on overlaps with a given genomic range using stan-
dard square bracket indexing. The range-based class system and set
of methods for operating on genomic ranges is provided by the
GenomicRanges package, which has useful help pages and
vignettes [13].

## GRanges object with 53697 ranges and 1 metadata column:
##                         seqnames              ranges strand |
##                            <Rle>           <IRanges>  <Rle> |
##    ENSMUSG00000000001.4     chr3 108107280-108146146      - |
##   ENSMUSG00000000003.15     chrX   77837901-77853623      - |
##   ENSMUSG00000000028.15    chr16   18780447-18811987      - |
##   ENSMUSG00000000031.16     chr7 142575529-142578143      - |
##   ENSMUSG00000000037.16     chrX 161117193-161258213      + |
## ...      ...                 ...    ... .
##    ENSMUSG00000117651.1    chr17   32731010-32731806      + |
##    ENSMUSG00000117652.1    chr18     6910459-6936621      - |
##    ENSMUSG00000117653.1    chr17   94811611-94812922      - |
##    ENSMUSG00000117654.1    chr17   32863662-32877942      - |
##    ENSMUSG00000117655.1    chr19   57497390-57512784      + |

rowRanges (gse)
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## metadata(6): tximetaInfo quantInfo ... txomeInfo txdbInfo
## assays(3): counts abundance length
## rownames(18): ENSMUSG00000025916.10 ENSMUSG00000025917.9
##   ... ENSMUSG00000103448.1 ENSMUSG00000103810.1
## rowData names(1): gene_id
## colnames(12): SRX2236945 SRX2236946 ... SRX2236955
##   SRX2236956
## colData names(3): names line condition

##   ENSMUSG00000000003.15 ENSMUSG00000000003.15
##   ENSMUSG00000000028.15 ENSMUSG00000000028.15
##   ENSMUSG00000000031.16 ENSMUSG00000000031.16
##   ENSMUSG00000000037.16 ENSMUSG00000000037.16
##                     ...            ...
##    ENSMUSG00000117651.1  ENSMUSG00000117651.1
##    ENSMUSG00000117652.1  ENSMUSG00000117652.1
##    ENSMUSG00000117653.1  ENSMUSG00000117653.1
##    ENSMUSG00000117654.1  ENSMUSG00000117654.1
##    ENSMUSG00000117655.1  ENSMUSG00000117655.1
##   -------
##   seqinfo: 22 sequences (1 circular) from mm10 genome

x <- GRanges("chr1", IRanges(10e6, 11e6))
gse[gse %over% x, ]

## class: RangedSummarizedExperiment 
## dim: 18 12 

##                                       gene_id
##                                   <character>
##    ENSMUSG00000000001.4 ENSMUSG00000000001.4

I can likewise easily subset the samples by referring to the
colData columns, for example, colData(gse)$line. A short-
cut for referring to colData columns is to just use the dollar sign
directly on the object, gse$line.

gse[, gse$line == "OCT4"]

## class: RangedSummarizedExperiment 
## dim: 53697 6 
## metadata(6): tximetaInfo quantInfo ... txomeInfo txdbInfo
## assays(3): counts abundance length
## rownames(53697): ENSMUSG00000000001.4
##   ENSMUSG00000000003.15 ... ENSMUSG00000117654.1
##  ENSMUSG00000117655.1
## rowData names(1): gene_id
## colnames(6): SRX2236945 SRX2236946 ... SRX2236949
##   SRX2236950
## colData names(3): names line condition

Finally, I demonstrate that it is easy to add alternative identi-
fiers, making use of the organism annotation packages in
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Bioconductor. For example, to add gene symbols, I can use txime-
ta’s addIds function, and specify the SYMBOL column.

library(org.Mm.eg.db)
gse <- addIds(gse, column="SYMBOL")

## mapping to new IDs using 'org.Mm.eg.db' data package
## if all matching IDs are desired, and '1:many mappings' are reported,
## set multiVals='list' to obtain all the matching IDs

## it appears the rows are gene IDs, setting 'gene' to TRUE

## 'select()' returned 1:many mapping between keys and
## columns

To check all the available columns for an organism package,
use the columns function:

columns(org.Mm.eg.db)

##  [1] "ACCNUM"       "ALIAS"        "ENSEMBL"      "ENSEMBLPROT" 
##  [5] "ENSEMBLTRANS" "ENTREZID"     "ENZYME"       "EVIDENCE"    
##  [9] "EVIDENCEALL"  "GENENAME"     "GO"           "GOALL"       
## [13] "IPI"          "MGI"          "ONTOLOGY"     "ONTOLOGYALL" 
## [17] "PATH"         "PFAM"         "PMID"         "PROSITE"     
## [21] "REFSEQ"       "SYMBOL"       "UNIGENE"      "UNIPROT"

3 Counts Modeling

3.1 A First

Exploration of Counts

In this section, I will discuss the statistical models that are often
used to analyze RNA-seq data, in particular gene-level count matri-
ces. I will then use the DESeq2 package to calculate scaling factors,

Fig. 1 Distribution of mapped fragments per sample in millions
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estimate biological dispersion within groups of samples, and per-
form differential testing per gene [14].

Some other popular Bioconductor packages for RNA-seq anal-
ysis include the edgeR package [15, 16] and the limma-voom
method in the limma package [17]. The approach taken by
DESeq2 for estimation of dispersion is similar to the method pro-
posed by Wu, Wang, and Wu [18] in the DSS Bioconductor
package.

I will begin by investigating the estimated counts that were
imported from the Salmon software, and comparing these counts
across and within samples. I will note the varying precision that the
counts offer for log ratio comparisons between samples. Finally, I
will perform per-gene testing for differential expression using the
DESeq2 package, and multiple test correction, including the IHW
method [19]. Note that the first part of this section includes code
and plots that are not typically performed during RNA-seq analysis,
but mostly for introducing the reader to some basic properties of
RNA-seq count matrices.

First, it is useful to explore the varying number of fragments
(pairs of reads) that have been assigned to the genes for each sample
(Fig. 1). For a typical mammalian RNA-seq experiment, we might
expect tens of millions of fragments per sample, which are
distributed across tens of thousands of genes, although there is
inevitably a range of sequencing depth for each sample:

Fig. 2 Ratio of the proportions from samples 1 and 2, over the geometric mean of
proportions (log10 scale). Each gene is plotted as a point
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assayNames(gse)

## [1] "counts"    "abundance" "length"

cs <- colSums(assay(gse, "counts"))
hist(cs/1e6, col="grey", border="white",

main="", xlab="column sums (per million)")

Let us first consider just two samples, one from the OCT4
untreated group and one from the OCT4 treated group. I will
make a plot examining the proportion of the total count for each

Fig. 4 Zoomed-in plot of the ratio of proportions over the geometric mean (log10
scale), between the range of �6.5 and �3.5

Fig. 3 Distribution of the mean of log10 proportions across all genes
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gene. I will first subset to only those genes where both samples have
a count of 5 or more, to cut down on the number of points to plot.
Here I use the total count, colSums(cts) to divide the counts for
each sample, while later we will discuss a robust estimator for
sequencing depth variation across samples.

Before I create the proportions, it is important to remember
that, because genes with longer transcripts will produce more
cDNA fragments, the proportion estimated here (without taking
into account the length of the feature) does not estimate the
proportion of molecules. The abundance assay of the gse object
contains estimates of the proportions of the molecules, in tran-
scripts per million (TPM). For more on how these estimates are
computed, consult the Salmon paper [6].

cts <- assay(gse, "counts")[,c(1,4)]
idx <- rowSums(cts >= 5) == 2
cts <- cts[idx,]
p <- sweep(cts, 2, colSums(cts), "/")

We can examine the ratio of the proportions for each gene, over
the geometric mean, using the maplot function from the rafalib
package. We will plot the ratio and the geometric mean of propor-
tions both on the log scale. maplot is a basic function for making
an “MA-plot” which has been used in transcriptomics since at least
the early 2000s when it was used for microarray datasets
[20, 21]. Later I will show a specialized MA-plot function for
RNA-seq data in DESeq2 (Fig. 2).

Fig. 5 Distribution of the log2 fold changes in proportion between sample 1 and
2, when the geometric mean proportion is between 1/1e6 and 1/1e4
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library(rafalib)
maplot(log10(p[,1]), log10(p[,2]), n=nrow(p), 

cex=.3, col=rgb(0,0,0,.2),
xlab="log10 proportion (geometric mean)", 
ylab="log10 fold change")

abline(h=0, col=rgb(0,0,1,.5))

The red line is a smooth curve through the log ratios (here
log10, although we will later switch to log2 for more interpretable
ratios). Note that the line is relatively flat across many orders of
magnitude of the proportion. So whether the gene has 1 millionth
of the total count (�6) or up to one thousandth of the total count
(�3), the ratio between the two samples tends to fluctuate around
0, with most of the points somewhere between �0.1 and 0.1. The
points further off the horizontal line may indicate differentially
expressed genes, but we will better identify these using all of the
replicates.

While just considering the two samples, I can also examine the
histogram of the x-axis above, the mean of the log10 proportions
(or equivalently the log10 of the geometric mean of proportions)
(Fig. 3). We see that most genes that we are considering fall in the
range from 1/10,000,000 (�7) to 1/10,000 (�4) of the total
count (Fig. 4). That these ratios are very low is relevant for the
choice of statistical distribution for the counts.

Fig. 6 MA-plot for simulated technical replicate samples, demonstrating the
extent of expected variation from sampling fragments
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mean.log.p <- rowMeans(log10(p))
hist(mean.log.p,  col="grey", border="white",

main="", xlab="log10 proportion (geometric mean)")

library(rafalib)
maplot(log10(p[,1]), log10(p[,2]), n=nrow(p),

xlim=c(-6.5, -3.5), ylim=c(-2,2),
cex=.3, col=rgb(0,0,0,.2),
xlab="log10 proportion (geometric mean)", 
ylab="log10 fold change")

abline(h=0, col=rgb(0,0,1,.5))

I will zoom out on the y-axis and zoom in on the x-axis on the
MA-plot to emphasize that, for the range containing most of the
genes, the middle of the distribution of the ratio of proportions
across the treatment is centered on 0.

The base of 10 is not a great choice for the logarithm, because it
is not common to have a tenfold change, and then it becomes hard
to interpret the meaningful changes in the range from 0 to 1. Much
better is to use log2, as we can easily interpret 1 as doubling, 2 as
quadrupling, etc. Now I calculate the log2 ratio of proportions and
plot the histogram of these log ratios, for genes where the log10
mean proportion is between �6 and �4 (Fig. 5):

lfc <- log2(p[,2]) - log2(p[,1])
hist(lfc[between(mean.log.p, -6, -4)], 

breaks=seq(-10,10,by=.1),
xlim=c(-5,5),
col="grey50", border="white",
main="", xlab="log2 fold change of proportion")

Again we see that it is rare for there to be an extreme change
(more than doubling) comparing these two samples from different
treatment groups. Most of the genes fall around 0. Exactly 0 implies
no change in the proportion as calculated using the total count.

Before we begin modeling the counts from the RNA-seq exper-
iment, I produce one more plot to give a sense of expected sam-
pling variation with counts of a similar distribution to the ones we
observed. Supposing that the proportions p was fixed for the first
sample, and we draw 30,000,000 fragments according to these
gene-wise proportions. We would then obtain a multinomial distri-
bution for the counts per gene. When the number of observations
is large, and the proportions are small, the count for any given gene
is well approximated by a Poisson distribution. So I will create two
simulated technical replicate samples, by creating two draws from a
Poisson distribution along the genes. I then repeat the same code as
above, to examine the MA-plot for the simulated counts (Fig. 6).
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sim.cts <- matrix(rpois(nrow(p) * 2, 30e6 * p[,1]), ncol=2)
colSums(sim.cts)

## [1] 30006032 30009034

idx <- rowSums(sim.cts >= 5) == 2
sim.cts <- sim.cts[idx,]
sim.p <- sweep(sim.cts, 2, colSums(sim.cts), "/")
maplot(log10(sim.p[,1]), log10(sim.p[,2]), n=nrow(p), 

cex=.3, col=rgb(0,0,0,.2),
xlab="log10 proportion (geometric mean)", 
ylab="log10 fold change")

abline(h=0, col=rgb(0,0,1,.5))

Note that, even after filtering out genes that do not have a
count of 5 or more for both samples, there is still substantial
variance for the ratio of proportions for the small count genes
compared to the large count genes.

3.2 Modeling Counts

with DESeq2

I will now demonstrate the use of the DESeq2 package for estimat-
ing per-sample scaling factors, per-gene dispersion and fold changes
per gene across the samples. As in edgeR and limma,DESeq2 allows
for the use of complex designs, leveraging R’s formula syntax. For
details about various design formula, first consult the DESeq2
vignette and ?results help page.

I create a DESeqDataSet object, by providing the gene-level
SummarizedExperiment object, and specifying the design, which
is a formula expressing how we wish to model the counts. Here, I
specify a baseline term for each line (OCT4 or BRG1), and a
condition effect specific to each line (so comparing treated vs
untreated, specific to each line). The colon between line and

Fig. 7 Plot of dispersion estimates over the mean of scaled counts, as computed
by DESeq2
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condition specifies to form an interaction between those two
terms.

library(DESeq2)

dds <- DESeqDataSet(gse, design=~line + line:condition)

## using counts and average transcript lengths from tximeta

After creating the dataset, I perform some minimal filtering
that makes sense for bulk RNA-seq. I filter such that there must
be at least three samples with a count of 10 or more to keep the
gene in the dataset. This will reduce the size of the dataset (here,
removing more than half of the genes) and the time needed to fit
various per-gene parameters, such as dispersion and fold change
estimates.

keep <- rowSums(counts(dds) >= 10) >= 3
table(keep)

## keep
## FALSE  TRUE 
## 30173 23524

dds <- dds[keep,]

The parameters are estimated with a single call to the DESeq
function. For details on all the steps performed by this function,
check the help page ?DESeq, as well as a section of the vignette
called, “The DESeq2 model”. Briefly, DESeq2 computes a robust
size factor which outperforms the total count in adjusting for
differential sequence depth across libraries. ThenDESeq2 computes
(iteratively) the coefficients of a generalized linear model (GLM),
and a dispersion parameter that reflects the variation in addition to

Fig. 8 Principal component analysis (PCA) plot on variance stabilized data using
the VST
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the Poisson variation, around the expected value for each sample
conditioned on information in the design matrix.

dds <- DESeq(dds)

## estimating size factors

##using’avgTxLength’fromassays(dds),correctingforlibrarysize

## estimating dispersions

## gene-wise dispersion estimates

## mean-dispersion relationship

## final dispersion estimates

## fitting model and testing

One of the key estimates is the dispersion for each gene.
DESeq2 uses a combination of methods to estimate the dispersion.
First, the gene-wise estimate is produced using the methods pro-
posed by edgeR in 2012 for a Negative Binomial generalized linear
model (GLM) [16]. Briefly, the maximum adjusted profile likeli-
hood estimate is calculated, where the adjustment of Cox and Reid
[22] is used to avoid a downward bias on the dispersion estimate.
This bias adjustment is similar in theory to the the use of 1

n�1 in
estimating the sample variance.

Below I plot the estimates over the mean of scaled counts for
each gene. Note that many of the plots inDESeq2 refer to “normal-
ized counts”; here this just implies scaling the counts by the size
factor, so that the differences affecting counts across samples are
minimized.

There are two per-gene estimates, an initial estimate which
looks only at the data for a single gene (gene-est, black points),
and a final estimate that incorporates information from each gene,
as well as sharing information across genes (final, blue points)
(Fig. 7). The blue circles at the top of the plot represent genes with
high dispersion relative to the rest of the dataset, and in these cases,
only the gene-est estimate is used, without information from
other genes.

plotDispEsts(dds, ylim=c(1e-3, .5), xlim=c(5,1e5))

Below I will continue with per-gene analysis, but first, I dem-
onstrate how to examine differences across the 500 most variable
genes using a PCA plot. Before I compute the principal compo-
nents, I use the vst function to compute a variance stabilizing
transformation (VST) [23] of the count data. This is similar to a
log2 transform but avoids inflating the variance of the low count
genes. For more details on the methods used here to compute the
transformation, consult the DESeq2 vignette or ?vst. The specific
VST used byDESeq2 for RNA-seq counts was proposed by the first
DESeq paper [24].

Modeling of RNA-seq Count Data 113



Another option for performing dimension reduction (as in
PCA) on count data is to use the Poisson distance [25] or
GLM-PCA [26]. These two alternatives are explored in the gene-
level RNA-seq workflow hosted on Bioconductor [1].

Below I specify blind¼FALSE which will use the sample
grouping information when calculating the per-gene dispersion
(Fig. 8). The transformation itself does not use the design, once
the global dispersion trend has been fit.

vsd <- vst(dds, blind=FALSE)

plotPCA(vsd, intgroup=c("line","condition"))

We can see that the primary axis of variation among the most
variable genes is the cell line difference (OCT4 vs. BRG1), and the
second axis corresponds to treatment differences, though note that
these are not consistent across cell line.

I can extract various results tables from the dds object, based
on the design. Here I extract a table of results for the effect of
condition in the OCT4 line. The summary function will provide a
summary table across all genes. We observe more than a thousand
genes up- and down-regulated with response to treatment for this
comparison, for a false discovery rate (FDR) cutoff of 10%.

Fig. 9 MA-plot of the MLE log2 fold changes from DESeq2
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resultsNames(dds)

## [1] "Intercept"             "line_BRG1_vs_OCT4"    
## [3] "lineOCT4.conditiontrt" "lineBRG1.conditiontrt"

res <- results(dds, name="lineOCT4.conditiontrt")
summary(res)

## 
## out of 23524 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)       : 1615, 6.9%
## LFC < 0 (down)     : 1932, 8.2%
## outliers [1]       : 3, 0.013%
## low counts [2]     : 0, 0%
## (mean count < 3)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results

The genes with an adjusted p-value, padj, less than a thresh-
old, say 0.1, provide a set that is expected to control its nominal
FDR, for example no more than 10% of the genes in such a set on
average should be false positives.

We can look at the top lines of the results table. Note that
DESeq2 does not sort the table, this must be done by the user. The
top three lines correspond to the first three genes in the dataset
unless the user performs an ordering operation.

Fig. 10 MA-plot of the "shrunken" log2 fold changes from apeglm
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head(res, 3)

## log2 fold change (MLE): lineOCT4.conditiontrt 
## Wald test p-value: lineOCT4.conditiontrt 
## DataFrame with 3 rows and 6 columns
##                        baseMean log2FoldChange     lfcSE
##                       <numeric>      <numeric> <numeric>
## ENSMUSG00000000001.4    2182.07    -0.00287371  0.205255
## ENSMUSG00000000028.15   1210.76     0.05177269  0.129113
## ENSMUSG00000000031.16   4641.53     1.28151815  0.620842
##                             stat    pvalue      padj
##                    <numeric> <numeric> <numeric>
## ENSMUSG00000000001.4  -0.0140007 0.9888295  0.996691
## ENSMUSG00000000028.15  0.4009890 0.6884283  0.888527
## ENSMUSG00000000031.16  2.0641608 0.0390025  0.195436

For example, I can order adjusted p-values from small to large
(but then remember that this object is no long aligned with rows of
dds for example).

res.ord <- res[order(res$padj),]

I will show how to examine the differences across all genes in an
MA-plot. But first, I will compute a new estimate of fold change.
The estimate in the results table above is the MLE, or maximum
likelihood estimate, which is highly variable for low count genes
(as we saw in the simulated example). Here I compute a Bayesian
estimate for the fold change using methods in the apeglm package
[27]. The apeglm functions are wrapped up in a DESeq2 function
called lfcShrink, which produces a table similar to results but

Fig. 11 MA-plot with gene symbols added using the text() function
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with shrunken LFC instead of MLE.

library(apeglm)
lfc <- lfcShrink(dds, coef="lineOCT4.conditiontrt", type="apeglm")

## using 'apeglm' for LFC shrinkage. If used in published research, please 
cite:
##     Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior 
distributions for
##     sequence count data: removing the noise and preserving large 
differences.
##     Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895

Another option for shrinkage is to specify type¼"ashr"
which will make use of the ashr package for shrinkage of effect
sizes, with methods described by Stephens [28].

We can now examine the differences between the MLE and the
Bayesian estimate of fold change from apeglm (Fig. 9). First the
MLE:

plotMA(res, ylim=c(-4,4), 
colNonSig="grey60", colSig="blue", colLine="grey40")

The genes passing a 10% FDR threshold are colored in blue.

Fig. 12 MA-plot with gene symbols added using ggrepel
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Note the wide variability on the left side of the plot. This is mostly
due to imprecision in our estimates.

After applying the Bayesian shrinkage procedure, the variability
due to imprecision on the left side of the plot is reduced (Fig. 10).
In the paper by Zhu et al. [27], it is demonstrated that the shrunken
LFC are better suited for ranking genes by effect size.

plotMA(lfc, ylim=c(-4,4), 
colNonSig="grey60", colSig="blue", colLine="grey40")

For ranking genes by effect size, one would rank by abs
(log2FoldChange) (with decreasing¼TRUE), instead of
by padj.In the next series of code chunks, I demonstrate how to add
additional identifiers, such as gene symbols, to the MA-plot. I
will select a subset of genes to add labels, here filtering the results
table to a set of genes based on baseMean and log2FoldChange
(these choices are arbitrary, solely for demonstration). For a given
experiment, it would make more sense to pick out relevant genes by
both significance, effect size, and biological interpretation.
Because I have not reordered the lfc results table, I can add the
SYMBOL column from the dds object to the results table, and
then create a smaller table with our genes of interest (Fig. 11).

lfc$SYMBOL <- mcols(dds)$SYMBOL
tab <- lfc %>% as.data.frame %>%

filter(between(baseMean, 1e4, 1e5), 
between(abs(log2FoldChange), 1, 4))

tab <- tab[complete.cases(tab),]

Fig. 13 Plot of the estimated hypothesis weights, over the mean of scaled counts, as computed by IHW
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I now highlight the genes in tab using the points and text
functions.

plotMA(lfc, ylim=c(-4,4),
colNonSig="grey60", colSig="blue", colLine="grey40")

with(tab, {
points(baseMean, log2FoldChange, cex=2, col="blue")
text(baseMean, log2FoldChange, SYMBOL, pos=4, col="blue")

})

That worked, although it is not easy to see the labels for a set of
overlapping points below the horizontal axis. I can make a nicer
looking plot using ggplot2. First I create a data frame that I will pass
to the ggplot function.

dat <- as.data.frame(lfc)
dat <- dat[complete.cases(dat),]
dat <- dat %>% mutate(sig = ifelse(padj < .1, "Y", "N"))
tab$sig <- "Y"

The following ggplot code chunk recreates the MA-plot that
is built into DESeq2, but also uses the ggrepel package to make sure
the point labels for our genes of interest do not overlap (Fig. 12):

library(ggplot2)
library(ggrepel)
ggplot(dat, aes(baseMean, log2FoldChange, col=sig, label=SYMBOL)) +

geom_point() + scale_x_log10() +
xlab("mean of normalized counts") +
ylab("log fold change") +
geom_hline(yintercept=0, col="grey40") +
scale_color_manual(values=c("grey60", "blue")) +
geom_point(data=tab, shape=1, size=5, show.legend=FALSE) +
geom_label_repel(data=tab,

nudge_x = 1,
nudge_y = 2*sign(tab$log2FoldChange),
show.legend=FALSE)

3.3 Hypothesis

Weighting

In the last series of code chunks, I will demonstrate the use of
Independent Hypothesis Weighting (IHW) [19], in lieu of the
more simplistic mean count filtering that is used in results by
default. Instead of finding a threshold on the mean of scaled counts
that optimizes the number of rejected hypotheses following Benja-
mini–Hochberg correction [29], the IHW package finds an optimal
weighting of the hypotheses that maximizes power while still
controlling the FDR.

To use IHW instead of mean count thresholding, I pass the
ihw function to the filterFun argument of results. A similar
number of genes are detected as differentially expressed in
this case.
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suppressPackageStartupMessages(library(IHW))

res.ihw <- results(dds, name="lineOCT4.conditiontrt", filterFun=ihw)
summary(res.ihw)

## 
## out of 23524 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)       : 1630, 6.9%
## LFC < 0 (down)     : 1974, 8.4%
## outliers [1]       : 3, 0.013%
## [1] see 'cooksCutoff' argument of ?results
## see metadata(res)$ihwResult on hypothesis weighting

We can observe the weighting of hypotheses for various mean
count ranges, across the cross-validation folds (Fig. 13). For more
details on the methods used here, consult the IHW package
vignette and the publication by Ignatiadis et al. [19].

ihw.obj <- metadata(res.ihw)$ihwResult

plot(ihw.obj)

Again, we can show that a similar set of genes were found in this
case although in general the IHW procedure can outperform the
simple filtering rules that results uses by default.

table(filter=res$padj < .05, IHW=res.ihw$padj < .05)

##        IHW
## filter  FALSE  TRUE
##   FALSE 20616   145
##   TRUE     95  2665

4 Transcript Expression

In the previous sections, I showed importing transcript-level data
with tximeta, summarizing the data to gene-level counts, and
modeling the gene-level counts with DESeq2. Now I return to
transcript-level data and demonstrate how we can perform statisti-
cal testing on transcripts, that is, across all the isoforms of all the
genes. There are two important aspects to consider when
performing transcript-level analysis:

1. Uncertainty—Because the isoforms of a gene often have a
considerable amount of sequence similarity resulting from
shared exons, and because short read RNA-seq protocols
involve generating fragments that do not span the entire tran-
script, there can be considerable uncertainty in assigning a
given fragment to a particular transcript (see next section for
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a discussion of long read protocols). The uncertainty is not
constant across the transcripts, and depends on many factors,
some inherent to the gene model, such as the size of the
alternative exons, and some inherent to the experiment, such
as the sequencing depth, fragment length, read length, and
technical biases producing nonuniform coverage.

2. Isoform switching—We may perform testing for differential
expression of each transcript (I will perform this analysis in this
chapter), or we may also consider testing whether the usage of
the isoforms within a gene changes across condition. The latter
question is often termed differential transcript usage (DTU),
and can be related to differential transcript expression (DTE),
but they are not identical questions. For example, if all of the
isoforms of a gene increase in their expression across condition
with equal fold change, this is an example of differential gene
expression (DGE) and DTE, but not DTU, as the proportions
of the individual isoforms did not change.

Regarding isoform switching, one reference which explores
Bioconductor packages that can be used to detect DTU is the
rnaseqDTU Bioconductor workflow [2]. This workflow demon-
strates optimal filtering techniques [30], how the methodsDEXSeq
[31] and DRIMSeq [32] can be applied to estimated transcript
counts, and how stageR [33] can be utilized to detect which
genes and which isoforms contain evidence of DTU while
controlling overall error rates.

I will first introduce the experimental data, and then discuss
various approaches used to analyze transcript-level data. I will load
some processed RNA-seq data from an experiment by Alasoo
et al. [34], a subset of which is available in the macrophage Bicon-
ductor package. The experiment involved measuring transcription
in macrophage cell lines from a number of human donors, both
untreated, as well as treated with IFNg, Salmonella, and IFNg
combined with Salmonella. Here I will focus on the samples that
were untreated and treated with IFNg. As each cell line was from a
human donor, I will also control for a baseline donor effect when
comparing across treatment.

The macrophage dataset has paired samples from six of the
donors (all female), and has been quantified using Salmon. One
unique aspect of Salmon is that it allows for GC bias correction at
the fragment level during quantification, which is critical for reliable
identification of the correct expressed isoform in experiments that
have nonuniform coverage along the transcripts [6, 35].

Here I will perform differential transcript expression (DTE)
analysis. A key aspect, compared to gene-level analysis, is that
there is much more uncertainty in the assignments of fragments
to transcripts. A number of statistical methods have been proposed
to take this measurement uncertainty into account when
performing downstream testing, including BitSeq [36], mmdiff
[37], IsoDE [38], and Sleuth [39], the latter which leverages boot-
strap quantification estimates from the kallisto [40] quantification
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method. These methods incorporate measurement uncertainty into
parametric models for differential expression where biological
variability is also modeled. The exception is IsoDE which compares
bootstrap distributions of transcript expression for two samples at
a time.

Here, I will use a nonparametric method that takes into
account both inferential uncertainty of fragment assignments, as
well as biological variability across samples, called Swish [41], which
is available in the fishpond Bioconductor package. Swish stands for
“SAMseq With Inferential Samples Helps,” as it is based on the
existing statistical method for differential gene expression, SAMseq
[42]. The key idea is to make use of nonparametric testing methods
such as the Mann-Whitney Wilcoxon statistic, which operate only
on the ranks of the data across samples. The original SAMseq
method performed resampling of the counts in order to account
for sequencing depth differences. Here, Swish will make use of
multiple values in each cell of the count matrix that were computed
by the Salmon software, using a technique called Gibbs sampling.
For more details on the Gibbs sampling procedure, consult the
publication of Salmon [6] andmmseq [43]. Finally, the test statistics
are averaged over the multiple versions (or “inferential replicates”)
of the counts matrix and q-values for false discovery rate estimation
are computed via a permutation technique [44].

I begin by locating the files in the macrophage package. As
before, this step is not useful for a typical RNA-seq workflow, as
the data will not be contained in an R package, but contained in
some directory on a server or compute cluster. In lieu of the sys-
tem.file command below, you should just specify the dir vari-
able to be a path to the files, for example, /path/to/data/dir.

dir <- system.file("extdata", package="macrophage")
list.files(dir)

## [1] "coldata.csv"                  
## [2] "errs"                         
## [3] "gencode.v29_salmon_0.12.0"    
## [4] "gencode.v29.annotation.gtf.gz"
## [5] "PRJEB18997.txt"               
## [6] "quants"                       
## [7] "supp_table_1.csv"             
## [8] "supp_table_7.csv"

I then read in the sample table, and use dplyr to select certain
columns, convert columns into factors, and add a new column
pointing to the quantification files.
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library(readr)
library(dplyr)
coldata <- read_csv(file.path(dir,"coldata.csv"))

## Parsed with column specification:
## cols(
##   names = col_character(),
##   sample_id = col_character(),
##   line_id = col_character(),
##   replicate = col_double(),
##   condition_name = col_character(),
##   macrophage_harvest = col_character(),
##   salmonella_date = col_character(),
##   ng_ul_mean = col_double(),
##   rna_extraction = col_character(),
##   rna_submit = col_character(),
##   library_pool = col_character(),
##   chemistry = col_character(),
##   rna_auto = col_double()
## )

lvls <- c("naive","IFNg","SL1344","IFNg_SL1344")
coldata <- coldata %>%
dplyr::select(names, id=sample_id, line=line_id, 

condition=condition_name) %>%
mutate(line=factor(line),

condition=factor(condition, levels=lvls),
files=file.path(dir, "quants", names, "quant.sf.gz"))

I will only consider for this demonstration the untreated and
IFNg treated samples:

coldata <- coldata %>% filter(condition %in% c("naive","IFNg"))
coldata$condition <- droplevels(coldata$condition)

The coldata sample table now looks like:

head(coldata)

## # A tibble: 6 x 5
##   names     id     line  condition files                         
##   <chr>     <chr>  <fct> <fct>     <chr>                         
## 1 SAMEA103… diku_A diku… naive     /Library/Frameworks/R.framewo…
## 2 SAMEA103… diku_B diku… IFNg      /Library/Frameworks/R.framewo…
## 3 SAMEA103… eiwy_A eiwy… naive     /Library/Frameworks/R.framewo…
## 4 SAMEA103… eiwy_B eiwy… IFNg      /Library/Frameworks/R.framewo…
## 5 SAMEA103… fikt_A fikt… naive     /Library/Frameworks/R.framewo…
## 6 SAMEA103… fikt_B fikt… IFNg      /Library/Frameworks/R.framewo…

Test that all the files exist as I specified:
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all(file.exists(coldata$files))

## [1] TRUE

As before, I use tximeta to read in the quantification data. This
time I do not set dropInfReps¼TRUE, as I will need the inferential
replicates created by Salmon to perform DTE with Swish. The
inferential replicates allows the analysis to take into account the
uncertainty of fragment assignment to transcripts.

library(tximeta)

suppressPackageStartupMessages(library(SummarizedExperiment))

y <- tximeta(coldata)

Fig. 14 Distribution of p-values from the Swish method for testing differential
transcript expression

Fig. 15 MA-plot of the log2 fold changes over the mean of scaled counts, for
differential transcript expression by Swish
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## importing quantifications

## reading in files with read_tsv

## 1 2 3 4 5 6 7 8 9 10 11 12

## found matching linked transcriptome:

## [ GENCODE - Homo sapiens - release 29 ]

## loading existing TxDb created: 2020-03-12 01:46:43

## loading existing transcript ranges created: 2020-03-12

01:48:11

## fetching genome info for GENCODE

For speed of the demonstration, I subset to only the transcripts
on chromosome 1 (this would not be recommended for a typical
analysis).

y <- y[seqnames(y) == "chr1",]

I load the fishpond package, which contains the methods for
running Swish. There are three basic steps: scaling of the inferential
replicates to make them comparable despite different sequencing
depth, filtering out lowly expressed transcripts, and the testing
itself. The scaling method by default uses the median ratio method
ofDESeq [24]. The labelKeep function by default will keep those
transcripts with three or more samples with a count of 10 or higher.
For scRNA-seq with UMI deduplication, it is recommended to
lower the minimal count to a lower value such as 3. The minimal
number of samples can be increased for experiments with many
samples.

Fig. 16 Plot of the estimated counts from Salmon over samples, for a particular
transcript with a p-value less than 0.05 and a log2 fold change greater than
4. The boxes represent the distribution of inferential replicate estimated counts
for each sample
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library(fishpond)

y <- scaleInfReps(y, quiet=TRUE)

y <- labelKeep(y)

y <- y[mcols(y)$keep,]

Because the method makes use of permutations, it is required
to set a seed for computational reproducibility. I specify to test
across the condition variable, while controlling for a pairing
variable line. The line variable indicates which donor the cell
line came from.

set.seed(1)

y <- swish(y, x="condition", pair="line", quiet=TRUE)

## note: less permutations are available than requested

## 64 are available

After running swish, all of the results are stored in the
metadata columns (mcols) of the object y. I look to see
how many transcripts have a small q-value (analogous to an
adjusted p-value, this should provide a set with a nominal FDR
control).

names(mcols(y))

##  [1] "tx_id"     "gene_id"   "tx_name"   "log10mean" "keep"     
##  [6] "stat"      "log2FC"    "pvalue"    "locfdr"    "qvalue"

table(mcols(y)$qvalue < .05)

## 
## FALSE  TRUE 
##  5081  1329

One important aspect in testing across many features, in
particular where the uncertainty level is so heterogeneous, is to
consider if the p-value distribution is roughly uniform, with the
exception of the rejected tests. Here Swish provides a roughly
uniform distribution, with a spike on the left side representing the
rejections of the null hypothesis (Fig. 14).

hist(mcols(y)$pvalue, col="grey",
main="", xlab="p-values")

As with DESeq2 I can make an MA-plot, with the differential
transcripts highlighted in blue (here at 5% FDR) (Fig. 15).
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plotMASwish(y, alpha=.05)

I can also examine individual transcripts with evidence of
differential expression. As each sample is represented by a distri-
bution of possible estimated counts from Salmon, Swish uses
boxplots to represent the differences in expression across samples
(Fig. 16):

idx <- with(mcols(y), which(pvalue < .05 & log2FC > 4))

plotInfReps(y, idx[1], x="condition", cov="line", xaxis=FALSE)

This section gave a basic introduction to DTE using nonpara-
metric testing with the Swish method. For more details on
transcript-level analysis, it is recommended to consult the fishpond
Bioconductor package vignette, or the rnaseqDTU workflow on
Bioconductor [2].

5 Limitations and Extensions

In this final section, I discuss limitations to the methods presented
earlier, and extensions for analyzing high dimensional counts in
contexts beyond what was previously covered.

1. Single cell RNA-seq—The DESeq2 framework shown in the
gene-level analysis section was designed for bulk RNA-seq, in
which the Negative Binomial GLM assessing differences across
samples was suitable both in terms of distribution and in terms
of answering many biological questions of interest. In single
cell RNA-seq, there are new considerations and questions of
interest. One aspect is that, with UMI barcoding, there is a
need for quantification methods that resolve errors and dedu-
plicate the read data into molecule counts per cell. The alevin
method [10], packaged within the Salmon software, can
accomplish this UMI deduplication, and can resolve the
increased rate of multimapping reads seen in 30 tagged
sequencing, through an approach similar to that taken by
Salmon. The quantification from alevin can be easily imported
into R/Bioconductor using the tximeta software seen in the
quantification section.

After quantification, there are many choices regarding the
analysis pipeline, I refer to Bioconductor’s online book for
single cell analysis, and recent reviews for systematic compar-
isons. Amezquita et al. [45] have recently published an over-
view and online book for performing analysis of scRNA-seq
data using Bioconductor packages. Soneson and Robinson
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[46] evaluates methods for detecting differences in expression
across groups of cells. Sun et al. [47] evaluates methods for
dimension reduction, which is often performed in the context
of cell clustering and lineage reconstruction. Duo et al. [48]
evaluates methods for clustering to recover sub-populations of
cells. Finally, I note that the NB methods shown in the gene-
level chapter can be combined with other statistical methods to
add and model a zero component, in the case that the Negative
Binomial is not a suitable distribution [49]. The zero compo-
nent may not be needed for all scRNA-seq datasets, however, in
particular if UMI deduplication is possible.

2. Long reads—The data presented in previous sections involved
sequencing relatively short sequences of the cDNA fragments.
They sequences are short in the sense that they do not come
close to capturing the entire sequence of the transcript for most
mammalian transcripts. However, new technologies have
emerged in the past decade that allow for high-throughput
sequencing of lengths that approach the entire transcript
length. This necessitates new methods for alignment (the
long sequences nevertheless have a higher error rate than the
“short” reads). One of the most popular methods for aligning
long reads is minimap2 [50]. Following alignment, it is possi-
ble to again quantify expression using Salmon and import the
data into R/Bioconductor using tximeta. A systematic evalua-
tion of quantification using the Nanopore long read technol-
ogy has been performed by Soneson et al. [51]. A pipeline for
long read mapping with minimap2 and quantification with
Salmon has been recently published with an associated GitHub
repository [52]. Finally, a review of bioinformatic pipelines for
long read data analysis has recently been published by
Amarasinghe et al. [53].

3. Genetic variation—An aspect not explored in the previous
sections was genetic variation across the samples in the exonic
sequence. One analysis of interest is to identify common
genetic variants in the exonic sequence, and to quantify,
among the samples that are heterozygous for a given exonic
SNP, the expression of each allele. Best practices for allelic
expression analysis have been presented by Castel et al. [54],
and an evaluation of EM-based methods for assessing allelic
expression have been proposed and compared by Raghupathy
et al. [55]. Aside from interest in quantifying allelic expression
in the presence of heterozygous exonic positions, Srivastava
et al. [56] have examined the effect of genetic variation on
transcript and gene expression quantification.

4. Microbiome—I have described here various methods for analyz-
ing counts reflecting the abundance of RNA molecules across
samples. Another type of high dimensional count dataset with
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similar but distinct analysis considerations is that produced in a
microbiome or metagenomic study, in which the counts reflect
the abundance of certain taxa across samples. The count data is
arranged in a similar format to gene expression, but with the
taxa replacing the transcripts or genes on the rows of the
matrix.

While many have considered using gene expression nor-
malization and testing methods for analyzing this type of data,
a number of the assumptions used in gene expression models
may be invalid for particular microbiome datasets. In particular,
I demonstrated in the first exploration of gene expression
counts that there were thousands of features in which the
changes from sample to sample were minimal. There was a
clear center of the distribution of log fold changes that could
be used to estimate the size factors for scaling normalization
across samples. In particular microbiome studies, this assump-
tion may not fit, as there may not be a group of taxa that can be
assumed roughly equally abundant across all samples in a data-
set. In addition, there may be too few taxa, such that the
Poisson modeling assumption no longer makes sense, and so
a compositional model may better capture the distributional
properties [57]. A recent benchmarking effort compares com-
positional methods as well as single cell RNA-seq methods for
analyzing microbiome datasets for differences in abundance of
taxa [58].

Alternative pipelines for analyzing microbiome abundance
data have been detailed by Callahan et al. [59]. There may be
more interesting and relevant approaches to modeling the
counts besides the GLM, and latent variable models are con-
sidered and applied to microbiome datasets recently by San-
karan and Holmes [60]. Finally, statistical considerations of
various diversity measures for count-based microbiome studies
have been explored recently by Willis [61].

6 Session Information
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sessionInfo()

## R version 4.0.0 (2020-04-24)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15.5
## 
## Matrix products: default
## BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Fram
eworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libR
lapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices datasets 
## [7] utils     methods   base     
## 
## other attached packages:
##  [1] apeglm_1.11.0               GenomicFeatures_1.41.0     
##  [3] bookdown_0.20               BiocParallel_1.23.0        
##  [5] testthat_2.3.2              rmarkdown_2.3              
##  [7] devtools_2.3.0              usethis_1.6.1   
##  [9] fishpond_1.5.33             IHW_1.17.0                 
## [11] ggrepel_0.8.2               ggplot2_3.3.0              
## [13] DESeq2_1.29.3               rafalib_1.0.0              
## [15] org.Mm.eg.db_3.11.1         AnnotationDbi_1.51.0       
## [17] SummarizedExperiment_1.19.2 DelayedArray_0.15.1        
## [19] matrixStats_0.56.0          Biobase_2.49.0             
## [21] GenomicRanges_1.41.1        GenomeInfoDb_1.25.0        
## [23] IRanges_2.23.4              S4Vectors_0.27.5
## [25] BiocGenerics_0.35.4         tximeta_1.7.3              
## [27] dplyr_0.8.5                 readr_1.3.1                
## 
## loaded via a namespace (and not attached):
##   [1] backports_1.1.6               AnnotationHub_2.21.0       
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##  [37] abind_1.4-5                   scales_1.1.1                 
##  [39] mvtnorm_1.1-0             DBI_1.1.0                    
##  [41] Rcpp_1.0.4.6                  xtable_1.8-4                 
##  [43] progress_1.2.2                emdbook_1.3.12               
##  [45] bit_1.1-15.2                  httr_1.4.1                   
##  [47] RColorBrewer_1.1-2            ellipsis_0.3.0               
##  [49] pkgconfig_2.0.3               XML_3.99-0.3                 
##  [51] farver_2.0.3                  dbplyr_1.4.3                 
##  [53] locfit_1.5-9.4                utf8_1.1.4               
##  [55] reshape2_1.4.4                tidyselect_1.0.0             
##  [57] labeling_0.3                  rlang_0.4.6                  
##  [59] later_1.0.0                   munsell_0.5.0                
##  [61] BiocVersion_3.12.0            tools_4.0.0                  
##  [63] cli_2.0.2                     RSQLite_2.2.0                
##  [65] fdrtool_1.2.15                evaluate_0.14                
##  [67] stringr_1.4.0                 fastmap_1.0.1                
##  [69] yaml_2.2.1     processx_3.4.2               

##   [3] BiocFileCache_1.13.0          servr_0.17 
##   [5] plyr_1.8.6                    lazyeval_0.2.2
##   [7] splines_4.0.0                 lpsymphony_1.17.0 
##   [9] digest_0.6.25                 ensembldb_2.13.1 
##  [11] htmltools_0.4.0               fansi_0.4.1
##  [13] magrittr_1.5                  memoise_1.1.0
##  [15] remotes_2.1.1                 Biostrings_2.57.0 
##  [17] annotate_1.67.0  askpass_1.1 
##  [19] bdsmatrix_1.3-4               prettyunits_1.1.1 
##  [21] colorspace_1.4-1              blob_1.2.1
##  [23] rappdirs_0.3.1                xfun_0.13
##  [25] callr_3.4.3                   crayon_1.3.4 
##  [27] RCurl_1.98-1.2                jsonlite_1.6.1               
##  [29] tximport_1.17.0               genefilter_1.71.0            
##  [31] survival_3.1-12               glue_1.4.0      
##  [33] gtable_0.3.0                  zlibbioc_1.35.0              
##  [35] XVector_0.29.0                pkgbuild_1.0.8

##  [71] knitr_1.28                    bit64_0.9-7                  
##  [73] fs_1.4.1                      purrr_0.3.4                  
##  [75] AnnotationFilter_1.13.0       mime_0.9                     
##  [77] slam_0.1-47                   biomaRt_2.45.0               
##  [79] compiler_4.0.0                rstudioapi_0.11              
##  [81] curl_4.3                      interactiveDisplayBase_1.27.0
##  [83] tibble_3.0.1                  geneplotter_1.67.0           
##  [85] stringi_1.4.6                 ps_1.3.3                     
##  [87] desc_1.2.0                    lattice_0.20-41              
##  [89] ProtGenerics_1.21.0           Matrix_1.2-18                
##  [91] vctrs_0.2.4             pillar_1.4.4                 
##  [93] lifecycle_0.2.0               BiocManager_1.30.10          
##  [95] bitops_1.0-6                  qvalue_2.21.0                
##  [97] httpuv_1.5.2                  rtracklayer_1.49.3           
##  [99] R6_2.4.1                      promises_1.1.0               
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## [101] codetools_0.2-16              sessioninfo_1.1.1            
## [103] MASS_7.3-51.6                 gtools_3.8.2                 
## [105] assertthat_0.2.1              pkgload_1.0.2          
## [107] openssl_1.4.1                 rprojroot_1.3-2              
## [109] withr_2.2.0                   GenomicAlignments_1.25.0     
## [111] Rsamtools_2.5.0               GenomeInfoDbData_1.2.3       
## [113] hms_0.5.3                     grid_4.0.0                   
## [115] coda_0.19-3                   bbmle_1.0.23.1               
## [117] numDeriv_2016.8-1.1           shiny_1.4.0.2                
## [119] tinytex_0.22
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Chapter 8

QuickIsoSeq for Isoform Quantification in Large-Scale RNA
Sequencing

Ramya Gamini, Reiko Nakashima, Wen He, Ying Huang, Ying Zhang,
and Shanrong Zhao

Abstract

RNA-sequencing (RNA-seq) is a powerful technology for transcriptome profiling. While most RNA-seq
projects focus on gene-level quantification and analysis, there is growing evidence that most mammalian
genes are alternatively spliced to generate different isoforms that can be subsequently translated to protein
molecules with diverse or even opposing biological functions. Quantifying the expression levels of these
isoforms is key to understanding the genes biological functions in healthy tissues and the progression of
diseases. Among open source tools developed for isoform quantification, Salmon, Kallisto, and RSEM are
recommended based upon previous systematic evaluation of these tools using both experimental and
simulated RNA-seq datasets. However, isoform quantification in practical RNA-seq data analysis needs to
deal with many QC issues, such as the abundance of rRNAs in mRNA-seq, the efficiency of globin RNA
depletion in whole blood samples, and potential sample swapping. To overcome these practical challenges,
QuickIsoSeq was developed for large-scale RNA-seq isoform quantification along with QC. In this chapter,
we describe the pipeline and detailed the steps required to deploy and use it to analyze RNA-seq datasets in
practice. The QuickIsoSeq package can be downloaded from https://github.com/shanrongzhao/
QuickIsoSeq.

Key words RNA-seq, Isoform quantification, QuickIsoSeq, RNA-seq pipeline

1 Introduction

RNA-sequencing (RNA-seq) is a next-generation sequencing tech-
nique that allows an in-depth examination of the transcriptome.
With decreasing sequencing cost, RNA-seq has become an attrac-
tive approach to profile gene expression levels or transcript abun-
dance [1, 2]. Recent large genome-scale studies concluded that
almost all human multiexon genes could be spliced into multiple
transcript isoforms [3]. There are 58,037 annotated human genes
and 198,093 isoforms in GENCODE v25 [4]. On average, there
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are 3.4 annotated transcripts per human gene and if only protein-
coding genes are considered, the ratio increases to 7:1 [4]. Isoforms
from the same gene can be involved in distinct processes or even
play opposite roles. The TP53 gene, also known as tumor protein
p53, is a case in point. The TP53 gene is well studied and has a
central role in the regulation of DNA-damaged cells [5–7]. How-
ever, not all TP53 isoforms have the same role in tumor suppression
(Fig. 1). For instance, the roles of Δ133β and full-length FLβ
isoforms are opposite to each other. The Δ133β isoform inhibits
apoptosis of tumor cells induced by the FLβ isoform [5]. In such
cases, it is essential to obtain accurate quantification of expression at
the transcript level to understand the function of each isoform.

Previously, we developed the QuickRNASeq pipeline [8, 9] for
RNA-seq gene-level quantification, in which featureCounts [10]
was chosen as the counting tool due to its simplicity and popularity.
All multiple mapping reads and those reads mapped to gene over-
lapping regions are excluded from counting due to the ambiguity of
read origins. As a result, the expression levels for some genes are
significantly underestimated. For instance, the human gene IL3RA
is encoded on both chrX and chrY, and its expression level is always
zero when quantified by featureCounts because multiple mapping
reads are excluded. More importantly, more insights can be gained
from isoform-level RNA-seq data analyses over standard gene level
analysis, as demonstrated previously [11]. Isoform quantification
not only detects isoform-switching events that are masked by gene-
level analysis, but also improves gene-level quantification accuracy
by aggregating the transcript-level quantification results
[12]. Thus, isoform quantification is recommended for all
RNA-seq data analyses.

2 Materials and Methods

Although a number of open source tools for isoform quantification
have been developed recently [13, 14], in practical RNA-seq data
analysis, isoform quantification is more complicated than selecting a
computational tool and running it. QuickIsoSeq is an integrated
pipeline developed for large-scale RNA-seq projects.

Fig. 1 TP53 has multiple isoforms. However, not all isoforms have the same role in tumor suppression. The
Δ133β isoform inhibits apoptosis of tumor cells induced by the full-length FLβ isoform
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2.1 Overview

of QuickIsoSeq

QuickIsoSeq is built upon multiple best-in-class open source tools.
In addition to isoform quantification, this application generates
many useful QC (Quality Control) metrices to support practical
RNA-seq data analysis. It is particularly designed to be run in a
high-performance computing cluster (HPC) environment for
large-scale RNA-seq projects. It offers a unifying interface to the
underlying isoform quantification algorithms. The goal of Quick-
IsoSeq is to streamline the process of isoform quantification and
improve efficiency and reproducibility in RNA-seq data analysis.

2.1.1 Computational

Algorithms for Isoform

Quantification

A number of packages have been developed to quantify expression
at the transcript level including RSEM [15], eXpress [16], TIGAR2
[17], and Cufflinks [18]. Most Recently, ultrafast alignment-free
methods, such as Sailfish [19], Salmon [20] and Kallisto [21] have
been developed to exploit the idea that precise alignments are not
required to assign reads to their origins. Salmon is the most flexible
tool with two modes of quantification. It can either process raw
sequencing reads or take transcriptome-mapped BAM files as
inputs. After a comprehensive evaluation of seven packages for
isoform quantification [13], we found that alignment-free meth-
ods, such as Salmon, Sailfish and Kallisto, require less computa-
tional time while achieving similar or better accuracies compared
with other methods. Cufflinks and eXpress, two alignment-
dependent algorithms, have inferior accuracy performance.
TIGAR2 has overall good performance, but the run time and
memory requirements render the tool less popular use. Consider-
ing both the accuracy and computational resources needed,
Salmon, Kallisto, and RSEM were incorporated into the QuickIso-
Seq package.

2.1.2 Challenges

in Isoform Quantification

and Functionalities

of QuickIsoSeq

Based on our experience with in-house analyses of multiple
RNA-seq datasets of varying sizes using open source tools, the
main challenges, gaps, and bottlenecks for large-scale RNA-seq
isoform quantification can be summarized as follows.

l It is hard to make the best choice of software packages and set
software-specific parameters, as it often requires both an
in-depth understanding of the algorithms and thorough
benchmarking.

l It is challenging to make different open source tools work
seamlessly in a pipeline, since quite often, the inputs and outputs
of different algorithms are not compatible with each other.
Additionally, most algorithms are implemented to process an
individual sample. Consequently, the results of primary data
analyses have to be further processed.

l RSEM, Salmon, and Kallisto require different inputs and com-
mand line parameters and generate output in different formats.
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Take the strandness of a sample sequenced using Illumina’s
TruSeq Stranded mRNA as an example. The corresponding
parameter in a RSEM command line is “--forward-prob¼0”;
while for Salmon and Kalliso, it is “-l ISR" and "--rf-stranded",
respectively. Therefore, addition “bridge” scripts must be devel-
oped to handle the input/output difference in RSEM, Salmon,
and Kallisto.

l It is common that some samples have low quality and often
substitute samples are not available, especially for RNA-seq of
clinical specimens. Such samples can cause bias in analysis and
lead to misinterpretation of results. Therefore, it is necessary to
establish stringent RNA-seq QC metrics to identify sample out-
liers that should be excluded from further downstream data
analysis.

l For large-scale RNA-seq studies in which hundreds or even
thousands of RNA samples are sequenced, it is common that
some samples are mishandled and appear to be swapped or even
sequenced more than once. Such errors can become a serious
problem for downstream interpretation of results, especially for
longitudinal sample analyses.

The QuickIsoSeq pipeline is implemented to meet the chal-
lenges above, as it performs more than just isoform quantification.
The majority of QuickIsoSeq functionalities was developed to
address a variety of issues in sample QC and integration. It can
detect potential sample swapping, identify samples with issues in
rRNA depletion and globin RNA (for blood samples) depletion,
and flag those samples with low quality in an automatic fashion.
The main output files from QuickIsoSeq are as follows:

l The library size, summary of read mapping and counts for
individual samples.

l The breakdown of sequence reads: rRNA, globin RNA, and
other.

l SNP concordance among samples to detect potential sample
swapping.

l Merged counts table from different isoform quantification
algorithms.

l The number of expressed genes or transcripts at different TPM
cutoffs.

l The top highly expressed genes and the percentage of genes
from mitochondria.

l The correlation of expression profiles among all samples and
potential outliers.

l MultiQC report for aggregation results across many samples.
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2.1.3 The Architecture

of QuickIsoSeq

QuickIsoSeq (Fig. 2) is implemented with the same design principles
and user interface used in QuickRNAseq [8, 9]. The inputs to the
pipeline are raw sequence reads and reference genome/transcrip-
tome. Step #1 performs RNA-seq read mapping, SNP calling, and
isoform quantification. This step is computationally intensive and
processes each sample independently. The independence of samples
means they can be processed in parallel using an HPC. Step #2
merges the analysis results from individual samples and generates
QCmetrics. All QCmetrices are available in both tab delimited text
files and in plots generated by the R library ggplot2 (https://
ggplot2.tidyverse.org/).

2.2 Deployment

of QuickIsoSeq

2.2.1 Installation

of the Third-Party Open

Source Tools

After a user downloads and unpacks the QuickIsoSeq package from
GitHub, the environment variableQuickIsoSeq needs to be set to
the root folder where the package is installed. All required third-
party tools are listed in the Table 1 and can be installed by following
the instructions from the individual tool’s website. Alternatively, a
user can run the install-tools.sh script which automates the instal-
lation of all the tools except for MultiQC. Full installation should
take <10 min to complete. You can install the MultiQC python
package by “pip install multiqc”. Additionally, the QuickIso-
Seq pipeline comes with many R scripts for data post-processing. In
order to run them successfully, R version 3.2 or higher is required,
and the ggplot2 and reshape2 R libraries should be installed.

Input: Raw reads/genome(FASTA)/gene annotation

STAR: mapping

BAM
File

RSEM or Salmon: 
quantification

#1

VarScan: SNP 

Map and 
count

1. Merge results from individual samples
2. Calculate SNP correlations among samples 

and identify potential sample swapping
3. Perform isoform expression based sample QC 

to detect sample outliers

#2 Summary

RSEM or Kallisto or Salmon
quantification from raw reads

Fig. 2 Overview of the QuickIsoSeq pipeline. Step #1 is computationally inten-
sive, and processes individual samples independently. Step #2 integrates
RNA-seq data analysis results from the individual samples in Step #1 and
generates comprehensive QC metrices
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By default, install-tools.sh will install all tools under $Quick-
IsoSeq/Tools folder and generate a file tools_path.txt to record
the locations of all the installed third-party packages. The contents
in tools_path.txt are shown below and can be appended into a
run.config file later.

APPLICATION_ROOT=${QuickIsoSeq}/Tools

STAR=$APPLICATION_ROOT/STAR_2.7.3a/bin/Linux_x86_64_static

FEATURECOUNTS =$ APPLICATION _ROOT/subread-
2.0.0/bin
VARSCAN_JAR=$APPLICATION_ROOT/VarScan.v2.4.0.jar

SAMTOOLS=$APPLICATION_ROOT/samtools-1.9/bin

RSEM=$APPLICATION_ROOT/RSEM-1.3.1

SALMON=$APPLICATION_ROOT/salmon-1.1.0/bin

KALLISTO=$APPLICATION_ROOT/kallisto

GFFREAD=$APPLICATION_ROOT/gffread-0.11.4.Linux_x86_64

BOWTIE=$APPLICATION_ROOT/bowtie-1.2.3-linux-x86_64

FASTQC=$APPLICATION_ROOT/FastQC

export PATH=$STAR:$FEATURECOUNTS:. . .. . .:$BOWTIE:$FASTQC:$PATH

Table 1
Required third-party tools

Tool Function Source

STAR Read alignment/mapping https://github.com/alexdobin/STAR

FeatureCounts Count reads http://subread.sourceforge.net/

VarScan Variant calling https://github.com/dkoboldt/varscan

Samtools Manipulate read alignments https://github.com/samtools/samtools

RSEM Isoform quantification https://github.com/deweylab/RSEM/

Salmon Isoform quantification https://github.com/COMBINE-lab/
salmon

Kallisto Isoform quantification https://github.com/pachterlab/kallisto

Bowtie Read alignment https://sourceforge.net/projects/
bowtie-bio/

gffread Extract transcript sequences http://ccb.jhu.edu/software/stringtie/
dl/

FastQC Raw fastq file QC https://www.bioinformatics.babraham.
ac.uk/projects

Multiqc Aggregate results across many samples into a
single report

https://multiqc.info/
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2.2.2 Preparation

of Index Files for Different

Species

A reference genome in FASTA format and an isoform annotation
file in GTF format are needed to create index files for isoform
quantification. To simplify this step, an example script create_in-
dexes.GRCh38_Genecode30.sh is provided, which creates all the
required index files corresponding to human genome GRCh38 and
GENCODERelease version 30. It takes about 1hr to run this script
in an HPC cluster. You can change input files (i.e., the reference
genome and gene annotation files) and create index files for other
species and annotations as well. The main functions of this script are
summarized as follows:

1. Download a genome file in fasta format, unzip and rename it to
genome.fa.

2. Download a gene annotation file in GTF format, unzip and
rename it to gene.gtf.

3. Extract sequences for all transcripts in gene.gtf, and generate
transcript.fa.

4. Parse gene.gtf to get the corresponding annotations gene.
annot and transcript.annot.

5. Create index files for STAR , RSEM , Salmon, and Kallisto,
respectively.

6. Create bowtie indexes for rRNA and globin transcripts,
respectively.

7. Define the genomic region CHR_REGION for SNP calls. In
the human genome, chromosome 6 is recommended where the
MHC (Major Histocompatibility Complex) region is located.
For mouse, it is chromosome 17.

The file ${INDEX_ROOT}/ indexes_path.txt records the
locations of all index files created by create_indexes.GRCh38_Ge-
necode30.sh. The contents of this file are shown below and can be
cut-and-pasted into the run.config file later.

SAMPLE_SPECIES=human

INDEX_ROOT=${QuickIsoSeq}/Indexes/GRCh38_Genecode30

GENOME_FASTA=$INDEX_ROOT/genome.fa

GTF_FILE=$INDEX_ROOT/gene.gtf

TRANSCRIPT_FASTA=$INDEX_ROOT/transcript.fa

TRANSCRIPT _ANNOTATION=$INDEX_ROOT/tran-
script.annot
GENE_ANNOTATION=$INDEX_ROOT/gene.annot

CHR_REGION=chr6:1-170805979

STAR_INDEX=${INDEX_ROOT}/STAR_100

RSEM_INDEX=${INDEX_ROOT}/rsem/rsem

SALMON_INDEX=${INDEX_ROOT}/salmon

KALLISTO_INDEX=${INDEX_ROOT}/kallisto/index

rRNA_BWT_INDEX=${INDEX_ROOT}/bowtie_rRNA/rRNA

hgRNA_BWT_INDEX=${INDEX_ROOT}/bowtie_hgRNA/hgRNA
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2.3 Running

QuickIsoSeq

to Analyze RNA-Seq

Datasets

After the above steps are completed, users can proceed to analyze
their own RNA-seq datasets. To help a user to get started quickly,
QuickIsoSeq comes with a test_run example project using the same
48 GTEx samples from five donors as in the originalQuickRNASeq
publication [9]. It is recommended to copy the four files in the
test_run folder to a working folder and then tailor them
accordingly.

1. allIDs.txt: sample identifiers to be processed.

2. sample.annotation.txt: an annotation file for RNA samples.

3. run.config: run configuration file.

4. master-cmd.sh: command lines to run QuickIsoSeq. These are
provided for convenience so that a user can cut-and-paste and
run the command lines, instead of typing them.

2.3.1 Preparing Sample

Annotation, Sample ID File

and run.config

Sample annotation is optional, but it is strongly recommended to
prepare a meaningful annotation file to capture important meta
data for RNA samples. A proper annotation file should be in tab
delimited text format. The first and second columns correspond to
sample and subject identifiers, respectively. The sample.annota-
tion.txt file in the test_run directory has the columns “sample_id”,
“subject_id”, “histological_type”, and “sex”. The second column is
used to check potential sample swapping as all RNA samples from a
same subject should have a very high SNP concordance, whereas
the SNP concordance is lower for a pair of samples from different
subjects. The file allIDs.txt contains one unique sample identifier
per line. There is no column header. The allIDs.txt file in the
test_run directory lists all 48 samples in this demo project. For an
RNA-seq project, only those samples in the sample ID file are
processed by QuickIsoSeq.

The run.config file controls the execution of QuickIsoSeq and
decouples the dependency of the workflow on third-party open
source tools and gene annotations. The run.config consists of
three parts: Part #1 contains RNA-seq project specific information;
Part #2 provides species-specific indexes, reference genome and
gene annotation, generated previously; and Part #3 sets the loca-
tions of tools and software specific parameters. For the same given
species, Parts #2 and #3 in run.config usually remain the same
across different RNA-seq projects, but Part #1 varies from project
to project, and those corresponding parameters must be set prop-
erly. The most important parameters in Part #1 are:

l FASTQ_DIR: the directory where the fastq files are located.

l FASTQ_SUFFIX: a fastq file typically ends with fastq.gz, fq.gz,
fastq, or fq.

l STRAND: if non-stranded:0; if first read is forward strand:1; if
first read is reverse strand:2.
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l SEQUENCE_TYPE: “pair” for pair-ended reads; “single” for
single-ended sequencing

l SEQUENCE_DEPTH: set it to “regular” if <80 million reads;
otherwise set it to “deep”.

l ISOFORM_ ALGORITHM : set it to RSEM , KALLISTO ,
SALMON_ALN, SALMON, or ALL.

2.3.2 Processing

and Analyzing Individual

Samples

Under a project root folder, invoke mapping, quantitation, QC,
and SNP calling for each sample by running run-isoseq.sh.
Because this step is computationally intensive, it is advised to run
this command in an HPC cluster. The run-isoseq.sh can be run off
the shelf in an HPC that uses platform load sharing facility
(or simply LSF) as the job scheduler. Otherwise, for a cluster
using a job scheduler other than LSF, run-isoseq.sh needs to be
modified. A separate result folder will be created for each sample
under the project folder. Below is the example command line.

export QuickIsoSeq=<Your QuickIsoSeq Install Folder>

export PATH=$QuickIsoSeq:$PATH

run-isoseq.sh allIDs.txt run.config

2.3.3 Postprocessing:

Merging Results from

Individual Samples

As in the previous step, this step also runs under the project root
directory. The post-processing step can only be run after all jobs
processing individual samples have completed. This step not only
merges results from individual samples and generates combined
results such as a counts table but also generates a variety of QC
metrics for stringent sample QC. All QC outputs are available in
both plain tab delimited text files and as plots. Below are commands
used to generate the summary results and QCmetrices. The default
output folder is Results/Summary unless a different and optional
output folder name is provided as the third parameter in the com-
mand line when running merge-isoseq.sh.

export QuickIsoSeq=<Your QuickIsoSeq Install Folder>

//Make sure a R environment is available

merge-isoseq.sh allIDs.txt run.config &> Results.log

The QC metrices generated by QuickIsoSeq can help pinpoint
sequencing issues in an RNA-seq project quickly, such as sample
swapping, outliers, and the top highly expressed genes (Fig. 3). In
Fig. 3, the percentage of transcripts from mitochondria and the
three most abundant genes calculated from Kallisto are shown for
nine tissue types from the same subject GTEX-N7MS in the
Genotype-Tissue Expression (GTEx) project [22]. In heart,
48.3% of sequenced transcripts are from mitochondria, while in
blood this percentage drops to as low as 1.5%. In heart, the three
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highest expressed genes (MT-ATP6, MT-ATP8, and MT-CO3)
represent a total of 17.4% of transcripts. In blood, the top three
genes (HBA2, HBB, and HBA1) constitute as high as 81.8% of
sequenced transcripts. Clearly, no globin reduction was performed
for this blood sample. Considering the sequenced RNA repertoires
differ so dramatically, direct comparison of TPM values of tran-
scripts between blood and heart should be cautiously done.

3 Conclusions

By combing the best open source tool sets, we implemented the
QuickIsoSeq pipeline that significantly reduces the effort involved in
primary RNA-seq data analyses including QC. The workflow con-
figuration file contains project, species, and software related para-
meters, and thus improves the reproducibly in RNA-seq data
analyses. RSEM, Salmon, and Kallisto have different input require-
ments and output formats, and QuickIsoSeq takes care of wrapping
between tools to perform analysis seamlessly for end users. The
QuickIsoSeq pipeline has been already applied to multiple in-house
large-scale RNA-seq projects, and its current version is stable and
mature for public release and adoption.

Dataset from subject  GTEX-N7MS

SRR607214        Blood

SRR615261         Blood Vessel

SRR603068         Brain

SRR821282         Esophagus

SRR608096         Heart

SRR612839         Muscle

SRR816609         Pituitary

SRR821518         Tes�s

SRR607679         Thyroid 

Fig. 3 The percentages of transcripts from mitochondria, and the top three most abundant transcripts, in
different tissue samples of the same subject (GTEX-N7MS) from the GTEx project. In heart, 48.3% of
sequenced transcripts are from mitochondria, while in blood this percentage drops to as low as 1.5%. In
blood, the top three highly expressed genes (HBA2, HBB, and HBA1) constitute as high as 81.8% of sequenced
transcripts, indicating no globin clear is performed
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Chapter 9

Summarizing RNA-Seq Data or Differentially Expressed
Genes Using Gene Set, Network, or Pathway Analysis

Enrica Calura and Paolo Martini

Abstract

The main purpose of pathway or gene set analysis methods is to provide mechanistic insight into the large
amount of data produced in high-throughput studies. These tools were developed for gene expression
analyses, but they have been rapidly adopted by other high-throughput techniques, becoming one of the
foremost tools of omics research.
Currently, according to different biological questions and data, we can choose among a vast plethora of

methods and databases. Here we use two published examples of RNAseq datasets to approach multiple
analyses of gene sets, networks and pathways using freely available and frequently updated software. Finally,
we conclude this chapter by presenting a survival pathway analysis of a multiomics dataset. During this
overview of different methods, we focus on visualization, which is a fundamental but challenging step in this
computational field.

Key words Pathway, Networks, Gene set analysis, Topological pathway analysis, Multiomics data
integration

1 Introduction

In the last 20 years, there has been an explosion of genome wide
data, especially in relation to the quantification of mRNA expres-
sion, occurring first with microarrays and then with RNAseq
experiments. This generated an overwhelming quantity of expres-
sion data, with a single experiment able to detect expression of tens
of thousands of genes. The complexity of these results prompted
the development of new analysis systems to help in summarizing
these data and in extracting biologically meaningful information.

Currently, gene set or pathway analysis is the most widely used
tool to investigate genes by groups, when comparing two condi-
tions in an experiment. However, with the advent of single sample
gene sets, as well as time-course and survival gene set analysis,
researchers now have more choices available.
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A gene set can be any group of genes that are related in some
way. For example, the Gene Ontology (GO) provides groups of
genes describing cellular components, biological processes, and
molecular functions [1, 2]. Another database, MSigDB, groups
genes by molecular signatures inferred from perturbation experi-
ments, allowing the researcher to have sets of genes that are coex-
pressed in response to a specific stimulus [3].

Gene sets can also be derived from pathways, which are detailed
maps of cell processes. Pathway data contain interactions and rela-
tionships among the involved genes, and by exploiting this detailed
information (known as pathway topology), we can have topological
pathway analyses.

In this chapter, we describe a general workflow to study the
biological processes that emerge from the downstream analysis of
RNAseq gene expression data. Additionally, the last section will be
dedicated to describing a new approach for dealing with multiomics
data integration using pathways and their topology.

This chapter is not meant to cover all available knowledge on
pathway analysis but rather to give some hints and practical advice
on how to explore expression data.

2 Materials

2.1 Gene Sets

and Pathways

A variety of databases containing information about biologically
related gene sets and cell signaling pathways have been developed
over the past years.

Gene sets are groups of genes that are biologically related, that
is, genes with a common function or localization, or genes coex-
pressed in a specific disease, condition, or treatment. The most
common source of gene sets is the Gene Ontology (GO; http://
geneontology.org/) [2]. The GO knowledgebase is the world’s
largest source of information on the functions of genes. The cur-
rent release (2020–01–01) has 44,700 GO terms (gene sets) con-
taining 1,351,824 gene products in 4591 species. Another widely
used database of gene sets is the Molecular Signatures Database
(MSigDB) which hosts seven collections of related gene sets: hall-
mark, positional, curated, motif, computational, GO, oncogenic,
and immunologic [3]. These gene sets, originally available for the
Homo sapiens, have also been translated for mouse, rat, pig, fly, and
yeast [4].

Pathway databases serve as repositories of manually curated
maps representing current knowledge regarding cell processes,
signaling, and metabolism. To help navigate this information, the
Pathguide resource serves as a good overview of current pathway
databases [5]. It lists more than 700 pathway repositories, over
250 of which are dedicated to Homo sapiens. Among these are
KEGG [6] and Reactome [7], two of the most famous and widely
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used pathway repositories. While all these initiatives are successful
results of the joint effort of a wider community, different databases
are characterized by different annotations and only a part of the
interactions are confirmed by all the repositories. Unlike GO,
which can simply be retrieved in an R environment within gene
annotations, pathway data require more attention. Independently
of the specific pathway databases used, all pathway maps are com-
prised of a myriad of different interaction types across multiple
different biological entities. In fact, these maps are often too rich
to be represented as networks (sets of one-to-one connections
across genes). In particular, challenges have been posed by the
presence of chemical compounds that may be mediating interac-
tions (nodes that usually are not quantified in genomic experi-
ments) and by different types of gene groups (e.g., protein
complexes or gene families) that are usually represented as single
nodes in pathway maps even though they represent multiple genes.

Thus, in this tutorial we have exploited the R Bioconductor
package graphite, which was developed to solve these issues regard-
ing the translation of pathway maps into networks. graphite acts as a
pathway provider in an R environment, providing a bridge between
the different pathway data and pathway analyses, thus offering
useful functions for pathway and network data management [8].

2.2 Two RNA-Seq

Datasets

The tutorial described herein has been built around two datasets.
However, the code can obviously be accommodated for your data-
set of interest.

The first dataset, hereafter called IRF6KO, is related to the
paper “The RIPK4-IRF6 signalling axis safeguards epidermal dif-
ferentiation and barrier function” [9]. In the paper the authors
analyzed the differential expression of mouse skin specimens: three
samples from IRF6 knockout mice (IRF6KO) and three from wild-
type mice (WT). They reported that pathways of lipid metabolism
are perturbed in the KO mouse model.

The second dataset is an ovarian cancer dataset, provided by
The Cancer Genome Atlas Consortium, hereafter called the
OV-TCGA. We have compared two subtypes of ovarian cancer
tumors, one called “differentiated,” which is characterized by a
gene expression profile commonly seen in well differentiated can-
cers with low malignant potential, and another called “prolifera-
tive,” which is characterized by the expression of genes associated
with cell division [10].

2.3 Data Retrieval The “IRF6KO” dataset can be found in the GEO database under
the accession code GSE124048. Raw counts can be downloaded at
“ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE124nnn/
GSE124048/suppl/GSE124048_RAW.tar”. Final count data
matrix was obtained by combining the six samples. The list of
differentially expressed genes (DEGs) was obtained using edgeR,
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comparing WT (WT mouse skin samples) versus IRF6KO (Irf6
knockout mouse skin samples).

TheOV-TCGA dataset is freely available (level 2 or level 3 data)
from the GDC Data portal “https://portal.gdc.cancer.gov/”. At
“https://cavei.github.io/example-datasets/” you can find the R
Data with annotations and data matrices for expression, methyla-
tion, mutations, and copy number variations for the multiomics
OV-TCGA dataset. The list of DEGs was obtained by comparing
proliferative versus differentiated samples using edgeR.

The procedure starts by assuming that all these steps have
already been performed and all these data are already computed.
The reproducible commands on how to preprocess the two datasets
can be found at “https://cavei.github.io/springer_prep/”.

2.4 Software Data processing and analyses can be entirely carried out using
specific packages with the R programming language, which is the
preferred environment for statistical computing and graphics
(“https://www.r-project.org/”). Pathway and gene set databases
can also be accessed through R packages. Table 1 lists all the
annotation and R packages used in this chapter.

More elaborated visualization can be achieved also using a
web-based application (“https://reactome.org/”) or theCytoscape
software (“https://cytoscape.org/”).

3 Methods

3.1 Outline

of Methods

Generally, pathway analysis can be carried out as follows:

1. Identification of the preferred gene set or pathway source.

2. Identification of the appropriate test for gene set or pathway
analysis.

3. Visualization of the results.

Commonly, the latter is the most underestimated step, but it is
of fundamental importance in order to understand the results and
the biological processes under study.

In the following section, we analyze an RNA-seq dataset with
two conditions and few replicates per condition (less than 10 per
condition). The number of replicates is an important parameter
that must be taken carefully into account when choosing the
appropriate test for gene set/pathway analysis. Here, when analyz-
ing the IRF6KO dataset (3 KO vs. 3 WT), the pathways were
treated as mere gene sets; thus, we performed an enrichment anal-
ysis starting from the list of Differentially Expressed Genes (DEGs).
Finally, the results were explored graphically.

Following this, we used the second dataset, OV-TGCA, which
has a higher number of replicates, to further elaborate the analyses.
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Using this dataset, we (1) replicated the enrichment analysis,
(2) applied single sample analysis, which is also usable for small
size datasets, (3) inferred protein activity, and (4) performed topo-
logical pathway analysis. At the end of this section, we (5) show an
example of multiomics data integration using survival pathway
analysis.

We would like to stress that these different tools are not mutu-
ally exclusive. Whenever it is possible and biological meaningful,
these tools can be combined to strengthen the data interpretation.

3.2 Analyses of IRF6

Knockout Dataset

The dataset IRF6KO was processed as follows: (1) per sample raw
count data was collapsed in a matrix composed of 25,065 rows
(genes) and 6 columns (samples), (2) below-threshold expressed
genes were filtered out, and only genes with 0.5 CPM in at least two
samples (15,221 genes) were kept, (3) sample annotations of the
two groups (WTand IRF6KO) were retrieved, and (4) differentially

Table 1
R packages used in the chapter

Package name Description References

aracne.networks ARACNe-inferred gene networks from TCGA tumor datasets (ver.
1.10.0)

[11]

clipper Gene Set Analysis Exploiting Pathway Topology (ver. 1.24.0) [12]

clusterProfiler statistical analysis and visualization of functional profiles for genes and
gene clusters (ver. 3.12.0)

[13]

edgeR Empirical Analysis of Digital Gene Expression Data in R (ver. 3.26.8) [14]

graphite GRAPH Interaction from pathway Topological Environment (ver.
1.30.0)

[8]

ggplot2 Create Elegant Data Visualisations Using the Grammar of Graphics (ver.
3.2.1)

[15]

GSVA Gene Set Variation Analysis for microarray and RNA-seq data (ver.
1.32.0)

[16]

limma Linear Models for Microarray Data (ver. 3.40.6) [17]

msigdbr MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format (ver.
7.0.1)

[4]

MOSClip Multi Omics Survival Clip (ver. 0.4.1) [18]

org.Hs.eg.db Genome wide annotation for Human (ver. 3.8.2) [19]

org.Mm.eg.db Genome wide annotation for Mouse (ver. 3.8.2) [20]

pathview a tool set for pathway based data integration and visualization (ver.
1.24.0)

[21]

viper Virtual Inference of Protein-activity by Enriched Regulon analysis (ver.
1.18.1)

[22]
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expressed genes (DEGs) were computed with edgeR (WT vs.
IRF6KO).

We defined DEGs as those genes with a corrected p-
value < ¼0.05 and an absolute log fold change > ¼1. With these
settings we have 1040 upregulated genes (with more expressed in
the WT samples) and 476 downregulated genes (with more
expressed in IRF6KO samples).

3.2.1 Gene Set

Enrichment Pathway

Analysis

Firstly, we performed the simplest yet most used pathway analysis
approach: pathway enrichment through a hypergeometric test. This
method tests whether the pathway of interest contains more DEGs
(than expected by chance) compared to those outside the pathway,
that is, the hypergeometric test tests whether the pathway is
enriched/overrepresented within the DEGs. This test is included
in many pathway analysis tools, and here we use the function
enricher from the R package clusterProfiler [13].

To perform enrichment analysis we needed gene sets: for this
we used the Bioconductor R package graphite as the pathway
provider, retrieving the mouse pathways from the KEGG data-
base [6].

library(graphite)
mmu_kegg_sym <- pathways("mmusculus", "kegg")
mmu_kegg_sym <- convertIdentifiers(mmu_kegg_sym, "SYMBOL")

In the package graphite, each pathway is a “Pathway” class
object. Using the nodes method, we can retrieve genes from each
pathway and store them as data.frame (using the ldply function
from plyr library). The obtained data.frame is two columns: path-
way name and gene symbol. We renamed the columns to
“gs_name” and “gene_symbol”. Lastly, we removed the suffix
“SYMBOL:” and transformed gene set names from factor to char-
acter. In this way, the graphite pathways were transformed into
TERM2GENE objects required by the clusterProfiler package.

library(plyr)
kegg_t2g <- ldply(lapply(mmu_kegg_sym, nodes), data.frame)
names(kegg_t2g) <- c("gs_name", "gene_symbol")
kegg_t2g$gene_symbol <- gsub("SYMBOL:", "", as.character(kegg_t2g$gene_symbol))
kegg_t2g$gs_name <- as.character(kegg_t2g$gs_name)

Now, with our list of DEGs and the TERM2GENE object, it is
possible to run the enricher function as follows:

library(clusterProfiler)
eKEGG <- enricher(gene = IRF6_dataset$up_down_regulated$up, TERM2GENE = kegg_t2g,

universe = row.names(IRF6_dataset$lnorm_data),
pAdjustMethod = "BH",
pvalueCutoff = 0.1, qvalueCutoff = 0.05,
minGSSize = 10, maxGSSize = 500)
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In the above command, the gene argument was the gene list of
DEGs (in our case only the upregulated subset), TERM2GENE
was the KEGG pathways for mouse, and the universe was the set of
the genes for which we have expression data. Additionally, we set
the p-value correction method as Benjamini &Hochberg (pAdjust-
Method ¼ “BH”), p-value and q-value cutoff to 0.1 and 0.05
respectively, and minimal and maximal size of the tested gene set
equal to 10 and 500 genes, respectively.

The command produces an enrichResult object that can be
transformed into a data.frame and saved into a file. We chose to
save the file in csv format, which can also be easily imported into any
chosen favorite spreadsheet program. The file contains the enriched
pathways by row, and nine columns including “ID”, “Description”,
“GeneRatio”, “BgRatio”, “p-value”, “padjust”, “qvalue”, “geneID”,
and “Count”. See the clusterProfiler manual for more details.

UP_eKEGG_df <- as.data.frame(eKEGG)
write.table(UP_eKEGG_df, file = "enrichResult_upreg_genes_wt_vs_irf6KO.csv",

sep = ",", row.names = F)

The enrichResult object can also be plotted in many ways. As
an example, we created a bar plot with the 15 enriched pathways as
shown in Fig. 1a: the y-axis shows the pathway, while the x-axis
reports the number of DEGs in the pathway, and the color repre-
sents the adjusted p-value.

barplot(eKEGG, showCategory = 15)

We can also calculate the enrichment for downregulated
DEGs. Since downregulated genes in our data set were fewer
than upregulated genes, for visualization purposes, we have raised
the thresholds for both the pvalueCutoff and qvalueCutoff para-
meters.

eKEGG_down <- enricher(IRF6_dataset$up_down_regulated$down, TERM2GENE = kegg_t2g,
universe = row.names(IRF6_dataset$lnorm_data), 
pAdjustMethod = "BH",
pvalueCutoff = 0.2, qvalueCutoff = 0.2, 
minGSSize = 10, maxGSSize = 500)

To visualize downregulated genes, we used the cnetplot func-
tion, which represents the network of enriched pathways connected
with their genes (Fig. 1b); this visualization allows the user to
rapidly understand the genes that are shared by multiple pathways.

cnetplot(eKEGG_down, colorEdge = T)

As you can see in Fig. 1b, a simple enrichment approach can
recapitulate all of the results from the original paper [9].
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3.2.2 GSEA Method GSEA is a method that does not rely on strict cutoff thresholds
defining the DEGs but rather on all the genes being ranked by their
fold change [3]. To perform this analysis, we have used the GSEA
function from clusterProfiler. With the following commands, we
prepared the data (genes were ranked by their fold change).

table <- IRF6_dataset$DE_tables
gene_ranks <- table[order(table$logFC, decreasing = T), "logFC", drop = F]
gene_ranked <- gene_ranks$logFC
names(gene_ranked) <- row.names(gene_ranks)
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Fig. 1 Enrichment plots related to dataset IRF6KO. (a) Upregulated DEGs found in each enriched KEGG pathway
set are colored by corrected p-value. (b) Downregulated enriched pathway sets with their downregulated
DEGs. (c) Ridge plot of top five enriched categories identified with GSEA and colored by p-value. (d) GO BP
hierarchy graph induced from downregulated enriched GO BP gene sets
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Then, we ran the GSEA.

set.seed(1)
kegg_gsea <- GSEA(gene_ranked, TERM2GENE = kegg_t2g,

nPerm = 10000, minGSSize = 10, maxGSSize = 500,
pvalueCutoff = 1, pAdjustMethod = "BH",
seed = T)

Following this, we can produce a ridge plot which shows the
distribution of the gene log fold change in the top five analyzed
pathways with their p-value.

ridgeplot(kegg_gsea, showCategory = 5, fill = "pvalue")

GSEA analysis also puts the focus on lipid metabolism
(Fig. 1c).

3.2.3 Gene Ontology

Enrichment Analysis

As previously stated, another popular source of gene sets is the gene
ontology (GO; http://geneontology.org/) [2]. In our dataset, we
have used the mouse GO terms through the enrichGO function
(from clusterProfiler) which automatically extracts GO information
from Bioconductor packages (org.Mm.eg.db).

When working with organisms where the GO has not been
packed into an AnnotationDBI package, it is still possible to down-
load the GO from any source, pack it into a TERM2GENE object
and use the enricher function, as described previously. We have
provided an example of this in Subheading 4 (see Note 1).

Using the enrichGO function, we need three additional argu-
ments: (1) the AnnotationDBI package of the desired species
(in our case “org.Mm.eg.db”), (2) the type of identifier used for
the genes (in our case “SYMBOL”), and (3) the GO ontology,
which can be one of the following: Biological Processes (BP),
Molecular Function (MF), or Cellular Components (CC). In the
following example, we have used BP ontology. To test all of them at
the one time, the user just needs to set ont¼“ALL”.

eGOBP <- enrichGO(IRF6_dataset$up_down_regulated$up, 
OrgDb = "org.Mm.eg.db", keyType = "SYMBOL", ont = "BP",
pvalueCutoff = 0.1, qvalueCutoff = 0.05,
minGSSize = 10, maxGSSize = 500)

With the following commands, we can produce the barplot and
the emapplot of the upregulated GO categories (plot not shown).
Enrichment map plots (emaplot) are useful because they allow for
the organization of enriched sets into networks where edges reflect
the overlap between gene sets, so that overlapping gene sets tend to
cluster together.

barplot(eGOBP, showCategory = 20)
emapplot(eGOBP, showCategory = 20)

To manually check the results, we can create the data.frame
from the enriched GO BP (p-value corrected < ¼0.05). In Table 2
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below, we have reported the top ten enriched terms and their
corrected p-values.

eGOBP_df <- as.data.frame(eGOBP)
sig_eGOBP_df <- eGOBP_df[eGOBP_df$p.adjust <= 0.05, ]
head(sig_eGOBP_df[,c("Description", "p.adjust")], 10)

Looking at the enriched GO BP from the upregulated genes
we saw that the IRF6KO samples were missing lipid related pro-
cesses, which were impacting skin barrier functionality. Indeed, this
process is lost in the IRF6KO mice, as reported by the authors [9].

We ran the same analysis for downregulated genes, and we
plotted the results. Since we are using GO, aside from the already
presented barplot, cnetplot, and emapplot, we can also use another
plot function from clusterProfiler specifically devised for GO called
goplot. This produces the enriched GO induced graph.

eGOBP_down <- enrichGO(IRF6_dataset$up_down_regulated$down,
OrgDb = "org.Mm.eg.db", keyType = "SYMBOL", ont = "BP",
pvalueCutoff = 0.1, qvalueCutoff = 0.05,
minGSSize = 10, maxGSSize = 500)

goplot(eGOBP_down)

As shown by the goplot in Fig. 1d, the enriched GO BP showed
immune system impairment in the IRF6KO samples and confirmed
that IRF6KO impacts “lipid metabolism”, “epidermis develop-
ment”, and the “establishment of skin barrier”.

Table 2
Top ten enriched terms and their corrected p-values

Description p.adjust

Skin development 5.075e�27

Keratinocyte differentiation 7.835e�24

Epidermal cell differentiation 5.435e�20

Epidermis development 5.029e�19

Peptide cross-linking 6.382e�16

Multicellular organismal water homeostasis 1.236e�13

Regulation of water loss via skin 2.748e�13

Water homeostasis 9.508e�13

Establishment of skin barrier 4.205e�12

Sphingolipid metabolic process 1.329e�08
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3.2.4 KEGG Pathway

Map Representation

Using the pathview R package [21], we can map DEGs on specific
KEGG pathways. It requires NCBI entrez gene IDs as the input,
thus we had to convert all the gene symbols into entrez gene ids
and then call pathview, specifying the species (“mmu”) and the
pathway (“mmu04530”, i.e., the “Tight junctions” pathway).

library("pathview")
id_table_conversion <- AnnotationDbi::select(org.Mm.eg.db,

keys = IRF6_dataset$up_down_regulated$up,
columns = c("SYMBOL", "ENTREZID"),
keytype = "SYMBOL")

mmu04530 <- pathview(gene.data = id_table_conversion$ENTREZID,
pathway.id = "mmu04530", species = "mmu")

The function outputs a “png” image with the KEGG “Tight
junctions pathway” where the DEGs are mapped in red (Fig. 2).
This function is extremely useful to see the position of the DEGs in
a pathway map.

3.3 Analyses

of the Ovarian Cancer

(OV-TCGA) Dataset

Preprocessing of the OV-TCGA dataset followed the procedure
described in [18]. Briefly, we downloaded the sample annotations
and we selected those patients with follow-up information
(progression-free survival) and TCGA subtypes annotation as
reported in [23]. In total, we have at our disposal 259 patients
divided in four TCGA subtypes: 73 differentiated, 61 immunoreac-
tive, 63 mesenchymal, and 62 proliferative. For all patients, we
downloaded expression, methylation, mutation, and CNV profiles.
Comparing proliferative vs differentiated subtypes, we obtained the
list of DEGs to be used for our tutorial (corrected p-value < ¼0.05
and an absolute log fold change>¼1). With these settings we have
739 upregulated genes (more highly expressed in the proliferative
patients) and 549 downregulated genes (more highly expressed in
the differentiated patients).

3.3.1 Gene Set

Enrichment Pathway

Analyses

The following section describes the study of DEG enrichment in
KEGG and REACTOME pathways. As above, we retrieved
the pathways though the graphite package. In the TCGA dataset,
the genes are annotated as ENTREZID, so we needed to retrieve
the Homo sapiens pathways and convert identifiers into ENTRE-
ZID. The following code describes how to retrieve the KEGG data.
To perform the same task for Reactome it will be necessary to
substitute “kegg” with “reactome” in the code.

library(graphite)
hsapiens_kegg_eg <- pathways("hsapiens", "kegg")
hsapiens_kegg_eg <- convertIdentifiers(hsapiens_kegg_eg, "ENTREZID")
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Following this, we converted the pathway list of graphite into a
TERM2GENE object to be used by the clusterProfiler enricher
function (see the IRF6KO analysis for a detailed explanation).

library(plyr)

gset_hsapiens_kegg_eg <- ldply(lapply(hsapiens_kegg_eg, nodes), data.frame)
names(gset_hsapiens_kegg_eg) <- c("gs_name", "entrez")

gset_hsapiens_kegg_eg$entrez <- gsub("ENTREZID:", "",
as.character(gset_hsapiens_kegg_eg$entrez))

gset_hsapiens_kegg_eg$gs_name <- as.character(gset_hsapiens_kegg_eg$gs_name)

At this point, rather than calculating upregulated and down-
regulated gene enrichment in separate plots as shown for the

Fig. 2 Upregulated DEGs mapped on the “Tight Junction” pathway through the pathview R package
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IRK6KO dataset, we instead compared up and downregulated
genes in the same plot. With this goal we introduce the compar-
eCluster function (from clusterProfiler). This function allows the
user to specify an arbitrary number of gene lists through a named
list. This allows for the creation of an enrichment object that takes
into account all the gene lists and directly compares different
enriched pathways in a plot. In the following code, we created a
list with a first element called “Prolif” that contained the upregu-
lated genes and a second element called “Dif” that contained the
downregulated genes.

comparison_list <- list(Prolif = TCGA_OV_deg$up_down_regulated$up,
Dif = TCGA_OV_deg$up_down_regulated$down)

Following this we call the function compareCluster. In this case,
enricher becomes an argument of the function compareCluster, thus
we have used the function enricher with the listed parameters in
each element of the comparison_list.

compareKEGG <- compareCluster(comparison_list,
fun = "enricher", 
TERM2GENE = gset_hsapiens_kegg_eg,
universe = row.names(TCGA_OV_deg$lnorm_data),
pAdjustMethod = "BH",
pvalueCutoff = 0.1, qvalueCutoff = 0.1,
minGSSize = 10, maxGSSize = 500)

To visualize the results from the compareCluster function, we
have used the dotplot function which represents pathways as dots;
the size of each dot follows the gene ratio (DEGs/total number of
genes in the set), and the color represents the p-value. With the
following command we asked for a representation of the top ten
pathways.

dotplot(compareKEGG, showCategory=10)

As you can see in Fig. 3a, the dotplot provides a clear overview
of the pathways that are specific or in common with the two con-
ditions. In this example, we can appreciate that differentiated sam-
ples showed pathways related to inflammation, while in proliferative
we have other pathways such as “ECM-receptor interaction” and
“Wnt and TGF-beta signaling”.

The following section shows what DEGs look like using
another source of pathways, that is, the Reactome database [7]
from the graphite R package. The procedure to retrieve the Reac-
tome database is the same as was used for KEGG; however, it is
necessary to substitute “kegg” with “reactome” in the code.
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Firstly, we created the TERM2GENE object:

gset_hsapiens_reactome_eg <- ldply(lapply(hsapiens_reactome_eg, nodes),
data.frame)
names(gset_hsapiens_reactome_eg) <- c("gs_name", "entrez")

gset_hsapiens_reactome_eg$entrez <- gsub("ENTREZID:", "",
as.character(gset_hsapiens_reactome_eg$entrez))

gset_hsapiens_reactome_eg$gs_name <- as.character(
gset_hsapiens_reactome_eg$gs_name)

Pertussis
Human T−cell leukemia virus 1 infection

Tuberculosis
Th1 and Th2 cell differentiation

Legionellosis
Influenza A

Antigen processing and presentation
Leishmaniasis

Cytokine−cytokine receptor interaction
Allograft rejection

TGF−beta signaling pathway
Cortisol synthesis and secretion

Cushing syndrome
Gastric acid secretion

Retinol metabolism
Melanogenesis

Neuroactive ligand−receptor interaction
Wnt signaling pathway

Maturity onset diabetes of the young
ECM−receptor interaction

Prolif
(208)

Dif
(162)

0.06 0.04 0.02
p.adjust

(a)

Interferon gamma signaling
Dectin−2 family

Generation of second messenger...
Termination of O−glycan biosynthesis

Defective C1GALT1C1 causes Tn...
Defective GALNT3 causes familial...

Defective GALNT12 causes colorectal...
PD−1 signaling

Phosphorylation of CD3 and TCR zeta...
Translocation of ZAP−70 to...

RA biosynthesis pathway
Protein−protein interactions at...

Collagen biosynthesis and modifying...
NCAM signaling for neurite out−growth

NCAM1 interactions
Collagen chain trimerization

Cardiac conduction
Muscle contraction

Extracellular matrix organization
Neuronal System

Prolif
(341)

Dif
(256)

0.0015 0.0010 0.0005
p.adjust

(b)

Allograft rejection
Antigen processing and presentation
Legionellosis
Pertussis
Influenza A
Leishmaniasis
Tuberculosis
Cytokine−cytokine receptor interaction
Th1 and Th2 cell differentiation
Human T−cell leukemia virus 1 infection
Gastric acid secretion
Cortisol synthesis and secretion
ECM−receptor interaction
TGF−beta signaling pathway
Wnt signaling pathway
Melanogenesis
Cushing syndrome
Retinol metabolism
Maturity onset diabetes of the young
Neuroactive ligand−receptor interaction

subtype

−2

−1

0

1

2

(c) (d)
WT1
TCF25
ZFP37
FOS
SMAD1
FOXL1
EVX1
FOXK2
KDM5A
SNAPC4
NEUROD1
TEAD1
ZBTB18
RBPJL
HNRNPAB
POU5F1
ATF3
SP140
PAX7
MESP1
POU1F1
PRDM2
TCFL5
JUN
YBX3

subtype

−15

−10

−5

0

5

Fig. 3 Plots from gene set/network analyses for the OV-TCGA dataset. (a, b) Comparisons of the top ten
upregulated (Prolif) and top ten downregulated (Dif) enriched KEGG and Reactome pathways, respectively. (c)
Single sample gene set analysis: KEGG enriched pathways in Fig. 2c are summarized for each patient with
Gene Set Variation Analysis (GSVA). (d) Transcription factors with significant differences in protein activity
between proliferative and differentiated groups ( p-value < ¼0.01, absolute mean differencies > ¼2)
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Then, we used the compareCluster function on the compari-
son_list object.

compareReactome <- compareCluster(comparison_list,
fun = "enricher", 
TERM2GENE = gset_hsapiens_reactome_eg,
universe = row.names(TCGA_OV_deg$lnorm_data),
pAdjustMethod = "BH",
pvalueCutoff = 0.1, qvalueCutoff = 0.1,
minGSSize = 10, maxGSSize = 500)

Following this we called the dotplot function and compared the
top ten proliferative vs differentiated enriched gene sets for Reac-
tome.

dotplot(compareReactome, showCategory=10)

The Reactome database analysis confirmed that the prolifera-
tive group still has “Extracellular matrix organization” as the most
highly expressed pathway, while the differentiated group has
immuno-related processes in the top position (Fig. 3b). Neverthe-
less, Reactome can add more detail regarding the different pro-
cesses extending what can be achieved with KEGG. For example,
from differentiated samples it was seen that the “PD-1 signaling”
pathway has more DEGs (downregulated in proliferative patients)
than what would have been expected by chance. This pathway can
be particularly interesting, because the PD-1/PD-L1 axis can be
impacted by immune checkpoint inhibitor-based cancer
therapies [24].

3.3.2 Single Sample

Analysis

There are some scenarios where it could be useful to summarize
gene expression in pathway deregulation sample by sample, that is,
to provide single patient classification.

In the following section, we explored single sample gene set
analysis (ssGSA) using the GSVA R package. To run the commands
it was necessary to convert a gene set data.frame (aka TERM2-
GENE object) into a named list, where each pathway/gene set
name is associated with the list of its genes. To do so we started
from the TERM2GENE object built in the previous analysis:

gset_list_hsapiens_kegg_eg <- lapply(tapply(gset_hsapiens_kegg_eg$entrez, 
gset_hsapiens_kegg_eg$gs_name,
identity),

identity)

To call gsva, we needed to provide a normalized expression
matrix (in our case lnorm_data), the list of gene sets (the gene set
list from the KEGG database), and the method for the summary
(either “gsva”, “ssgsea”, “zscore”, or “plage”). Since our
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expression data are log CPM, we used the gaussian kernel to
estimate the cumulative distribution function of expression levels
across samples. We limited the analysis to gene sets larger than
10 genes but smaller than 500 genes.

library(GSVA)
gsva_summary <- gsva(TCGA_OV_deg$lnorm_data, gset_list_hsapiens_kegg_eg,

method = "gsva", kcdf = "Gaussian",
min.sz = 10, max.sz = 500)

The gsva function returns a matrix-like object, with pathways
in rows and patients in columns. With the following commands, we
extracted both differentiated and proliferative samples from the
matrix.

select_columns <- multiOmicDataset$patients_subtype$subtype=="OVCA.Differentiated"
| multiOmicDataset$patients_subtype$subtype=="OVCA.Proliferative"

We then created a gene set expression matrix by selecting the
desired patients, and we produced heatmaps of the GSVA analysis.
We focused on the pathways shown in the KEGG comparison
dotplot (Fig. 2a; the list of pathways was saved into interesting_-
kegg_pathways)

annotation_columns <- multiOmicDataset$patients_subtype[select_columns, , drop=F]
annotation_columns <- annotation_columns[order(annotation_columns$subtype), ,

drop=F] 
gsva_interesting_kegg <- gsva_summary[int eresting_kegg_pathways,

row.names(annotation_columns),
drop=F]

pheatmap(gsva_interesting_kegg,
annotation_col = annotation_columns,
cluster_cols = F, scale="row", show_colnames = F)

As can be seen in Fig. 3c, we can reconfirm what we saw in the
enrichment analysis for KEGG. We can appreciate that the “ECM-
receptor interaction” pathway is more activated in proliferative
patients and that the “Cytokine-cytokine receptor interaction”
pathway is more active in differentiated samples. It is also worth
mentioning that the GSVA output matrix can be used to perform
other statistical tests of pathway differential expression analysis or
cluster analysis that has not been covered in this protocol.

3.3.3 Gene Set

Enrichment Analysis

with MSigDB

In the following section we attempt to summarize the DEGs from
our dataset using molecular signatures like those hosted inMSigDB
[25, 26] (https://www.gsea-msigdb.org/gsea/msigdb/collec-
tions.jsp). In the MSigDB we found different types of gene sets,
including Hallmark genes, which are genes that display coordinate
expression as a hallmark of a specific process, as well as
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Transcription Factor Targets (TFT). These data were collected
from the R package msigdbr. In the following piece of code, we
created theHALLMARK and TFT sets for Homo sapiens from the
msigdbr R package and converted the TERM2GENE object into a
named list, in which each element is a gene set containing its genes.

library(msigdbr)

hallmark_t2g <- msigdbr(species = "Homo sapiens", category = "H") 
%>% select(gs_name, entrez_gene)

hallmark_t2g$gs_name <- gsub("HALLMARK_", "", hallmark_t2g$gs_name)
hallmark_t2g$entrez_gene <- as.character(hallmark_t2g$entrez_gene)

tft_t2g <- msigdbr(species = "Homo sapiens", category = "C3", 
subcategory = " TFT:TFT_Legacy")

%>% select(gs_name, entrez_gene)
tft_t2g$entrez_gene <- as.character(tft_t2g$entrez_gene) 

hallmark_gene_set_list <- tapply(hallmark_t2g$entrez_gene,
hallmark_t2g$gs_name, identity, simplify = F)

hallmark_gene_set_list <- lapply(hallmark_gene_set_list, identity)

tft_gene_set_list <- tapply(tft_t2g$entrez_gene, tft_t2g$gs_name, identity, 
simplify = F)
tft_gene_set_list <- lapply(tft_gene_set_list, identity)

Following this, we can run compareCluster with the TFT gene
set list.

compareTFT <- compareCluster(comparison_list, fun = "enricher", 
TERM2GENE = tft_t2g,
universe = row.names(TCGA_OV_deg$lnorm_data),
pAdjustMethod = "BH",
pvalueCutoff = 0.1, qvalueCutoff = 0.1,
minGSSize = 10, maxGSSize = 500)

We created a tabular output to inspect the results and to extract
only the TFT gene sets that have a corrected p-value < ¼0.1. With
the table function we counted how many TFT gene sets are in the
proliferative group and how many are in the differentiated group.

tft_df <- as.data.frame(compareTFT)
sig_tft_df <- tft_df[tft_df$p.adjust <= 0.1, ]
table(sig_tft_df$Cluster)

Subtype #sig TFT gene set

Prolif 172

Dif 0
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As can be seen from the result summary, no TFT gene sets were
detected in the differentiated samples. We then asked ourselves
what would happen if we redid the same analysis using hallmarks.

compareHallmark <- compareCluster(comparison_list, fun = "enricher", 
TERM2GENE = hallmark_t2g
universe = row.names(TCGA_OV_deg$lnorm_data),
pAdjustMethod = "BH",
pvalueCutoff = 0.1, qvalueCutoff = 0.1,
minGSSize = 10, maxGSSize = 500)

We created a tabular output to inspect the results and to extract
only the hallmark gene sets that had a corrected p-value < ¼0.1.
With the table function we counted how many hallmark gene sets
were in the proliferative group and how many were in the differ-
entiated samples.

hallmark_df <- as.data.frame(compareHallmark)
sig_hallmark_df <- hallmark_df[hallmark_df$p.adjust <= 0.1, ]
table(sig_hallmark_df$Cluster)

subtype #sig H gene set

Prolif 6

Dif 12

As can be seen above, 18 different hallmark processes were
found, which characterize the two groups of patients. With the
following code we show their subtype specificity, their names and
their corrected p-values (Table 3).

Again, the analysis highlights specific differences between the
two groups under study. Nonetheless, the results are consistent
with all the previous analyses, that is, we found changes in
immune-related gene sets in the differentiated samples and WNT
related pathways in the proliferative subtypes.

The following code which shows the dotplot function can be
used to create a plot of the expression differences (plot not shown).

dotplot(compareHallmark, showCategory=20)

3.3.4 The Computational

Inference of Protein Activity

Through a Network

Approach

So far, we have seen how different analyses can help in understand-
ing the processes occurring in the samples under evaluation. In the
following section, we describe the analysis of protein activity.
Briefly, we use gene expression regulated by a given protein, for
example, the targets of a transcription factor (TF) or of signal
transduction proteins, which act as reporters of the protein activity
of the regulator. We use the viper R package (Virtual Inference of
Protein-activity by Enriched Regulon analysis), which allows the
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computational inference of protein activity to be calculated from
gene expression profile data [22]. Thus, with viper we can study the
regulon, which is a context-specific coregulatory network. The
Ovarian Cancer regulon has been provided by the R package ara-
cne.networks where different regulons for the pancancer datasets are
stored.

In the following code, we (1) import the Ovarian Cancer
regulon, (2) create an ExpressionSet (eset) with the normalized
data and the phenotype data (i.e., patient subtypes), and finally
(3) call viper.

Table 3
Subtype specificity, names, and their corrected p-values

Subtype H Gene set p.adjust

Prolif EPITHELIAL_MESENCHYMAL_TRANSITION 0.0757

Prolif SPERMATOGENESIS 0.0757

Prolif HEDGEHOG_SIGNALING 0.0757

Prolif PANCREAS_BETA_CELLS 0.0757

Prolif WNT_BETA_CATENIN_SIGNALING 0.0757

Prolif APICAL_JUNCTION 0.0757

Dif TNFA_SIGNALING_VIA_NFKB 1.29e-05

Dif ALLOGRAFT_REJECTION 2.23e-05

Dif INFLAMMATORY_RESPONSE 0.000229

Dif INTERFERON_GAMMA_RESPONSE 0.000513

Dif COMPLEMENT 0.00456

Dif APOPTOSIS 0.00527

Dif COAGULATION 0.00527

Dif ESTROGEN_RESPONSE_LATE 0.00527

Dif ESTROGEN_RESPONSE_EARLY 0.00558

Dif KRAS_SIGNALING_UP 0.0481

Dif MYOGENESIS 0.0481

Dif KRAS_SIGNALING_DN 0.0481
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library(viper)
library(aracne.networks)
library(Biobase)

data(regulonov)

select_columns <- multiOmicDataset$patients_subtype$subtype=="OVCA.Differentiat
ed"

| multiOmicDataset$patients_subtype$subtype=="OVCA.Proliferati
ve"

pheno=droplevels(multiOmicDataset$patients_subtype[select_columns, ,drop=F])
pheno <- pheno[order(pheno$subtype), , drop=F]

TCGA_OV_matrix <- as.matrix(TCGA_OV_deg$lnorm_data[,row.names(pheno),drop=F])
eset <- ExpressionSet(assayData = TCGA_OV_matrix, phenoData = AnnotatedDataFram
e(pheno))

proteins_activity <- viper(eset, regulonov, verbose = FALSE)
activity_inferred <- exprs(proteins_activity)

We found 5708 genes whose protein activity has been inferred
from the Ovarian Cancer regulon. With this information we can
search for the activity of known TFs. Using the Homo sapiens
annotation package, we can retrieve TFs (e.g., using GO terms
related to TFs) and then search in the viper results.

library(org.Hs.eg.db)

GO_2_KEEP_TF <- c("GO:0003700", "GO:0004677", "GO:0030528", "GO:0004677")

gene.list <- as.list(org.Hs.egGO2EG)
regulator_TF <- unname(unlist(gene.list[GO_2_KEEP_TF]))
symbols <- AnnotationDbi::select(org.Hs.eg.db, keys = regulator_TF,

columns = "SYMBOL")
sym <- symbols$SYMBOL
names(sym) <- symbols$ENTREZID
tfs <- intersect(row.names(activity_inferred), symbols$ENTREZID)

Using the above code, we retrieved 469 TFs with their esti-
mated protein activity. We then proceed to extract TF activity.

tfs_activity <- activity_inferred[tfs,]
tfs_symbols <- sym[tfs]

Following this, we wanted to see the TFs that were differen-
tially activated between the proliferative and differentiated sub-
types. For each TF, we computed the difference between the
mean activity in proliferative and differentiated subtypes. Then we
performed a t-test between the two and extracted the TFs with a p-
value < ¼ 0.01 and an absolute mean difference > ¼ 2. This will
represent the subtype-specific TFs active at the protein level.
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tfs_activity_diff <-
rowMeans(tfs_activity[,pheno$subtype==levels(pheno$subtype)[1]])-
rowMeans(tfs_activity[,pheno$subtype==levels(pheno$subtype)[2]])

tfs_activity_tt <- apply(tfs_activity, 1, function(profile) {
x <- profile[pheno$subtype==levels(pheno$subtype)[1]]
y <- profile[pheno$subtype==levels(pheno$subtype)[2]]
t.test(x,y)$p.value

})

selected <- tfs_activity_tt <= 0.01 & abs(tfs_activity_diff) >= 2

tfs_activity_top <- tfs_activity[selected,]
tfs_symbols_top <- sym[selected]

A total of 26 TFs were detected to be differentially activated in
the two subtypes. To visualize them, we suggest creating a heatmap
with their expression activity, as we did in Fig. 3d.

pheatmap(tfs_activity_top, cluster_cols = F, annotation_col = pheno,
labels_row=tfs_symbols_top, show_colnames = F)

3.3.5 Topological

Pathway Analysis

In the sections above we have described how to study gene expres-
sion data using gene sets. Now we would like to show a type of
pathway analysis which is able to exploit the pathways in the form of
networks: topological pathway analysis. Contrary to gene set ana-
lyses, few topological methods have been published. The first and
probably the most famous one is SPIA [27]. In this section, we
demonstrate the Bioconductor R package clipper.

This method, based on Gaussian Graphical Models, has the
interesting and biologically meaningful ability to decompose a
pathway, which are sometimes too large and too general. This
method can then extract the subnetwork—part of the original
pathway—including the strongest differences between the two
categories under study [12]. In Fig. 4, a general scheme on how

Fig. 4 Schematic overview of clipper approach
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clipper works is shown. clipper transforms the pathway-network
into a junction tree (a tree of cliques, which are groups of fully
connected genes) and explores the tree clique by clique. It does so
by comparing the gene expression in the two categories in terms of
mean (changes in gene expression magnitude) and variance
(changes in the strength of the relationship between connected
genes) of expression values. In contrast to other methods, clipper
allows the identification of small but coordinated differences
between the two classes. clipper analysis needs pathways in the
form of networks as provided by the graphite R package [8].

In the following section, we demonstrate a clipper analysis
which was performed on a set of Reactome pathways related to
“PD-1 signaling”.

Reactome has a hierarchical structure (similar to those seen for
the GO) where small and well-focused pathways are contained
within bigger and more generic pathways. The hierarchy is brows-
able through the Reactome Pathway Browser at “https://reac-
tome.org/PathwayBrowser/”. In the following code, we
downloaded the Reactome hierarchy using the download-
PathwayRelationFromReactome function from the houseOfClipU-
tility R package (from “https://github.com/cavei/
houseOfClipUtility”). Then, we selected the Reactome pathway
IDs and associated the pathway names.

pathHierarchy <- houseOfClipUtility::downloadPathwayRelationFromReactome()

ids=sapply(hsapiens_reactome_eg, function(x) x@id)
id2path <- names(ids)
names(id2path) <- ids

With the following commands, we extracted the direct children
pathways of “Adaptive Immune System” and, with a second round
of selection, those located two steps further (i.e., the children of the
children, which include “PD-1 signaling”). The resulting vector
contains the names of the pathways of interest. To conclude the
preparation, the pathways extracted as Pathway objects from graph-
ite were converted into graphNEL objects.

adaptive_imm_system_childs <- pathHierarchy[pathHierarchy$parent=="R-HSA-128021
8", "child"]
selected_childs <- pathHierarchy$parent %in% adaptive_imm_system_childs
adaptive_imm_system_2nd_gen <- pathHierarchy[selected_childs, "child"]

interesting_reactome_pathways <- c(id2path[adaptive_imm_system_childs],
id2path[adaptive_imm_system_2nd_gen])

reactomeGraph <- lapply(hsapiens_reactome_eg[interesting_reactome_pathways], pa
thwayGraph)

Following this, we performed clipper analysis using the list of
graphNEL pathways, the normalized expression matrix with
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proliferative and differentiated samples (stored as lnrom_prol_diff),
and the sample class annotations (stored as annotation_prol_diff).

The analysis was performed by cycling over the reactomeGraph
object which contains the pathways. For each pathway graph g, we
call clipper with the method “mean” over the expression matrix
with the subtype classes.

all_clipped <- lapply(reactomeGraph, function(g) {
set.seed(1234)
clipped <- clipper(lnrom_prol_diff,

classes = as.numeric(annotation_prol_diff$subtype),
graph = g, method = "mean")

})

After the analysis we ordered the resulting pathways by max-
Score and collapsed the results in a data.frame.

collapsed_first_results <- do.call(
rbind, lapply(all_clipped, function(x) {
sort_x <- x[order(as.numeric(x$maxScore), decreasing = T), , drop=F]
sort_x[1, , drop=F]
}))

sorter <- order(as.numeric(collapsed_first_results$maxScore), decreasing = T)
ordered_collapsed_first_results <- collapsed_first_results[sorter, ]

In the following lines we have reported the top ten pathways
according to the clipper maxScore (Table 4).

For visualization purposes, we extracted from the result table
the column length, which reports how many cliques are involved.

Table 4
Top ten pathways according to the clipper maxScore

Length maxScore Impact

TCR signaling 9 54.92 0.69

Antigen processing-cross presentation 5 34.54 0.5

Costimulation by the CD28 family 4 27.63 0.57

B Cell activation 4 27.63 0.33

Downstream TCR signaling 4 27.63 0.4

CTLA4 inhibitory signaling 4 27.63 1

Antigen activates B cell receptor (BCR) leading to generation of second
messengers

4 27.63 0.67

CD28 co-stimulation 3 20.72 0.6

Downstream signaling events of B cell receptor (BCR) 3 19.63 0.5

Immunoregulatory interactions between a Lymphoid and a
non-Lymphoid cell

2 13.82 0.11
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The higher the number of cliques, the longer the signaling path.
Furthermore, the score (maxScore, which indicates the max cumu-
lative score along the path) together with the impact tells us how
much of the pathway is affected by the perturbation.

ordered_collapsed_first_results[1:10, c(4,5,8)]

Then, we decided to focus on the tenth path, which is part of
the pathway “Immunoregulatory interactions between a Lymphoid
and a non-Lymphoid cell,” which has two cliques that seem to
drive class differences, thus impacting 11% of the pathway. In the
following code, we extracted the genes involved and evaluated the
expression differences with a heatmap of gene expression.

selected_egenes <- unique(unlist(strsplit(ordered_collapsed_first_results[10, 
"involvedGenes"], ";")))
selected_genes <- gsub("ENTREZID:", "", selected_egenes)
symbols <- AnnotationDbi::select(org.Hs.eg.db, keys = selected_genes,

columns = "SYMBOL")

Imm_expression <- lnrom_prol_diff[selected_egenes, , drop=F]
row.names(Imm_expression) <- symbols$SYMBOL
breaksl <- seq(-1,10)
palette <- colorRampPalette(rev(RColorBrewer::brewer.pal(n = 7, name =
"RdYlBu")))(length(breaksl))
library(RColorBrewer)

pheatmap(Imm_expression, cluster_cols = F, annotation_col =
annotation_prol_diff,

clustering_distance_cols = "correlation",
clustering_distance_rows = "correlation",
show_colnames = F,
breaks = breaksl,
color = palette)

From the heatmap in Fig. 5a, we can say that there is a small
but highly coordinated signal in the differentiated samples.

The involved genes in the original pathway “Immunoregula-
tory interactions between a Lymphoid and a non-Lymphoid cell”
can be seen by going to the Reactome home page (https://reac-
tome.org/) and selecting the “Analyze data” section. In the dedi-
cated box the list of entrez gene IDs can be entered, and the
pathway of interest can be browsed. Alternatively, the network
representation of the pathway can be plotted in Cytoscape through
the graphite function. In Cytoscape, a world of aesthetic customiza-
tion is available, from network layouts to node and edge styles. In
the following code, we show how to plot a graphite pathway object
in Cytoscape and how to pass the clipper analysis to the Cytoscape
session. First, we selected the pathway that we wanted to plot, then
we extracted all the genes, and converted them into symbols using
the annotation package.
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pathway_name <- "Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell"
path_graph <- reactomeGraph[[pathway_name]]
allgene <- gsub("ENTREZID:", "", nodes(path_graph))
symbols <- AnnotationDbi::select(org.Hs.eg.db, keys = allgene, columns =
"SYMBOL")

Using the graphite function cytoscapePlot, we can plot the
pathway in Cytoscape. It is necessary to have Cytoscape version
3.7.1 or later open on the computer before running the following
codes, as they generate the pathway directly into the Cytoscape
session.

LILRB5
NCR3LG1
CD1D
LILRA5
TYROBP
FCGR1A
LILRB1
LILRB4
LILRA1
LILRA2
CD1A
CD1C
CD8B
KLRD1
CD247
CD3D
CD3E
CD3G
CD8A
HLA−G
B2M
HLA−F
HLA−A
HLA−B
HLA−C
HLA−E

subtype

0

2

4

6

8

10A

B

Fig. 5 clipper analysis plots. (a) Gene expression of the portion of the “Immunoregulatory interactions between
a Lymphoid and a non-Lymphoid cell” pathway found by clipper as the one which better characterizes the
proliferative and differentiated phenotypes. (b) Network representation of the “Immunoregulatory interactions
between a Lymphoid and a non-Lymphoid cell” pathway in Cytoscape. Nodes are colored according to their
log fold change in proliferative vs differentiated groups (blue represents differentiated, red represents
proliferative). The node borders of the genes of the most important pathway portions found by clipper are
shown in red (genes in panel a)
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library(graphite)
cytoscapePlot(hsapiens_reactome_eg[[pathway_name]])

The next step is to color the genes that best discriminate the
two subtypes according to clipper analysis. First, we identified the
genes that compose the path (selected_genes). In Cytoscape, coloring
selected genes requires the creation of an attribute data.frame
containing: (1) the node ID, to map attributes to the respective
nodes, (2) symbols, which will be used as node labels and (3) a 1–0
vector, indicating if the gene is relevant or not according to the
analysis. (4) We also included the log fold change computed from
edgeR to color the genes in the pathway.

clippeg_logical <- symbols$ENTREZID %in% selected_genes
lfc <- TCGA_OV_deg$DE_tables[nodes(path_graph), "logFC"]
lfc[is.na(lfc)] <- 0.0
attrs <- data.frame(id = nodes(path_graph), SYMBOL = symbols$SYMBOL,

clippeg = ifelse(clippeg_logical, 1, 0), lfc = lfc)

The new attributes were loaded to the Cytoscape session with
the loadTableData function (RCy3 R package) using the “id”
column as a bridge to match the id in the node table.

library(RCy3)
loadTableData(attrs, data.key.column = "id", table = "node")

With the new attributes loaded, it is possible to modify the
graph aesthetics (see RCy3 or Cytoscape manual).

setNodeLabelMapping("SYMBOL")

column <- 'lfc'
control.points <- c (-3.0, 0.0, 3.0)
colors <- c ("#686de0", "#FFFFFF", "#eb4d4b")
setNodeColorMapping(column, control.points, colors)

column <- 'clippeg'
control.points <- c (0, 1)
colors <- c ('#dcdde1', '#c23616')
setNodeBorderWidthDefault(4)
setNodeBorderColorMapping(column, control.points, colors)

Figure 5b shows the network exported from Cytoscape. We set
the node color according to the fold change (red for proliferative
and blue for differentiated samples), the node border in red for
gene results from clipper and grey for the others.

3.4 Survival

Analyses of a

Multiomics Dataset

Using Pathways

Finally, in this last section we would like to demonstrate survival
pathway analysis of a multiomic dataset using MOSClip (https://
github.com/cavei/MOSClip). In Fig. 6, an overview of the
MOSClip strategy is shown. In brief, for each of the omics to be
analyzed, a data reduction strategy guided by pathway topology is
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performed. We devised an omic summarization that can be tested
for survival on a per pathway or per modules (the pathway cliques)
basis. In this way the survival analyses gain power from the analysis
of multiple pathway genes in multiple omics.

Shown below is the code in which we used the full multiomic
OV-TCGA dataset composed of expression, mutations, CNVs and
methylation for 259 ovarian cancer patients, as used in [18]. Data
retrieval, data preprocessing and analysis are fully explained by the
MOSClip tutorial available with the R package at “https://cavei.
github.io/MOSClip/”. Here as an example, we chose to investi-
gate the Reactome “Adaptive Immune System” related pathways.

We needed to build a multiOmic dataset object by feeding it
with the expression data (normalized logCPM), the methylation
data (organized in clusters), the CNV matrix and the mutations as
event matrices. To create amultiOmic dataset, we needed to specify
the four omics matrices, the gene summarization method for each
data matrix, and other arguments related to the summarization
method chosen. For example, in the following commands, we set
that the expression needed to be summarized with the function

Fig. 6 MOSClip approach overview
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summarizeWithPcawhich would then be run with parameters listed
by pcaArgs, and so on for the other matrices.

library(MOSClip)
multiOmics <- Omics(data = list(expr = expression, 

met = methylation$MET_Cancer_Clustered, 
mut = mutation, cnv = cnv),
methods = c("summarizeWithPca", 

"summarizeInCluster", 
"summarizeToNumberOfEvents",
"summarizeToNumberOfDirectionalEvents"),

specificArgs = list(
pcaArgs = list(name = "exp", shrink = "FALSE", 

method = "sparse", maxPCs = 3),
clusterArgs = list(name = "met", dict = methylation$eMap,

max_cluster_number = 3),
countEvent = list(name = "mut", min_prop = 0.05),
cnvAgv = list(name = "cnv", min_prop = 0.05)))

Then, we selected the pathways to be analyzed. We used the list
of “interesting Reactome pathways” which contains the “Adaptive
Immune System” and all of its children as described above in the
paragraph relating to clipper.

ractome_from_degs <- hsapiens_reactome_eg[interesting_reactome_pathways]

Following these steps, MOSClip pathway analysis is now ready
to be run. With the “lappy” function, we cycled over the selected
pathways (reactome_from_degs) and performed a pathway multio-
mic survival test (multiOmicsSurvivalPathwayTest function) using
the multiOmics object, the gth pathway, and the progression-free
survival annotation (thus limiting the usable genes to those with
mRNA expression profiles (saved on the geneToConsider object). A
more in-depth version of the loop containing progress through the
analyzed pathway can be found by uncommenting “print
(g@title)”.

genesToConsider <- row.names(expression)
multiOmicsPathway <- lapply(ractome_from_degs, function(g) {

# print(g@title)
set.seed(1234)
fcl = multiOmicsSurvivalPathwayTest(
multiOmics, g, survAnnot, useThisGenes = genesToConsider)

fcl
})

At this point, all results have been stored into a multiOmic-
sPathway object. For a global view of the pathway analysis results,
we explored the multipathway report plot. Using the function
plotMultiPathwayReport from MOSClip we created a heatmap
ordered by overall p-value with pathways in rows and the p-value
for each omic in the columns for the first top ten pathways (figure
not shown).
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plotMultiPathwayReport(multiOmicsPathway,
MOcolors = c(exp = "red", met = "green",

mut = "blue", cnv = "yellow"),
top = 10, fontsize = 10, fontsize_number = 10, 
fontsize_row = 8, fontsize_col = 8)

Alternatively, the following line of code allow for the creation
of a tabular report. In Table 5, we have shown the first five lines of
such a report.

multiPathwayreport <- multiPathwayReport(multiOmicsPathway)

As you can see from the top five results, out of the 21 pathways
analyzed, two have an overall p-value lower than 0.05. Focusing on
the first pathway, “CD28 co-stimulation” we can see that the
survival associated components are expression (expPC2) and meth-
ylation (met2k). To further investigate the pathway, we can plot the
pathway heatmap where the most highly significant genes of each
omics are shown. We ran the plotPathwayHeat function from
MOSClip, asking it to sort patients by methylation (“met2k”) and
by expression (“expPC2”). The other parameters were used to set
the colors of the omics (paletteNames), the ratio aspect of the
heatmaps (nrowsHeatmaps) and to remove the sample names
from the plot (withSampleNames ¼ F).

plotPathwayHeat(multiOmicsPathway[["CD28 co-stimulation"]],
sortBy = c("met2k", "expPC2"),
paletteNames = c(exp = "red", met = "green",
mut="blue", cnv = "yellow"),

nrowsHeatmaps = 2, withSampleNames = F)

Table 5
First five lines of a tabular report

p-
Value expPC1 expPC2 expPC3 met2k2 met3k2 met3k3 mut cnvNEG cnvPOS

CD28
co-stimulation

0.02 0.41 0.02 0.67 0 NA NA 0.63 0.11 0.29

Costimulation by
the CD28
family

0.02 0.09 0.85 0.03 0 NA NA 0.38 0.79 0.91

B Cell activation 0.07 0.4 0.36 0 0.05 NA NA 0.49 0.81 0.92

CD22 mediated
BCR

regulation

0.07 0.01 0.74 NA 0.3 NA NA NA NA 0.34

Generation of
second

messenger
molecules

0.12 0.29 0.99 0.36 0.25 NA NA 0.02 NA 0.88
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As seen in Fig. 7a, the methylation status on the promoter of
the genes LYN, CD28 and AKT3 seem to be the major points
responsible for the separation of the pathway methylation profile in
the two classes. The expression of the gene PAK3 is the main
contributor to the PC2. Furthermore, the plot also offers insight
into the mutations and CNV omics in the pathway. While this plot
shows us the best gene candidates for association with survival, we
can also show the Kaplan-Meier curves obtained by dividing
patients into groups by using met2k and expPC2. Thus, we can
evaluate if methylation and expression profiles of the pathway genes
can stratify patients into classes with different survival rates. We
used the plotPathwayKM function from MOSClip, which takes the
Survival formula where we specified that we want to correlate
survival status and time (days) to the combination of met2k and
expPC2 covariates.
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Fig. 7 MOSClip analysis plots. (a) “CD28 co-stimulation” visualization of the most relevant gene for each
omics. Patients are sorted according to methylation (met2k) plus expression (expPC2). (b) Kaplan-Meier
survival curves combining classes from methylation and expression
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plotPathwayKM(multiOmicsPathway[["CD28 co-stimulation"]], 
formula = "Surv(days, status) ~ met2k + expPC2")

Figure 7b shows the four classes of patients, demonstrating
significant differences in survival time (p-value < 0.0001).

In the above example, we focused only on selected pathways;
however, in [18], a more complete analysis was proposed. In this
study, the authors collapsed all resulted genes into a network. This
network was used to separate the patients in poor survival, middle
survival and high survival, thus identifying a new pathway that
included all survival-associated genes (in a multiomics fashion)
that are able to predict a patient’s outcome.

Figure 8 shows an example of what this network could look
like. Genes have been colored according to their most important
omic and their association with poor survival (e.g., increased or
decreased expression, high or low methylation). This example
shows how topologically aware tools and appropriate visualization
systems can also assist in getting mechanistic insight into survival
mechanisms.

That is all. We hope that all the gene expression analyses pre-
sented in this chapter would help the researchers to study the cell
activities occurring in their samples.

Fig. 8 Bubble network samples from MOSClip analysis
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And as said by a professor of our university: “Measure what is
measurable, and make measurable what is not so.” Galileo Galilei
1564–1642.

4 Notes

1. When working with nonmodel organisms or organisms with no
“AnnotationDBI,” one solution could be to compile a GO
database from an external source, transform it into a TERM2-
GENE data frame and run enrichment analysis with enricher.
The following chunk of code shows how to perform this task,
starting from the GO annotated into MSigDB within the
msigdbr R package.

library(msigdbr)
mouse_df <- msigdbr(species = "Mus musculus")
gobp_t2g <- msigdbr(species = "Mus musculus", category = "C5", subcategory = "BP") 
%>% select(gs_name, gene_symbol)
head(gobp_t2g)

alt_eGOBP <- enricher(IRF6_dataset$up_down_regulated$up,
TERM2GENE = gobp_t2g, 
universe = row.names(IRF6_dataset$lnorm_data),
pAdjustMethod = "BH", 
pvalueCutoff = 0.1, qvalueCutoff = 0.05,
minGSSize = 10, maxGSSize = 500)

barplot(alt_eGOBP)
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Chapter 10

Computational Analysis of circRNA Expression Data

Giulio Ferrero, Nicola Licheri, Michele De Bortoli, Raffaele A. Calogero,
Marco Beccuti, and Francesca Cordero

Abstract

Analysis of circular RNA (circRNA) expression from RNA-Seq data can be performed with different
algorithms and analysis pipelines, tools allowing the extraction of heterogeneous information on the
expression of this novel class of RNAs. Computational pipelines were developed to facilitate the analysis
of circRNA expression by leveraging different public tools in easy-to-use pipelines. This chapter describes
the complete workflow for a computationally reproducible analysis of circRNA expression starting for a
public RNA-Seq experiment. The main steps of circRNA prediction, annotation, classification, sequence
reconstruction, quantification, and differential expression are illustrated.

Key words Circular RNAs, RNA sequencing, Noncoding RNAs

1 Introduction

Circular RNAs (circRNAs) are an emerging class of RNAs arising
from Back-Splicing (BS) events, noncollinear splicing events involv-
ing the acceptor splice site of downstream exons with a donor splice
site of an upstream one [1]. These events create circular RNA
transcripts characterized by high overall stability and peculiar
molecular functions mediated by microRNAs and RNA binding
protein interactions. The identification of circRNAs was revolutio-
nized by the spreading of RNA-Seq experiments and the imple-
mentation of new computational approaches focused on the
identification of unmapped reads and linear splicing junctions
which supports BS events [2]. A large variety of tools was developed
for circRNA prediction and their performance was extensively eval-
uated [3]. Furthermore, specific algorithms were designed for the
circRNA postprediction analyses including the analysis of circRNA
internal splicing events (CIRI-AS [4]), differential expression (cir-
cTest [5]), prediction of protein-coding potential (CircCode [6]),
or visualization by circRNA dedicated browser (CircView [7]).
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In the last few years, different groups provided computational
solutions to collect circRNA analysis tools into a comprehensive
analysis pipeline, including CirCompara [8], circtools [9], and
Ulacirc [10]. To facilitate the computational analysis of circRNA
expression with particular attention on the result reproducibility,
our group developed the Docker4Circ pipeline [11]. In this pipe-
line, public algorithms for circRNA prediction, classification, anno-
tation, quantification, and sequence reconstruction are embedded
into different Docker images to facilitate the execution, porting,
and reproduction of a whole circRNA analysis pipeline starting
from RNA-Seq data. The users can easily run the pipeline through
R functions designed in accordance with the guidelines of the
Reproducible Bioinformatic Project (RBP [12]) or through an ad
hoc Java Graphical User Interface [13]. The pipeline can be applied
on data generated on human samples as well as a model organism
and it can be easily applied on circRNAs predicted with eleven
different tools.

In this chapter is described Docker4Circ a basic analysis work-
flow suitable for the prediction of circRNAs and their expression
analysis from an RNA-Seq experiment. Exemplary data and analysis
steps for their analysis are available at https://www.protocols.io/
view/protocol-for-a-reproducible-circrna-analysis-using-
9vmh646.

The Docker4Circ workflow is summarized in Fig. 1 The analy-
sis is organized in four modules: (1) circRNA prediction with one
or more algorithms starting from the fastq files; (2) circRNA classi-
fication and annotation based on the information stored in public
databases; (3) analysis of the circRNA sequences in terms of alter-
native splicing events and reconstruction of the BS sequence;
(4) quantification of the circRNA expression in independent
RNA-Seq datasets and identification of deregulated circRNAs in
tumor samples.

2 Materials

2.1 Exemplary

Datasets

The exemplary RNA-Seq dataset TNBC_circ is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc¼GSE113230. This dataset was generated using 150 bp paired-
end Illumina sequencing of total RNA extracted from three triple-
negative breast cancer tissues and adjacent normal tissues surgically
removed and flash frozen on dry ice. The generation and analysis of
the dataset were described in [14].

The second exemplary dataset, named BC_circ, is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc¼GSE52194 and it is composed of 17 total RNA-Seq data of
primary breast cancer samples and three normal breast organoids.
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This dataset is used to test the quantification module of the Dock-
er4Circ pipeline.

The reference human genome selected for the analysis was
hg38 which sequence can be retrieved from ftp://ftp.ensembl.
org/pub/release-98/fasta/homo_sapiens/dna/Homo_sapiens.
GRCh38.dna.primary_assembly.fa.gz. The GTF file storing the
Ensembl v98 annotations can be retrieved from http://ftp.
ensembl.org/pub/release-98/gtf/homo_sapiens/Homo_sa-
piens.GRCh38.98.gtf.gz.

2.2 Computational

Hardware

The computing hardware required for the analysis depends on part
of pipeline considered and on the number of datasets analyzed.
With exclusion of the circrnaQuantification function, the whole
analysis can be run on standard workstation because the only
requirement is 32 Gb of RAM available if the STAR Chimeric
analysis is performed. In [11], the whole analysis pipeline was run
successfully on Intel NUC6I7KYK mini-PC with eight threads and
it required in total from six to ten hours based on the tool selected
for the circRNA prediction.

Fig. 1 Docker4Circ workflow. Four modules characterized the pipeline of analysis. Module 1 is dedicated to
the circRNA prediction, Module 2 is focused on the classification and annotation, Module 3 to the sequence
analysis and Module 4 for the expression analysis. Blue boxes and arrows are used to highlight the input data,
while green boxes and arrows are used for the output data
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2.3 Computational

Software

The described workflow requires a UNIX or a MacOS operating
systems, the installation of docker daemon (https://docs.docker.
com/install/), the installation of R (https://cran.r-project.org/)
version >3.00, the installation in R of devtools (install.packages
("devtools")), and docker4circ (library(devtools); install_github
("kendomaniac/docker4seq", ref¼"master")) libraries. In case
Docker4Circ is used via graphical interface, Oracle JAVA version
8 has to be installed (https://www.oracle.com/technetwork/
java/javase/downloads/jdk8-downloads-2133151.html) and
4SeqGUI (https://github.com/mbeccuti/4SeqGUI) needs to
be downloaded on the local computer.

3 Methods

3.1 Preparation

of the Analysis Folders

The Docker4Circ analysis pipeline requires the indication of spe-
cific folders for the analysis: (1) a data folder storing in different
subfolders, the fastq files related to each sample analyzed; (2) a
reference folder in which the reference genome and the reference
transcriptome annotations are stored; (3) a scratch folder in which
the temporary analysis files are stored.

3.2 CircRNA

Prediction

The first step of a circRNA analysis pipeline is the prediction of a
circRNA set starting from the RNA-Seq datasets. Generally, cir-
cRNA prediction can be divided into an initial alignment phase in
which the RNA-Seq fastq files are aligned against a reference geno-
mic sequence with a selected set of gene annotations. Then, the
reads neither aligned on the exons of reference annotations and on
the linear splicing junctions are analyzed for candidate BS events.
Several circRNA prediction tools were developed which differ by
the chosen reads alignment algorithm and by the computational
approach designed for the detection of the BS supporting reads
[2, 3]. In Docker4Circ, two different circRNA prediction tools
were included: CIRI2 [15] and STARChip [16]. Furthermore,
the function circrnaOverlapResults is provided to overlap the list
of circRNAs predicted with 11 different algorithms.

3.2.1 CIRI2 Prediction In the CIRI2 prediction pipeline, the RNA-Seq reads are initially
aligned on the genomic reference using the BWA algorithm. Then,
the first step of the pipeline is the creation of the index of the
selected reference genome sequence. The bwaIndex included in
the Docker4Circ pipeline allows the creation of the genome index
of a reference starting from a fasta file downloaded from a URL
provided by the user. The function requires the following para-
meters: genome.url, the URL of the reference genomic sequence
(in fasta format); genome.folder, the path to the folder where the
indexed reference genome for BWA will be located; the argument
mode set to general.
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Then, using the wrapperCiri function it is possible to run the
complete CIRI2 analysis pipeline for a specific sample. The analysis
includes the FastQC quality control analysis of the RNA-Seq data-
set, the BWA alignment, and the CIRI2 circRNA prediction. The
function requires the following mandatory parameters: data.folder,
the path to the folder where gzip fastq files are located; genome.file,
the path to the fasta file of the reference genomic sequence
(it should be the same reference indexed for the BWA alignment);
seq.type, a string indicating if the experiment is single-end (se) and
paired-end (pe) sequencing. Additional parameters include sample.
id, a string indicating the id to be associated with the alignment
bam that will be created; threads, a number indicating the number
of cores to be used for the analysis; annotation.file, the path to the
GTF/GFF file reporting the reference gene annotations;max.span,
an integer indicating the maximum spanning distance of a circRNA
(default ¼ 200,000 bp); and stringency.value, related to the strin-
gency level of the analysis. Three possible options are available:
“high” (default), in which CIRI2 only provides circRNAs sup-
ported by more than two distinct paired chiastic clipping signals
(PCC, specific partial alignment in the BWA output supporting a
BS junction); “low” (low stringency), CIRI2 only provides cir-
cRNAs supported by more than two BS reads; “zero,” CIRI2
provides all circRNAs regardless junction read counts or PCC
signals; quality.threshold, integer indicating the threshold for
mapping quality of each segment of junction reads (default ¼ 10).

The output of the three analysis steps will be stored into the
folder of each sample and it will consist of: (1) a files with extension
fastqc.zip and fastqc.html storing the results of the FastQC analysis;
(2) a file named aligned_reads.sam storing the result of the BWA
alignment; (3) a tab-delimited file with extension ciri2 reporting
the list of predicted circRNAs.

3.2.2 STARChip

Prediction

The second circRNA prediction pipeline included in Docker4Circ
involved the STARChip algorithms. Since this tool processes the
chimeric alignment from the STAR algorithm, the first step of the
pipeline is the creation of the STAR index of the reference genome
and transcriptome annotations. The STAR index can be generated
using the function rsemstarIndex with the following mandatory
parameters: genome.folder, the path to the folder where the indexed
reference genome for STAR will be located; ensembl.urlgenome, the
URL from ENSEMBL ftp for the unmasked genome sequence of
interest; ensembl.urlgtf, the URL from ENSEMBL ftp for the GTF
for genome of interest. Another function named starChipIndex
must be applied in order to create the bed file required by
STARChip analysis. The function requires as mandatory parameter,
the path to the reference genome folder (genome.folder).

Analysis of circRNA Expression Data 185



After the generation of the reference files, the analysis can be
performed using the function wrapperSTARChip which sequen-
tially executes the FastQC reads quality control ( fastqc function),
the STAR chimeric read alignment (starChimeric function), and the
circRNA prediction using STARChip (starchipCircle). The manda-
tory parameters of the wrapper functions are: genome.folder, the
path to the folder where the indexed reference genome for STAR is
located; samples.folder, the path to the folder where are located all
the subfolders of the samples processed with starChimeric; threads,
the number of threads to be used; reads.cutoff, the minimum
number of back-splicing reads required;min.subject.limit, the min-
imum number of samples with readsCutoff reads; do.splice, a bool-
ean value indicating if the splices within the circRNA be detected
and reported. Linear splices are searched within each circRNA in
each sample. Any linear splice with>¼60% of the read count of the
circRNA is considered a splice within the circRNA. Two files are
then created, “.consensus” with the most common splice pattern,
and “.allvariants” with all reported splice patterns; annotation,
boolean value indicating if the circRNAs will be provided with the
gene annotations. Additional parameters include chimSegmentMin,
indicating the minimal length of the overlap of a read to the
chimeric element (default ¼ 0); chimJunctionOverhangMin, a
number indicating the minimum overhang for a chimeric junction
(default ¼ 15); cpm.cutoff, the minimum number of log2(Count-
sPerMillion) reads supporting the circRNAs (default ¼ 0); and
subjectCPM.cutoff, a value representing the lower limit for number
of samples required to have the circRNA expressed at a value higher
than cpmCutoff.

The output of the function are four files with different exten-
sion reporting respectively: the table with the circRNA expression
in the analysed samples (file with extension countmatrix); the
STARChip annotation of the identified circRNAs (extension anno-
tated); the information of the genes (extension genes) or the specific
exons in the BS events (extension investigate.consensus) involved.

3.2.3 Overlap of Multiple

circRNA Predictions

Since a list of circRNAs can be predicted specifically for each sam-
ple, Docker4Circ includes the circrnaMergePredictions function
allowing the merge of multiple prediction into a single matrix.
The merging process uses prediction files obtained using the same
prediction tool, which are recognized by the filename extension
(for example all CIRI2 predictions must be named with the suffix .
ciri2). Supported tools include CFS (suffix cfs), CIRI (ciri), CIRI2
(ciri2), Find_Circ2 (findcirc2), CIRCexplorer (circexplorer), CIR-
Cexplorer2 (circexplorer2), DCC (dcc), KNIFE (knife),
STARChip (starchip), Uroborus (uroborus), and circRNA_Finder
(circrnafinder). circrnaMergePredictions executes also a filter based
on BS reads detected in each experiment and the average reads
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computed among replicates of the same biological condition. The
mandatory parameters of the function are: data.folder, the path to
folder where output files are located; samples.list, a vector indicating
the identifiers of the samples; covariates.list, a vector indicating the
classes of the samples; covariate.order, a character vector indicating
the order of covariates in the output file; used.tool, the name of the
tool used for the prediction. Additional parameters include min_-
reads, the minimum number of reads supporting a circRNA
(default ¼ 2); min_reps, the minimum number of replicates with
at least min_reads (default ¼ 0); and min_avg, the average number
of BS reads across biological replicates of the same experimental
condition (default ¼ 10).

The output of circrnaMergePredictions is a table containing the
detected circRNAs associated with the number of BS reads
obtained in each input sample.

Furthermore, Docker4Circ includes the function circrnaOver-
lapResults list of circRNAs predicted by different algorithms. The
function automatically searches within a user-defined folder, each
circRNA prediction table named with the suffix “tool.txt” where
tool is the name of the tool used for the prediction. Supported tools
are ACFS (suffix cfs), CIRI (ciri), CIRI2 (ciri2), Find_Circ2 (find-
circ2), CIRCexplorer (circexplorer), CIRCexplorer2 (circex-
plorer2), DCC (dcc), KNIFE (knife), STARChip (starchip),
Uroborus (uroborus), and circRNA_Finder (circrnafinder). The
mandatory parameters for the circrnaOverlapResults function are:
input.folder, the path of the folder containing the predictions to
overlap; output.folder, string indicating the path of the output
folder; min_support, the minimum number of algorithms who
detected the circRNAs.

The output of circrnaOverlapResults is a tab-delimited file
named with the suffix detection.txt reporting the list of circRNAs
with the indication of their genomic coordinates, the number and
the name of the tools in which they were predicted. A second
output file named circRNA_list.txt will report the list of circRNAs
detected. This list will be generated considering the minimum
number of tools chosen by the user.

3.3 circRNA

Classification

Attribution of a circRNA to a specific gene annotation is not trivial
since many overlapping transcripts can share the same BS exons. In
Docker4Circ is included a function named circrnaClassification
designed to classify each predicted circRNA based on the genomic
coordinates of the BS exons and those from a set of Ensembl
transcripts annotations. The function requires an initial preproces-
sing of the Ensembl annotation using the function circrnaPrepar-
eFiles which generates two files reporting respectively the exons and
the transcript isoform annotations based on the Ensembl annota-
tions. The mandatory parameters required by this function are:
data.folder, the path to the folder where the output files will be
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saved; assembly, the identifier of the species analysed. The compati-
ble assemblies are hg19 (default), hg18, hg38, mm9, mm10, rn6,
dm6, and ce11. In addition, the parameter version can be provided
indicating the specific version of Ensembl used for the analysis.
Then, using these reference annotations, the circrnaClassification
can be applied providing the following parameters: circrna.data,
the path to the list of circRNAs; exon.data, the path to the exon
annotation file; isoform.data, string indicating the path to the iso-
form annotation file; assembly, the reference human genome assem-
bly analyzed.

The output of the function will be two files: circRNA_classifi-
cation.txt reporting for each circRNA, the classification computed
with respect to each transcript overlapping the genomic regions
involved in the circularization; circRNA_univocal_classification.txt
reporting the gene level classification obtained by considering the
classification of the canonical isoform of each gene. As reported in
Fig. 2, five classifications can be determined based on the genomic
position involved in the BS event: (1) intergenic, one or both BS
boundaries are mapped outside a genic region; (2) intronic, one or
both BS boundaries are mapped within and intronic region;
(3) putative exon, the BS event involves a one or more exons but
one or both the BS boundaries do not coincide with the exon
boundaries and are mapped within the exon; (4) monoexon, only
one exon involved and (5) multiexon, multiple exons are involved.

Fig. 2 Schematic representation of the five circRNA classifications available in
Docker4Circ

188 Giulio Ferrero et al.



3.4 circRNA

Annotation

Accumulating data of circRNA expression in cell lines models or
primary tissues are becoming available thanks manually curated
databases. With Docker4Circ, using the function circrnaAnnota-
tions it is possible to annotate a list of circRNAs with the data from
six databases circBase, TSCD, CSCD v2, ExoRBase, Circ2Disease,
and CircFunBase. circrnaAnnotations allows the annotation of
circRNAs detected in multiple versions of the human (hg18,
hg19, hg38) and mouse genome (mm9, mm10). The circRNA
genomic coordinates can be converted between different genome
versions using the pyliftover Python package. The required para-
meters of the function are circrna.file, the list of predicted cir-
cRNAs; assembly, the reference genome assembly; annotation.
sources, a list of databases id to analyze. Compatible databases:
circbase, cscd, exorbase, circ2disease, circfunbase, and tscd.
Table 1 reports the main features that can be retrieved from these
databases using Docker4Circ.

The output of the function consists of multiple tab-delimited
files named with the name of the database and the suffix anno as
extension.

3.5 Analysis

of the circRNA

Sequence

Alternative internal splicing events occurring within the circRNA
structure can be predicted using Docker4Circ function ciri_as. This
function applies the CIRI-AS algorithm [4] using as input the list of
circRNAs detected by CIRI2 and the alignment files from BWA.
ciri_as also provides a file named structure_AS.list reporting the list
of predicted alternative splicing events and associated dPSI. The
mandatory parameters required are: sam.file, the path to the
RNA-Seq alignment SAM/BAM file from BWA; ciri.file, the path
to the list of circRNAs predicted by CIRI2; genome.file, the path to
the Fasta file of the reference genomic sequence used for the BWA
alignment; annotation.file, the path to the GTF/GFF file reporting
the reference gene annotations.

Table 1
List of databases used for the circRNA annotation

Database Main features available in Docker4Circ

circBase circRNA genomic information and classification and expression in public data

CSCD2 circRNA expression in normal and cancer tissues

exoRBase circRNA expression in blood exosomal samples

circ2Disease Information on circRNA expression in specific disease phenotype, prediction of miRNA
and RNA binding protein interaction

CircFunBase Result of circRNA expression in public differential expression analyses

TSCD circRNA expression in adult and fetal tissues, prediction of miRNA and RNA binding
protein interaction

The second column reports the main information stored and used by Docker4Circ
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The reconstruction of the sequence of a BS event is mandatory
to design the primers for qRT-PCR validation. Then, Docker4Circ
includes the function circrnaBSJunctions that starting from a list of
circRNAs and a reference genome assembly is able to reconstruct
the BS sequence considering �35 bp regions centered on the BS
position. The mandatory parameters of this function are: circrna.
data, the path to the list of circRNAs; exon.data, the path to an
Ensembl exon annotation file that can be obtained using the func-
tion circrnaPrepareFiles; assembly, the name of the reference
genome assembly. The output of the function is a fasta file report-
ing for each circRNA the reconstructed BS sequence.

3.6 Direct circRNA

Quantification

in RNA-Seq Datasets

Given a list of circRNAs, Docker4Circ allows for the quantification
of their expression directly from the reads of RNA-Seq experi-
ments. For this purpose, circrnaQuantificationwas designed apply-
ing the HashCirc algorithm [17] using as input the RNA-Seq reads
and the fastq of the reconstructed BS junctions. HashCirc applies a
two-step approach composed of an initial rapid read filtering based
the hash table and a second step focused on the direct alignment
between the BS sequences and the surviving read from the first step.
The mandatory parameters are rnaseq.data, the path to the
RNA-Seq fastq file; backsplicing_junctions.data, the path to the
fasta file storing the circRNA BS sequences; and hc.params, vector
of six numeric parameters (the k-mer size, the thread number, the
dimension of the hash table, the dimension of the collision list; the
number of k-mers that must be matched between the reads and a
BS sequence, the number of perfect matches to consider). The
output of the function is a tab-delimited files reporting the identi-
fier of the circRNA and the number of reads aligned to its BS
sequence.

3.7 Differential

Expression Analysis

The comparison of the circRNA expression level between two or
more experimental conditions can be performed using the func-
tions mergeData and wrapperDeseq2.

The mergeData function is able to merge different files char-
acterized by the same extension. Given a folder and a vector of
sample name, the function will iterate over each sample folder
joining the files characterized by the indicated extension. A covari-
ate vector can be also provided to group each sample into a specific
class. The output of this function is table in which each column
represents the level of expression of the circRNAs obtained in each
experiment. The name of each column reports also the name of the
class in which each sample belongs to.

The results of the mergeData function can be used as input of
the wrapperDeseq2 function which applies a differential expression
analysis based on the DESeq2 algorithm [18]. The function
requires the following parameters: output.folder, the path to the
folder where the tables generated by mergeData are located and
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were results will be placed; experiment.table, the path to the counts
table generated with mergeData with addition of covariates; ref.
covar, covariate to be used as reference; batch, boolean value indi-
cating whether the batch effect should be considered in the analy-
sis. Additional parameters include log2fc, selected absolute log2fc
threshold for differentially expressed genes (default ¼ 1); and fdr,
False Discovery Rate (FDR) threshold selected for defining the
differentially expressed genes (default ¼ 0.05). The output of the
function is the full table of differentially expressed circRNAs (prefix
DEfull), the filtered table of differentially expressed circRNAs (pre-
fixDEfiltered) based on author selected thresholds and the normal-
ized counts table (prefix normalized).

3.8 Application

of Docker4Circ

We applied Docker4Circ on TNBC_circ dataset. On average of
27,839 circRNAs have been predicted by CIRI2 (https://github.
com/cursecatcher/biodocker/blob/master/docker4circ/exam-
ple/Table_CIRI2_circRNA_predictions.xlsx). The application of
circrnaMergePredictions function on the circRNAs predicted by
CIRI2 generate a list of 5,583 circRNAs (https://github.com/
cursecatcher/biodocker/blob/master/docker4circ/example/
Table_merged_CIRI2_predictions.xlsx). Conversely, the predic-
tion analysis with STARChip resulted in 14,118 circRNAs. The
predicted circRNAs can be retrieved from https://github.com/
cursecatcher/biodocker/blob/master/docker4circ/example/
Table_STARChip_circRNA_predictions.xlsx. A final set of 4,500
circRNAs predicted by both CIRI2 and STARChip algorithms was
considered for further analyses (https://github.com/curse-
catcher/biodocker/blob/master/docker4circ/example/Table_-
Overlapped_circRNAs_list.xlsx).

The circRNAs reported in the final list were classified as multi-
exon (85.3%), followed by monoexon (5.08%), putative exons
(4.62%), intronic (4.21%), and intergenic (0.80%). The table
reporting the circRNA classification can be retrieved at https://
github.com/cursecatcher/biodocker/blob/master/docker4circ/
example/Table_circRNAs_classification.xlsx, the circRNA annota-
tions are available at https://github.com/cursecatcher/bio-
docker/blob/master/docker4circ/example/Table_circRNAs_an-
notation.xlsx, and the fasta file reporting the BS sequences at
https://github.com/cursecatcher/biodocker/blob/master/
docker4circ/example/circRNA_backsplicing_sequences.fasta.

The sequence analysis reveals 1,039 splicing events reported in
https://github.com/cursecatcher/biodocker/blob/master/
docker4circ/example/Table_CIRI-AS_results.xlsx.

The differential expression analysis comparing the expression of
circRNAs between normal and cancer tissues evidenced 54 cir-
cRNAs significantly deregulated. The result of this analysis can be
retrieved from https://github.com/cursecatcher/biodocker/
blob/master/docker4circ/example/Table_DE_analysis_results.
xlsx.
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Moreover, we also performed an expression analysis using the
BC_circ dataset. We directly quantified the expression of the 4,500
circRNAs using the circrnaQuantification function. In total, 3,471
were detected in this dataset and the differential expression analysis
between triple-negative breast tumors and normal breast organoids
reveals 312 deregulated circRNAs (adjusted p-value <0.05 and
base mean >2). Among them, four circRNAs were detected as
differentially expressed also in the TNBC_circ datasets and they
showed the same expression trend in the two datasets.

The results of this analysis can be retrieved from https://
github.com/cursecatcher/biodocker/blob/master/docker4circ/
example/Table_analysis_BC_circ_dataset.xlsx.
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Chapter 11

Differential Expression Analysis of Long Noncoding RNAs

Qian Li and Xuefeng Wang

Abstract

Long noncoding RNA (lncRNA) expression data have been increasingly used in identifying diagnostic and
prognostic biomarkers in clinical studies. Low-expression genes are commonly observed in lncRNA and
need to be effectively accommodated in differential expression analysis. In this chapter, we describe a
protocol based on existing R packages for lncRNA differential expression analysis, including lncDIFF,
ShrinkBayes, DESeq2, edgeR, and zinbwave, and provide an example application in a cancer study. In order
to establish guidelines for proper application of these packages, we also compare these tools based on the
implemented core algorithms and statistical models. We hope that this chapter will provide readers with a
practical guide on the analysis choices in lncRNA differential expression analysis.

Key words Long noncoding RNA, Differential expression analysis, Zero-inflated counts

1 Introduction

Long noncoding RNAs (lncRNAs) have traditionally been under-
studied in the analysis of RNAseq data because only a small fraction
of lncRNAs have been functionally characterized. Further, most
downstream analysis (e.g., pathway analyses and gene ontology
(GO) analysis) can only be performed on protein-coding genes.
However, considerable attention has been directed to this unex-
plored genomic space in recent years. The transcriptomic research
community increasingly recognized the critical regulatory roles of
lncRNAs in various pathways, biological processes, and immune-
related mechanisms. Yearly lncRNA-related publications in
PubMed have increased from 149 in the year 2010 to 5655 in the
year 2019. In the most recent GENCODE v32 catalog, there are
around 18,000 human lncRNA genes defined. This implies that a
large number of lncRNAs can be retrieved from existing RNAseq
data collected from previous studies. No alignment step will be
needed and one only needs to update gene expression quantifica-
tion by reprocessing the mapped BAM files, that is, using HTSeq
count with the corresponding GENCODE GTF files. Given its
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essential functions and large volume, lncRNA has emerged as a key
strategy for biomarker discovery in cancer research. Although total
RNA protocol is preferred in such secondary analysis, a surprisingly
large number of lncRNA genes can still be recalled from ploy(A)-
based libraries, such as the RNAseq data in The Cancer Genome
Atlas (TCGA) project [1].

Alongside the rapidly growing noncoding gene database that
will facilitate the large-scale evaluation of lncRNAs, it is important
to consider the specific analytical challenges that still need to be
tackled. Although most computational tools and statistical meth-
ods for analyzing RNA-seq data can be readily applied to lncRNAs,
new guidelines and strategies are required to take into account the
specific characteristics of lncRNA data (lower read counts and
higher variability across genes/samples). To ensure validity and
reliability of any downstream analysis like differential expression,
we recommend to first filter out low-expression genes with 50th-
percentile RPKM (Reads Per Kilobase Million mapped reads) equal
to 0 as well as genes with 90th-percentile RPKM less than 0.1. In
our experience, around two-thirds of lncRNAs will be excluded
after this screening procedure in most analyses. Interestingly, we
found that excess zeros or low expression values remained an issue
in the prescreened dataset [2], which motivated the use of zero-
inflated statistical models for the differential analysis. Depending
on the study design and the anticipated use of the biomarkers, one
may consider a more aggressive screening scheme such as the
removal or downweighting antisense lncRNAs, which were often
found poorly quantified by alignment-based quantitative methods
[3]. Particular attention should be paid to the data in which the
number of expressed long intergenic noncoding RNAs (lincRNA)
is disproportionately lower than antisense lncRNAs. In this chapter,
we describe a detailed procedure of using existing packages such as
DESeq, edgeR, and lncDIFF for the differential expression analysis
of lncRNAs.

2 Materials

2.1 Annotation,

Alignment and

Quantification

lncRNA transcripts abundance can be profiled by RNA sequencing
output files and the well-known bioinformatics preprocessing tools
or pipelines. Annotation of transcripts or genes can be extracted
based on either full transcriptome or lncRNA reference GTF files,
available at GENCODE https://www.gencodegenes.org/. We
also assume that RNA reads are aligned to the reference genome
based on tools such as STAR [4], HISAT2 [5], and bowtie
[6]. Commonly used quantification methods for RNA-Seq samples
are Kallisto [7], Salmon [8], HTSeq [9], featureCounts [10], and
RSEM [11]. Kallisto and Salmon adopt pseudoalignment methods
and do not align sequencing reads to the reference genome. These
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tools assign reads to a set of transcripts by the expectation-
maximization algorithm. On the other hand, HTSeq, feature-
Counts and RSEM are alignment-based methods that require
aligning and mapping of the sequencing reads to transcriptome or
genome. A recent review [3] of lncRNA preprocessing tools sug-
gested that full transcriptome annotation with either pseudoalign-
ment methods or alignment-based method RSEM outperforms the
combinations of other tools, generating relatively higher counts at
either transcript or gene level. Figure 1 shows a typical procedure of
generating lncRNA counts from raw (FASTQ) sequencing files.

2.2 Normalization Prior to any statistical analyses of lncRNA expression values are
performed, it is important to know how the corresponding raw
read counts have been processed and normalized. There are multi-
ple methods commonly used in RNA-Seq library size normaliza-
tion before differential expression (DE) analysis, that is, RPKM,
FPKM (Fragments Per Kilobase Million) for pair-end, TMM
(Trimmed Mean of M-values), and UQ (Upper Quartile) [12]. In
addition to library size normalization, there are also approaches
removing known or unknown confounding artifacts before DE
analysis on the primary factor of interest, for example, ComBat,
SVD, and RUV. These methods aim to address unwanted batch
effects on transcriptomic data, although researchers can alterna-
tively skip this step and set the batches as covariates in a DE analysis
model, as illustrated in Fig. 1.

Fig. 1 Preprocessing from RNA-Seq fastq files: annotation, alignment,
quantification, normalization, and differential expression analysis
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2.3 An Example

lncRNA Counts

In this section, we use an example of normalized lncRNA counts
(FPKM) downloaded from a public data portal for cancer studies
TANRIC [1] at https://ibl.mdanderson.org/tanric/_design/
basic/main.html. To ensure proper detection reliability, a common
practice is to filter out lncRNA genes of extremely low average
FPKM, for example,<0.3. We recommend using the two-step filter
proposed in a previous study [13], which is eliminating the genes
with 50th-percentile FPKM as 0, and then keeping the genes with
90th-percentile FPKM over 0.1. FPKM of lncRNA genes passing
the two-step filter are available in R package lncDIFF, which can be
loaded by running the following R script.

# Load data sets from a cancer study

install.packages(’lncDIFF’)

library(lncDIFF)

data(’hnsc.edata’)

# ’hnsc.edata’ is FPKM for 1000 genes and 40 pairs of 1:1 tumor-
normal matched tissue samples.

# Preview data

# Normal tissue samples

head(hnsc.edata[,1:3])

# Normal 1 Normal 2
Normal 3

# ENSG00000005206.12 0.04021539 0.1438404
0.1142951

# ENSG00000100181.17 2.16004722 3.2080241
0.2434748

# ENSG00000126005.11 5.85834207 14.5885636
11.2034642

# ENSG00000130600.11 5.65611346 240.844692
452.0361821

# ENSG00000131484.3 0.15085461
0.2900211 0.2188895

# ENSG00000142396.6 1.51961695
2.6278220 2.4907083

# Tumor tissue samples

head(hnsc.edata[,41:43])

# Tumor 1 Tumor 2
Tumor 3

# ENSG00000005206.12 0.33760 0.20922
0.18174
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# ENSG00000100181.17 0.29766 0.45109
0.05831

# ENSG00000126005.11 10.36660 7.85668
8.62536

# ENSG00000130600.11 23.82804 167.32558
14.60800

# ENSG00000131484.3 0.64983 0.58489
0.16850

# ENSG00000142396.6 1.92266 2.78181
2.07949

3 Methods

3.1 Distribution of

lncRNA Counts

In order to understand and choose from algorithms developed for
lncRNA analysis, researchers should first look into and interpret the
statistical patterns of lncRNA counts. Using the above loaded
example of lncRNA FPKM data, gene-wise coefficient of variation
(CV, i.e., the ratio of standard deviation over mean CV ¼ σ

μ ) in
Fig. 2 reveals a latent statistical distribution in most low expression
lncRNA genes. A large proportion of genes (i.e., circles with log2
(mean)<0 and �0.5<log2(CV) < 0.5 in Fig. 2) show CV values
being approximately equal to 1 and not changing along with the
mean expression level. This pattern naturally leads to an assumption
of Exponential distribution (μ¼ σ, CV¼ 1) for lncRNA low counts
(seeNote 1). Meanwhile, the other genes in Fig. 2 display a drop of
CV value as mean expression level increases, which coincides with a
pattern in Negative Binomial (or Gamma-Poisson mixture) distri-
bution. Therefore, most of lncRNA differential expression analyses
are conducted by assuming Exponential or Negative Binomial dis-
tribution. The following algorithms and tools were developed
based on distinct statistical assumptions and addressed different
patterns of lncRNA counts for DE analysis.

3.2 R Packages for

lncRNA DE Analysis

3.2.1 lncDIFF

lncDIFF is a recently developed tool designed for low expression
genes or transcripts in noncoding RNA, which is implemented in
the R package lncDIFF. The core algorithm in lncDIFF adopts the
generalized linear model with zero-inflated exponential quasi-
likelihood to estimate group effect on low abundance features.
This tool is only applicable to data already processed by standard
RNA-Seq preprocessing and normalization pipelines. The follow-
ing examples illustrate the typical DE analysis between tumor and
normal tissue samples in a cancer study.

Example #1:

library(lncDIFF)
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data(’hnsc.edata’,’tissue’,’cov’)

# ’tissue’ is a vector of tissue type for 80 samples, i.e., tumor or
normal.

# ’cov’ is a matrix of covariates, i.e., batch of sequencing.

lncDIFF.result<-

+ lncDIFF(edata¼hnsc.edata,group¼tissue,covariate¼cov)

# DE genes

DE.lncDIFF<-

+ rownames(hnsc.edata )[lncDIFF.result$DE.gene¼¼’Yes’]

Example #2:

# Perform DE analysis on a subset of groups

new.group¼paste(tissue, rep(1:2,40),sep¼’_’)

# Sample distribution by new.group

Fig. 2 Relation between gene-wise mean and coefficient of variation in lncRNA counts
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table(new.group)

# new.group

# normal_1 normal_2 tumor_1 tumor_2

# 20 20 20 20

# DE analysis on normal_1 vs tumor_1 only

lncDIFF.result.subset<-

+ lncDIFF(edata¼hnsc.edata,group¼new.group,covariate¼cov,

+ CompareGroups¼c(’normal_1’, ’tumor_1’)

ShrinkBayes
ShrinkBayes [14] is a Bayesian approach that utilizes the zero-

inflated negative binomial (ZI-NB) model and joint shrinkage of
dispersion-related parameters for handling any counts in RNA-Seq
DE analysis. This method provides a high detection rate of DE
genes, especially for low counts genes. Due to its Bayesian nature, it
is computationally demanding compared to other tools and often
requires manual parameter tuning to avoid random numerical
errors.

Example #3:

install.packages(c("devtools","sp","pixmap", "snowfall",
"VGAM", "mclust", "logcondens", "Iso","XML","rgl"),
repos¼"http://cran.r-project.org")

source("http://www.math.ntnu.no/inla/givemeINLA.R")

library("devtools")

install_github("markvdwiel/ShrinkBayes")

data(’hnsc.edata’,’tissue’,’cov’)

tissue<-as.factor(tissue)

batch<-as.factor(cov)

form ¼ ~ 1 + tissue+batch

# Note: ShrinkBayes requires variables specified in the full

# model as either factor or numeric

ShrinkBayes.result<- ShrinkBayesWrap(hnsc.edata,form,

+ ntag¼c(500,1000), paramtotest¼"tissue")

# Note: if ntag is not specified, computation time may be longer

# DE genes

DE.ShrinkBayes<- ShrinkBayes.result$FDRs$BFDR_tissuetumor

3.2.2 edgeR The tool edgeR [15] examines DE of any transcripts or genes by
assuming Negative Binomial (or overdispersed Poisson) distribu-
tion to account for multiple factors (i.e., biological and technical).
Empirical Bayes method was adopted to control the degree of
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overdispersion across features, leading to robust and reliable esti-
mation. The input data for the edgeR package can be positive
integers (i.e., raw counts) or decimals (i.e., normalized counts).

Example #4:

> data(’hnsc.edata’,’tissue’,’cov’)

> dgList¼DGEList(counts¼ hnsc.edata,

+ genes¼rownames(hnsc.edata))

> pdata¼as.data.frame(cbind(tissue,cov))

# Note: groups and covariates must be a data frame, not a matrix

> design¼model.matrix(~tissue+batch,data ¼pdata)

> dgList <- estimateGLMCommonDisp(dgList, design¼design)

> dgList <- estimateGLMTrendedDisp(dgList, design¼design)

> dgList <- estimateGLMTagwiseDisp(dgList, design¼design)

> fit <- glmFit(dgList, design)

> edgeR.results <- topTags(glmLRT(fit, coef ¼ 2), n ¼ nrow
(data))

# DE genes

> DE.edgeR<- rownames(hnsc.edata)[edgeR.results$tables
$FDR<0.05

3.2.3 DESeq2 DESeq2 [16] is one of the most commonly used differential analy-
sis tools for nonzero RNA-Seq data, which provides stable esti-
mates by using shrinkage estimation for dispersions and fold
changes. As noted by the developer, this package analyzes and
interprets the differentially expressed features quantitatively rather
than the mere detection of DE features as a binary outcome.
However, the input counts data for DESeq2 must be a nonnegative
integer value. Hence, FPKM of lncRNAs must be rounded to
integer before running DESeq2. In addition to DE analysis,
DESeq2 implements multiple library-size normalization methods
by estimating size factors, which can be found in the package
vignette (see Note 2).

Example #5:

> install.packages("BiocManager")

> BiocManager::install("DESeq2")

> library(DESeq2)

> pdata¼cbind(tissue,cov)

> des<-DESeqDataSetFromMatrix(countData ¼
+ round(hnsc.edata)+1,design ¼ ~tissue+batch, colData ¼ pdata)

> desseq<-DESeq(des,test ¼ ’LRT’,full ¼ ~ tissue+batch,reduced
¼ + ~ batch)
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> DESeq.result<-results(desseq,independentFiltering¼F)

# DE genes

> DE.DESeq<- dataobject@NAMES[DESeq.result$padj<0.05

3.2.4 zinbwave+DESeq2 The single-cell RNA-Seq (scRNA-seq) tool zinbwave [17] is
another DE tool that must be used with DESeq2. The method
accounts for the zero inflation typically observed in scRNA-seq,
and thus can also be applied to address the similar issue in lncRNA
data. This tool adopts a so-called ZINB-based Wanted Variation
Extraction (ZINB-WaVE) approach and requires most samples
having counts >4.

Example #6:

> install.packages("BiocManager")

> BiocManager::install("DESeq2","zinbwave")

> pdata¼cbind(tissue,cov)

> round.data<-as.matrix(round(hnsc.edata,0))

> dataobject<-

+ SummarizedExperiment(round.data,rowData¼data.frame(row-
names(round.data)),

+ colData ¼ pdata)

> zinb <- zinbwave(Y¼dataobject,X¼~ tissue+batch, K ¼ 0,

+ BPPARAM¼SerialParam(), epsilon¼1e12)

> dds <- DESeqDataSet(zinb, design¼~ tissue+batch)

> dds <- DESeq(dds, test¼"LRT", reduced¼~batch,

+ sfType¼"poscounts")

> zinbwavedeseq.result¼results(dds,independentFiltering¼F)

# DE genes

> DE.zinbwavedeseq<- dataobject@NAMES[zinbwavedeseq.
result$padj<0.05]

3.3 Technical

Classification of DE

Methods and Tools

In this section, we summarize and classify methods implemented in
the aforementioned DE analysis tools based on statistical assump-
tions in the generalized linear model (GLM) (see Notes 3 and 4).
Some readers may skip this section if they only want to learn an
application overview. The algorithms are grouped as zero-inflated
(ZI)-exponential (i.e., lncDIFF), negative binomial (i.e., edgeR
and DESeq2), and ZI-NB (i.e., zinbwave and ShrinkBayes). Here
and below, we denote Yij the lncRNA library-size normalized
counts for gene i in sample j, belonging to each phenotype or
treatment group k, k ¼ 1, . . ., K.

GLM ZI-Exponential
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The ZI-Exponential density function models counts Yij as

f Y ij

� � ¼ 1� πið Þδ0 Y ij

� �þ πiFExp

Here, δ0 is the Dirac function and FExp is the density function of
Exponential distribution. The expected nonzero abundance per
gene is λij. Let wjk and βik be design matrix elements and coefficients
for groups in DE analysis, and vjm and γm (m¼ 1, . . .,M) being the
covariates and corresponding coefficients. The parameters of inter-
est in DE analysis are βik and can be linked to λij as

Identity link: λij ¼
PK

k¼1

βikwjk þ
PM

m¼1

γmvjm

Logarithmic link: log λij
� � ¼ PK

k¼1

βikwjk þ
PM

m¼1

γmvjm

The likelihood function based on logarithmic link is

L∗ πi, βi, γð Þ ¼
XN

j¼1

l j
∗ πi, βi, γð Þ

l j
∗ πi, βi, γð Þ ¼ I Y ij¼0ð Þ log 1� πið Þ þ I Y ij>0ð Þ 2∙ log πið Þ�ð

πiY ij

PK

k¼1

βikwjk

� log
XK

k¼1

βikwjk þ
XM

m¼1

γmvjm

 !

The exponential likelihood estimate for mean gene expression
is the maximizer of L(βi, γ), that is, bβi,bγ

� �
¼ argmax L βi, γð Þ .

lncDIFF employs a likelihood ratio test (LRT) based on the
ZI-Exponential distribution, in which the test statistic asymptoti-
cally follows χ2 distribution. The p-values from LRT are adjusted
for multiple testing using the Benjamini and Hochberg procedure
for false discovery rate [18].

3.3.1 GLM with Negative

Binomial

R packages edgeR and DESeq2 assume most RNA-Seq raw counts
follow negative binomial (NB) distribution, that is Yij~NB
(Mjpij,φi). HereMj is the library size, φi is the dispersion parameter
and pik is the relative abundance of gene i in group k. Similar to
lncDIFF, the parameter of interest βik in DE analysis is linked to pij
by a logarithmic function as [16]

log pij

� �
¼
XK

k¼1

βikwjk þ
XM

m¼1

γmvjm:

The likelihood function for model fitting and estimation is
derived from NB density function [17, 19] and the above logarith-
mic link function. edgeR uses a conditional likelihood weighted on
gene-wise total counts to estimate all parameters with an empirical
Bayes procedure to shrink the dispersion. Based on estimated para-
meters, edgeR detected DE genes by Fisher’s exact test adapted for
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over-dispersion [20]. On the other hand, DESeq2 first estimates
and normalizes library size factors by various methods, and then
estimates other abundance-related parameters by maximum likeli-
hood. Empirical Bayes shrinkage for the dispersion parameter is
also adopted in DESeq2 to account for gene-wise dependence of
dispersion on mean expression. These tools are ideal for analyzing
genes with intermediate or high counts in RNA-Seq, although low
count data are also allowed.

3.3.2 GLM with ZI-

Negative Binomial

In order to address an excessive proportion of zeros in RNA-Seq
counts, ShrinkBayes and zinbwave consider ZI-NB distribution
with point mass probability at zero counts. The ZI-NB density
function for counts Yij is

f Y ij

� � ¼ 1� πið Þδ0 Y ij

� �þ πiFNB

4 Notes

1. It is worthwhile to note that the distribution of lncRNA low
counts may deviate from an Exponential distribution in some
applications, which does not significantly impact the perfor-
mance of lncDIFF on DE gene detection. The reason is that
lncDIFF is a pseudo or quasi-likelihood [20] approach rather
than a “true” likelihood method for lncRNA DE analysis. To
illustrate the parameter estimation performance of lncDIFF, we
generated lncRNA counts for a single gene in two or three
biological groups (i.e., groups A, B, C) by model-based sam-
pling from ZI-Exponential and ZI-NB distributions, respec-
tively, with 1000 replicates for each [2]. The average and
median of group effect estimation is approximately equal to
the true value of group effect, indicating that the presence of
ZINB low counts did not change the estimation power of
group effect.

2. In order to confirm whether choice of library-size normaliza-
tion method has an impact on the performance of DE features
detection, we have applied lncDIFF DE analysis to different
types of normalized counts, that is, FPKM, TMM, and UQ,
using low abundance mRNA in a large-scale cancer study
(n ¼ 546) [2]. The Pearson correlation of log10 adjusted p-
values between the three normalization methods were
FPKM vs. TMM 0.82, FPKM vs. UQ 0.92, TMM vs. UQ
0.96, implying similar DE analysis results.

3. Computation time of different tools were also compared and
illustrated in [2], showing that lncDIFF, DESeq2 and edgeR
were the fastest in computation and zinbwave was relatively
slower. ShrinkBayes was powerful with INLA [14]
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incorporated, however, it required much more computation
time and space. Running ShrinkBayes might occasionally
receive computational errors, which can be addressed by tuning
parameters.

4. A summary of the aforementioned DE analysis tools is shown
in Table 1. DESeq2 and zinbwave are popular and powerful
tools for median or high counts features DE analysis enabling
estimation of dispersion parameters, while lncDIFF has better
performance in detecting low expression DE features com-
pared to other existing tools. ShrinkBayes also effectively
accounts for the low counts in lncRNA data with detection
power close to lncDIFF; however, the computation time of
ShrinkBayes is less appealing, especially for large samples. As a
best practice, we recommend to use lncDIFF for low expres-
sion and limited dispersion (e.g., genes with FPKM mean < 2
and CV < 1.5), and to use zinbwave+DESeq2 for intermedi-
ate/high expression or overdispersion (e.g., genes with FPKM
mean > 2 or CV > 1.5) for lncRNA DE analysis.
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Table 1
Compare multiple R packages for lncRNA differential expression analysis

R packages
Zero
inflation

Noninteger
counts

Computation
efficiency

Detection power (counts
level)

lncDIFF Yes Yes High High (low counts)

zinbwave + DESeq2 Yes No Median High (high counts)

DESeq2 No No High High (nonzero high
counts)

ShrinkBayes Yes Yes Low High (any counts)

edgeR No Yes High Median (any counts)
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Chapter 12

Micro-RNA Quantification, Target Gene Identification,
and Pathway Analysis

Gabriele Sales and Enrica Calura

Abstract

RNA sequencing has become a powerful tool for profiling the expression level of small RNAs from both
solid tissues and liquid biopsies. In conjunction with pathway analysis, it offers exciting possibilities for the
identification of disease specific biomarkers. In this chapter, we describe a workflow for processing this type
of sequencing data. We start by removing technical sequences (adapters) and by performing quality control,
a critical task that is necessary to identify possible issues caused by sample preparation and library sequenc-
ing. We then describe read alignment and gene-level abundance estimation. Building on these results, we
normalize expression profiles and compute differentially expressed microRNAs between sample groups of
interest. We conclude by showing how to employ pathway analysis to identify molecular signatures
corresponding to biological processes that are significantly altered by the action for microRNAs.

Key words Micro-RNA, Sequencing, Quantification, Target genes, Target predictions, Pathways

1 Introduction

1.1 What Is a

microRNA?

MicroRNAs (miRNAs) are fundamental regulatory elements of
gene expression in animals and plants. They are 17–24 nucleotide
long and regulate eukaryotic gene expression posttranscriptionally.
Primary miRNA (pri-miRNA) transcripts with stem–loop regions
are usually produced by RNA polymerase II, but occasionally by
RNA polymerase III. The stem–loop precursor, pre-miRNA, is
released by a cleavage event, which is catalyzed by the nuclear
Microprocessor complex that contains the RNase III Drosha and
Pasha. Pre-miRNAs are actively exported from the nucleus to the
cytoplasm by the Exportin 5. A distinct RNase III, Dicer, subse-
quently produces 22 base-pair duplex RNA, that is the mature
miRNA. In miRNA duplexes, usually the strand with the weakest
50-end base pairing is selected and loaded into RISC
(RNA-Induced Silencing Complex) which contains the Argonaute
(Ago) protein. miRNAs use base-pairing to guide RISC to specific
messenger RNAs (mRNAs) with fully or partially complementary
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sequences located especially in 30 untranslated regions (UTRs).
Watson–Crick base-pairing of 2–7 miRNA nucleotides, called
“seed,” is crucial for the targeting. The miRNA–mRNA pair
enables translational inhibition or exonucleolytic mRNA decay.
Unfortunately, the factors that govern the prevalence of one specific
mechanism remain unknown.

Each miRNA regulates numerous target genes and a lot of
computational algorithms were developed to predict the resulting
expression downregulation. The development of algorithms goes
hand in hand with the understanding of miRNA mode of action
and function [1, 2].

miRBase is the reference database of published miRNA
sequences and annotations (http://www.mirbase.org/). At the
time of writing, the current release of miRBase (version 22) con-
tains miRNA sequences from 271 organisms, 38 589 hairpin pre-
cursors and 48 860 mature miRNAs [3]. These numbers are
increasing day by day far exceeding the forecasts [4, 5].

miRNAs are involved in a large number of processes and the
deregulation of their expression could lead to dysfunctions and
diseases, such as cancer. Multiple aspects of cancer are regulated
by miRNAs and they are aberrantly expressed in a high number of
different cancers [6]. It has been demonstrated that miRNAs are
considered ideal candidates as diagnostic and prognostic markers to
distinguish between type of even better than mRNAs. Moreover,
they are attractive therapeutic targets because they can be easily
overexpressed or inhibited [7]. Despite the general low expression
of miRNAs in cancer samples compared to normal tissues miRNAs
can act both as oncomirs, causing tumors, or oncosuppressors,
protecting against tumors.

miRNA aberrant expression can occur through several mechan-
isms, such as (1) chromosomal abnormalities like deletions, dupli-
cations, and translocations, (2) single nucleotide polymorphisms
(SNPs) either in miRNA locus or in binding site for miRNA, or
(3) alternative splicing.

1.2 Experimental

Study of miRNA

Mechanism and

Identification of

Target Genes

We can divide experimental identification of miRNA targets in
direct and indirect methods [8]: (1) direct methods allow the
validation of miRNA–mRNA pairs and are often based on the
quantification of a reporter construct; (2) indirect methods do
not test the binding between miRNA and mRNA but screen all
the interactions suggesting a set of candidates. The latter use high-
throughput techniques such as immunoprecipitation of Ago com-
plex and the HITS-CLIP approach. The first is based on the isola-
tion of functional Ago-miRNA–mRNA complexes using antibody
anti-Ago followed by either microarray or sequencing analysis of
the two sets of RNAs. HITS-CLIP uses the UV light to cross-link
Ago protein with the associated miRNA and mRNA that will be
subsequently identified by sequencing. Among proteome analyses
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we can find SILAC techniques that use stable light and heavy
isotope labeled amino acids in cell culture to distinguish protein
level variations after miRNA overexpression or inhibition. Proteins
are identified using mass spectrometry and the protein quantity is
considered proportional to the protein peak intensity. The tran-
scriptome analyses can be also performed to study the miRNA
targets forcing miRNA up- or downregulation with subsequent
measure of genome-wide expression changes. A third category of
transcriptome analysis is the use of miRNA–mRNA matched mea-
surement on the same biological samples. This technique depicts a
more natural situation without experimental artifacts and it is suit-
able for studies in which a high number of patient samples is
required.

1.3 In Silico

Identification of miRNA

Target Genes

Despite the increase of experimentally validated miRNA targets the
majority of them remain unknown. In silico prediction is the only
solution to investigate large amount of data rapidly.

Several algorithms have been developed using strategies like the
sequence alignment between 30 regions of genes and the seed
sequence of miRNAs; the sequence conservation through species;
the target site accessibility and the binding stability.

Some of the most popular target prediction algorithms include
DIANA-microT [9], ElMMO [10], miRSVR [11], Pictar [12],
PITA [13], RNA22 [14], and TargetScan [15]. All these algo-
rithms differ for the features considered and the strategy adopted
to perform predictions. Evaluating and comparing these tools pre-
sents several difficulties given the absence of the clear definition of
true positives.

Alexiou et al. [16], in one of the most complete reviews,
compares the results of each algorithm with data retrieved from
miRNA overexpression experiments, and with a collection of exper-
imentally validated targets. The authors concluded that, despite
some features are more useful and some programs, like DIANA-
MicroT and TargetScan, are more accurate than others, in general
all the programs fail to identify most of the targeted genes. The
biggest issue is that we do not know the proportion of miRNAs that
follow the rules used by the predictors. When wemake comparisons
with experimental data we can eliminate false-positive predictions,
but the total amount of the false negatives remains unknown [8].

1.4 miRNA–Target

Dedicated Databases

An increasing number of databases, which collect information
about miRNAs and their targets, exists. These databases contain
information coming from literature, concerning both in silico and
experimental approaches in physiological and disease conditions.
miRbase [3] is the most important web resource, especially for
nomenclature and sequences. HMDD (Human MicroRNA-
associated Disease Database) [17], miR2Disease [18], and Pheno-
miR [19] are dedicated to miRNAs in diseases. miRGator [20],
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miRGen [21], and Argonaute [22] contain in silico target gene
predictions. miRecords [23] and Tarbase [24] contain validated
miRNA targets and information about the experimental validation
methodologies.

1.5 miRNAs in

Signaling Pathways

Cells express multiple miRNAs at the same time. A single gene can
be targeted by different miRNAs and a miRNA can target multiple
genes.

Especially for their rapid action and multigene regulatory
capacity, miRNAs are the best candidates to play pivotal role in
the modulation of the signal transductions in time and space. A
signal transduction is a mechanism that converts a signal (stimulus)
in a change of behavior of the cell, that is, alteration of metabolism,
proliferation or apoptosis, regulation of transcription of genes, cell
commitment, and so on.

Although miRNAs have the role to downregulate gene expres-
sion, their function is not only repressive. Depending on pathway
topology, there are examples of miRNA involvement in both acti-
vation and repression of signal transduction [25].

miRNAs also play their role by amplifying or repressing the
response, so that the signal can or cannot pass the sensitivity
threshold of the system. This explains how the cell is able to
perceive quantitatively the signal generating a response tailored to
the intensity and the duration of the stimulus [25].

Moreover, the temporal difference to produce miRNAs and
proteins (miRNAs are processed faster) allows miRNAs to affect
gene expression more rapidly than what is done by transcription
factors. In this way miRNAs are fundamental elements of signaling
pathway conferring temporal, as well as quantitative precision.

2 Materials

2.1 Deep Sequencing

Dataset

As a running example for this chapter we are going to use the
dataset described in [26]. In this study, the authors profile
miRNA and mRNA expression in nasopharyngeal carcinoma
(NPC) and normal nasopharyngeal mucosal specimens. Total
RNA from 11 samples was ribo-depleted and sequenced on an
Illumina HiSeq 2500 system, producing paired-end 150-bp long
reads. A small RNA library was built enriching RNA fragments with
lengths from 18 to 30 nucleotides. It was then sequenced using
standard protocols on an Illumina HiSeq 4000 instrument.

2.2 Hardware

Requirements

The analyses we describe can be completed on commodity hard-
ware. Specifically, the entire workflow will require no more than
16 GB of RAM and 500 GB of free disk space. The availability of
multiple processors could be used to reduce the total processing
time, but this is not strict requirement.
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2.3 Software

Requirements

We make use of a number of common utilities for processing
RNA-seq datasets, including sra-tools to download the raw reads;
cutadapt to trim adapters; FastQC to evaluate the read qualities;
and hisat2, featureCounts, and gffread to align the reads and pro-
duce gene-level summaries.

Gene and miRNA abundances are then loaded in the R envi-
ronment, where we rely on a number of packages for data manipu-
lation (tidyverse), differential expression (edgeR), retrieval of
miRNA–target relationships (multiMiR), Gene Ontology enrich-
ment (clusterProfiler), and pathway analysis (graphite). We plot
pathway graphs with Cytoscape.

3 Methods

3.1 Example Dataset

Retrieval

We can access the entire collections of sequences described in [26]
at the Sequence Read Archive, searching first the project code
PRJNA486528 and then looking for the run IDs (they all start
with the “SRR” prefix; e.g., SRR7707733). The fasterq-dump
command (part of the sra-tools [27]) downloads the raw read data
in the FASTQ format. We invoke the command using the code of a
run.

fasterq-dump --progress SRR7707733

There is a problem with the approach above, though. We have
to patiently wait the completion of the command and then manu-
ally issue another to download the next library, 22 times in total. A
more efficient approach makes use of shell scripting to automate the
entire procedure. To begin with, let us define two variables, one
listing the identifiers of all mRNA libraries and the other for
miRNAs.

MRNA_RUNS="SRR7707733 SRR7707734 SRR7707737 SRR7707739

SRR7707743

SRR7707736 SRR7707738 SRR7707741 SRR7707735 SRR7707740

SRR7707742"

MIRNA_RUNS="SRR7707744 SRR7707746 SRR7707748 SRR7707751

SRR7707754

SRR7707750 SRR7707745 SRR7707747 SRR7707749 SRR7707752

SRR7707753"

There are two things to note about the expressions above. Each
group of IDs has to be written on a single line and enclosed in a pair
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of double quotes; if you forget them, you get a rather dense error
message (for instance, bash: SRR7707733: command not found).
The definition of the MRNA RUNS and MIRNA RUNS variables
is only temporary: if you close your shell or if you switch to another
one already open, they will not be available. In that case, you should
just type those two lines again.

Now we can reference the variables and execute multiple com-
mands one after the other using a for loop.

for run in $MRNA_RUNS $MIRNA_RUNS; do

fasterq-dump --progress $run

done

At line 1 we introduce a new variable run (notice the singular
form) which will hold one SRR identifier at a time. Later (line 2) we
use it to compose the appropriate fasterq-dump command.

3.2 Initial Processing The size of a small RNA transcript such as a miRNA is typically
22 nucleotides. As the reads generated by the sequencer are longer,
they will inevitably include the 30 end adapter introduced during
the library preparation. Our first task will thus be that of searching
such technical sequences and to remove them (a procedure usually
referred to as trimming).

The content of the adapter obviously depends on the library
preparation kit used in the experiment. You should consult the
documentation of the manufacturer to recover the exact sequence.
In our example dataset, the authors have used the “NEBNext
Multiplex Small RNA Library Prep Set” whose adapter is:

AGATCGGAAGAGCACACGTCT

cutadapt [28] is an easy to use software that scans FASTQ files
and removes adapter instances. The program looks for the provided
sequence from the 30 end of each read and is even capable to
identify (and remove) partial matches. For the moment, we are
going to use it on a single run to understand the effect of trimming.

1. cutadapt -a AGATCGGAAGAGCACACGTCT \

2. -o trimmed.fastq \

3. SRR7707744.fastq

The file trimmed.fastq generated by the command above con-
tains only the portion of each read that passed the filter. (In case you
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were wondering, the “\” at the end of lines 1 and 2 allows us to split
a long command over multiple lines while still running the entire
expression as a single unit.)

At the end of its run, cutadapt prints on the screen some
diagnostic information: in particular, the number of reads that
were actually trimmed by the software. As expected, the fraction
is close to 100% for our sample.

Total reads processed: 13,848,958

Reads with adapters: 13,789,346 (99.6%)

Our read preprocessing is not yet completed. If we scan the file
produced by cutadapt, we might notice that some reads look odd.
For instance:

@SRR7707744.148898 148898 length=49

+

In this case, the procedure trimmed the entire read. This usu-
ally happens when the sequenced molecule is an adapter dimer or
some degraded RNA, rather than a bona fide miRNA. As no usable
information is present, we should drop the read altogether.

The -m option instructs cutadapt to discard all reads shorter
than a given length (we are going to choose 18 nucleotides in
our case).

To complete the trimming configuration, we should consider
one more signal: the base-calling quality, also known as the Phred
quality. For each base in a read the sequencing instrument provides
a score Q representing the probability of an erroneous call. Indeed,
Q is linked to the error probability P by the following equation:

Q ¼ �10 log 10 P ð1Þ
In a FASTQ file each quality value is compactly encoded by one

letter. Below you will find Phred scores in the last line, the one
following the “+” header.

@SRR7707744.1 1 length=49

GCGGGTGATGCGAACTGGAGTCTGAGC

+

AAAFF7<FJJJJJJJJJJJJFF<FJJJ

The character “A” corresponds to Q ¼ 32, or an error proba-
bility of P� 0.06%; “#”, on the other hand, would representsQ¼ 2
and P � 63%. Large error probabilities might reduce our trust in
the base reported by the instrument. Luckily cutadapt can trim
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low-quality bases from the 30 end of our reads when we provide (-q
option) a minimum acceptable score.

When we take all the steps above together, we obtain the
following command.

for run in $MIRNA_RUNS; do

cutadapt -a AGATCGGAAGAGCACACGTCT \

-m 18 \

-q 24 \

-o $run.trimmed.fastq \

$run.fastq

done

The diagnostic output informs us on the number of reads that
have been removed by the different filters we have configured.

Total reads processed: 13,848,958

Reads with adapters: 13,787,544 (99.6%)

Reads that were too short: 165 (0.0%)

Reads written (passing filters): 13,848,793 (100.0%)

Total basepairs processed: 678,598,942 bp

Quality-trimmed: 1,459,916 bp (0.2%)

Total written (filtered): 309,390,389 bp (45.6%)

3.3 Quality Control Before we proceed further, we should take some time to evaluate
the quality of the reads we have selected and transformed with
trimming. Specifically, we will consider two metrics:

– The posttrimming length of each read.

– The calling quality of remaining bases.

The FastQC [29] program computes both of those. The tool
can be used through an interactive graphical interface, but here we
call it from the command-line to generate one report for each
sample. To keep our files organized, we store all produced files in
a separate directory.

mkdir fastqc

for run in $MIRNA_RUNS; do

fastqc -o fastqc $run.trimmed.fastq

done

FastQC has now created one HTML report for each run. We
can open them in any web browser of our liking.
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The distribution of read lengths (Fig. 1) prominently displays
one peak. It appears in the 21–23 nucleotide range and directly
corresponds to processed miRNAs. A low abundance of reads in
that range would signal some problem in the sample preparation,
such as incorrect small RNA isolation, size selection of fragments or
degradation of the RNA.

We now turn our attention to base quality. cutadapt should
have discarded all low-quality bases, leaving only those with a high
Phred score. The plot of the distribution of such scores over the
length of each read (Fig. 2) should confirm that and provides an
internal consistency check for our preprocessing procedure.

The plot shows a reduction in base quality after position
27, but this should not be cause for alarm. We have seen that the
largest fraction of reads was trimmed before that position. The
observed quality reduction thus affects only a small minority of all
the sequences present in our dataset. Attentive readers might have
also noticed that the minimum Phred represented by the boxplots
is below Q ¼ 24, our selected cutoff.

This is not a cutadapt error: it depends on the details of the
trimming algorithm which you can find described in [30].

3.4 Alignment and

Quantification

As a preliminary step toward abundance quantification, we should
link each read to a putative RNA molecule of origin and match it
with the appropriate annotation. We obtain this correspondence by
sequence alignment, that is, comparing the content of each read
with a set of well-known reference sequences. Here we have two
possibilities: we can limit our search to small RNAs, for instance
those listed in domain-specific databases such as miRBase [31];
alternatively, we can rely on the entire genome sequence for our
species of interest. Clearly, considering only small RNAs reduces
computational costs: the search will be faster and will use less
memory. On the other hand, when we align reads against the entire
genome we gain the possibility of characterizing novel transcripts
that are not yet annotated, a clear advantage—for instance—for
nonmodel organisms. In this chapter, we are going to concentrate
on the latter strategy: among other advantages, it offers us a
uniform approach for processing both mRNA andmiRNA libraries.

We start by downloading both genome sequences and gene
annotations from the website of the GENCODE project [32].

curl -o genome.fa.gz \

’ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_33/GRCh38.primary_assembly.genome.fa.gz’

gzip -d genome.fa.gz
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curl -o genes.tf.z \

’ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_33/gencode.v33.annotation.gtf.gz’

gzip -d genes.gtf.gz

Both files are stored in a compressed format, as you can notice
by the “.gz” suffix. We invoke the gzip utility to extract the original
(uncompressed) content.

hisat2 [33] is a fast and sensitive alignment program for
mapping sequencing reads. We will use it first to process mRNA
libraries.

hisat2-build genome.fa genome

for run in $MRNA_RUNS; do

hisat2 -x genome -1 ${run}_1.fastq -2 ${run}_2.fastq |

samtools view -b -o $run.bam

done

The actual procedure consists of two phases. First (line 1) we
use the hisat2-build program to create the genome index, a data
structure representing the entire collection of reference sequences
in a form designed to make successive searches extremely fast. We
will exploit it for the analysis of mRNA and miRNA libraries;
indeed, the genome sequence is exactly the same for both.

Starting at line 3 we run hisat2 in a loop, once for each sample.
As messenger RNAs were sequenced with paired-end reads, we
provide to the software the two files generated for each library
(options “-1” and “-2”).

The hisat2 program outputs useful diagnostic information as it
progresses. In particular, it prints the alignment rates, that is, the
fraction of reads that it was able to map onto the genome. Here is
an example.

24,797,025 reads; of these:

24,797,025 (100.00%) were paired; of these:

3,138,374 (12.66%) aligned concordantly 0 times

20,441,936 (82.44%) aligned concordantly exactly 1 time

1,216,715 (4.91%) aligned concordantly >1 times ----

3,138,374 pairs aligned concordantly 0 times; of these:

577,274 (18.39%) aligned discordantly 1 time ----

2,561,100 pairs aligned 0 times concordantly or

discordantly; of these:

5,122,200 mates make up the pairs; of these:
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3,231,467 (63.09%) aligned 0 times

1,681,181 (32.82%) aligned exactly 1 time

209,552 (4.09%) aligned >1 times

93.48% overall alignment rate

The specific numbers are obviously going to change for each
library, but in general you should check that the fraction of “aligned
concordantly exactly 1 time” is above 60%. Smaller values may
indicate poor RNA quality or a wrong choice of reference
sequences.

Each of our alignments links a pair of reads to some genomic
coordinates, but this is not yet sufficient to attribute them to
specific genes or transcripts. featureCounts [34] performs this last
step of the expression quantification.

for run in $MRNA_RUNS; do

featureCounts -t exon -g gene_id -p \

-a genes.gtf -o $run.counts $run.bam

done

3.5 MicroRNA

Libraries

The estimation of the abundance of miRNAs follows a similar set of
steps. First, we run hisat2, taking care of providing as input the
trimmed reads. Since miRNA libraries are single-end, we use the
“-U” option.

for run in $MIRNA_RUNS; do hisat2 -x genome -U ${run}.

trimmed.fastq | samtools view -b -o $run.bam

done

miRBase maintains an up-to-date collection of all miRNA
annotations, which we fetch from the project website.

curl -o mirnas.gff \

’ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3’

gffread -T mirnas.gff -F |

grep MIMAT >mirnas.gtf

The command on line 3 is necessary because of a technical
reason: featureCounts requires a GTF input, while miRBase only
offers GFF3 files. The two formats are similar, yet not completely
interchangeable. We use the gffread utility [35] to perform the
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conversion (line 3), followed by grep (line 4) to keep only the
records for mature miRNA forms.

The actual quantification command is almost identical to the
one we used earlier for mRNAs.

for run in $MIRNA_RUNS; do

featureCounts -t transcript -g Name \

-a mirnas.gtf -o $run.counts $run.bam

done

3.6 Data

Normalization and

Differential Expression

From this point on, we will rely on the R programming environ-
ment [36] to complete the analysis. One possibility is to directly
run the code you will find below from the command line, invoking
the interpreter with the “R” command. If you would rather use a
graphical interface, we suggest you install RStudio which, among
other things, offers the possibility of preparing interactive note-
books to share your analyses and results with other researchers.

Either way, our first need is to load a few packages which will
simplify the following data manipulation and statistical testing.

library(tidyverse)

library(edgeR)

mrna_samples <- tribble(

~ run, ~disease,

"SRR7707733", "NPC",

"SRR7707734", "NPC",

"SRR7707735", "NPC",

"SRR7707736", "NPC",

"SRR7707737", "NPC",

"SRR7707738", "NPC",

"SRR7707739", "NPC",

"SRR7707740", "Control",

"SRR7707741", "Control",

"SRR7707742", "Control",

"SRR7707743", "Control

)

The samples in our study are subdivided into two groups:
control samples and nasopharyngeal carcinoma (NPC) samples.
We prepare a data.frame to appropriately subdivide them.
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To load gene abundances into R, we rely on a loop which
iteratively reads information about one sample at a time.

mrna_counts <- list()

for (run in mrna_samples$run) {

tbl <- read_tsv(paste0(run, ".counts"), skip = 1)

last_col <- tbl[[ncol(tbl)]]

last_col <- setNames(last_col, tbl[["Geneid"]])

mrna_counts[[run]] <- last_col

}

mrna_counts <- do.call(cbind, mrna_counts)

At line 1, we define an empty list. A for loop (line 2) repeats the
same procedure for each sample: we read the entire featureCounts
table (line 3); we select the last column only (abundance levels, line
4), which we label with the corresponding gene names (line 5); we
finally store the resulting abundance vector back into our list (line
6), under the sample name. The cbind function at line 8 converts
this list of vectors into a proper data.frame.

The gene abundances we have gathered cannot be readily used.
They are still affected by two main sources of technical variation:
sequencing depth and RNA composition. We refer the interested
reader to the edgeR [37] manual for a discussion of both
(Subheading 3.7, “Normalization”). Here we simply note that
they have an impact on the actual values we observe, yet they do
not correspond to any meaningful biological signal. Consequently,
we want to normalize the raw counts to reduce these undesired
effects.

dl <- DGEList(counts = mrna_counts, group = mrna_samples

$disease)

keep <- filterByExpr(dl)

dl <- dl[keep, , keep.lib.sizes=FALSE]

dl <- calcNormFactors(dl)

We create (line 1) an object of type DGEList, which edgeR will
use to track raw counts and sample-group associations. The filter-
ByExpr function implements a filter for dropping genes (lines 2–3)
whose abundance is so low to be insufficient for a reliable statistical
analysis. We finally apply (line 4) the trimmed mean of M-values
(TMM) normalization [38].

design <- model.matrix(~ mrna_samples$disease)

dl <- estimateDisp(dl, design)

fit <- glmQLFit(dl, design)

qlf <- glmQLFTest(fit, coef = 2)
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mrna_de <- topTags(qlf, n = Inf, p.value = 0.05)

To identify differentially expressed genes in the comparison
between the two sample groups, we build a model matrix from
sample metadata (line 1, code below); we estimate over-dispersion
and fit a quasi-likelihood (QL) negative binomial generalized
log-linear model to counts (lines 2–3); and finally we perform
genewise statistical tests (line 4). To complete the procedure, line
5 extracts the topmost differentially expressed genes, imposing a
significance cutoff on the p-value of 0.05.

The analysis of miRNAs is quite similar, so we list all the code
together.

mirna_samples <- tribble(

~ run, ~disease,

"SRR7707744", "NPC",

"SRR7707745", "NPC",

"SRR7707746", "NPC",

"SRR7707747", "NPC",

"SRR7707748", "NPC",

"SRR7707749", "NPC",

"SRR7707750", "NPC",

"SRR7707751", "Control",

"SRR7707752", "Control",

"SRR7707753", "Control",

"SRR7707754", "Control"

)

mirna_counts <- list()

for (run in mirna_samples$run) {

tbl <- read_tsv(paste0("mirna_count/", run, ".counts"),

skip = 1)

mirna_counts[[run]] <- setNames(tbl[[ncol(tbl)]], tbl

[["Geneid"]])

}

mirna_counts <- do.call(cbind, mirna_counts)

mirna_dge <- DGEList(counts = mirna_counts, group =

mirna_samples$ disease)

keep <- filterByExpr(mirna_dge)

mirna_dge <- mirna_dge[keep, , keep.lib.sizes=FALSE]

mirna_dge <- calcNormFactors(mirna_dge)

design <- model.matrix(~ mirna_samples$disease)

mirna_dge <- estimateDisp(mirna_dge, design)

fit <- glmQLFit(mirna_dge, design)

qlf <- glmQLFTest(fit, coef = 2)

mirna_top <- topTags(qlf, n = Inf, p.value = 0.05)
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3.7 Identification of

miRNA Target Genes

To retrieve miRNA–target relationships, we use the R package
multiMiR, which is a comprehensive collection of predicted and
validated miRNA–target interactions. This software simplifies the
search of validated target genes for specific miRNAs. By default, the
search is performed for human sequences.

Here we download a table with information about the targets
of a specific miRNA, including the type of experimental validation.
That can be further filtered, for example to select “Luciferase”
assays those providing the most accurate evidence about direct
interactions.

library(multiMiR)

mir200Lux <- get_multimir(mirna = ’hsa-miR-200c-3p’,

summary = TRUE) %>%

pluck("data") %>%

as_tibble() %>%

filter(grepl("Luciferase", experiment))

We can interrogate the software in the opposite direction just as
easily: starting from a gene, we retrieve all miRNAs that may
influence its expression.

mirnasOfZEB1 <- get_multimir( org = "hsa", target = "ZEB1",

table =

"predicted", summary = TRUE,

predicted.cutoff =

35, predicted.cutoff.type = "p",

predicted.site =

"all")

To inform the rest of our analysis, we collect into a single data.
frame all miRNA–target relationships predicted by the TargetScan
software.

mirna_top_names <- rownames(mirna_top)

mirnas_targets <- get_multimir(org = ’hsa’, mirna = mirna_-

top_names,

table = ’targetscan’, summary

= TRUE)

We found that the 53 differentially expressed miRNAs are
potentially able to target 2256 genes.

On this list we can do a gene set analysis with the objective of
understanding which cellular processes might be controlled by the
deregulated miRNAs.
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library(clusterProfiler)

targets_GOBP <- enrichGO(mirnas_targets@data[,"target_en-

sembl"],

OrgDb="org.Hs.eg.db", keyType =

"ENSEMBL", ont="BP",

pvalueCutoff = 0.001, qvalueCutoff

= 0.001, minGSSize = 100,

maxGSSize = 300)

emapplot(targets_GOBP, showCategory=15)

The output of the emapplot function is shown in Fig. 3.

3.8 Correlation

Analysis

The dataset we are working on includes matched libraries: that
means each sample was sequenced twice, once measuring long
RNAs and once for short RNAs. Having this information at our
disposal, we can exploit correlations in the expression patterns of
genes and miRNAs to identify authentic interactions.

We start by retrieving predictions related to expressed genes
and miRNAs.

mrna_exp <- rownames(mrna_counts_norm)

mirna_exp <- rownames(mirna_counts_norm)

transforming growth factor beta receptor signaling pathway

mesenchyme development

cardiac septum development
embryonic skeletal system development
cellular response to transforming growth factor beta stimulus

sex differentiation

regulation of transmembrane receptor protein serine
/threonine kinase signaling pathway

cold−induced thermogenesis

regulation of cold−induced thermogenesis

skeletal system morphogenesis

response to transforming growth factor beta

regulation of ossification

negative regulation of protein kinase activity

adaptive thermogenesis

temperature homeostasis

size
35

40

45

50

55

0.000150

0.000125

0.000100

0.000075

p.adjust

Fig. 3 GO analysis representation
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mirnas_targets <- get_multimir(org = "hsa",

mirna = mirna_exp, target = mrna_exp, table = targetscan",

summary=TRUE, predicted.cutoff.type="p",

predicted.cutoff = 10, use.tibble = TRUE)

predictions <- as.data.frame(

mirnas_targets@data[,c("mature_mirna_id","target_en-

sembl")]

)

colnames(predictions) <- c("mirna", "gene)

Many common statistical analyses to explore multidimensional
datasets work best if measurements are homoskedastic, that is, if all
samples display the same variance. This assumption is violated by
RNA-seq, though: the variance of read counts is expected to
increase with the mean. We can correct this with a transformation
of common usage: we compute the logarithm of the counts plus
1 (to avoid infinities). The resulting measures can then be used for
exploratory data analyses, such as clustering or principal compo-
nent analysis.

log_gene_counts <- log2(mrna_counts_norm+1)

log_mirna_counts <- log2(mirna_counts_norm+1)

We rely on the cor.test() function to compute the correlation
among gene and miRNA profiles.

corr_signif <- predictions %>%

filter(mirna %in% rownames(log_mirna_counts),

gene %in% rownames(log_gene_counts)) %>%

unique() %>%

pmap(function(mirna, gene) {

mirna_expr <- log_mirna_counts[mirna, ]

gene_expr <- log_gene_counts[gene, ]

res <- cor.test(mirna_expr, gene_expr, method = "pearson",

na.action = na.omit)

list(mirna = mirna, gene = gene, cor = res$estimate,

pvalue = res$p.value)

}) %>%

transpose() %>%

simplify_all() %>%

as_tibble() %>%

mutate(padj = p.adjust(pvalue, method="BH")) %>%

filter(abs(cor) >= 0.8, padj < 0.05) %>%

arrange(-abs(cor))
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The analysis found 47 miRNA–target pairs with correlated
expressions. The Pearson correlation coefficient is used to measure
the strength of a linear association between two variables, where the
value r ¼ 1 means a perfect positive correlation and the value
r ¼ �1 means a perfect negative correlation.

3.9 Pathway

Analysis

The effect of miRNAs on gene expression can be further elucidated
by considering their impact on well-known pathways.

Usually, miRNA and gene circuits are identified through the
combination of binding predictions and expression correlation.
The latter, however, are based on one-to-one relationships among
miRNAs and genes. They ignore the biological context of cell
signaling in which miRNAs and their targets are characterized by
many-to-many relationships and they should be considered as part
of a much more complex system of cellular interactions.

Pathway maps might help in this context to understand the
multiple miRNA relations, but in practice the number of annotated
miRNAs is small. That is why in the following command we shown
how to insert miRNAs into pathways to have a picture of the many-
to-many relationships occurring in cell circuits.

We will exploit graphite, another Bioconductor package
designed to retrieve pathway information. First, we need to choose
the pathway set of our interest. The pathwayDatabases() function
prints out the list of all available species and annotation databases.
In our case, we are going to select the KEGG pathways for Homo
sapiens.

library(graphite)

hsapienskegg <- pathways("hsapiens", "kegg")

pathwayDBensembl <- convertIdentifiers(hsapienskegg, "EN-

SEMBL")

In the last line, we convert all genes to ENSEMBL identifiers to
match the annotation of our dataset.

We are now going to extend KEGG pathways with miRNA–
target interactions, following the micrographite pipeline (Calura
et al, NAR 2014). Specifically, we will include two types of
miRNA–target interactions:

– Interactions validated with reporter assays.

– Interactions predicted in silico and filtered by correlation of
expression.

# Predicted interactions

predicted <- tibble(src_type = "MIR",
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src = corr_signif$mirna,

dest_type = "ENSEMBL",

dest = corr_signif$gene,

direction = "directed",

type = "MiR_predicted")

# Validated interactions

validated <- get_multimir(org = "hsa",

mirna = mirna_exp, target = mrna_exp, table =

"tarbase", summary = TRUE) %>%

pluck("data") %>%

as_tibble() %>%

filter(grepl("Reporter assay", experiment)) %>%

transmute(src_type = "MIR",

src = mature_mirna_id, dest_type = "ENSEMBL",

dest = target_ensembl, direction = "directed",

type = "MiR_validated")

mirna_interactions <- rbind(predicted, validated)
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Fig. 4 VEGF signaling pathway extended with miRNAs
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mirpath <- pathwayDBensembl$’VEGF signaling pathway’

newInteractionsPath <- mirna_interactions %>%

filter(dest %in% gsub("^(.*):", "", nodes(mirpath))) %>%

unique()

newPathwayWithMirs <- buildPathway(

pathwayId(mirpath),

pathwayTitle(mirpath),

pathwaySpecies(mirpath),

paste0(pathwayDatabase(mirpath), "-micrographite"),

proteinEdges = rbind(edges(mirpath), newInteraction-

sPath))

Once collected the miRNA–target interactions, we can enrich a
pathway wiring the miRNAs to the pathway genes, as follows:

If Cytoscape [39] is installed on your system, you can now
obtain a graphical representation of the network (see Fig. 4) with
one command:

cytoscapePlot(convertIdentifiers(mirpath, "symbol"))

Once we have the pathway enriched with miRNAs, we can
analyze it with many tools of pathway and network analyses.
Many of these tools were described in the Chapter dedicated to
pathway analyses. Additionally, among them, we can find an exten-
sion of the topological pathway analysis clipper - extensively pre-
sented in the chapter dedicated to pathway analysis—dedicated to
the study of miRNAs in pathway called micrographite [40]. Micro-
graphite is a pipeline to integrate pathway information with pre-
dicted and validated miRNA–target interactions and to perform
integrated topological analyses of miRNA and gene expression
profiles to identify miRNA–gene circuits. Micrographite is available
as set of R functions. Code and guidelines are available at http://
romualdi.bio.unipd.it/micrographite and a complete analysis
in [40].
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Chapter 13

In Silico Analysis of Micro-RNA Sequencing Data

Ernesto Aparicio-Puerta, Bastian Fromm, Michael Hackenberg,
and Marc K. Halushka

Abstract

High-throughput sequencing for micro-RNAs (miRNAs) to obtain expression estimates is a central
method of molecular biology. Surprisingly, there are a number of different approaches to converting
sequencing output into micro-RNA counts. Each has their own strengths and biases that impact on the
final data that can be obtained from a sequencing run. This chapter serves to make the reader aware of the
trade-offs one must consider in analyzing small RNA sequencing data. It then compares two methods,
miRge2.0 and the sRNAbench and the steps utilized to output data from their tools.

Key words Micro-RNA, Small RNA sequencing, Alignment, Bowtie, MirGeneDB, miRBase, isomiR

1 Introduction

A current area of interest in biological research is the relative
expression patterns of RNA species across tissues, cells, organisms,
and diseases. RNA expression levels can be characterized by using
one of two main sequencing methods. For mRNA and lncRNAs,
traditional full-length RNA sequencing (RNA-seq) is utilized.
Small RNA sequencing methods are used for micro-RNAs, tRNA
halves and fragments, snoRNAs, piRNAs, and other smaller species.
Among these smaller RNA species, micro-RNAs have historically
been the moiety of most interest, although there has been an
increasing interest of tRNA halves and fragments [1, 2].

Micro-RNAs are small regulatory RNAs (~22 bp) known to
cause mRNA repression and translational repression [3]. In this
role, micro-RNAs are tuners of protein expression whose expres-
sion levels change relative to embryologic development, cell matu-
ration, cell stressors, and diseases such as neoplasia [4, 5]. The three
main approaches to ascertaining micro-RNA levels in a sample are
hybridization arrays, small RNA-seq, and quantitative PCR
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(qPCR). While each method has its advantages and disadvantages,
this chapter will focus on the sequencing approaches to micro-
RNAs.

Two of the main advantages of small RNA-seq for micro-RNAs
are the ability to capture all micro-RNAs in a single assay and the
cost per micro-RNA with highly multiplexed approaches. We and
others have found that one million micro-RNA reads for a given
sample is sufficient sampling to confidently determine levels of all
functionally relevant micro-RNAs [6]. However the amount of
reads needed per sample can be much higher if micro-RNAs repre-
sent a smaller percentage of total reads, as seen in plasma or with
some library preparation kits. With current sequencing systems
offering 300 million or more reads per lane, significant multiplex-
ing can greatly reduce costs per sample. Some disadvantages of the
approach are a lack of agreed upon normalization approach and
methodologic biases (particularly ligation bias) impacting on spe-
cific micro-RNAs.

1.1 Unique Features

of Micro-RNAs

To properly identify micro-RNAs in sequencing data it is important
to understand some basic features of micro-RNAs. Most impor-
tantly, micro-RNAs are not a solitary sequence. Rather, due to
inexact cleavage events of DROSHA/DICER, 30 nucleotide addi-
tions, rare SNP sites, and rarer A-to-I editing changes, each micro-
RNA can be thought of as a family of reads, or isomiRs [7]. In fact,
the most abundant read of any given micro-RNA only averages 45%
of all reads assigned to that micro-RNA [8]. Even further, although
each micro-RNA has an official canonical sequence reported in a
micro-RNA repository (MirGeneDB 2.0 or miRBase release 22.1),
that sequence may or may not be the most abundant version of the
micro-RNA which can vary across cells and tissues [9, 10]. This
collection of isomiRs can be thought of as comprising these three
groups:

l Sequence variants: the read shows at least one variation com-
pared to the canonical sequence. The variation can be caused by
sequencing errors, SNPs, somatic mutations or RNA editing.

l Length variants: The read is longer or shorter that the canonical
sequence, but the extending nucleotides correspond to the
genomic template, that is, the pri-micro-RNA sequence.

l Nontemplated additions: Several nucleotidyl-transferases can
uridylate or adenylate RNA molecules. These changes normally
manifest through added nucleotides that do not match the
reference sequence and cause mismatches in the alignment.

As a result of this wide diversity, it is important to approach
micro-RNA sequence alignment in a thoughtful manner.
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1.2 Alignment

Options

and Considerations

for Micro-RNAs

A number of different alignment methods exist for the analysis,
discovery and profiling of micro-RNAs. Forty-seven are listed in
the useful website https://tools4mirs.org/ under “Sequencing
Data Analysis” [11]. Two of these, miRge and sRNAbench, will
be described in greater detail below. A number of other groups
forgo these alignment tools and create their own one-off methods
[12, 13].

A major decision point of alignment software is the library to
which the alignment will occur. Some (mostly older and one-off)
methods align to the species’ entire genome, typical for mRNA
methods. Other (mostly newer) methods align to RNA expression
libraries. Based on the diversity and complexity of isomiRs, an
approach that utilizes tight alignments with one to no mismatches
will reduce the number of reads being identified and assigned as
micro-RNAs. Allowing for more mismatches will capture more
isomiRs, but can increase the number of false positive alignments.
However, if aligning to the genome, the search space becomes so
large that these relatively short reads (~16–27 bp) are likely to align
to multiple locations unrelated to the true micro-RNA. Therefore,
we strongly support methods that align to specific RNA sequence
libraries and allow for the capture of isomiRs as we describe below.
Not only do different search strategies affect the number of micro-
RNAs detected, these differences can affect the isomiRs that can be
detected. Recent publications suggest that some isomiRs may be
functionally relevant [14] and a consortium, miRTOP, has devel-
oped a consensus method to report isomiRs consistently using a
GFF3 format [15].

Another point of comparison between micro-RNA and mRNA
alignment methods is the complexity of the read data. Despite the
large number of isomiRs seen for micro-RNAs, a few reads for each
micro-RNA tend to capture the majority of the isomiR signal.
Extrapolating this across all of the micro-RNAs present, a few
hundred to a few thousand reads might sum to >90% of all of the
sequenced reads needing to be aligned. This is due to the entire
micro-RNA being sequenced in each read. For mRNAs, where the
RNA is sheared, multiple different fragments exist for each gene
with noncomplementary start and end sites. Thus a few thousand of
the most abundant reads would not represent a large percentage of
all reads to be aligned. For micro-RNAs, alignment tools can take
advantage of this overlap by first combining all identical reads
before sending each read through an alignment step (Fig. 1). This
can be a considerable time saver for processing small RNA-seq
datasets.
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1.3 The Importance

of Reference Libraries

Although micro-RNAs have been among the most intensively
studied molecules of the past 25 years, determining what is and
what is not a micro-RNA has previously not been straightforward.
Today, however, based on the knowledge of their unique and very
restrictive biogenesis, canonical micro-RNAs are very well charac-
terized by a distinctive suite of features not seen in other types of
small RNAs [3, 16–18]. Regrettably, recognition and implementa-
tion of these clear and mechanistically well-understood features is
not common practice and, for years, a major concern in micro-RNA
research has been the quality of the central online repository miR-
Base [19, 20]. Estimates of 2/3 false-positive entries in miRBase
are, unfortunately, in line with other, independent, extreme over-
estimations of the human micro-RNA complement [21, 22]. Given
the aforementioned fundamental roles of micro-RNAs, especially in
diseases, it is imperative that bona fide micro-RNAs are clearly
distinguished from non-micro-RNAs and correctly identified,
annotated, and profiled using consistent criteria to avoid spurious
conclusions about diseases [23, 24].

For animals, including human, MirGeneDB represents a man-
ually curated alternative to miRBase [9, 10]. In its second version
more than 11,000 micro-RNAs of 45 metazoan organisms are
represented and a comparison of these micro-RNA complements
has not only confirmed a large number of false positive entries in
miRBase, but found also a surprisingly high number of missing

Fig. 1 The ability to sequence the entire miRNA read makes it advantageous to collapse identical reads
together before the alignment step. (a) Example of duplicate sequences being collapsed together. (b)
Integrated Genome Viewer (IGV) screen capture demonstrating how different isomiRs all align to the same
miRNA (miR-181a). The hypothetical numbers ranging from 2 to 60,888 demonstrate the vast disparity of read
counts of different isomiRs
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entries, an important problem for alignment-based profiling of
micro-RNAs - again highlighting the multiple issues there are
with a community and submission-based repository (Fig. 2).

We stress that many of the miRBase entries rejected as bona fide
micro-RNAs might still be functional small RNAs, such as tRNA,
snoRNA fragments and miRTrons, but are not part of the highly
conserved and efficiently shaped micro-RNAome. Typically, how-
ever, they are found at low endogenous levels representing tran-
scriptional noise rather than biological signal. Therefore, both
presented tools have the option to still use miRBase as a reference
for alignment, but we strongly recommend using MirGeneDB to
identify biologically functional micro-RNAs similar to other lead-
ing micro-RNA laboratories [3, 25–27].

2 Materials

2.1 Features

and Rationale

of the Micro-RNA

Aligner miRge

miRge and miRge 2.0 were designed for stand-alone use as ultrafast
aligners of FASTQ files in bulk [6, 28]. miRge 2.0, the current
version of the tool, inputs an unlimited number of FASTQ files
(machine RAM dependent) for consolidated workflow. A detailed
workflow is given below, but the general rationale of the tool is
described here. The first step removes 30 adapter sequences and
poor quality reads using Cutadapt v1.16 in preparation of align-
ment [29]. The second step collapses all of the identical reads
together for accelerated alignment through the Bowtie steps.
These initial steps are repeated for all of the submitted FASTQ
files before proceeding through the alignment.

Fig. 2 The overlap of micro-RNAs between miRBase v18 and MirGeneDB2.0
across all species
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The reduced search parameter size, after sequence collapse
allows for ultrafast alignments. miRge takes advantage of this by
performing multiple separate alignment steps. The first step is an
exact match to a modified micro-RNA sequence library using
Bowtie [30]. This library has two 50 nucleotide and six 30 nucleotide
genomic extensions of the mature micro-RNAs and SNPs included.
This will allow for all length variants (genomic match) to be cap-
tured in the first step. The library is crafted to use either the
MirGeneDB 2.0 or miRBase set of micro-RNAs. This step estab-
lishes sequence reads that match the definitive micro-RNA in the
small RNA library. These sequences are then removed from miRge
searches going forward. miRge then performs additional searches
against other RNA libraries (tRNA, mRNA, snoRNA, rRNA, etc.),
allowing a single mismatch. This step is used to capture sequences
that align to non-micro-RNAs. At this point, the remaining reads
consist of nontemplated isomiRs (with 30 extensions or internal
modifications) and nonalignable RNA reads (contamination, poor
sequencing, etc.). miRge takes a broad approach at this step to try
and capture as many isomiRs as possible from this remaining data
file by performing a final Bowtie alignment using loose search
parameters (skipping the first and last three nucleotides and allow-
ing up to 3 misaligned base pairs). After all of these steps, miRge
consolidates each of the searches into a unified set of reports.
Within the reports, a key step is the amalgamating of micro-RNA
results.

It is known that within an isomiR family of a given micro-RNA,
the majority of reads are templated (exactly match the genomic
sequence). The use of two alignment steps for micro-RNAs
(an exact match and a loose match) allows miRge to evaluate this
ratio for each micro-RNA. miRge takes advantage of this by reject-
ing micro-RNAs in which too high a percentage of the total reads
are nontemplated reads. The inability to control for this in other
methods results in problems. Micro-RNAs with sequences nearly
identical to repeat elements (e.g., miR-3168 shares high sequence
homology with a MIR SINE element) can be substantially over-
called using traditional alignment approaches that allow mis-
matches. To avoid this, some alignment methods take a very
conservative approach to alignment (e.g., no or one mismatch),
but this causes many nontemplated isomiRs to be skipped and
micro-RNAs to be underreported.

Another challenge of micro-RNAs is the near perfect matching
of micro-RNAs within the same family. For example, hsa-let-7a and
hsa-let-7c are identical except for an A/G variant at the 19th
nucleotide position. An isomiR of hsa-let-7c that ends at position
18 and has an A nucleotide added as a 30 extension will exactly
match an hsa-let-7a isomiR that is 19 nucleotides long. Therefore,
miRge has uniquely approached these highly similar micro-RNAs
(with identical seed sequences, but a nucleotide difference at
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positions 19 or higher) by combining their read counts in the final
reporting. This makes an assumption that the identical seed
sequences will result in overlapping functionality.

2.2 Features

and Rationale

of sRNAbench

sRNAbench is the successor program of miRanalzyer which was the
first web-server available for the analysis of micro-RNA high-
throughput sequencing data [31]. In 2011, the first stand-alone
version was released [32]. Although from the beginning, other
RNA species were analyzed as well, the initial focus was clearly on
the expression profiling of known micro-RNAs and the prediction
of novel micro-RNAs. Since then, new bioinformatics challenges
have arisen due to novel protocols, the apparent importance of
micro-RNA variants (isomiRs) or tRNA fragments. In 2014 miR-
analyzer was reimplemented from scratch to better correspond to
this new complexity in small RNA sequencing data renaming it to
sRNAbench. sRNAbench is now a part of sRNAtoolbox which
comprises several tools for RNA research [33, 34]. In order to
conduct a differential expression analysis, all samples need to be
first analyzed with sRNAbench, calculating differential expression in
a second step by means of sRNAde, the differential expression tool
that is also part of sRNAtoolbox.

sRNAbench was successfully used on metazoan and plant data
but also in other study designs like virus–host or parasite–host
interactions. It allows simultaneous analysis of an unlimited num-
ber of species, which is important if the genetic material in the
experiment can come from different sources like in the case of
virus infection. Nowadays, miRNA-seq data can be easily generated
by virtually all molecular biology labs. However, a trained bioinfor-
matician is not always available to analyze the data. Therefore,
sRNAtoolbox is available as a user-friendly web-server, virtual
machine, Docker, and stand-alone version. While the web-server
might be the choice of users with little or no bioinformatics back-
ground, the command line usage gives access to many parameters
and options not available in the web-server.

In theory, these tools are not limited to predefined species,
however, to allow for species that are not in miRBase/MirGeneDB,
a local database needs to be generated. To aid with this task we
developed several helper tools that are described in the manual.

2.3 Main Features

of sRNAtoolbox

l Profiling of miRBase, MirGeneDB, or Pmiren micro-RNAs or
any other source with a coherent nomenclature for precursor
and mature sequences.

l Detection and classification of micro-RNA variants (isomiRs).

l Prediction of novel micro-RNAs with models for animals and
plants.

l Differential expression using five different statistical methods.
Statistically significant differences can be explored also for
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isomiRs, or other properties like read length distributions or
RNA species content.

l Multimapping is addressed in two different ways: i) simple
adjustment of the read counts dividing it by the number of
mappings and ii) single assignment, that is, each read is only
assigned once to the loci with most overall mappings.

l Complete preprocessing including adapter trimming, quality
control and read collapsing. All major library processing proto-
cols (Illumina, NEBnext, NEXTflex, or Qiagen) can be used
including different UMI designs.

l Reads can be filtered out providing “filter libraries,” that is, if
ribosomal RNA should be filtered out before (when predicting
novel micro-RNAs for example).

l Spike-in sequences can be provided and additional, spike-in
normalized output files are provided.

l Guess-protocols: sRNAbench provides both, the automatic
detection of the used library preparation protocol and the
species.

2.4 Multiple Mapping

and Differential

Expression

in sRNAbench

In many micro-RNA studies, the ultimate goal is the detection of
differentially expressed sequences. Micro-RNAs are frequently
transcribed from several loci in the genome and the sequences of
different members of the same family are highly similar. As a conse-
quence, a read can map more than once to the genome or a given
reference library and a decision needs to be made on how to deal
with these multiple mapping reads. sRNAbench estimates read
counts (i.e., the number of reads assigned to a reference sequence)
in three different ways: (1) assigning the full read count to all loci,
(2) dividing the read count by the number of mappings (adjusted
read count) and (3) perform a single assignment (SA), that is, each
read is assigned only once, to the loci or reference sequence with
the highest number of assigned total read count. This is illustrated
in Fig. 3a and b. If a micro-RNA has more than one locus, it will
appear several times in the “mature_sense.grouped” output file. In
column 6, however, it can be determined to which loci or reference
sequence this mature micro-RNA belongs. When calculating dif-
ferential expression, the abundance of the mature sequence is con-
sidered and therefore a decision needs to be made on how a final
expression value is assigned to each mature micro-RNA. Figure 3c
shows the three strategies implemented into sRNAde: (1) summing
up the adjusted read counts (default method), (2) assigning the
expression of the loci with the highest RC, (3) performing a single
assignment, that is, assigning each read only once to the loci with
the overall highest read count over all samples. Finally, sRNAde
calculates the differential expression by means of four third-party
methods (DESeq, DESeq2, edgeR, and NoiSeq) and a Student’s t-
test using read-per-million (RPM) normalized values.
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Fig. 3 Example output of sRNABench. Output files (a) mature_sense.grouped and (b) mature_senseSA.
grouped list all loci with the same mature micro-RNA sequence. For example, hsa-miR-26a-5p originates
from two genomic loci and therefore it appears twice. The second column shows the full read count (each read
is fully assigned to all positions) and in the third column the read count is divided by the number of locations
that it maps to (multiple mapping adjusted). In the single assignment (SA) file no adjusted read counts exist as
each read is only assigned once (b). If the second and third column have the exact same value, this indicates
no multiple mapping reads are assigned to this micro-RNA (ex. 143-3p in row 1). (c) In the expression matrix,
each micro-RNA sequence appears once. This data is used by sRNAde. (d) The isomiR classification schema
and how some “special” cases are treated
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2.5 sRNAbench

isomiR Detection

and Classification

sRNAbench approaches the challenges of nontemplated additions
for isomiRs by using the Bowtie seed alignment option which
scores only the first L nucleotides (L ¼ 19 by default). In this
way, mismatches caused by nontemplated additions are not taken
into account for the reporting of an alignment. In general, a read
can fall into more than one category of isomiRs, that is, it can be
both, a length and sequence variant. By default, sRNAbench applies
a hierarchical classification assigning each read to only one group
(Fig. 3d).

3 Methods

3.1 miRge 2.0

Hardware

and Software

miRge 2.0 is best installed on a linux system with robust RAM and
CPUs. miRge 2.0 is installed via bioconda and detailed instructions
on installation are located at https://github.com/mhalushka/
miRge. A number of standard Python dependencies are needed as
well as the stand-alone programs Cutadapt (currently compatible to
v1.16) and Bowtie.

3.2 Running

miRge 2.0

miRge 2.0 is run at the command line. Two main uses for miRge
2.0 exist. The standard use of miRge 2.0 is to annotate a FASTQ
file for knownmicro-RNAs. The second use is to both annotate and
predict novel micro-RNAs from a FASTQ file.

For pure annotation, the simplest usage would be as follows:

$miRge2.0 annotate -pb [path_to_bowtie] -lib [path_to_align-

ment_libraries] -sp [species] -ad [adaptor_options] -s [se-

quence_file_name(s).fastq]

With actual information, that command line might look
like this:

$miRge2.0 annotate -pb /usr/local/bowtie-1.2.1/bowtie -lib /

home/libraries/miRge.Libs/ -sp human -ad illumina -s

SRR649562.fastq SRR649564.fastq

In this example, miRge2.0 will remove the standard Illumina
TruSeq Small RNA library adaptor and use the human miRge
libraries on two FASTQ files.

The full options available in miRge 2.0 for annotations are
available in Table 1.
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Table 1
Annotation mode options for miRge 2.0

-h, �-help show this help message and exit

-s [sample <required>
[sample <required> ...]]

Two options: 1. A file where each row
represents one sample name; 2. *.fastq *.
fastq ...

-o <dir> The directory of the outputs (default:
Current

-d <string required> The miRNA database (default: miRBase.
MirGeneDB is optional)

-pb <dir required> The path to the systems bowtie binary

-lib <dir required> The path to the miRge libraries

-sp <string required> The species can be human, mouse, fruit fly,
nematode, rat, and zebrafish (novel miRNA
detection is confined to human and mouse)

-ex <float> The threshold of the proportion of
canonical reads for the miRNAs to
determine whether keeping them or not when
counting. Users can set it between 0 and
0.5 (default: 0.1)

-ad <string> The adapterneed to be removed which could be
illumina, ion or a defined sequence
(default: none)

-phred64 phred64 format (default: 33)

-spikeIn Switch to annotate spike-ins if the bowtie
index files are located at the path of
bowties index files (default: off)

-tcf Switch to write trimmed and collapsed fasta
file (default: off)

-di Switch to calculate of isomirs entropy
(default: off)

-cpu <int> The number of processors to use for
trimming, qc, and alignment (default: 1)

-ai Switch to calculate of A to I editing
(default: off)

-gff Switch to output results in gff format
(default: off)

-trf Switch to analyze tRNA fragment (default:
off)

--version Show programs version number and exit
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At the completion of the run, miRge outputs five or more
reports, depending on the options chosen. An overall annotation
report in both html and csv styles shows the distribution of reads
across 14 categories including the total number of unique micro-
RNAs detected and the total number of micro-RNA reads. The
html version graphs the read length distribution and the percent of
micro-RNAs and other species relative to all other reads (Fig. 4).
Separate micro-RNA counts and RPM files report the abundance of
each micro-RNA type after the cleaning strategy described above.
Files of mapped or unmapped reads are given to allow a user to
identify the assignment (or lack of) for any given sequencing read.
Other optional reporting can give detailed information on tRNA
fragments utilizing a new clustering approach to this challenging
RNA species.

miRge 2.0 can also be used to predict novel micro-RNAs.
While essentially all bona fide micro-RNAs have been detected in
standard tissues of major species, there is a limited opportunity to
detect organ or cell specific micro-RNAs from poorly characterized
samples. To that end, miRge 2.0 has a robust, yet conservative
micro-RNA prediction algorithm based on key features of real
micro-RNAs.

For micro-RNA prediction and annotation, the simplest usage
would be as follows:

$mirge2.0 predict -pb [path_to_bowtie] -lib [path_to_alignmen-

t_libraries] -ps [path_to_SAM_tools] -pr [path_to_RNAfold] -sp

[species] -ad [adaptor_options] -s [sequence_file_name(s).

fastq]

With input information, this command line might look like:

$miRge2.0 predict -pb /usr/local/bowtie-1.2.1/bowtie -lib /

home/libraries/miRge.Libs/ -ps /usr/local/bin -pr /usr/local/

bin -sp human -ad ion -s SRR649562.fastq SRR649564.fastq

Fig. 4 miRge 2.0 annotation report showing the percent of different RNA species and the length distribution of
reads after adaptor trimming
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Running miRge2.0 in predict mode can replicate the steps of
the annotation mode, but greatly increases the time to process the
samples due to the lengthy analysis needed to identify novel micro-
RNAs. The full options available in miRge 2.0 for prediction mode
are available in Table 2.

Table 2
Predict mode options for miRge 2.0

-h, �-help show this help message and exit

-s [sample <required>
[sample <required> ...]]

Two options: 1. A file where each row
represents one sample name; 2. *.fastq *.
fastq ...

-o <dir> The directory of the outputs (default:
current

-d <string required> The miRNA database (default: miRBase.
MirGeneDB is optional)

-pb <dir required> The path to the systems bowtie binary

-lib <dir required> The path to the miRge libraries

-sp <string required> The species can be human, mouse, fruitfly,
nematode, rat and zebrafish (novel miRNA
detection is confined to human and mouse)

-ps <dir required> The path to the systems samtools binary

-pr <dir required> The path to the systems rnafold binary

-ex <float> The threshold of the proportion of
canonical reads for the miRNAs to
determine whether keeping them or not when
counting. Users can set it between 0 and
0.5 (default: 0.1)

-ad <string> The adapterneed to be removed which could be
illumina, ion or a defined sequence
(default: none)

-phred64 phred64 format (default: 33)

-spikeIn Switch to annotate spike-ins if the bowtie
index files are located at the path of
bowties index files (default: off)

-tcf Switch to write trimmed and collapsed fasta
file (default: off)

-di Switch to calculate of isomirs entropy
(default: off)

-cpu <int> The number of processors to use for
trimming, qc, and alignment (default: 1)

(continued)
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3.3 sRNAbench

Hardware

and Software

To run sRNAbench 8Gbs of RAM are recommended and paralle-
lization can be increased with more CPUs. sRNAbench is imple-
mented in Java as a stand-alone command line tool and installation
and user manuals, Docker images or change-logs can be accessed
through this link: https://bioinfo2.ugr.es/srnatoolbox/. A web-
server was also implemented as a solution to users with little or no
bioinformatics background or no access to computing resources.

Table 2
(continued)

-ai Switch to calculate of A to I editing
(default: off)

-gff Switch to output results in gff format
(default: off)

-trf Switch to analyze tRNA fragment (default:
off)

-ws <file> The file containing the overall samples to
analysis for novel miRNA prediction. No
header, just a list of *.fastq file names
in a column. Names of files can be to your
choosing (e.g., filestochecknovel.txt).

-minl <int> The minimum length of the retained reads for
novel miRNA detection (default: 16)

-maxl <int> The maximum length of the retained reads for
novel miRNA detection (default: 25)

-cc <int> The maximum read count of the retained reads
for novel miRNA detection (default: 2)

-ml <int> The maximum number of mapping loci for the
retained reads for novel miRNA detection
(default: 3)

-sl <int> The seed length when invoking Bowtie for
novel miRNA detection (default: 25)

-olc <int> The length of overlapped sequence when
joining reads into longer sequences based
on the coordinate on the genome for novel
miRNA detection (default: 14)

-clc <int> The maximum length of the clustered
sequences for novel miRNA detection
(default: 30)

--version Show programs version number and exit
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Although fewer analyses and parameters are available on the web, it
is user-friendly and relatively fast even when a large number of jobs
are submitted.

3.4 Using

sRNAbench

and sRNAde

By means of sRNAtoolbox webserver (currently hosted at https://
arn.ugr.es/srnatoolbox) users can run sRNAbench to profile one
or several (using batch mode) micro-RNA sequencing files
(Fig. 5a). Using the sidebar menu, one can navigate to the desired
sRNAbench flavor. Once inside sRNAbench webpage, input reads
can be provided as an uploaded FASTQ file, a link, or an SRA Run
accession ID. Then, one or several species can be selected to cus-
tomize sample analysis according to experimental design, as well as
genome or library mode. Finally users should provide protocol
information for preprocessing of the input reads (the five most
common micro-RNA-seq protocols are preloaded but any parame-
ter combination can be produced using custom options). Several
other parameters that deal with quality control and micro-RNA
prediction are also available but not required. Example data and
instructions can be found on the web.

After job(s) completion, a results page including different sec-
tions will be displayed. Sections include summaries, visualization
and detailed profiles information (Fig. 5b).

Frequently, different conditions are considered in experimental
designs to quantify differences among groups of samples. To assess
these differences, several algorithms have been proposed [35–
38]. Once sRNAbench jobs are completed users can easily pipe
their data into a differential expression tool (sRNAde) that will
run five different algorithms. To do so, one will input all sRNA-
bench jobIDs and assign them to a group following onscreen
instructions. The Results page includes quality control summary,
consensus and per method differential expression, variant analysis
and several figures including heatmaps [39] and UpSet plots [40]
(Fig. 5c).

As mentioned above, sRNAbench and sRNAde can also be run
as command line tools. These versions will surely be preferable for
users who can access computing clusters and have some scripting
skills. Example lines are available on the online manual https://
bioinfo2.ugr.es/srnatoolbox/manual/.

The simplest general line would look like this:

$sRNAbench input=[path_to_input] output=[path_to_output] pro-

tocol=[library_protocol] microRNA=[species_miRBase_short_-

name] minRC=2
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Fig. 5 (a) sRNAbench input form. Users can easily provide all necessary data to launch their job that will
automatically be queued in the system. (b) For all detected micro-RNAs, the alignment of the reads to the
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Using a specific SRA Run accession (SRR649562):

$sRNAbench input=SRR649562 output=output_folder protocol=Il-

lumina microRNA=hsa minRC=2

sRNAbench can also predict new micro-RNAs from
sequencing data:

$sRNAbench input=[path_to_input] output=[path_to_output] pro-

tocol=[library_protocol] species=[genome_assembly] predict=-

true alignType=v minReadLength=18 maxReadLength=26

Using the previous example run:

$sRNAbench input=SRR649562 output=output_folder protocol=Il-

lumina species= GRCh38_p10_mp predict=true alignType=v minRea-

dLength=18 maxReadLength=26

3.5 Running

Datasets Through

sRNAbench and miRge

Using MirGeneDB

and miRBase

To demonstrate the functionality of miRge and sRNAbench, we ran
two public samples (SRR649562 and SRR8393494) through both
methods and report their output. For both options we aligned to
both MirGeneDB and miRBase libraries. Table 3 reports the key
parameters from each method, and Fig. 6 shows pairwise correla-
tions across the methods. These results demonstrate how different
choices made by the aligners can result in some remarkably different
values including how many micro-RNAs were detected. However,
the output of these two tools are quite robust and ultimately the
micro-RNA RPM values are essentially the same across the
methods.

�

Fig. 5 (continued) precursor sequence can be visualized (top expressed hsa-miR-143 is shown). A clear stack
of reads corresponds to the mature sequences, that is, the canonical sequence and isomiRs. To the right of the
mature sequences, the total read count and the adjusted read count are given. The numbers between the
brackets correspond to the total RPM and library RPM of the read counts. In this example, the most frequent
mature sequence does not correspond to the canonical sequence (“exact” label at the right at the second most
frequent sequence) but to a monouridylated version of this sequence (nta#T#1). (c) A heatmap displaying
expression values of differentially expressed micro-RNAs produced using sRNAde online
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Chapter 14

RNA Editing Detection in HPC Infrastructures

Claudio Lo Giudice, Luigi Mansi, Tiziano Flati, Silvia Gioiosa,
Giovanni Chillemi, Pietro Libro, Tiziana Castrignanò, Graziano Pesole,
and Ernesto Picardi

Abstract

RNA editing by A-to-I deamination is a relevant co/posttranscriptional modification carried out by ADAR
enzymes. In humans, it has pivotal cellular effects and its deregulation has been linked to a variety of human
disorders including neurological and neurodegenerative diseases and cancer. Despite its biological rele-
vance, the detection of RNA editing variants in large transcriptome sequencing experiments (RNAseq) is
yet a challenging computational task. To drastically reduce computing times we have developed a novel
REDItools version able to identify A-to-I events in huge amount of RNAseq data employing High
Performance Computing (HPC) infrastructures.
Here we show how to use REDItools v2 in HPC systems.

Key words HPC, MPI, RNA editing, A-to-I editing, Deep sequencing, Bioinformatics, Genomics,
Transcriptomics, RNAseq, DNAseq

1 Introduction

RNA editing is a widespread posttranscriptional phenomenon that
alters primary RNA sequences through the insertion/deletion or
modification of specific nucleotides [1] and takes place in a variety
of organisms including prokaryotes [2], animals [3], plants [4], and
viruses [5].

RNA editing by base substitution mainly occurs in plant orga-
nelles and especially in mitochondria where specific cytidines
(C) are modified in uridines (U) by deamination. In humans, it
affects primary transcripts by A-to-I [6] and, to a lesser extent, C-
to-U modifications [7].

A-to-I conversion is carried out by members of adenosine
deaminases that acts on RNA (ADAR) family [8]. Such enzymes
perform the adenosine deamination in double-stranded (ds) RNAs
by means of dsRNA binding domains (dsRDBs) and a conserved
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C-terminal catalytic domain. To date, numerous A-to-I events have
been reported in both coding and noncoding transcript
regions [9].

Since inosine is commonly interpreted as guanosine by
translation and splicing machineries (other than sequencing
enzymes), A-to-I modifications can alter codon identity or base-
pairing interactions within higher-order RNA structures. As a
result, A-to-I RNA editing can increase the proteome diversity or
regulate gene expression at the RNA level. Moreover, editing
within pre-mRNAs can generate or destroy splice sites, modulate
alternative splicing and influence the dynamics of constitutive splice
sites.

The best studied editing events in coding RNAs are those
related to neurotransmitter receptors such as the glutamate recep-
tor subunit B (GluR-B) and the serotonin 2C receptor (5-HT2cR).
In GluR-B, two editing sites lead to amino-acid substitution with
functional consequences. Editing at R/G site regulates the desen-
sitization kinetics of the receptor, whereas the Q/R site regulates
the calcium permeability of the ion channel. R/G site editing
affects the nucleotide at position �2 of the 50 splice site of the
exon 13 and influences mutually exclusive flop and flip incorpora-
tion of exon 14 and exon 15, respectively.

Editing at human neurotransmitter receptors has serious phys-
iological implications. Indeed, its deregulation has been linked to
several nervous and neurodegenerative diseases such as epilepsy,
schizophrenia, depression, Alzheimer’s, and amyotrophic lateral
sclerosis. In addition, the functional importance of this mechanism
was established by showing that mice lacking ADARs die in utero or
soon after weaning [10]. Recently, editing alterations have also
been associated to a variety of human cancers. Under-editing at
GluR-B Q/R site, for instance, is implicated in malignant gliomas.
In addition, RNA editing events can also occur in mature micro-
RNAs and corresponding precursors influencing every step in the
miRNA pathway.

Current technologies for massive transcriptome sequencing
such as RNAseq (sequencing of entire transcriptomes) are
providing accurate maps of transcriptional dynamics occurring in
complex eukaryotic genomes as in humans.

The de novo detection of posttranscriptional RNA editing
modifications in RNAseq data is a challenging and computationally
intensive task. To this aim, a few years ago, we developed the
REDItools package. It has been written in the portable python
programming language and makes use of the Pysam module
(including methods and functions to handle read alignments in
SAM/BAM format), a wrapper of widely used SAMtools.
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To discover A-to-I changes, REDItools explore all genomic
positions supported by RNAseq reads, site by site, invoking the
“mpileup” function of the Pysam module. Since this function is
executed million times depending on the size of the input genomic
regions, it represents the main computational bottleneck.

To speed up the identification of RNA editing changes, REDI-
tools have been revised and optimized to run in HPC infrastruc-
tures. In particular, this novel REDItools release (v2) overcomes
the mpileup bottleneck, maintaining alignments in memory dyna-
mically, during the traversing of the genome. In this way, only a
small set of reads are kept in memory at a given time, avoiding the
loading of the same read multiple times. In addition, the new
implementation of REDItools is based on the MPI (Message Pass-
ing Interface) paradigm with a central MPI dispatcher which itera-
tively assigns subtasks (genomic intervals) to MPI slave processes,
waits for their completion, and finally collects the output into a
single tabular file. Optimal genomic intervals are calculated
through an ad hoc preprocessing step in order to reduce computa-
tional peaks.

REDItools v2 package is freely available at https://github.
com/BioinfoUNIBA/REDItools2.

Our tests indicate that this version is on average eight times
faster than the previous one on a single sample and the code shows a
very good scalability up to the tested 300 cores with multiple
samples (Fig. 1).

Hereafter, we describe a bioinformatics protocol to execute the
HPC version of REDItools v2 on a human RNAseq experiment.

Fig. 1 Relationship between the execution time (in minutes) and the number of cores
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2 Materials

REDItools v2 are implemented in Python and require Python 2.7
(see Note 1) as well as a few modules such as pysam, sortedcontai-
ners, mpi4py, psutil, and netifaces.

2.1 Hardware The software is compatible with any SLURM-based HPC infra-
structure running Linux or UNIX-based operating systems. We
recommend each computing node to be equipped with at least
128 GB of RAM for best performances. Several GBs of free disk
space are also recommended, according to the size of the samples to
be analyzed.

2.2 External

Packages

and Libraries

Some external packages and libraries are required before the instal-
lation of REDItools2:

– htslib (https://github.com/samtools/htslib/).

– SAMtools (https://github.com/samtools/samtools/).

– MPI (REDItools v2 has been tested with OpenMPI (https://
www.open-mpi.org/) but other MPI libraries can also be used,
such as Intel MPI).

– SRA Toolkit (https://github.com/ncbi/sra-tools).

– FASTP (https://github.com/OpenGene/fastp).

– STAR (https://github.com/alexdobin/STAR).

2.3 Installation

of REDItools v2

The latest version of REDItools v2 can be downloaded from
https://github.com/BioinfoUNIBA/REDItools2 and installed in
the following way:

$ git clone https://github.com/BioinfoUNIBA/REDItools2

$ cd reditools2.0

$ pip install -r requirements.txt --user

The third command is required because, in addition to the
external libraries listed in Subheading 2.2, REDItools v2 require a
few Python modules to be installed on the user’s machine (pysam,
sortedcontainers, mpi4py, etc.). By using the flag --user these
dependencies will be downloaded and installed only for the current
user (usually in its home directory); without the flag, the changes
will be at system level (this might require sudo rights).

The Reditools v2 repository also includes two scripts, pre-
pare_test.sh and serial_test.sh that can be used to run
functional tests of the package on a small dataset (chromosome
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21, hg19 assembly). First script, downloads both the fasta and the
index file of chromosome 21 into a test directory, while the second
script runs the software on the reads mapping on it.

2.4 Dataset REDItools2 accept prealigned RNAseq reads in the standard
Binary Alignment Map (BAM) format [11]. In our description we
will use an RNAseq dataset (11 GB) and DNAseq dataset (325 GB)
from NA12878 cell line that can be obtained from the ENA data-
base under the accession IDs SRR1258218 and ERR262997
respectively.

3 Methods

3.1 Input Data

and Quality Check

Download SRR1258218 RNAseq data by Fastq-dump:

$ fastq-dump --split-files SRR1258218

Check the data quality by FastQC (it calculates a set of quality
checks on raw sequence data that are useful for finding potential
problems or biases):

$ fastqc ../SRR1258218_1.fastq.gz ../SRR1258218_2.fastq.gz

Trim RNAseq data by FASTP:

$ fastp -i../SRR1258218_1.fastq.gz -I../SRR1258218_2.fastq.gz

-o

out_SRR1258218_1.fastq.gz -O out_SRR1258218_2.fastq.gz -q

25 -u 10 -l

50 -y -x -w 4

where -i [read1 input file name], -I [read1 input file name], �o
[read1 output file name], -O [read2 output file name], �q [INT]
base phred quality (e.g., 25), �u [INT] percentage of bases allowed
to be unqualified (e.g., 10, means 10%), �l [INT] minimum
length, reads below this threshold will be discarded (e.g., 50), �y
low complexity filter, the complexity is defined as the percentage of
a certain base that is different from its next base (base[i]!¼ base[i
+1]), �x enable polyX trimming in 30 ends and -w number of
working threads.

SeeNote 2 for further details about reads trimming and quality
check.
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3.2 RNAseq

Alignment

REDItools require aligned reads in the standard BAM format.
Although a plethora of mapping programs exist, we obtained

optimal and reproducible results [12] with STAR [13] (see Note 3
for basic installation of STAR under Linux/Unix systems).

Genome mapping of RNAseq reads is a crucial step because it
allows to infer the genomic origin of the reads (see Notes 4–6).
Other tools to perform the alignment of RNA reads onto the
reference genome could be used (e.g., GSNAP [14] or HISAT
[15]), even though the selected mapping software may affect the
RNA editing detection [16]. Additionally, input BAM files need be
coordinate-sorted and indexed. These operations can be performed
by SAMtools [11], in the following way:

$ samtools sort test/$INPUT_BAM_FILE > test/$INPUT_BAM_FILE_-

SORTED

$ samtools index test/$INPUT_BAM_FILE_SORTED

REDItools v2 also require the reference sequence of the human
genome. It can be downloaded, uncompressed, and indexed by
typing:

$ wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_hu-

man/release_30/GRCh37_mapping/GRCh37.primary_assembly.genome.

fa.gz

$ gunzip GRCh37.primary_assembly.genome.fa.gz

$ samtools faidx GRCh37.primary_assembly.genome.fa

See Note 7 for further details about the reference file.

3.3 Running

REDItools v2

in Serial Mode

REDItools v2 can be invoked in serial mode by the following
command:

$ python ./src/cineca/reditools.py -f $INPUT_BAM_FILE -r $REF

ERENCE -o $OUTPUT_FILE

If required, the analysis can be restricted only to a certain
region (e.g., only chr21) or a specific chromosomal interval (e.g.,
chr1:1000–2000), by means of the -g option:

$ mkdir Reditool_DNA_RNA_chr21

$ cd Reditool_DNA_RNA_chr21

$ python ./src/cineca/reditools.py -f $INPUT_BAM_FILE -r PATH/

TO/GRCh37.primary_assembly.genome.fa -o editing_chr21 -g chr21
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$ python ./src/cineca/reditools.py -f $INPUT_BAM_FILE -r PATH/

TO/GRCh37.primary_assembly.genome.fa -o editing_chr21_speci-

fic_region -g chr1:1000-2000

where -f is the input BAM file, �r is the reference in FASTA file,
�o is the output file, and -g is the genomic region to analyze in the
format chr:start-end.

For a complete list of all REDItools v2 options, their usage and
meaning, please refer to Table 1.

By using REDItools v2 in its basic mode, the user will benefit
only from the code optimizations introduced with REDItools v2.
While being significantly faster (about a 8x factor), such mode does
not take advantage of the possibility of splitting the computational
load among multiple CPU cores.

Table 1
List of REDItools2 parameters

Parameter Parameter Description

-h --help Show this help message and exit

-f --file The bam file to be analyzed

-o --output-file The output statistics file

-S --strict Activate strict mode: only sites with edits will be included in the output

-s --strand Strand: this can be 0 (unstranded), 1 (secondstrand oriented), or
2 (firststrand oriented)

-a --append-file Appends results to file (and creates if not existing)

-r --reference The reference FASTA file

-g --region The region of the bam file to be analyzed

-m --omopolymeric-
file

The file containing the omopolymeric positions

-c --create-
omopolymeric-
file

Whether to create the omopolymeric span

-os --omopolymeric-
span

The omopolymeric span

-sf --splicing-file The file containing the splicing sites positions

-ss --splicing-span The splicing span

-mrl --min-read-length The minimum read length. Reads whose length is below this value will
be discarded

-q --min-read-
quality

The minimum read quality. Reads whose mapping quality is below this
value will be discarded

(continued)
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Table 1
(continued)

Parameter Parameter Description

-bq --min-base-
quality

The minimum base quality. Bases whose quality is below this value will
not be included in the analysis

-mbp --min-base-
position

The minimum base position. Bases which reside in a previous position
(in the read) will not be included in the analysis

-Mbp --max-base-
position

The maximum base position. Bases which reside in a further position
(in the read) will not be included in the analysis

-l --min-column-
length

The minimum length of editing column (per position). Positions whose
columns have length below this value will not be included in the
analysis

-men --min-edits-per-
nucleotide

The minimum number of editing for events each nucleotide (per
position). Positions whose columns have bases with less than
min-edits-per-base edits will not be included in the analysis

-me --min-edits The minimum number of editing events (per position). Positions whose
columns have bases with less than “min-edits-per-base edits” will not
be included in the analysis

-Men --max-editing-
nucleotides

The maximum number of editing nucleotides, from 0 to 4 (per
position). Positions whose columns have more than “max-editing-
nucleotides” will not be included in the analysis

-d --debug REDItools is run in DEBUG mode

-T --strand-
confidence

Strand inference type 1:maxValue 2:useConfidence [1]; maxValue: the
most prominent strand count will be used; useConfidence: strand is
assigned if over a prefixed frequency confidence (-TV option)

-C --strand-
correction

Strand correction. Once the strand has been inferred, only bases
according to this strand will be selected

-Tv --strand-
confidence-
value

Strand confidence [0.70]

-V --verbose Verbose information in stderr

-H --remove-header Do not include header in output file

-N --dna Run REDItools 2.0 on DNA-Seq data

-B --bed_file Path of BED file containing target regions

Other parameter in parallel mode

-G --coverage-file The coverage file of the sample to analyze

-D --coverage-dir The coverage directory containing the coverage file of the sample to
analyze divided by chromosome

-t --temp-dir The temp directory where to store temporary data for this sample.

-Z --chromosome-
sizes

The file with the chromosome sizes
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3.4 Running

REDItools

in Parallel Mode

This modality exploits the existence of multiple cores (also on
multiple nodes) offered by High Performance Computing (HPC)
facilities. It differs from the previous one since it requires a little bit
more system setup, but the setting time is repaid in terms of faster
computational performances.

In the parallel mode, REDitools v2 include four additional
parameters:

-G is the coverage file of the sample to analyze.

-D is the coverage directory containing the coverage file of the
sample to analyze divided by chromosome.

-t is the temp directory where to store temporary data.

-Z is the file with the chromosome sizes.

In order to run REDItools v2 in parallel mode, the first step
consists in calculating the coverage data for all the samples by means
of the extract_coverage.sh script:

$ mkdir temp

$ mkdir coverage

$ cd coverage

$ mkdir genome_hg19

$ cd genome_hg19

$ wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_hu-

man/release_30/GRCh37_mapping/GRCh37.primary_assembly.genome.

fa.gz

$ gunzip GRCh37.primary_assembly.genome.fa.gz

$ samtools faidx GRCh37.primary_assembly.genome.fa

$ cd ../../

$ ./extract_coverage.sh $INPUT_BAM_FILE_SORTED \

coverage/genome_hg19/GRCh37.primary_assembly.genome.fa.fai

$ mpirun -np 2 src/cineca/parallel_reditools.py \

-f SRR1258218_Aligned.sortedByCoord.out.bam \

-r genome_hg19/GRCh37.primary_assembly.genome.fa \

-t temp/ \

-Z genome_hg19/GRCh37.primary_assembly.genome.fa.fai \

-G coverage/SRR1258218.cov -D coverage/

Finally, in order to obtain a unique output, run the. /merge,sh
script:

$. /merge.sh temp/ parallel_table.txt.gz 2
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3.5 Running

REDItools v2

in HPC Mode

The configuration required for running REDItools v2 in a HPC
environment is slightly more complicated. The script parallel_slurm.
sh contained in the GitHub repository provides a template which can
be filled to run REDItools v2 in a SLURM-based HPC environment.

The parallel script can be schematized in five subsections as
shown in Fig. 2:

1. Parameters settings (input BAM file, coverage dir, etc.).

2. Modules loading (e.g., module load samtools).

3. Coverage analysis (by executing the extract_coverage_dy-
namic.sh script).

Fig. 2 Scheme of the main five subsections of the script parallel_slurm.sh. The
blue arrow indicates the only subsection that should be configured by the user
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4. Parallel computation (by executing the parallel_reditools.py
script).

5. Merging (by executing the merge.sh script).

Before launching REDItools v2 in HPC mode, the user needs
to configure the “Parameter settings” subsection of script parallel_-
slurm.sh.

Below, we report its code as well as comments about the
meaning of required variables.

#########################################################

######## Parameters setting ########

#########################################################

##SAMPLE_ID is the basename of the input sample

SAMPLE_ID="SRR1258218"

##input BAM file

SOURCE_BAM_FILE="PATH/TO/SRR1258218.bam"

##reference chromosome or genome

REFERENCE ="PATH/TO/genome_hg19/GRCh37.pri-
mary_assembly.genome.fa
REFERENCE_DNA=$(basename "$REFERENCE")

##fasta index file created by samtools

SIZE_FILE="PATH/TO/genome_hg19/GRCh37.primary_assembly.gen-

ome.fa.fai"

##number of utilized cores

NUM_CORES=2

##set the output file and the temporary directory

OUTPUT_FILE="results/output/parallel_table.txt.gz"

TEMP_DIR="results/temp/"

##set the coverage file

COVERAGE_FILE="results/coverage/SRR1258218.cov"
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##set the coverage directory

COVERAGE_DIR="results/coverage/"

##set the output directory

OUTPUT_DIR=$(basename "$OUTPUT_FILE")

############################################################-

#################

.
Once all needed parameters have defined and saved, the parallel

script can be launched as a bash script in the HPC environment by
the following command:

$ sbatch. /parallel_slurm.sh

3.6 REDItools 2.0

in Combination

with Whole Genome

Sequencing (Optional)

REDItools v2 is able to handle RNAseq data alone or combine
RNAseq and mapped genomic reads from DNAseq experiments to
minimize the false discovery rate due to single nucleotide poly-
morphisms (SNPs).

In order to use DNAseq data with REDItools v2 two prelimi-
nary steps are required.

The first one consists in analyzing RNAseq data (e.g., file rna.
bam) and obtaining the corresponding output table (e.g., rna_ta-
ble.txt or gzipped rna_table.txt.gz) as previously described. The
second step, instead, requires the processing of prealigned genomic
reads (e.g., dna.bam) with REDItools v2, providing as input:

-the DNAseq BAM file (dna.bam) (e.g., option -f dna.bam);

See Note 8 for details about how to obtain the DNAseq BAM
file using BWA;

-the RNA-table output from the previous step (e.g., option -B

rna_table.txt);

Last step will produce an intermediate output table (e.g., dna_-
table.txt). Finally, annotate the RNAseq table by means of the
DNAseq table by running REDItools v2 annotator script with the
two tables as input (e.g. rna_table.txt and dna_table.txt).
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$ src/cineca/annotate_with_DNA.py -r $rna_table.txt -d $dna_-

table.txt -r $reference.fai [-Z]

where.

-r is the RNA-editing events table to be annotated.

-d is the RNA-editing events table as obtained from DNAseq data.

-R is the .fai file of the reference genome.

-Z is an optional flag to skip positions with multiple changes in
DNA-Seq.

The resulting table (e.g., final_table.txt), can therefore be used
for the downstream analyses.

3.7 Output REDItools v2 output a table comprises the following fields:

– Region: is the genomic region according to the reference
genome.

– Position: is the exact genomic coordinate (1-based).

– Reference: is the nucleotide base in the reference genome.

– Strand: is the strand info with notation 1 for + strand, 0 for �
strand and 2 for unknown or not defined strand.

– Coverage-qxx: is the depth per site at a given xx quality score.

– MeanQ: is the mean quality score per site.

– BaseCount[A,C,G,T]: is the base distribution per site in the
order A, C, G and T.

– AllSubs: is the list of observed substitutions at a given site,
separated by a space. A character “-” is included in case of
invariant sites.

– Frequency: is the observed frequency of substitution. In case of
multiple substitutions, it refers to the first in the AllSubs field.

– gCoverage-qxx: is the depth per site at a given xx quality score
in DNA-Seq.

– gMeanQ: is the mean quality score per site in DNA-Seq.

– gBaseCount[A,C,G,T]: is the base distribution per site in the
order A, C, G, and T.

– gAllSubs: is the list of observed substitutions at a given site,
separated by a space. A character “-” is included in case of
invariant sites.

– gFrequency: is the observed frequency of substitution. In case
of multiple substitutions, it refers to the first in the gAllSubs
field.

An example of output table is shown in Table 2.
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3.8 Downstream

Analyses

RNA editing candidates reported in REDItools tables can be fur-
ther analyzed using the ad hoc protocol described in [12] and
[16]. In addition, REDItools tables from different experimental
conditions can also be compared to detect differential RNA editing
using accessory scripts described in [12].

4 Notes

1. REDItools are designed to work with python versions 2.7 and
superior. You can check the python installation on your com-
puter as well as the release version using the command:

$ python –version

2. Quality check and trimming are strongly recommended, since
they increase the mapping rate and the alignment quality, two
factors that directly influence the yield and accuracy of the final
RNA editing results.

3. In order to install STAR on Unix/Linux systems check the
latest version from https://github.com/alexdobin/
STAR and execute the following commands:

$ wget https://github.com/alexdobin/STAR/archive/2.7.3a.tar.

gz

$ tar -xzf 2.7.3a.tar.gz

$ cd STAR-2.7.3a

Alternatively, STAR source can be obtained from its
GitHub repository by

$ git clone https://github.com/alexdobin/STAR.git

and compiled with

$ cd STAR/source

$ make STAR

4. A list of known annotated transcript can be obtained from
GENCODE website at http://www.gencodegenes.org/.

For the hg19 genome assembly, the annotation table can
be retrieved from ftp://ftp.ebi.ac.uk/pub/
databases/gencode/Gencode_human/release_19/
gencode.v19.annotation.gtf.gz.
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and uncompressed with

$ gunzip gencode.v19.annotation.gtf.gz

5. STAR indexes for human genome hg19 can be generated using
the command:

$ mkdir STAR_genome_index

$ STAR --runMode genomeGenerate --genomeDir STAR_genome_index

--genomeFastaFiles PATH/TO/genome_hg19/GRCh37.primary_assem-

bly.genome.fa

--sjdbGTFfile PATH/TO/gencode.v19.annotation.gtf

6. Align RNASeq reads to the reference genome with STAR:

$ mkdir Alignment

$ cd Alignment/

$ STAR --runThreadN 4 --genomeDir PATH/TO/STAR_genome_index --

outFileNamePrefix SRR1258218_ --outSAMtype BAM SortedByCoor-

dinate --outSAMattributes All --readFilesCommand zcat --read-

FilesIn PATH/TO/out_SRR1258218_1.fastq.gz PATH/TO/

out_SRR1258218_2.fastq.gz

7. Before launching REDItools script, check that chromosome/
region names in the reference file are the same contained in the
header of the input BAM file.

8. In order to obtain the DNAseq BAM file described in Sub-
heading 3.6, download NA12878 WGS reads:

$ mkdir WGS_ERR262997

$ cd WGS_ERR262997

$ fastq-dump --split-files ERR262997

Download and install BWA:

$ git clone https://github.com/lh3/bwa

$ cd bwa; make

Using BWA is not mandatory; other packages such as
BOWTIE [17], GSNAP [14] or SOAP2 [18] can perform
the same task with similar results.
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Build a reference genome index for BWA:

$ bwa index PATH/TO/genome_hg19/GRCh37.primary_assembly.gen-

ome.fa

The reference sequence to be indexed must be the same
downloaded in the Subheading 3.2.

Align NA12878 WGS reads to the reference genome with
BWA-MEM:

$ bwa mem -t 24 PATH/TO/genome_hg19/GRCh37.primary_assembly.

genome.fa -Y ERR262997_1.fastq ERR262997_2.fastq > ERR262997.

sam

where
-t [INT] is the “Number of threads” on the user’s

machine.
-Y indicates the “Use soft clipping for supplementary

alignments.”
By default, BWA-MEM uses soft clipping for the primary

alignment and hard clipping for supplementary alignments.
BWA outputs alignments in SAM format; thus, a supple-

mentary step by SAMtools is needed to convert them in a
sorted BAM file compatible with REDItools v2:

$ samtools view -b ERR262997.sam > ERR262997.bam

$ samtools index ERR262997.bam
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Chapter 15

Identification of Genes Post-Transcriptionally Regulated
from RNA-seq: The Case Study of Liver Hepatocellular
Carcinoma

Stefano de Pretis, Mattia Furlan, and Mattia Pelizzola

Abstract

The field of transcriptional regulation generally assumes that changes in transcripts levels reflect changes in
transcriptional status of the corresponding gene. While this assumption might hold true for a large
population of transcripts, a considerable and still unrecognized fraction of the variation might involve
other steps of the RNA lifecycle, that is the processing of the premature RNA, and degradation of the
mature RNA. Discrimination between these layers requires complementary experimental techniques, such
as RNAmetabolic labeling or block of transcription experiments. Nonetheless, the analysis of the premature
and mature RNA, derived from intronic and exonic read counts in RNA-seq data, allows distinguishing
between transcriptionally and post-transcriptionally regulated genes, although not recognizing the specific
step involved in the post-transcriptional response, that is processing, degradation, or a combination of the
two. We illustrate how the INSPEcT R/Bioconductor package could be used to infer post-transcriptional
regulation in TCGA RNA-seq samples for Hepatocellular Carcinoma.

Key words RNA-seq, Post-transcriptional regulation, Transcriptional regulation, Cancer, Hepatocel-
lular carcinoma

1 Introduction

High-throughput sequencing is nowadays considered the standard
routine for profiling RNA transcription processes. Generally, tran-
scripts abundance is regarded as a direct measurement of the tran-
scriptional activity of a gene, and changes in RNA levels among
different conditions are attributed to changes in the promoter
activity. In practice, RNA transcripts undergo a continuous process
of synthesis, processing, and decay that collectively determine the
levels of premature and mature RNAs. As a consequence, changes
in premature RNA occur due to a change in either the synthesis or
the processing rates, while changes in the mature RNA result from
the regulation of either synthesis or degradation rates [1]. While
assuming that changes in transcripts levels reflect changes in the
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transcriptional status might hold true for a large population of
transcripts, a considerable and still unrecognized fraction of the
variation might occur due different layers involved in the RNA
life cycle. In order to measure gene activity at this level of resolu-
tion, RNA-seq needs to be complemented with further experi-
ments, such the profiling of nascent RNA or block of
transcription assays, which directly measure the rates of synthesis
and degradation of RNAs, respectively. These techniques are con-
sidered technically difficult and substantially increase sequencing
costs. For these reasons, different methods have been devised to
increase the information obtained from standard RNA-seq experi-
ments by integrating the expression of mature transcripts with
premature, quantified through the RNA-seq signal associated to
introns. By introducing different assumptions or simplifications,
those techniques bring up the information of the life cycle of
RNAs within expression analysis. In particular, assuming that pro-
cessing rates are invariant among conditions, EISA-seq estimates
changes in the transcriptional activity of a gene from changes in
intronic expression and changes in the degradation rates as the
difference between the variation of the intronic and the exonic
parts [2]. Another tool, Rembrandts, modified this approach by
imposing a coupling factor between the variation in synthesis and
processing rates that reflects a hypothetical saturation of the splic-
ing machinery [3]. INSPEcT-, which was recently proposed by us
[4], identifies post-transcriptionally regulated genes without
imposing a-priori any limit to the variation of the processing
rates. At steady state, INSPEcT- relies on the fact that the ratio
between the mature and the premature RNA expression is indica-
tive of the ratio between the rates of processing and degradation
rates (post-transcriptional ratio, PT ratio), and that a change in
the rate of processing or degradation will result into a change of
the PT-ratio. Moreover, INSPEcT- increases the performance in
the identification of truly post-transcriptionally regulated genes by
modeling the dependence between the PT-ratio and the gene
expression in a dataset specific fashion. In this chapter we illustrate
how we applied this approach to TCGA RNA-seq samples relative
to Hepatocellular Carcinoma (HCC) dataset, in order to identify
genes whose post-transcriptional regulation might be involved in
the carcinogenesis process. Briefly, we downloaded RNA-seq cov-
erage information for 424 HCC samples and applied INSPEcT- to
quantify the intronic and exonic signals, to estimate sample specific
PT-ratio, and to identify post-transcriptionally regulated genes
between different samples. We observed that normal samples have
higher PT-ratios compared to primary tumor samples, reflecting
either a more efficient splicing in the normal tissues or an increased
degradation of the mature RNAs in the tumor samples.
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Additionally, we identified several post-transcriptionally regulated
genes that are able to stratify between normal and tumor samples
and possibly between different tumor subtypes.

2 Materials

2.1 RNA-Seq Dataset Intronic and exonic counts for 424 TCGA RNA-seq samples of
Hepatocellular Carcinoma (HCC) were derived from BigWig files
generated by the Recount project [5]. The Recount project offers
the reanalysis of human RNA-seq datasets available in SRA, GTEx,
and TCGA, ensuring that the same, traceable pipeline is used for all
the analyzed samples. The TCGA HCC dataset is composed by
50 normal, 371 primary tumors, and 3 recurrent tumors samples.
Mapped read counts per sample range from 50 to 300 million
reads, with first and third quartiles assessed at 107 and 140 million
reads, respectively. Reads were aligned to the human reference
genome GRCh38.

2.2 Computational

Hardware

The demanding part of the computational analysis concerns the
download of the TCGA BigWig files and the quantification of
intronic and exonic counts, which might take hours of computa-
tional time. The amount of data required to be downloaded from
the Recount servers amounts to ~50 GB, which is required to be
stored in the local disk. The time of download depends upon the
network resources and about 2 h with cable internet connection (see
Note 1). The quantification of intronic and exonic counts from the
424 BigWig takes about 4 h of computational time on a single
processor but could be speed up with parallelization. The require-
ments in terms of memory usage increase with the number of cores
used for the parallelization.

2.3 Computational

Software

The complete analysis is performed within the R/Bioconductor
environment. R (version � 4.0.0) should be downloaded from
the CRAN website (https://cran.r-project.org/) and installed on
the local machine. Bioconductor (version � 3.11) can be installed
from the R shell using the following commands:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install(version = "3.11")

For the sake of the analysis it is required to install specific
packages, such as ‘recount’ for the raw-data andmeta-data retrieval,
‘TxDb.Hsapiens.UCSC.hg38.knownGene’ for the genomic anno-
tation of the human genome, ‘INSPEcT’ for the quantification of
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the intronic and exonic gene features and the post-transcriptional
regulation analysis, and ‘pheatmap’ for results visualization.

BiocManager::install(c('recount','TxDb.Hsapiens.UCSC.hg38.knownGene',
'INSPEcT','pheatmap'))

For the survival analysis it is required to install the packages
‘survival’ and ‘survminer’.

BiocManager::install(c('survival','survminer'))

For regulatory factors enrichment analysis via the AURA data-
base [6], the package ‘org.Hs.eg.db’ is required for the conversion
of the gene names from Entrez ID to Gene Symbols.

BiocManager::install('org.Hs.eg.db')

3 Methods

3.1 Download

Metadata and Raw

Sequencing Data

Relative to TCGA

Samples

In order to download metadata and BigWig files relative to TCGA
samples, we take advantage of the R/Bioconductor package
“recount.” The Recount project reanalyzed several human
RNA-seq datasets, including the entire TCGA, using a standar-
dized pipeline. Results are readily available from their webserver
or from the associated R/Bioconductor package, in the form of
read counts or raw data. Read counts have been computed on
several features, namely, exons, junctions, transcripts, or genes.
For each study, associated metadata is also reported. For our pur-
pose, we also need the counts associated to introns. For this reason,
we start our analysis from raw dataset, which Recount made avail-
able in the form of BigWig files, containing RNA-seq reads cover-
age throughout the whole genome. The function
“download_study” from the recount package can be used to down-
load the desired data type from a specific project. In this case, the
argument “type” is set to “sample,” pointing to BigWig files, and
“project” is set to “TCGA.” We also set “download” to FALSE, in
order to retrieve only the URLs were the BigWig files are stored. In
this way, we are able to download only specific TCGA samples, and
not the whole TCGA RNA-seq raw dataset (~ 2 TB of data).

library(recount)
metadata <- all_metadata(subset = "tcga", verbose = TRUE)
samples_url <- download_study(project = 'TCGA', 

type = 'samples', 
download = FALSE)

We decided to focus on TCGA samples relative to a specific
tumor type, Liver Hepatocellular Carcinoma (HCC). Using the
metadata field named “cgc_file_disease_type”, we select the URLs
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relative to 424 Liver HCC samples and retrieve the relative TCGA
metadata.

hcc_samples <- which(metadata$cgc_file_disease_type ==
'Liver Hepatocellular Carcinoma')

hcc_urls <- samples_url[hcc_samples]
hcc_metadata <- metadata[hcc_samples,]

We then download the samples from the selected URLs using
the built-in R function “download.file”. First of all, we suggest
creating a local directory that will contain all the BigWig files.
Additionally, we create the BigWig destination file names using
the basename of the URLs to be downloaded.

dir.create('BigWigFiles', showWarnings = FALSE)
hcc_destfiles <- file.path('BigWigFiles', basename(hcc_urls))

In the case of liver HCC samples, the amount of data to be
downloaded amounts to about 50 GB. We suggest ensuring the a-
vailability of such space on the local disk before starting the down-
load. It is possible to download each file individually, or the entire
set in parallel. The latter case is fast but might originate errors in the
download of individual files with poor control over the samples that
failed. For this reason, we implemented a code that download
chunks of files and repeat the download of individual chunks in
case of error in the retrieval of at least one file. We suggest using a
chunk size of 10–50 samples. This procedure might take up to
1–2 h of time.

chunk_size <- 10
download_chunks <- ceiling(seq(hcc_urls)/chunk_size)
download_outcomes <- rep(1, max(download_chunks))
while( any(download_outcomes != 0) ) {

for( i in which(download_outcomes != 0) ) {
chunk_indexes <- which(download_chunks==i)
download_outcomes[i] <- download.file(hcc_urls[chunk_indexes], 

hcc_destfiles[chunk_indexes], 
quiet=TRUE)

}
}

3.2 Quantification

of Intronic and Exonic

Expressions from Raw

Sequencing Data

Once BigWig files are stored locally, the R/Bioconductor package
INSPEcT can be used to quantify read counts and expressions at
the level of exonic and intronic annotations via the routine “quan-
tifyExpressionsFromBWs” (see Note 2). The function requires a
genome-annotation database (in the form of a TxDb object), the
paths to the BigWig files, and the experimental design, that is a
vector that defines the samples belonging to the same experimental
condition. In this case we want to analyze each sample separately,
therefore the experimental design reflects the names of the samples.
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The TxDb object must be specific to the genome assembly used to
create the BigWig files, in this case “hg38” (see Note 3).

library(INSPEcT)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
sampleNames <- sub('.bw$','',basename(hcc_urls))
liverExprs <- quantifyExpressionsFromBWs(txdb = txdb,

BWfiles = hcc_destfiles, 
experimentalDesign = sampleNames)

saveRDS(liverExprs, file='liverExprs.rds')

This procedure takes about 4 h of computational time on
machine with a 2.6 GHz 6-Core Intel Core i7 processor. In order
to reduce the computational time, it is possible to parallelize the
procedure by providing the argument “BPPARAM” to the func-
tion “quantifyExpressionsFromBWs.” For example, to run the
procedure with two threads, the argument ‘BPPARAM’ must be
set to ‘MulticoreParam(2)’. The more threads are used, the higher
resources in terms of memory are consumed. In fact, each thread
loads the raw file relative to the sample under analysis, therefore
multiple threads reflect in multiple raw files loaded on the memory.

3.3 Analysis of the

Post-transcriptional

Ratio in Different

Sample Types

The package INSPEcT also provides specific routines to analyze the
post-transcriptional regulation patterns among the different sam-
ples. First of all, we use the “newINSPEcT” function to create an
object of class INSPEcT starting from the quantified intronic and
exonic expression of HCC samples. The routine checks the input
data for some basic requirements. In particular, genes without
intronic quantification are filtered out, because the intronic signal
is a requisite for the following analyses. Following this, genes that in
at least one condition had an intronic quantification greater than
the exonic one are discarded due to inconsistency of the data.
Lastly, lowly expressed gens with zero counts in more than 2/3 of
the samples are discarded. Noteworthily, the latter filter can be
suppressed by setting the “genesFilter” argument to FALSE,
while all other filters are performed automatically by the routine.

inspectLiver <- newINSPEcT(sampleNames, matureExpressions = liverExprs)

As a first analysis we investigate if the median ratio between
premature and mature RNA is varying among the HCC TCGA
samples. In RNA-seq experiments, the expression levels represent
the average of many (typically asynchronous) cells, which can be
collectively considered at steady state. In this condition, premature
RNA levels for individual genes correspond to the ratio between
their average rate of synthesis (i.e., rate of transcription) and their
average rate of processing. Analogously, mature RNA levels corre-
spond to the ratio between the average rate of transcription and the
average rate of degradation. As a consequence, the ratio between
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the mature and the premature RNA levels equals the ratio between
the processing and the degradation rates (i.e., post-transcriptional
ratio, or PT-ratio). Thus, a change in the ratio between mature and
premature RNAs reflects a change in the rates of either one or the
other process, which might have important physiological and clini-
cal implications.

pt_ratio <- PTratio(inspectLiver)

In the following analysis, we will stratify the results based on the
sample type. The TCGAHCC dataset includes 50 normal, 371 pri-
mary, and 3 recurrent tumors samples. We rearrange sample types
provided by the TCGA in a “factor” variable with levels sorted
according to their supposed temporal order, that is, normal, pri-
mary tumor, and recurrent tumor (see Note 4). This will facilitate
the following data visualization.

sample_type <- hcc_metadata$cgc_sample_sample_type
sample_type <- factor(sample_type, 

levels = c('Solid Tissue Normal', 
'Primary Tumor', 
'Recurrent Tumor'))

table(sample_type)

We calculate the median PT-ratio per each sample and group
them by sample type. The boxplot and the trend line evaluated on
the medians of the groups show a linear decrease of the PT-ratio
during the progression from normal to primary tumor, and later to
recurrent tumor (Fig. 1).

pt_ratio_median <- apply(pt_ratio, 2, median, na.rm=TRUE)
pt_ratio_median_per_type <- split(pt_ratio_median, sample_type)
names(pt_ratio_median_per_type) <-

gsub(' ', '\n', names(pt_ratio_median_per_type))
boxplot(pt_ratio_median_per_type, varwidth=T, notch=T, las=2,

ylab = 'post-transcriptional ratio', 
main='Sample medians, grouped by type')

abline(lm(sapply(pt_ratio_median_per_type, median) ~ seq(1,3)), col='red')

To assess a statistical difference among the groups, we compare
the distributions by means of the ‘Two-sample Wilcoxon test’. This
test does not assume the normality of the distributions and can be
correctly applied to our data. The following barplot shows that the
greatest statistical difference is given when normal and primary
tumor samples are compared (Fig. 2). Comparisons that involve
recurrent tumors have lower statistical power due to the limited

Post-Transcriptionally Regulated Genes from RNA-seq 277



S
ol

id
Ti

ss
ue

N
or

m
al

P
rim

ar
y

Tu
m

or

R
ec

ur
re

nt
Tu

m
or

50

100

150

200

250

300

350

Sample medians, grouped by type

p
os

t−
tr

an
sc

rip
tio

na
l r

at
io

Fig. 1 Boxplot representing the median PT-ratio by sample, grouped by the TCGA
sample type. The trend line, in red, is evaluated based on the group medians

N
or

m
al V
S

P
rim

ar
y

P
rim

ar
y

V
S

R
ec

ur
re

nt

N
or

m
al V
S

R
ec

ur
re

nt

Two−sample Wilcoxon test

lo
g1

0(
P

)

−5

−4

−3

−2

−1

0

Fig. 2 Results of the ‘Two-sample Wilcoxon test’ that compared the median
PT-ratio by sample grouped by sample type. The comparisons are named in the
x-axis of the barplot, which depicts log10 transformed p-value of the tests
results

278 Stefano de Pretis et al.



sample size (N ¼ 3).

barplot(log10(c(
'Normal\nVS\nPrimary' = wilcox.test(pt_ratio_median_per_type[[1]], 

pt_ratio_median_per_type[[2]])$p.value,
'Primary\nVS\nRecurrent'= wilcox.test(pt_ratio_median_per_type[[2]], 

pt_ratio_median_per_type[[3]])$p.value,
'Normal\nVS\nRecurrent' = wilcox.test(pt_ratio_median_per_type[[1]], 

pt_ratio_median_per_type[[3]])$p.value
)), ylab = 'log10(P)', main = 'Two-sample Wilcoxon test', las=2)

It is also possible to exploit the metadata provided by the
recount package in order to perform a survival analysis. In particu-
lar, we show that individuals with higher median PT-ratio have a
worst prognosis compared to individuals with lower median
PT-ratio (Fig. 3).

library(survival)
library(survminer)
hcc_survdata <- data.frame(
time = apply(cbind(hcc_metadata$xml_days_to_last_followup, 

hcc_metadata$xml_days_to_death), 1, sum, na.rm=T),
status = as.numeric(hcc_metadata$xml_vital_status),
high_pt_ratio = pt_ratio_median > 155

)
ggsurvplot(
fit = survfit(Surv(time, status) ~ high_pt_ratio, data = hcc_survdata), 
xlab = "Days", 
ylab = "Overall survival probability",
pval = TRUE)

3.4 Identification of

Post-Transcriptionally

Regulated Genes

The package INSPEcT is also able to identify individual genes that
strongly differ from a null model that is expected when the sole
change of the rate of transcription occurs. This task is performed by
the method “compareSteadyNoNascent,” which identifies the
expected trend as the linear model that better explains the relation-
ship between premature and mature RNA gene medians within the
dataset under analysis. Genes that deviate from this trend at gene
level, in specific samples are highlighted as post-transcriptionally
regulated. The inferred trend can be visualized using the method
“plotPMtrend” (Fig. 4). Alternatively, it is possible to impose the
trend (the slope of the model) between premature and mature
RNA with the argument “trivialAngle.” Other arguments define
the expression threshold that premature and mature RNA should
pass for the gene to be considered expressed (“expressionThres-
hold”), the log2 fold change threshold from the null model that a
gene should pass to be defined post-transcriptionally regulated
(“log2FCThreshold”), and the condition to be used as reference
(“referenceCondition”). The reference condition is used to define,
gene by gene, the intercept of the linear model. In case no reference
condition is defined, the median premature and mature RNA levels
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among samples is used.

inspectLiver <- compareSteadyNoNascent(inspectLiver, expressionThreshold =
.01)
plotPMtrend(inspectLiver)

The results of ‘compareSteadyNoNascent’, which can be
accessed through the “PTreg” method, consist of a matrix where
rows represent genes and columns represents conditions (in this
case the samples). 0 indicates that the gene in that condition is
expressed but not post-transcriptionally regulated, 1 indicates that
the gene is expressed and post-transcriptionally regulated, and NA
indicates that the gene has either premature or mature RNA below
the expression threshold. We briefly summarize the results of the
“compareSteadyNoNascent” method on the Liver HCC dataset by
determining the number of regulated genes per sample and the
number of regulated samples for gene (Fig. 5). This analysis
revealed that the vast majority of the samples have between 0 and
600 post-transcriptionally regulated genes, with the majority of
them lying below 200 regulated genes. Conversely, most of the
genes were found to be regulated in less than 20 samples.

pt_reg <- PTreg(inspectLiver)
reg_genes_per_sample <- colSums(1*pt_reg, na.rm=TRUE)
reg_samples_per_gene <- rowSums(1*pt_reg, na.rm=TRUE)
par(mfrow=c(1,2), mar=c(5,4,1,2))
hist(reg_genes_per_sample, breaks=50, 

xlab='Regulated genes per sample', main = '')
hist(reg_samples_per_gene, breaks=50, 

xlab='Regulated samples per gene', main = '')

As in the analysis of the post-transcriptional ratio, we observe a
trend between the number of post-transcriptionally regulated
genes and the sample type (Fig. 6). In this case, the trend is positive,
meaning that the number of post-transcriptionally regulated genes
increases with the progression of the disease.

reg_genes_per_type <- split(reg_genes_per_sample, sample_type)
names(reg_genes_per_type) <- gsub(' ', '\n', names(reg_genes_per_type))
reg_genes_per_type_lm <- lm(sapply(reg_genes_per_type, median) ~ seq(1,3))
boxplot(reg_genes_per_type, varwidth=T, notch=T, outline=FALSE, las=2,

ylab = 'regulated genes per sample', 
main='Grouped by sample type')

abline(reg_genes_per_type_lm, col='red')

In order to visualize the results of the analysis in a more
comprehensive way, we use the heatmap functionality as implemen-
ted by the package “pheatmap”. The matrix that is output by the
“compareSteadyNoNascent” method is clustered on both rows and
columns in order to facilitate the visualization. The original matrix
is composed by 0, 1, and NAs. The presence of missing values
might impair the estimation of the similarity among genes and

Post-Transcriptionally Regulated Genes from RNA-seq 281



samples; therefore, we transform the NAs to 0, the 0 to 1 and
1 to 2. Following this, nonexpressed genes are represented
by 0 (color coded in blue), expressed and not differentially
post-transcriptionally regulated by 1 (yellow), and expressed and
differentially post-transcriptionally regulated by 2 (red).

pt_reg_heat <- 1*pt_reg + 1
pt_reg_heat[is.na(pt_reg_heat)] <- 0

We complement the columns of the post-transcriptional regu-
lation matrix with selected metadata. For reasons of simplicity, we
plot only the information relative to the subset of genes that carried
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Fig. 5 Histograms representing the number of regulated genes per sample and the number of regulated
samples per gene, as estimated by the method “compareSteadyNoNascent”
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the greatest information in terms of post-transcriptional regulation,
that is, those genes found to be regulated in at least 20 samples.
Additionally, we use the k-means clustering to identify groups
among genes and samples that share similar post-transcriptional
patterns (Fig. 7).

library(pheatmap)
annotation_col <- data.frame(
sample_type = sample_type,
tumor_stage = sub('[a-c]$',
'',hcc_metadata$gdc_cases.diagnoses.tumor_stage),
gender = hcc_metadata$gdc_cases.demographic.gender,
race = hcc_metadata$gdc_cases.demographic.race,
row.names = colnames(pt_reg)

)
ann_colors <- list(
tumor_stage = c('not reported'='grey', 'stage i'='lightgoldenrod', 

'stage ii'='orange', 'stage iii'='violet', 
'stage iv'='purple'),

race = c('american indian or alaska native'='brown', 
'asian'='lightgoldenrod',
'black or african american'='black', 
'not reported'='grey', 'white'='lightpink'),

gender = c('female'='lightpink', 'male'='lightskyblue'),
sample_type = c('Solid Tissue Normal'='orange', 'Primary Tumor'='violet', 

'Recurrent Tumor'='purple')
)
pt_reg_heat_subset <- pt_reg_heat[reg_samples_per_gene>=20,]
set.seed(0)
row_clustering <- kmeans(pt_reg_heat_subset, 22, 

iter.max = 100, nstart = 10)
columns_clustering <- kmeans(t(pt_reg_heat_subset), 6, 

iter.max = 100, nstart = 10)
pheatmap(pt_reg_heat_subset[order(row_clustering$cluster),

order(columns_clustering$cluster)], 
cluster_cols = FALSE, cluster_rows = FALSE,
gaps_row = which(diff(sort(row_clustering$cluster))==1), 
gaps_col = which(diff(sort(columns_clustering$cluster))==1), 
show_rownames = FALSE, show_colnames = FALSE,
annotation_col = annotation_col, annotation_colors = ann_colors

)

Noteworthily, the first cluster among the columns is able to
collect almost all the normal samples. Other clusters, which are
composed mostly by primary tumors samples, show very different
sets of post-transcriptionally regulated genes. In order to better
dissect the information contained among clustered rows, it is pos-
sible to search for specific enrichments among genes that clustered
together. For instance, the AURA database [6] collects cis- and
trans- elements experimentally associated to the 50 and 3’ UTRs of
individual genes. It is possible to query the database online (aura.
science.unitn.it) and use the batch mode to find the enrichments of
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Fig. 7 Heatmap representing post-transcriptionally regulated genes, as identified by INSPEcT. Blue dots are
genes expressed below the threshold set during the analysis, yellow dots are expressed genes with no
evidence of post-transcriptional regulation, and red dots are post-transcriptionally regulated genes. Rows,
representing genes, are clustered using k-means with 22 centers. Columns, representing samples, are
clustered using k-means with six centers. Race, gender, tumor stage, and sample type are extracted from
TCGA metadada and reported as color-bars on the top of the heatmap
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regulatory elements. Alternatively, it is possible to download a light
version of the AURA database and perform the enrichment tests
locally. As an example, we show the code to download the database
and perform the enrichment analysis on the trans-factors that
bind on the genes of cluster n. 17, which shows high levels of
post-transcriptional regulation. The results of this analysis highlight
statistical enrichment for more than 60 trans-factors, after correc-
tion of the p-values with the Benjamini–Hochberg procedure and
using 0.05 as a threshold. Among the most enriched trans-factors it
is possible to find AKAP8L, DROSHA, FTO, MTPAP, NKRF,
RPS11, and TBRG4.

## download the AURA database
download.file(
url = 'http://aura.science.unitn.it/site_media/download/AURAlight.tar.gz', 
destfile = 'AURAlight.tar.gz')

untar('AURAlight.tar.gz', exdir = 'AURAlight')
aura_trans_factors <-

read.table('AURAlight/AURAlight_trans-factors.txt', 
sep='\t', header=TRUE, stringsAsFactors = FALSE)

## add the entrez id column
library(org.Hs.eg.db)
aura_trans_factors$ENTREZID <-

mapIds(org.Hs.eg.db, keys = aura_trans_factors$Target.Gene, 
column = 'ENTREZID', keytype = 'SYMBOL')

aura_trans_factors_eid <-
aura_trans_factors[!is.na(aura_trans_factors$ENTREZID),]

## split regulator factors by entrez id
class_aura_trans <- split(aura_trans_factors_eid$Regulatory.factor, 

aura_trans_factors_eid$ENTREZID)
class_aura_trans_unique <- lapply(class_aura_trans, unique)
## enrichment analysis for cluster 17
cluster_number <- 17
cluster_members <- names(which(row_clustering$cluster == cluster_number))
regulators_all_genes <- factor(unlist(class_aura_trans_unique))
regulators_cluster_members <-

factor(unlist(class_aura_trans_unique[cluster_members]), 
levels = levels(regulators_all_genes))

regulators_table <- cbind(table(regulators_all_genes), 
table(regulators_cluster_members))

transcript_number <- 29345
background_model <- c(transcript_number, length(cluster_members_symbols))
fisher_test_pvalues <- sapply(which(regulators_table[,2]>0), function(i) 

fisher.test(unname(rbind(background_model-regulators_table[i,], 
regulators_table[i,])), 

alternative = 'greater')$p.value)
fisher_test_padjusted <- p.adjust(fisher_test_pvalues, method='BH')
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4 Notes

1. The analysis presented here may potentially run within SciSer-
ver (www.sciserver.org). SciServer provides access both to the
counts and BigWig files of the Recount project, and the
computational tools to analyze them, that is an RStudio envi-
ronment preloaded with the recount package. As a conse-
quence, the steps and computational time spent to download
the raw expression data could be skipped. Nevertheless, at the
time of this writing, Sciserver runs R-3.5.1, while the R/Bio-
conductor package INSPEcT requires R � 4.0.0. As soon as
the Recount compute image within SciServer will be updated
to a newer version of R, the pipeline described in the Methods
part of this chapter could be run within SciServer with small
adaptations.

2. In case the raw data of the dataset under analysis are provided in
the form of BAM files, the “INSPEcT” package implemented a
function that is analogous to “quantifyExpressionsFromBWs”
and specifically treats BAM files. The name of the routine is
“quantifyExpressionsFromBAMs.”

3. At the time of writing of this script, the only precompiled
annotation available within R/Bioconductor relative to hg38
is the UCSC annotation (i.e., the package ‘TxDb.Hsapiens.
UCSC.hg38.knownGene’). This annotation contains the
information about 25,221 genes, most of them are protein-
coding. Noteworthily, TxDb objects relative to different anno-
tations can be created via the “GenomicFeatures” package. In
particular, the more comprehensive Ensembl annotation can be
generated using the function “makeTxDbFromEnsembl.”
More generally, any user-defined annotation can be created
starting from a GFF/GTF file using the function “makeTxDb-
FromGFF.” Here we report the code to generate the Ensembl
annotation relative to hg38 genome; in particular, we generate
the annotation relative to version number 98, which was
released in September 2019 and contains the annotation of
670946 genes. In order to make the function “makeTxDbFro-
mEnsembl” working properly, the R/CRAN package ‘RMar-
iaDB’ and a mysql client must be installed on the local machine.

BiocManager::install('RMariaDB')
library(GenomicFeatures)
txdbEnsemblGRCh38 <- makeTxDbFromEnsembl(organism="Homo sapiens", release=98)

4. In case other TCGA datasets are analyzed, they may contain
different sample types, such as “metastatic” or additional
terms. In that case the levels should be redefined accordingly.
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Chapter 16

Computational Analysis of Single-Cell RNA-Seq Data

Luca Alessandrı̀, Francesca Cordero, Marco Beccuti, Maddalena Arigoni,
and Raffaele A. Calogero

Abstract

Single-cell RNAseq data can be generated using various technologies, spanning from isolation of cells by
FACS sorting or droplet sequencing, to the use of frozen tissue sections retaining spatial information of
cells in their morphological context. The analysis of single cell RNAseq data is mainly focused on the
identification of cell subpopulations characterized by specific gene markers that can be used to purify the
population of interest for further biological studies. This chapter describes the steps required for dataset
clustering and markers detection using a droplet dataset and a spatial transcriptomics dataset.

Key words Single cell RNA sequencing, Droplet, Spatial transcriptomics, Clustering, Cell markers,
Bioinformatics

1 Introduction

Single-cell sequencing [1] is becoming a very powerful instrument
to understand the heterogeneity of cells populations. Nowadays,
single-cell data can be generated using a variety of technologies
[1]. Full-transcript single-cell sequencing (i.e., each cell is isolated
from a pool using FACS sorting [2] or specific microfluidic devices
[3], and sequence is done using a RNAseq highly sensitive library
preparation method, providing full-length transcript coverage [4]),
although being the most sensitive available method, is rarely used
today, because of its limited throughput. Instead, majority of single
cell sequencing is done by droplet-based RNAseq 30 end sequenc-
ing methods [5, 6], which are available as commercial solutions
(Biorad, 10XGenomics, 1Cellbio, BD). Recently, it also became
possible to obtain single-cell sequencing data from frozen tissues,
without the need of dissociating the cells, using a technology called
spatial transcriptomics [7], commercialized by 10XGenomics. Sin-
gle cell sequencing technology delivers data made by extremely
large and sparse matrices, that is, from thousands to hundreds of
thousands of features with less than 3% of entries which are
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non-zero. Aggregating cells on the basis of transcriptomics repre-
sents one of the challenges of single cell data analysis. In this
context a mandatory aspect is the availability of dedicated bioinfor-
matics workflows. To the best of our knowledge, there are only few
computational workflows providing analysis flexibility and achiev-
ing at the same time functional and computational reproducibility
[8] from counts generation to cell subpopulation identification.
Among these tools, we developed rCASC [8], a modular workflow
providing integrated analysis environment for single cell data. All
the computational tools in rCASC are embedded in docker images
stored in a public repository on docker hub. Parameters are deliv-
ered to docker containers via a set of R functions, part of rCASC R
github package (https://github.com/kendomaniac/rCASC).
rCASC is specifically designed to provide an integrated analysis
environment for cell subpopulation discovery. rCASC allows the
direct analysis of fastq files, generated with 10XGenomics, inDrop,
and BD Rhapsody platforms, or counts tables. rCASC provides raw
data preprocessing, subpopulation discovery via different clustering
approaches and cluster-specific gene-signature detection. In this
chapter, we will describe a basic workflow suitable for the analysis
of droplet and spatial transcriptomics datasets. Exemplary data and
the analysis steps for their analysis are available in a dedicated github
repository called droplet-spatial (https://github.com/
kendomaniac/droplet-spatial).

The workflow described in this chapter is summarized in Fig. 1.
It is important to note that any analysis workflow needs to be

adapted to the dataset under analysis. However, some basic steps
are generally applicable and represent a starting point for an explor-
atory analysis (Fig. 1): (1) conversion of fastq files in a counts table;
(2) inspection of the cells sequencing data characteristics;
(3) removal of mitochondrial/ribosomal protein genes and cells
with little information content, that is, few detectable genes;
(4) selection of a user defined number of the most variant and
most expressed genes; (5) selection of the most effective clustering
procedure; (6) detecting cluster-specific marker genes.

2 Materials

2.1 Exemplary

Datasets

The exemplary dataset, from droplet-based technology (10XGe-
nomics), available in droplet-spatial github, was generated using
the sequencing data from FACS sorted cell types, published by
Zheng [9]. This dataset, called SetA, was also used as exemplary
dataset in rCASC paper [8]. The counts table is made of a total of
500 cells, including 100 cells randomly selected from each of the
following cell types: B-cells (B), Monocytes (M), Hematopoie-
tic Stem cells (SC), Natural Killer cells (NK), and Naive
T-cells (NT).
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The exemplary dataset for spatial transcriptomics is the human
lymph node dataset available at 10XGenomics data repository. The
count table is available at droplet-spatial github with the name
limphoST.

An exemplary fastq dataset, SChs1m, for 10XGenomics tech-
nology, is available in the droplet-spatial github. This dataset con-
tains one million reads and was generated only to learn how to use
the fastq to counts conversion software implemented in rCASC
tool. This dataset is from human and requires the 10Xgenomics
human reference genome (https://support.10xgenomics.com/sin
gle-cell-gene-expression/software/downloads/latest).

A dataset for Spatial Transcriptomics technology, is available at
10XGenomics data repository (https://support.10xgenomics.
com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Kid
ney). This dataset is from mouse and requires mouse spatial tran-
scriptomics reference genome (https://support.10xgenomics.
com/spatial-gene-expression/software/downloads/latest).

2.2 Computational

Hardware

The computing hardware requirements depends on the number of
cells under analysis and on the clustering tool. Up to 4000 cells can
be analyzed in few hours with a computer equipped with at least an
i7 intel CPU (3.5 GHz, 8 threads), 32 GB RAM, and 1 TB SSD.

Fig. 1 Exploratory data analysis workflow for single cell RNAseq
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2.3 Computational

Software

The described workflow requires a UNIX or a MacOS operating
system, the installation of docker daemon (https://docs.docker.
com/install/) and the installation of R (https://cran.r-project.
org/) version>3.00. Furthermore, the installation in R of devtools

install.packages("devtools")

and rCASC

library(devtools)
install_github("kendomaniac/rCASC", ref="master")

is also needed. In case rCASC is used via graphical interface,
Oracle JAVA, at least version 8 has to be installed (https://www.
oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html) and 4SeqGUI (https://github.com/
mbeccuti/4SeqGUI) needs to be downloaded on the local
computer.

3 Methods

3.1 From Fastq

to Count Table

The demultiplexing of single cell data produce three files with the
following extensions: I1_XXX.fastq.gz, R1_XXX.fastq.gz ad
R2_XXX.fastq.gz, where XXX is a progressive number, identical
for all three files; for example, 001. I1 is the sample index present
in the sequenced fragment, R1 is fragment forward sequence,
including cell barcode and UMI (Unique Molecular Identifier),
R2 is the reverse sequence including the sequence of the 30 end of
the transcript (Fig. 2).

3.1.1 10XGenomics from

Fastq to Counts

rCASC function cellrangerCount executes the cell ranger software
of 10XGenomics and converts fastq files in a counts table, where
columns are cells and row are genes. The function requires the
following mandatory parameters: transcriptome.folder, which is
the folder where genome index was downloaded; fastq.folder,
which is the folder where the fastq files are located; scratch.folder,
which is the folder where temporary files are generated (an example
of code for the use of cellrangerCount function is available at
https://github.com/kendomaniac/droplet-spatial/blob/master/
droplet-spatial.pdf).

The output counts table is saved as results_cellranger.csv, this
table represents the starting point for data analysis. In the subfolder
outs there is the file web_summary.html, which contains statistics on
the sequenced data, that is, Number of sequenced cells, mean
reads/cell, median number of genes/cell, sequencing statistics,
mapping statistics, and cell statistics.
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3.1.2 Spatial

Transcriptomics from Fastq

to Counts

In the case of spatial transcriptomics (ST) data, the function for the
generation of a counts table is stpipeline, and the mandatory para-
meters are: scratch.folder; data.folder, which is the folder where
results are saved; genome.folder, which is the folder where genome
index was downloaded; fastqPathFolder, which is the folder where
the fastq files are located. ID, a string indicating the name of the
sample; imgNameAndPath, the path and name of tiff image of the
tissue on ST slide; slide, the identification number of the slide,
which is provided by 10XGenomics; area, value from the
sequenced area, which are four in each slide. Ones the counts
table is generated the analysis steps are the same for all single cell
data (Fig. 1).

3.2 Counts Table QC The first step of the exploratory analysis is the evaluation of the
UMI distribution within each cell and the evaluation of cells qual-
ity. The above estimations are done by the function mitoRiboUmi,
which requires the following mandatory parameters: file, which is
the count table with the full path; scratch.folder (see above); gtf.
name, the name of the ENSEMBL GTF file corresponding to the
reference genome used for mapping, which must be located in the
same folder where the count table is. mitoRiboUmi function gen-
erates two plots, one showing the number of detected genes plot-
ted for each cell with respect to the total number of UMI/reads in
that cell (genes.umi.pdf, Fig. 3a) and the other (Ribo_mito.pdf,
Fig. 3b) showing the percentage of mitochondrial protein genes
plotted with respect to percentage of ribosomal protein genes
(an example of code for the use of mitoRiboUmi function is avail-
able at https://github.com/kendomaniac/droplet-spatial/blob/
master/droplet-spatial.pdf).

3.3 Annotation

and Filtering

The function scannobyGtf offers the possibility to add gene symbol
to ENSEMBL gene ids and to performs a set of filters (seeNotes 1–
3). The mandatory parameters are: file, which is the count table
with the full path; gtf.name, the name of the ENSEMBL GTF file
corresponding to the reference genome used for reads mapping and
located in the same folder where the count table is. mt, a Boolean
defining if mitochondrial genes have to be removed, FALSE means
that mt genes are removed. Ribo.proteins, a Boolean defining if
ribosomal proteins have to be removed, FALSE means that ribo-
somal proteins (gene names starting with rpl or rps) are removed.

Fig. 2 10XGenomics library structure
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riboStart.percentage, lower bound for ribosomal percentage, cells
below this value are discarded. riboEnd.percentage, upper bound for
ribosomal percentage, cells above this value are discarded. mitoS-
tart.percentage, lower bound for mitochondrial percentage, cells
below this value are discarded. mitoEnd.percentage, upper bound
for mitochondrial percentage, cells above this value are discarded.
thresholdGenes, an integer number indicating the minimal number
of genes called present required to retain a cell for further analysis.
The annotated and filtered table has the prefix filtered_annotated_,
the effects of the filtering is shown in a pdf having as postfix of the
counts table _annotated_genes.pdf. A summary of the filtering is
available in the file filteredStatistics.txt.

3.4 Selecting Top

Ranked Genes

The function topx, allows to select a defined number of genes
ranked on the basis of variance or expression (see Note 4). The
mandatory parameters are file, which is the count table with the full
path; threshold, an integer indicating the number of genes to be
selected; type, which has two possible values: expression, referring to
the selection of the top expressed genes and variance referring to
the selection of the top variable genes. In Fig. 4, it is shown an
exemplary result of topx. In Fig. 4b 10,000 most varying genes are
selected from the full set of genes (Fig. 4a), out of them 5000 most
expressed genes are selected, Fig. 4c. (An example of code for the
use of topx function is available at https://github.com/
kendomaniac/droplet-spatial/blob/master/droplet-spatial.pdf).

The filtered table and a pdf showing the distribution of reads in
the cells before and after filtering have the prefix filtered_expression_
or filtered_variance_ depending on the filtering option defined in
type parameter.

Fig. 3 Cells QC: (a) Cells represented by the number of genes called present versus log10UMI. (b) Cells
represented as fraction of mitochondrial genes expressed with respect to the fraction of expressed ribosomal
genes
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3.5 Clustering rCASC was developed for the characterization of cells heterogene-
ity. Subpopulations organization is depicted by rCASC using clus-
tering methods. However, since there is no a priori way to define
which is the optimal clustering method for a specific sample, we
have implemented in rCASC four clustering tools: tSne [10],
SIMLR [11], griph [12], and Seurat [13]. Furthermore, in
rCASC we have developed a specific metric call Cell Stability
Score (CSS), which provides information on the stability of cells
in a cluster and on the relative cell type homogeneity of a cluster, for
more information on CSS please refer to rCASC paper [8]. The
outputs of the analysis are saved in a folder Results containing a
folder with the same name of the counts table. In this folder are
present: (1) a file called _Stability_Violin_Plot.pdf, providing an
overview of the CSS in all clusters and (2) a folder named with
the number of clusters used in the analysis. In the latter folder are
present: (1) a pdf file with extension _Stability_Plot.pdf, which
provides a plot of the detected clusters and the CSS for each cell;
(2) a file with the extension _clustering.output; and (3) a file with
extension _scoreSum. The data at 2 and 3 are used to build the
_Stability_Plot.pdf.

3.5.1 Clustering

with tSne

tsneBootstrap wrapper function allow to perform tSne analysis and
calculating CSS metrics. The mandatory parameters are: scratch.
folder (see previous functions); file, the path of the file, with file
name and extension included; nPerm, number of permutations to
be executed; permAtTime, number of permutations computed in
parallel; percent, percentage of randomly selected cells removed in
each permutation. range1, lower bound of the range of clusters to
be investigated; range2, upper bound of the range of clusters to be
investigated; perplexity, number of close neighbors for each point
(see Note 5).

Fig. 4 Filtering genes: (a) full dataset, (b) selecting from A the 10,000 most varying genes, and (c) selecting
5000 most expressed genes out of (b)
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3.5.2 Clustering

with SIMLR

simlrBootstrap wrapper function allows to perform SIMLR analysis
and calculating CSS (see Note 6). The mandatory parameters are
the same for the function tsneBootstrap, but perplexity. SIMLR
identifies a distance metric that better fits the structure of the data
by combining multiple Gaussian kernels [11].

3.5.3 Clustering

with Griph

griphBootstrap wrapper function executes SIMLR analysis and cal-
culating CSS. The parameters are the same for simlrBootstrap.
However, since griph detects the optimal number of clusters,
range1 and 2 parameters are not required. The griph algorithm is
closer to agglomerative clustering methods, because every node is
initially assigned to its own community and communities are sub-
sequently built by iterative merging [12].

3.5.4 Clustering

with Seurat

Before performing clustering with Seurat, it is required to run
seuratPCAEval, which estimates the range of principal components
(PC) to be used in Seurat clustering, with each PC essentially
representing a metagene that combines information across a corre-
lated gene set. seuratPCAEval returns a plot called PCE_bowPlot.
pdf (see Note 7) Fig. 5.

The function required to run Seurat clustering is seuratBoot-
strap. The parameters for seuratBootstrap are the same for griph-
Bootstrap, unless for pcaDimension, which represents the PC
threshold defined with seuratPCAEval. Seaurat clustering is based
on the Louvain modularity optimization algorithm (see Note 8).

(example of code for the use of tsneBootstrap, simlrBootstrap,
griphBootstrap, seuratPCAEval, and seuratBootstrap functions are
available at https://github.com/kendomaniac/droplet-spatial/
blob/master/droplet-spatial.pdf, see Note 9).

3.6 Depicting

Cluster-Specific Genes

Genes, detected as specific for each cluster, can be used as target for
antibodies to trace or purify subpopulations identified by single-cell
RNAseq. In rCASC we have implemented both statistical and
machine-learning algorithms to detect cluster-specific gene mar-
kers. The function anovaLike, is a wrapper for the edgeR anova-
like [14], which can be used also for single-cell data. This statistic
method allows the comparison of multiple conditions with respect
to a reference. Thus, it can be applied to single cells, if a cluster can
be used a reference. The mandatory parameters for this analysis are:
file, a character string indicating the counts table file with the path
of the file. cluster.file, a character string indicating the _clustering.
output.txt file (see Note 10) of interest, generated by any of the
clustering methods described in Subheading 3.5. ref.cluster is a
number indicating the cluster to be used a reference for anova-
like comparison with the other clusters. logFC.threshold indicates
the minimal log2 fold change which should be detected in at least
one of the comparisons with respect to reference covariate. FDR.
threshold is the minimal adjusted-pvalue detected in at least one of
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the comparisons with respect to reference covariate. logCPM.thresh-
old, is the minimal average abundance of the gene expressed as
log10 CPMs. plot is Boolean value (TRUE, FALSE). When it is
set to TRUE a plot of the differentially expressed genes is
generated.

The function seuratPrior selects from the output of seuratBoot-
strap the set of genes that play the major role in separating cells in
clusters. The mandatory parameters are: scratch.folder, already
described in above. file, see above functions. PCADim, which is
the number of principal components used in seuratBootstrap. gene-
Number is the expected number of cluster specific genes. nCluster
indicates the total number of clusters detected by seuratBootstrap.

The function cometsc controls a computational framework for
the identification of candidate gene markers consisting of one or
more genes for each cell populations identified with single-cell
RNA-seq data [15]. The mandatory parameters are: file, see above
functions; scratch.folder, see above functions. X which is the argu-
ment for XL-mHG, where default is 0.15, for more info see cometsc
manual (https://hgmd.readthedocs.io/en/latest/manual.html).
K is the number of gene combinations to be considered. The
possible values are from 2 to 4 and default is 2. nCluster is the
number of clusters generated by the clustering methods used, see
above paragraph. The output are the folders outputvis and out-
putdata, containing, for each cluster, respectively plots for the
possible markers and tables with ranking statistics (see Note 11),
for more info see cometsc manual.

Fig. 5 PCE_bowPlot
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4 Notes

1. We suggest to filter out cells with less than 250 called genes
(Fig. 3a), since their transcriptome is too small to provide
sufficient information for subpopulation-specific clustering.

2. Furthermore, percentage of mitochondrial protein genes
greater than 10% in human and 5% in mouse (Fig. 3b) is an
indication of stressed cells, which are probably undergoing to
apoptosis [16]. At the same time cells which have less than 5%
mitochondrial protein genes (Fig. 3b) are also quite unex-
pected. In Fig. 3b, cells showmore than 35% ribosomal protein
genes indicating the presence of duplets, that is, two cells in a
single droplet. Thus, for this specific example, we suggest to
apply a filter, removing cells having less than 5% of mitochon-
drial protein genes, cells having more than 10% (human) and
5% (mouse) of mitochondrial protein genes. At the same time,
we suggest to remove cells with more than 35% ribosomal
protein genes.

3. It is important to note that filters suggested in Notes 1 and
2 are not generally applicable thresholds, since thresholds are
affected by cell type and library prep chemistry. The QC plots
are useful to define for each specific experiment the optimal
filtering thresholds. For example, it has to be noted that some
cell types might have more than 35% of ribosomal counts. Since
duplets are relatively rare, we suggest to filter cells with very
high ribosomal counts percentage with respect to the majority
of the cells in the experiment.

4. Since single cell RNAseq tables are zero-inflated, filtering for
variance first and expression after select genes that probably are
the most useful for clustering. We suggest to retain 10,000
most variant genes (Fig. 4b), and then retaining from them the
top 5000 most expressed (Fig. 4c). This filtering approach has
the extra advantage of reducing the size of the counts table.

5. If the overall quality of the tSne clustering is poor it is necessary
to trim the perplexity parameter to see if it is possible to
improve the overall CSS of the clustering.

6. As described in rCASC paper [8] the clustering time required
by SIMLR is strongly affected by the number of cells in the
dataset. We suggest to run SIMLR only for datasets below
2000 cells.

7. To define the optimal number of principal components to be
used by Seurat, we suggest to look at the PCE_bowPlot.pdf
and select as threshold the last PC, before PCs became little
informative (Fig. 5, grey arrow).
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8. Although griph and Seurat are based on Louvain modularity
optimization algorithm, the different ways they normalize the
data and the use of meta-features by Seurat, make the two
clustering approaches similar but not identical.

9. There is no a priori way to identify the optimal clustering
approach. Thus, in rCASC we have implemented four different
methods in order to select the one that provide the best solu-
tion. CSS is the instrument that we used to detect the best cell
partition approach, since it provides a measurement of how
much cells are stably associated to a cluster given a data pertur-
bation, that is, removal of a subset of cells [8]. An example is
given in Fig. 6. The violin plots generated for each clustering
method, on the same dataset, indicate that Seurat presents, in
this specific example, the higher number of stable cells. Figure 7
shows a comparison between the Seurat clustering results
(A) and griph clustering (B) results. All clusters but one in
griph clustering (Fig. 7b) are characterized by a poor CSS, as
instead in Seurat clustering (Fig. 7a), there are only two clusters
with a CSS below 50�75%. Furthermore, it is possible that the
two unstable clusters (Fig. 7a) are in reality a unique cluster,
since cells shuffle between one and the other cluster upon
minimal perturbations of the dataset.

10. This file must be located in the same folder where counts table
is placed.

Fig. 6 CSS calculated using 80 permutations, in which 10% of the cells were
randomly removed: (a) tSne, (b) SIMLR, (c) griph, and (d) Seurat
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11. A peculiar feature of cometsc is the identification of pairs,
triplets and quadruplets of genes that, taken together, are
able to discriminate one cluster from the other. This is particu-
larly interesting as feature, since it might be used to identify
surface markers suitable to identify and select specific cell sub-
population, belonging to a cluster, by FACS analysis.
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Chapter 17

Normalization of Single-Cell RNA-Seq Data

Davide Risso

Abstract

Normalization is an important step in the analysis of single-cell RNA-seq data. While no single method
outperforms all others in all datasets, the choice of normalization can have profound impact on the results.
Data-driven metrics can be used to rank normalization methods and select the best performers. Here, we
show how to use R/Bioconductor to calculate normalization factors, apply them to compute normalized
data, and compare several normalization approaches. Finally, we briefly show how to perform downstream
analysis steps on the normalized data.

Key words RNA-seq, Single cell, Normalization, Exploratory data analysis, Quality control, Gene
expression, Transcriptomics

1 Introduction

Normalization is an important yet often neglected step of RNA-seq
data analysis, both for bulk [1] and single-cell data [2]. Recent
benchmark studies have identified normalization as the choice
that had the largest impact on performance of downstream
analyses [3].

While many normalization methods have been proposed for
bulk RNA-seq, a direct application of such methods to single-cell
RNA-seq (scRNA-seq) data is not always appropriate. In fact,
single-cell data are typically characterized by more heterogeneity
and sparsity [2].

For this reason, several normalization strategies specifically
designed for scRNA-seq have been published, mostly falling into
two distinct classes: stand-alone normalizations and model-based
approaches.

Stand-alone approaches include global scaling methods, such as
scran [4] and Census [5], and nonlinear normalization, such as
SCnorm [6] and quantile normalization [7]. The main advantage
of these methods is their modularity. Once a normalized count
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matrix is defined, all downstream analysis steps can be applied
directly to it.

Model-based approaches, on the other hand, start with the
specification of a statistical model and include normalization as
one of its parameters. Notable examples are BASiCS [8], ZINB-
WaVE [9], and GLM-PCA [10].

Here, we focus on stand-alone methods implemented in Bio-
conductor [11]. We shall note that there are many alternative
approaches, and a comprehensive review and benchmarking of
normalization methods is outside the scope of this chapter. For a
review of Bioconductor-based methods, see [12] and its associated
e-book (http://bioconductor.org/books/release/OSCA/).

2 Materials

2.1 Computational

Hardware

The workflow presented in this Chapter can be run on any com-
puting system, since it uses the R/Bioconductor software suite,
available for Windows, Linux, and Mac.

The example dataset is small enough that can be analyzed on a
laptop or desktop computer. For larger datasets (more than
100,000 cells), we recommend using a machine with a large
amount of memory, although solutions exist to work with out-of-
memory data [13].

The use of systems with several CPUs is very advantageous, as
many of the steps described below can be parallelized.

The analyses presented here were run on a MacBook Pro
2.9 GHz Intel Core i5 with 16 GB of RAM.

2.2 Computational

Software

The results presented in this Chapter were run using R version
3.6.1 and Bioconductor version 3.10.

The following R commands can be used to install Bioconduc-
tor and all the packages used in this chapter.

install.packages("BiocManager")

BiocManager::install(c("scater", "scone", "zinbwave", "scRNAseq",

"scran", "edgeR", "monocle", "igraph"),

version = "3.10")

The above command will install the specified packages and all
the required dependencies.
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To ensure that the package versions are consistent with each
other, the valid() function can be used.

BiocManager::valid()

Finally, we load all the required packages.

library(scRNAseq)

library(scater)

library(scone)

library(scran)

library(edgeR)

library(monocle)

library(igraph)

2.3 Example Dataset The analyses presented here make use of an example dataset, avail-
able in the form of a SingleCellExperiment object as part of
the scRNAseq package (seeNote 1). To access the data, we need to
load the package and specify the dataset to use.

sce <- ReprocessedAllenData(assays = "tophat_counts")

Here, we use a subset of 379 cells from the mouse visual cortex
from Tasic et al. [14]. However, by simply changing the code chunk
above, readers can explore different examples. For a full list of
datasets available through the scRNAseq package, see the package
vignette at https://bioconductor.org/packages/scRNAseq.

The chosen dataset is described in detail in [14]. Briefly, the
cells were isolated from the mouse visual cortex and sequenced
using the SMARTer protocol.

As observed in the recent literature, full-length RNA protocols
(such as SMARTer) and droplet-based methods differ in the statis-
tical properties of the aggregated read count data [10, 15]. While
the results reported here refer primarily to SMARTer data, many of
the same considerations are also valid for droplet data (e.g.,
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Dropseq or 10X Genomics). Readers who want to test the pro-
posed workflow on 10X Genomics data are encouraged to look at
the TENxPBMCData Bioconductor package (https://bioconductor.
org/packages/TENxPBMCData), which contains several publicly
available datasets.

3 Methods

3.1 The Single-

CellExperiment

Class

The data are stored as an object of the SingleCellExperiment
class. The advantage of this class is that it is used across many
Bioconductor packages, so that one can seamlessly integrate differ-
ent packages in the same workflow.

The SingleCellExperiment class contains one or more
matrices of expression data (stored in the assays slot). At the
minimum, one matrix, typically containing the raw count data, is
present. Optionally, other matrices containing transformed and/or
normalized data are stored in the object as well.

In addition to the expression data, the object includes all the
metadata associated with the cells (colData) and with the genes
(rowData). Finally, the altExp component contains additional
data not directly associated with the endogenous genes’ RNA-seq
profiles. This slot can be used to store information on the spike-in
genes (as done here), or on surface protein expression (as in CITE-
seq data [16]). For more information on the class, see [12].

It is worthwhile to look at the specific dataset in more detail.

sce

## class: SingleCellExperiment

## dim: 20816 379

## metadata(2): SuppInfo which_qc

## assays(1): tophat_counts

## rownames(20816): 0610007P14Rik 0610009B22Rik ... Zzef1 Zzz3

## rowData names(0):

## colnames(379): SRR2140028 SRR2140022 ... SRR2139341

SRR2139336

## colData names(22): NREADS NALIGNED ... Animal.ID pas-

ses_qc_checks_s

## reducedDimNames(0):

## spikeNames(0):

## altExpNames(1): ERCC

Simply typing the name of the object displays useful informa-
tion. We can see the number of genes (20,816) and cells (379) in
the dataset, as well as additional information, like row names,
column names, and the presence of metadata and ERCC spike-ins.
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There is only one matrix of counts, called tophat_counts, no
information on the genes other than the name (rowData) and
22 variables annotating the cells (colData).

The colData() and rowData() methods can be used to
visualize all the information available at the cell level and at the
gene level, respectively. The assay()method can be used to access
the expression matrix, and the altExp() method to access infor-
mation on the spike-ins.

To more easily use some of the functions below, we rename the
assay of the object.

assayNames(sce)[1] <- "counts"

assayNames(altExp(sce))[1] <- "counts"

3.2 Quality Control

and Filtering

Prior to normalization, it is advisable to remove poor quality cells
and lowly expressed genes. To this end, a set of quality control
metrics can be computed. Our example dataset already includes a
set of such metrics in its column data, for example,
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colData(sce)[,1:3]

## DataFrame with 379 rows and 3 columns

##               NREADS  NALIGNED    RALIGN

##            <numeric> <numeric> <numeric>

## SRR2140028  13743900  13011100   94.6681

## SRR2140022  14078700  13521900   96.0454

## SRR2140055   5842930   5135980   87.9008

## SRR2140083  16784400  15585800   92.8587

## SRR2139991  11558600  10864300   93.9929

## ...              ...       ...   ...

## SRR2139325  12875700  11307000   87.8172

## SRR2139373   9699400   8964140   92.4196

## SRR2139379   6175660   5728080   92.7526

## SRR2139341  28038500  26320000   93.8711

## SRR2139336   7878700   7467200   94.7772

However, it is easy to compute a set of QC metrics using the
scater package [17].
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stats <- perCellQCMetrics(sce)

stats[,1:3]

## DataFrame with 379 rows and 3 columns

##           sum  detected   percent_top_50

##     <numeric> <integer>        <numeric>

## 1     4949215      6708 16.5146796007044

## 2     6258794      6611 17.7734081038615

## 3     2181009      4857 14.8873755220634

## 4     4925535      7140 12.6828253174528

## 5     4479434      6412 17.0757734124445

## ...       ...       ...              ...

## 375   4046011      5068 16.5968406907445

## 376   3313703      7285 16.6980565246795

## 377   2492480      6352 17.3386747335987

## 378  13533062      8246 18.9948217188394

## 379   4674829      5572 19.3193376698912

In order to remove low quality cells, we can use the metric_-
sample_filter() function from the scone package [18] (see
Notes 2 and 3). This function takes as input a list of “common
genes”, for example, genes that are highly expressed in at least a
quarter of the cells.

num_reads <- quantile(counts(sce)[counts(sce) > 0], probs = .75)

num_cells <- .25 * ncol(sce)

is_common <- rowSums(counts(sce) >= num_reads ) >= num_cells

We are now ready to filter the cells.
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mfilt <- metric_sample_filter(counts(sce),

nreads = colData(sce)$NREADS,

ralign = colData(sce)$RALIGN,

gene_filter = is_common,

zcut = 3, mixture = FALSE,

plot = FALSE)

With the specified arguments, this function computes a set of
three metrics, used to determine whether a sample is of poor
quality. The metrics are: the total number of reads per cell
(nreads), the proportion of aligned reads (ralign) and the
number of detected genes among the ones specified in
gene_filter.

The argument zcut and mixture control the way in which the
filtering is done: the former specifies the threshold according to
which considering a cell of poor quality (in this case, if worse than
three times the standard deviation from the mean); the latter
instructs the function on whether to use a mixture model in the
definition of the outliers. By setting plot ¼ TRUE, the function
returns a plot with the distribution of the metrics and the thresh-
olds for the filtering.

We can then use these thresholds to remove low-quality
cells.

keep_genes <- !apply(simplify2array(mfilt[!is.na(mfilt)]), 1, any)

Since the example dataset contains ERCC spike-ins [19], we
can use them to further filter those cells that have too many reads
mapped to them. This can be due to less viable cells or to a problem
with the dilution of the spike-ins.
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keep_ercc <- stats$altexps_ERCC_percent <= 5

table(keep_genes, keep_ercc)

##           keep_ercc

## keep_genes FALSE TRUE

##      FALSE    18   17

##      TRUE 46  298

sce <- sce[, keep_genes & keep_ercc]

Finally, we want to remove lowly expressed genes. To do so, we
can use the filterByExpr() function of the edgeR package
[20]. This function determines which genes have sufficiently large
expression in at least one group. Here, we use each mouse as a
different group.

keep <- filterByExpr(counts(sce), group = sce$Animal.ID)

table(keep)

## keep

## FALSE  TRUE 

##  7128 13688

sce <- sce[keep,]

We do the same for the spike-ins, to remove spike-in genes with
too few reads.

Normalization of scRNA-seq 311



keep_spikes <- filterByExpr(counts(altExp(sce)), group = sce$Animal.ID)

altExp(sce) <- altExp(sce)[keep_spikes,]

sce

## class: SingleCellExperiment 

## dim: 13688 298 

## metadata(2): SuppInfo which_qc

## assays(1): counts

## rownames(13688): 0610007P14Rik 0610009B22Rik ... Zzef1 Zzz3

## rowData names(0):

## colnames(298): SRR2140028 SRR2140022 ... SRR2139341 SRR2139336

## colData names(22): NREADS NALIGNED ... Animal.ID passes_qc_checks_s

## reducedDimNames(0):

## spikeNames(0):

## altExpNames(1): ERCC

Our filtered dataset has 13,688 genes and 298 cells.

3.3 Computing

Normalization Factors

As noted in Section 1, several methods exist for the normalization
of scRNA-seq data. Here, we show how to compute and apply
normalization factors using the scran approach [4]. In
Section 3.3, we will show how to compare different normalizations
and select the best performing one.

Scran is a global scaling approach,meaning that it scales the count
of all genes in each sample by a global factor.Hence, it can be thought
of as a two-step procedure: (1) compute the normalization factors;
(2) apply the normalization factors to obtain normalized data.

The scran approach uses pools of cells to compute size factors
that are then deconvolved to individual cells. It is beneficial if the
pooled cells are similar to each other [4]. Hence, a quick clustering
step is suggested prior to normalization. Note that this only needs
to be a rough grouping of similar cells and should not be thought of
as a final, biologically meaningful, clustering of the data.
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clust <- quickCluster(sce)

sce <- computeSumFactors(sce, cluster=clust, min.mean=0.1)

Note how the computeSumFactors() function takes a Sin-
gleCellExperiment object both as input and output. The out-
put object contains information on the sizeFactors.

head(sizeFactors(sce))

## [1] 1.0334050 1.2082307 0.4291021 0.4578487 0.9734242 2.2759324

These size factors are a sample-specific constant used to scale
the data to obtain the normalized counts.

We then apply the normalization factors and obtain the
log-normalized counts.
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sce <- logNormCounts(sce)

sce

## class: SingleCellExperiment 

## dim: 13688 298 

## metadata(2): SuppInfo which_qc

## assays(2): counts logcounts

## rownames(13688): 0610007P14Rik 0610009B22Rik ... Zzef1 Zzz3

## rowData names(0):

## colnames(298): SRR2140028 SRR2140022 ... SRR2139341 SRR2139336

## colData names(22): NREADS NALIGNED ... Animal.ID passes_qc_checks_s

## reducedDimNames(0):

## spikeNames(0):

## altExpNames(1): ERCC

Note how the sce object now contains a new assay, called
logcounts, that contains the log-normalized data. To avoid prob-
lem with the log of zero, a “pseudo-count” of one is added to the
counts prior to the log transformation.

3.4 Comparing

and Selecting

Normalization

Methods

Normalization is an inherently difficult problem, and no single
method outperforms all others in all scenarios. Instead, the meth-
ods’ performances are data-dependent and it is essential to be able
to rank normalization methods based on performance metrics cal-
culated on the dataset at hand.

To this end, the scone package provides a set of data-driven
metrics that can be used to rank normalization methods and choose
the best performing approach [18].

Scone follows a modular approach. After a scaling step, it
considers two methods to remove “unwanted variation,” that is,
the variability coming from technical rather than biological sources.
To do so, scone employs either the QCmetrics discussed above or
a set of negative control genes [21]. See [18] for details.

314 Davide Risso



One of the assumptions of the latter approach is the existence
of a set of negative control genes, for example, genes whose expres-
sion does not change across cells. Since these data include spike-ins,
we can use them as negative controls. In the absence of spike-ins,
one can use prior knowledge (or prior data) to identify negative
controls (see [21] for details).

To run scone, we first need to create a SconeExperiment
object, which includes some useful information about the experi-
ment. In addition to the gene expression data, we can optionally
specify a number of the following details: biological origin of the
cells (e.g., cell types, if known), QC metrics (scaled), a set of
negative controls, a set of positive controls (e.g., known cell type
markers), any known batch effects (e.g., day of the experiment) (see
Note 4). Scone will use this information in the ranking of normali-
zation methods. See the scone manual page for all the arguments
that can be passed to the function.

# Expression data (note that we concatenate gene and spike-in 

expression)

exprs <- rbind(counts(sce), counts(altExp(sce)))

# Scaled QC metrics

qc <- colData(sce)[,metadata(sce)$which_qc]

ppq <- scale(qc[,apply(qc,2,sd) > 0],center = TRUE, scale = TRUE)

# Negative controls

negcon <- rownames(altExp(sce))

# Positive controls: here we use a few neuronal markers

poscon <- intersect(rownames(sce), c("Gad1", "Gad2", "Slc32a1", 

"Slc17a7", "Lamp5", "Ndnf", "Sncg", "Vip", "Sst", "Chodl", "Pvalb", 

"Cux2", "Rorb", "Fezf2"))
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se <- SconeExperiment(exprs,

qc=ppq,

negcon_ruv = rownames(exprs) %in% negcon,

poscon = rownames(exprs) %in% poscon

)

The second step of the workflow is to decide which normaliza-
tion methods to compare. Scone includes a few wrapper functions
for popular normalization methods.

scaling <- list(none=identity, # Identity: do nothing

sum = SUM_FN,

tmm = TMM_FN, 

deseq = DESEQ_FN,

scran = SCRAN_FN)

In this case, we have used the simple scaling by total number of
reads (sum), the TMM approach proposed in [22], the DESeq
approach proposed in [23], and the scran approach [4]. Users can
also define their own method. To illustrate this process, we add the
Census transformation [5]. This approach is implemented in the
monocle Bioconductor package. All we have to do is to create a
wrapper function around it; the wrapper should take as input a
matrix of raw counts and return a matrix with normalized data.
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CENSUS_FN <- function(mat) {

tpm <- calculateTPM(mat)

cds <- newCellDataSet(tpm)

census <- relative2abs(cds)  

return(census)

}

scaling$census <- CENSUS_FN

The third and final step is to run the scone function, which
applies all selected normalizations to the data and rank them
according to a set of evaluation metrics.

Fig. 1 Biplot of the first two principal components of scone’s performance
metrics. Each point represents a normalization method and is colored according
to the average score ranking (the lighter the better). The arrows represent the
metrics (see description in the text)

Normalization of scRNA-seq 317



se <- scone(se,

scaling = scaling,

zero = "postadjust")

The zero¼ “postadjust” option ensures that the genes with
zero reads in a given cell are left at zero and not transformed by the
normalization procedure.

Scone computes a set of scores (in a variable number depending
on the options passed to the scone function) and orders the
normalization approaches from the best to the worst performer,
based on the average rank of the scores.
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Fig. 2 t-SNE plot of the log-normalized data, colored by cell type

Fig. 3 Violin plot of Lamp5 log-normalized expression, grouped by cell type
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0.315

## none,census,qc_k=4,no_bio,no_batch   0.526     -0.285     -0.043      

0.309

## none,census,qc_k=5,no_bio,no_batch   0.529     -0.256     -0.050      

0.308

## none,census,qc_k=3,no_bio,no_batch   0.530     -0.291     -0.043      

0.308

## none,tmm,qc_k=4,no_bio,no_batch      0.562     -0.256     -0.041      

0.309

## none,tmm,qc_k=5,no_bio,no_batch      0.563     -0.235     -0.048      

0.309

##    RLE_MED RLE_IQR

## none,census,qc_k=2,no_bio,no_batch   0.000  -0.011

## none,census,qc_k=4,no_bio,no_batch   0.000  -0.011

## none,census,qc_k=5,no_bio,no_batch   0.000  -0.010

## none,census,qc_k=3,no_bio,no_batch   0.000 -0.011

## none,tmm,qc_k=4,no_bio,no_batch     -0.002  -0.037

## none,tmm,qc_k=5,no_bio,no_batch     -0.001  -0.035

head(round(get_scores(se), 3))

##                                    PAM_SIL EXP_QC_COR EXP_UV_COR 

EXP_WV_COR

## none,census,qc_k=2,no_bio,no_batch   0.523     -0.304     -0.043      

In this case, the computed metrics are as follows:
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1. PAM_SIL: the average silhouette width of the clusters obtained
with Partition Around Medoids (PAM) [24]. The higher the
score the better the normalization.

2. EXP_QC_COR: the weighted coefficient of determination for
the regression of log-count principal components on all princi-
pal components of the QC metrics. This roughly corresponds
to a correlation between normalized gene expression and sam-
ple quality. The lower the score the better the normalization.

3. EXP_UV_COR: same as 2, but for factors of unwanted varia-
tion derived from negative controls (see [18]). The lower the
score the better the normalization.

4. EXP_WV_COR: same as 2, but for factors of wanted variation
derived from positive controls (see [18]). The higher the score
the better the normalization.

5. RLE_MED:Mean squaredmedian relative log-expression (RLE).

6. RLE_IQR: Variance of interquartile range (IQR) of RLE.

For our example dataset, the best normalization seems to be
Census [5], followed by regression of two QC factors (see [18] for
details).

We can use a biplot to visualize the results (Fig. 1).

pc_obj <- prcomp(apply(t(get_scores(se)),1,rank),

center = TRUE,scale = FALSE)

biplot_color(pc_obj, y = -get_score_ranks(se), expand = .6)

In the biplot shown in Fig. 1, the points are colored according
to their average score ranks (the lighter the better). From the plot,
we can see which metrics most influence the choice of the best
normalization and whether several normalizations are performing
similarly.

An interactive version of the plot can be created by using the
biplot_interactive() function, which allows the user to click
on the points and visualize the name of the normalization method.

Once we have decided which normalization to choose, we can
obtain the normalized counts via the get_normalize() function.

Note that, for memory efficiency, scone does not save all
normalized matrices, but computes the requested one only when
needed.
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norm <- get_normalized(se, method = rownames(get_scores(se))[1], log =

TRUE)

We can add the normalized matrix to the SingleCellEx-
periment object with the following command.

assay(sce, "scone_norm") <- norm[rownames(sce),]

We can then use scater to visualize the data, for example, with
a t-SNE plot [25] (Fig. 2).

sce <- runTSNE(sce, exprs_values = "scone_norm")

plotTSNE(sce, colour_by = "Primary.Type")

The normalized data can be used directly for visualization, for

Fig. 4 t-SNE plot of the log-normalized data, colored by cluster
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example, in heatmaps or violin plots. Figure 3 shows how the gene
Lamp5 is distributed among the cell types.

plotExpression(sce, "Lamp5", exprs_values = "scone_norm", x =

"Primary.Type", theme_size = 5)

3.5 Downstream

Analyses

One of the most important applications of scRNA-seq is the iden-
tification of cell types (or states). In statistical terms, this corre-
sponds to clustering.

Generally, we want to perform a dimensionality reduction
step prior to clustering. One possibility is to compute the prin-
cipal components (PCs) of the log-normalized data, and then
run a graph-based clustering method, such as Louvain clustering
[26], in PC space. Figure 4 shows the clustering results in a
t-SNE plot.

sce <- runPCA(sce, exprs_values = "scone_norm")

g <- buildSNNGraph(sce, k=10, use.dimred = "PCA")

clust <- cluster_louvain(g)

sce$clusters <- as.factor(clust$membership)

plotTSNE(sce, colour_by = "clusters")

The most important parameter of this analysis is the number
(k ¼ 10) of nearest neighbors to consider in the creation of the
graph. Decreasing such value will increase the number of
clusters.

Finally, we can use the normalized data to identify gene markers
for each cluster. This can be easily achieved via the findMarkers
() function of the scran package.
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genes <- findMarkers(sce, groups = sce$clusters,

test.type = "wilcox", assay.type = "scone_norm")

This function will return a list of five elements, one per each
cluster. For instance, to look at marker genes for cluster 1, we can
look at the first element of the list.
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head(genes[[1]])

## DataFrame with 6 rows and 7 columns

##               Top              p.value                  FDR             

AUC.2

##        <integer>            <numeric>            <numeric>         

<numeric>

## Bcl6            1 4.96400402008946e-27 9.70675528956926e-24 

0.487282463186078

## Ptn             1 6.18270344437476e-28 6.14214190955068e-24  

0.77376171352075

## Tmsb10          1 5.02432753142714e-19  6.4273827336612e-17 

0.506024096385542

## Ucma            1 1.58358003844407e-14 7.96913366405235e-13 

0.166666666666667

## Dscaml1         2 6.01858545551281e-27 1.02977997143824e-23 

0.463186077643909

## Foxp2           2 1.13559565130905e-27 6.14214190955068e-24 

0.528781793842035

##                      AUC.3              AUC.4              AUC.5

##                  <numeric>          <numeric>          <numeric>

## Bcl6     0.499881880463029 0.0191199580932425  0.548192771084337

## Ptn 0.687219466099693  0.980443513183167                  1

## Tmsb10  0.0326009922041106  0.308887724812293  0.271944922547332

## Ucma     0.490196078431373  0.485507246376812                0.5

## Dscaml1  0.430191353649894 0.0303823991618648    0.2026286966046

## Foxp2    0.526340656744626  0.454688318491357 0.0225316851822875
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Here, we used the nonparametric Wilcoxon rank sum test
(test.type ¼ "wilcox") to test all pairwise differences between
the groups. We should note that while it is reasonable to use the p-
values to rank the genes and select the top ones as markers, these
p-values do not have any inferential meaning, as the compared
groups are defined from the same data (see [27] for a discussion).

We have shown one possible approach to cluster the normal-
ized data and retrieve gene markers for each cluster. However,
many different approaches exist for the dimensionality reduction,
clustering, and differential expression of scRNA-seq data, and a
comparison of such approaches is outside of the scope of this
Chapter. See Soneson and Robinson [28] for a systematic evalua-
tion of differential expression methods, Sun et al. [29] for a review
and comparison of dimensionality reduction methods, and Duò
et al. [30] for a benchmark of clustering methods.

4 Notes

1. Differences between UMI and read count data. The example
dataset that we used here did not make use of Unique Molecu-
lar Identifiers (UMIs). It has been shown that UMIs effectively
reduce much of the amplification bias observed in scRNAseq
[2]. In addition the use of UMIs decreases the need to model
zero inflation [10]. However, the use of UMIs does not elimi-
nate the need for normalization [2] and much of what is shown
here applies to UMI data as well.

2. Computational complexity. Some of the steps highlighted in this
Chapter are computationally intensive. In particular, scone
computes several normalizations and may be slow for large
datasets. Enabling parallel computations helps (see below),
but for very large datasets, we suggest to run scone on a subset
of data and apply to the full dataset only the chosen
normalization.

3. Parallel computing. Most functions presented here can leverage
parallel computing to increase speed for large datasets. They all
depend on the BiocParallel package that allows the user to
set a backend and the number of threads to use. By default
parallel computing is turned off. To enable it, one can use the
following command at the beginning of the workflow (where
ncores should be substituted with the number of cores to
use).
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## Available only for unix systems (including Mac)

BiocParallel::register(BiocParallel::MulticoreParam(ncores))

## OR

## Also available for Windows

BiocParallel::register(BiocParallel::SnowParam(ncores))

4. Dealing with batch effects. When combining data from different
runs, protocols, or laboratories, the data are often affected by
so-called batch effects. The methods presented above, for
example, regressing out QC metrics, can ameliorate these
effects, but a more direct approach may be beneficial. The
batchelor package implements several strategies to remove
known batch effects, for example, the Mutual Nearest Neigh-
bor (MNN) method of [31]. Alternatively, scone allows the use
of a “batch covariate” that can be included in the normalization
model to adjust for batch effects.
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Chapter 18

Dimensionality Reduction of Single-Cell RNA-Seq Data

George C. Linderman

Abstract

Dimensionality reduction is a crucial step in essentially every single-cell RNA-sequencing (scRNA-seq)
analysis. In this chapter, we describe the typical dimensionality reduction workflow that is used for scRNA-
seq datasets, specifically highlighting the roles of principal component analysis, t-distributed stochastic
neighborhood embedding, and uniform manifold approximation and projection in this setting. We partic-
ularly emphasize efficient computation; the software implementations used in this chapter can scale to
datasets with millions of cells.

Key words scRNA-seq, Dimensionality-reduction, Visualization, pca, t-SNE, umap

1 Introduction

Recent advances in single-cell RNA-sequencing (scRNA-seq) tech-
nology have allowed researchers to study cell-to-cell heterogeneity
at unprecedented resolution. While bulk RNA-sequencing averages
the expression of all cells in a sample, scRNA-seq allows for quanti-
fication of gene expression at the single-cell level. The scale of
scRNA-seq experiments has been growing exponentially [1, 2],
with recent technology allowing for the expression of millions of
cells to be quantified in a single experiment. The inherent complex-
ity of gene expression, combined with the massive amounts of data
being generated, makes subsequent analysis challenging. New
methods continue to be developed for analysis of scRNA-seq
data, and best practices are only beginning to be established.

Despite the diversity of methods used to analyze scRNA-seq
data, essentially every analysis pipeline is built upon dimensionality
reduction. Gene expression data is inherently high dimensionality:
it involves measuring the expression of the ~20,000 genes in the
human genome. Each cell is thus a point in the ~20,000 dimen-
sional “gene-space.” Many approaches to data analysis and visuali-
zation suffer from the curse of dimensionality [3], namely, that they
do not scale to high dimensions. For this reason, it is common to
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first reduce the dimensionality of the dataset, representing each cell
by a point in a lower dimensional space (e.g., 50–100 dimensions)
prior to proceeding with the subsequent analysis. The overall goal is
to reduce the dimension of the dataset while preserving as much
structure as possible.

In this chapter, we present the dimensionality reduction meth-
ods that are most commonly used in the analysis of scRNA-seq
data. We will first center our attention on principal component
analysis [4], which is the first step in most scRNA-seq analyses.
Then we will discuss nonlinear methods for dimensionality reduc-
tion, with a focus on t-SNE [5] and UMAP [6], both of which have
become standard tools for visualization of scRNA-seq data.

2 Materials

2.1 scRNA-Seq

Dataset

The input data for our analysis will be the expression matrix
obtained from a scRNA-seq experiment after alignment. In this
expression matrix, rows correspond to genes and columns to cells.
Most published scRNA-seq studies deposit this expression matrix
on a public repository, such as the Gene Expression Omnibus
(GEO), as required by major journals. For demonstration pur-
poses, we will analyze a dataset from Hrvatin et al. [7], with GEO
accession number GSE102827, which contains 65,539 mouse cor-
tical cells. The expression matrix GSE102827_MATRIX.csv.gz can
be directly downloaded from GEO at https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc¼GSE102827 and subsequently
extracted to a comma-separated values (CSV) file containing the
expression values. In that paper, the authors assigned each cell a
label corresponding to its putative cell type. These cell type assign-
ments are contained in the file GSE102827_cell_type_assignments.
csv.gz that can be downloaded from the above link.

2.2 Computational

Hardware

Analysis of scRNA-seq datasets can be computationally intensive.
The most common computational bottleneck is memory, as simply
storing a full scRNA-seq dataset in memory can be prohibitive for
personal computers. If the matrix is stored as doubles (8 bytes),
then the required gigabytes of memory to simply store the matrix is
8(number of cells)(number of genes)(10�9). For example, the
Hrvatin et al. dataset used here requires 13.2 GB of memory to
load with R (see Note 1). CPU performance is not as critical, but
can significantly speed up the analysis at certain key steps. In partic-
ular, multithreaded implementations of the dimensionality reduc-
tion tools used in this chapter can significantly speed up the
analysis.
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2.3 Software Both R and Python are widely used in the scRNA-seq community,
and the tools discussed in this chapter are implemented for both
environments. PCA, t-SNE, and UMAP will be discussed in detail
later; here we provide links to where they can be obtained.

The standard function for computing PCA in R, princomp(),
does not scale to datasets of the size frequently encountered in
scRNA-seq datasets. Either Lanczos methods (e.g., PROPACK
[8]) or randomized methods [9] for fast PCA are commonly used
instead. An R implementation of Lanczos methods for PCA is
included in the CRAN package irlba [10], and an implementation
of randomized PCA is available from the CRAN package rsvd
[11]. Python implements both in the scikit-learn [12] package as
sklearn.decomposition.PCA.

The original t-SNE implementation also did not scale beyond
several thousand points, so essentially all scRNA-seq analyses use a
fast t-SNE implementation. We recently developed
FFT-accelerated, Interpolation-based t-SNE (FIt-SNE) [12],
which is an order of magnitude faster than the previously fastest
implementation (Barnes-Hut t-SNE) [13]. FIt-SNE has R and
Python wrappers (https://github.com/KlugerLab/FIt-SNE), and
it is also available on PyPI as part of the opentsne [14] package. We
also note that several GPU implementations of t-SNE have been
recently developed (e.g., [15]), which can provide even further
speed-up when run on the appropriate hardware.

UMAP has recently become widely popular for visualization of
scRNA-seq datasets [6, 16]. The original Python version is available
on PyPI as umap-learn which has an R wrapper available on CRAN
as umap. A pure R version called uwot is also available on CRAN.

There are also several toolkits for analyzing scRNA-seq data
which aim to streamline the analysis pipeline. The most popular of
these is Seurat [17, 18], which can be downloaded fromCRAN and
includes most of the previously mentioned dimensionality reduc-
tion methods. For Python users, scanpy [19] is also becoming
popular. In this chapter, we perform the dimensionality reduction
using the native tools (i.e., not using any wrappers).

3 Methods

3.1 Preprocessing Quality control, normalization, batch effect correction, and other
preprocessing steps are crucial parts of any scRNA-seq analysis
pipeline that are typically performed prior to dimensionality reduc-
tion. Although these steps can dramatically impact the results of
subsequent analysis, their discussion is beyond the scope of this
chapter. We mention them only briefly and refer the reader to [20]
for more details.
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The first step of most single-cell analysis pipelines is quality
control, where “low quality” cells are removed. The most common
measure of cell quality is the number of reads or genes detected,
where cells above or below certain thresholds are removed from
subsequent analysis. For example, Hrvatin et al. removed cells with
fewer than 700 or more than 15,000 read counts, shrinking the
dataset from 114,601 cells to the 64,539 cells that we downloaded
above.

Due to the inherently stochastic nature of the sequencing
process, identical cells can have different count depth. Various
normalization approaches have been proposed to remove this vari-
ation. The most common is to normalize each cell to have the same
number of counts. Following Hrvatin et al., we normalize the
dataset to contain 10,000 transcripts.

A <- read.csv(’GSE102827_MATRIX.csv’, header =T, row.names=1)

totalReadsPerCell <- colSums(A)

A_norm<-sweep(A,2,totalReadsPerCell,’/’)*mean(totalReadsPerCell)

Next, a variance-stabilizing transformation (VST) is typically
applied to the data. AVST is typically used when the features follow
a distribution where the variance is dependent on the mean, as this
can be problematic for PCA. For example, a gene that is expressed
at high levels in all cells will necessarily have a high variance, even if
in reality all cells express that gene at almost the same level. Assum-
ing scRNA-seq data is generated from a negative binomial distribu-
tion, the log-transform can be shown to approximately remove the
dependence of the variance on the mean. A “pseudo-count” of 1 is
typically added to the expression values prior to applying the
log-transform, as log(0) is not defined (see Notes 2 and 3).

A_norm <- log(A_norm + 1)

3.2 Principal

Component Analysis

Each cell in a single-cell RNA-seq dataset is represented as a point in
~20,000-dimensional space, where each dimension corresponds to
single gene. Biologically, genes do not act independently, but
instead form groups of highly correlated genes often referred to
as “gene modules” or “pathways.” Given this intricate correlation
structure, gene expression is highly redundant: a much smaller
number of dimensions can capture the biological variability in the
dataset. Principal component analysis (PCA) is used to construct a
small number of uncorrelated variables (principal components or
PCs) that capture the maximum amount of variability in the origi-
nal dataset. PCA is the workhorse of essentially any high
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dimensional analysis, as it reduces the number of dimensions to a
number that is manageable for downstream analysis.

The principal components of a dataset are defined as the eigen-
vectors of the data covariance matrix, and they are typically com-
puted using the singular value decomposition (SVD). However,
standard implementations of SVD are memory and time intensive
because they compute all of the singular vectors and hence do not
scale to the size of datasets encountered in scRNA-seq datasets.
There are two major classes of fast methods for SVD that can be
used to efficiently compute the leading singular vectors: Lanczos-
based approximations (e.g., irlba in R) and randomized algorithms
(e.g., rsvd). A comparison of these methods is beyond the scope of
this chapter; we will use a randomized algorithm here (seeNote 4).

To compute PCA, we first center the rows, and then compute
the leading 100 singular vectors (see Note 5).

library(rsvd)

row_gene_means <- rowMeans(A_norm)

A_norm_c <- sweep(A_norm, 1, row_gene_means, ’-’)

svdout <- rsvd(A_norm_c, k=100)

obsPCA <- svdout$v %*% diag(svdout$d)

Plotting the first few singular vectors (Fig. 1), we see that while
cells of the same type are generally close together, the clusters are
not clearly separated.

library(ggplot2)

ct <- read.csv(’GSE102827_cell_type_assignments.csv’,

header = TRUE, row.names = 1, stringsAsFactors = FALSE)

df <- data.frame(obsPCA[,1:2], Y= as.factor(ct$celltype))

df <- df[!is.na(df$Y),] #Only keep cells with assigned cell type

(g <- ggplot(df) +

geom_point(aes(x=X1, y=X2, color=Y), size=0.5)

+ theme(legend.position="none") + labs(x="PC 1", y="PC 2"))

To see why, we can plot the “scree plot,” or the variance
captured by each principal component (Fig. 2).

total_var <- sum(rowMeans(A_norm_c^2))

component_var <- svdout$d^2/(ncol(A_norm_c)-1)

fraction_var_explained <- component_var/total_var

(g <- qplot(x=1:100,y=fraction_var_explained) +

labs( y=’Proportion of variance’, x="Index") )
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Fig. 1 The first and second PCs of the Hrvatin et al. dataset. Each color
corresponds to a different cell type, as assigned by the original authors. The
cell types are generally clustered together, but not distinct from each other
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Fig. 2 The singular values of the centered matrix can be normalized to obtain the
proportion of variance captured by each singular vector
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The first two PCs only capture 14% of the variance. Clearly, the
subsequent PCs contain important biological variability that can-
not be ignored. But we do not want to retain all of the PCs, because
eventually they are just noise. For example, the 99th and 100th
singular vectors are clearly meaningless (Fig. 3), and including the
noise may negatively impact subsequent analysis.

For this reason, the number of PCs to retain is an important
consideration when doing PCA, and it is the subject of continued
research. The goal is to identify the point at which the PCs no
longer correspond to biological variability. One common approach
is to look for a gap or “elbow” in the scree plot, but as can be seen in
Fig. 2, this can be fairly arbitrary. Another common approach is to
use a permutation method, like parallel analysis [21] or the related
“jackstraw” method [22]. The general idea of these approaches is
to independently shuffle the entries of each column to obtain
“fake” data matrices. Next, the SVD of each “fake” matrix is
computed, obtaining a null distribution for each singular value.
Finally, each singular value of the observed matrix is compared
with the corresponding null distribution, and only the singular
values that exceed a given percentile are retained. The intuition is
that the shuffled matrices contain the same values as the observed
matrix, but the correlation structure was “destroyed” by the per-
mutation process and hence approximate the noise inherent of
the data.

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2

PC 99

P
C

 1
00

Fig. 3 The 99th and 100th PCs of the Hrvatin et al. dataset
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3.3 Two-

Dimensional

Visualization

As observed in the previous section, more than two PCs are gener-
ally necessary to capture the biological variation in scRNA-seq
datasets. Many subsequent analysis steps (e.g., clustering) can be
performed in the 30–100-dimensional space formed by the leading
PCs. However, much of scRNA-seq analysis is driven by visualiza-
tion, making further dimensionality reduction necessary.
T-distributed stochastic neighborhood embedding (t-SNE) and
uniform manifold approximation and projections (UMAP) have
become widely used for this purpose. Intuitively, these nonlinear
methods force the data into a two or three-dimensional space by
preserving the short-range (i.e., local) distances between points,
often at the cost of the longer-range (i.e., global) distances.

The optimization underlying t-SNE produces an embedding
where points that were close in the (high-dimensional) original
space are also close in the (low-dimensional) embedding space.
To do so, the algorithm minimizes the divergence between a
Gaussian distribution modeling affinities between points in the
original space and a Student’s t-distribution modeling affinities in
the embedding space.

The embedding is achieved using gradient descent, where
points start in some initial configuration (by default, random) and
then are iteratively updated to minimize the divergence. UMAP
also uses a variant of gradient descent, but optimizes a different cost
function.

Crucially, parameters suggested in the original t-SNE publica-
tions (which are default in some implementations) are not optimal
for embedding large scRNA-seq datasets [23]. In particular,
t-SNE’s preservation of global structure can be dramatically
improved by initializing the embedding with the first two PCs
(which are typically rescaled to have standard deviation 0.0001).
Furthermore, the default learning rate of 200 is too small for
embedding large datasets (e.g., n > 100,000), so we follow [23]
and use a learning rate of ~n/12 in those settings. We refer to their
article for more sophisticated applications of t-SNE to scRNA-seq
data. We now embed the dataset using FIt-SNE, with PCA initi-
alization (Fig. 4).

source(’<path to FIt-SNE>/fast_tsne.R’, chdir=T)

init <- 0.0001*(obsPCA[,1:2]/sd(obsPCA[,1]))

k <- 30 # Number of PCs chosen by Hrvatin et al.

fitsneout <- fftRtsne( obsPCA[,1:k],

initialization = init, rand_seed=3)

We can also embed the data using UMAP, as follows (Fig. 5).

library(umap)

umapout <- umap(obsPCA[,1:k])
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Fig. 4 t-SNE of the top 30 PCs of the Hrvatin et al. dataset
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Fig. 5 UMAP of the top 30 PCs of the Hrvatin et al. dataset
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The resulting embedding is generally consistent with t-SNE,
although theUMAP embedding has markedly more white space. In
general, further research is necessary to determine which algorithm
more faithfully represents scRNA-seq data. The FIt-SNE imple-
mentation of t-SNE is at least as fast as UMAP, and when initialized
using PCA, it preserves global distances as well as UMAP
does [24].

UMAP and t-SNE are the two most popular methods used for
visualization of scRNA-seq data, but they are generic methods that
are not specifically designed for scRNA-seq datasets. In contrast, a
large number of dimensionality reduction methods have been
developed specifically for scRNA-seq datasets. We refer the reader
to [25–27] and the references therein for more details.

4 Notes

1. Given that the vast majority of values in the scRNA-seq dataset
are zero, the data can be stored more compactly as a sparse
matrix. Unlike a dense matrix which stores every value, a sparse
matrix stores only the nonzero values. For example, the 10X
cellranger pipeline uses the Market Exchange Format (MEX)
for sparse matrices. On machines which have limited RAM, it is
possible to keep the matrix in sparse format, as the preproces-
sing steps outlined above (normalization, log-transform) do
not make the matrix dense. However, an SVD implementation
that can be run on a sparse matrix and that supports row/col-
umn centering (e.g., irlba() in R) should be used. In these
implementations, the SVD of the centered matrix is computed
without actually forming the centered matrix (which would be
dense). After the top PCs are computed, the subsequent analy-
sis can proceed using dense matrices, since the number of PCs
retained is much smaller than the number of genes.

2. If the reads are assumed to be generated from a Poisson distri-
bution, the variance-stabilizing transformation is a square-root.
This transformation is sometimes used in place of the
log-transform.

3. The log-transform and the associated “pseudo-count” as
described above are common preprocessing steps but were
recently shown by the authors of [28] to bias the transformed
data. Instead, they developed a method for generalized princi-
pal component analysis (GLM-PCA) based on a multinomial
sampling model, which can be used directly on the count data.
An R implementation called glmpca is available on CRAN and
may be considered an alternative to the standard PCA-based
pipeline.
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4. The basic operation underlying randomized SVD is matrix
multiplication, which is highly parallelizable. However, the
rsvd package used here is single-threaded. Dramatic speed
improvements can be obtained using multithreaded implemen-
tations, but they are not available in R (e.g., [29] in MATLAB).

5. It is widespread practice to retain only the 1000–5000 most
variable genes for subsequent analysis. When using standard
tools for PCA, this feature selection step is often necessary in
order to make the dataset more computationally manageable.
The fast methods described in this chapter make this step
optional, as they can be run on the full dataset. However, the
feature selection step may have an important denoising effect
on some analyses, and hence it may still be included for that
reason. This can be done using Seurat’s VariableGenes()
function.
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Chapter 19

Single-Cell RNA Sequencing Analysis: A Step-by-Step
Overview

Shaked Slovin, Annamaria Carissimo, Francesco Panariello,
Antonio Grimaldi, Valentina Bouché, Gennaro Gambardella,
and Davide Cacchiarelli

Abstract

Thanks to innovative sample-preparation and sequencing technologies, gene expression in individual cells
can now be measured for thousands of cells in a single experiment. Since its introduction, single-cell RNA
sequencing (scRNA-seq) approaches have revolutionized the genomics field as they created unprecedented
opportunities for resolving cell heterogeneity by exploring gene expression profiles at a single-cell resolu-
tion. However, the rapidly evolving field of scRNA-seq invoked the emergence of various analytics
approaches aimed to maximize the full potential of this novel strategy. Unlike population-based RNA
sequencing approaches, scRNA seq necessitates comprehensive computational tools to address high data
complexity and keep up with the emerging single-cell associated challenges. Despite the vast number of
analytical methods, a universal standardization is lacking. While this reflects the fields’ immaturity, it may
also encumber a newcomer to blend in.
In this review, we aim to bridge over the abovementioned hurdle and propose four ready-to-use pipelines

for scRNA-seq analysis easily accessible by a newcomer, that could fit various biological data types. Here we
provide an overview of the currently available single-cell technologies for cell isolation and library prepara-
tion and a step by step guide that covers the entire canonical analytic workflow to analyse scRNA-seq data
including read mapping, quality controls, gene expression quantification, normalization, feature selection,
dimensionality reduction, and cell clustering useful for trajectory inference and differential expression. Such
workflow guidelines will escort novices as well as expert users in the analysis of complex scRNA-seq datasets,
thus further expanding the research potential of single-cell approaches in basic science, and envisaging its
future implementation as best practice in the field.

Key words Single-cell RNA-seq, Experimental workflow, Data analysis tutorial, Computational pipe-
lines, Clustering, Monocle, Seurat, gf-icf, Scanpy
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1 Introduction

Throughout the last decade, population-based RNA sequencing
approaches (aka bulk RNA-seq) have played a significant role in
deciphering genome-wide transcriptome variations across a broad
range of fields, including cancer biology, developmental biology,
and cellular homeostasis [1–3]. However, as bulk RNA-seq data
represents an average of gene expression across individual cells, it
may mask the transcriptional trends of distinct subpopulations with
the most abundant cell types or states (Simpson’s paradox [4]).

Single-cell RNA sequencing (scRNA-seq) bridged over this
hurdle, providing unprecedented opportunities for exploring
gene expression profiles at a single-cell resolution. Since its first
introduction in 2009 [5, 6], scRNA-seq opened a new avenue to
uncover the underlying cellular heterogeneity of composite sys-
tems. However, the practical procedures were arduous, time-
consuming, cost-intensive, and heavily relied on a single-sourced
set of equipment. At present, with the emergence of efficient and
low-cost technologies (Table 1 [7]), a typical lab bench suffices for
building sequencing libraries amounting to thousands of cells [8–
10], thus encouraging the use of single-cell technology as a stan-
dard procedure.

These technical advancements enabled the discovery of novel
cell types [11, 12] and the study of cellular dynamic processes at a
previously unattainable spatial and temporal resolution [13–16],
featuring in-cell variation such as gene interaction, allelic expres-
sion, and novel RNA processing in the field of molecular cell
biology [17, 18]. Moreover, scRNA-seq became a key ingredient
in the rapidly evolving field of precision medicine [19, 20]. The
profound amount of new information obtained with scRNA-seq
holds the potential of reshaping our understanding of developmen-
tal biology, gene regulation, and cell heterogeneity in health and
disease.

2 The Laboratory Workflow of scRNA-seq

At present, all scRNA-seq laboratory methods rely on six main steps
(Fig. 1): (I) preparation of a viable single-cell suspension, (II)
assessment of cell viability, (III) lysed cell removal, (IV) individual
transcriptome barcoding, (V) cDNA generation, and (VI) sequenc-
ing library generation [21]. As for instrument implementation, one
of the most popular sequencing platforms is the Illumina® series
due to its cost-effectiveness and high-quality outputs. A relatively
new introduction in the field is the BGI sequencing portfolio,
which allows equipotential sequencing results even in single-cell
studies [22].
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Barcoding the transcriptome of individual cells is a key step in
all available single-cell protocols, and exemplifies the main differ-
ence from bulk RNA-seq. Two barcoding strategies are suggested,
either (1) the addition of a cell-specific barcode to each transcrip-
tome following cell isolation, or alternatively (2) the addition of a
unique index combination to each cell transcriptome without phys-
ical partitioning (e.g., split-Seq [23]). Both strategies can be fur-
ther classified into subcategories with different advantages and
drawbacks (Table 1, Supplementary). However, all scRNA-seq
strategies rely on high-quality input material, requiring the optimi-
zation of any dissociation and thawing protocol to maximize cell
viability [24–26].

Among the more recent advancements in the field,
microfluidic-based scRNA-seq technologies have gained popularity
due to their cost-effectiveness, high efficiency, and moderate data
size requirements for preserving data integrity and coherence
[27, 28]. Generally, microfluidic technologies, such as Chromium
[10], inDrop [9], and Drop-seq [8], rely on passive coflow of cells,
microparticles (i.e., beads) and a lysis buffer that produces water-in-
oil droplets, thus encapsulating precisely one cell and one bead. The
transcriptional content of each cell is captured and amplified by
unique primers attached to the surface of a single microparticle.

Fig. 1 Single-cell RNA sequencing workflow. The scRNA-seq procedure consists of six key steps. (I ) Samples
are dissociated into a single-cell suspension. (II) As lysed cells might bias the data and cause high noise
interference, it is essential to maximize the quality of the input material and assess cell viability. (III) If the
viability is lower than 90%, dead cells should be filtered either by centrifugation (i.e., density gradient) or
immunodepletion (i.e FACS or magnetic sorting). (IV) Single cells are captured and isolated in different ways,
depending on the technique of choice. Microfluidics-based scRNA-seq technologies encapsulate single cells
within water-in-oil droplets together with unique primers attached to microparticle surface and lysis buffer.
Then, each lysed cell’s mRNA content is captured by the poly-A tail domain of a single primer and labeled with
UMI and cell-specific barcodes. Several errors can occur during this step, like multiple cells or microparticles
captured in a single droplet (i.e., multiplets), and sub-Poisson loading trade-offs, such as empty barcoded
drops. (V ) Captured mRNA transcripts from droplets are then collected, reverse-transcribed, and (VI) amplified
in pools to be used for standard sequencing platforms. During library construction, cDNA molecules are tagged
with sample-specific indexes allowing multiplexing of different captures in the same sequencing run. Further
computational demultiplexing will use such barcode information to sort samples, cells, and transcripts
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Such primers share the same underlying three-tuple structure,
including (1) a cellular barcode, a short sequence common to all
primers on a single microparticle, with the purpose of identifying all
transcripts belonging to the same cell; (2) a unique molecular
identifier (UMI), a molecular transcript-specific tag which secures
read’s integrity by identifying PCR duplicates [29]; (iii) a poly-T
tail, for the capture and amplification of the 30END of each
transcript.

Ideally, each droplet should encapsulate a single cell and a
single bead. However, as in practice the encapsulation step follows
a Poisson distribution, the capture rate of one bead and one cell
within a single droplet follows a double Poisson distribution. Ergo,
many droplet-based approaches yielded large numbers of empty
droplets and inefficient data assemblage.

The limitation of Poisson statistics has been tackled by inDrop
and Chromium technologies. Through close-packed ordering of
deformable particles, both methods instrument a sub-Poisson dis-
tribution [30], thus achieving controllable encapsulated particle
quantities, with a single bead occupancy of about 80%. Hence,
the main differences among the three platforms, inDrop, Chro-
mium, and Dop-seq, is their respective capture efficiency, largely
dependent on beads types at use [31]. While Drop-seq, inDrops,
and Chromium capture about 5–12%, 75%, and 65% of the input
cells, they also require >2 � 105, 2 � 103–104, and >103 input
cells, respectively.

Hence, choosing the appropriate technique is crucial, and
pends on a particular field of study and research requirements.
When investigating highly heterogeneous samples, like tumors
and tissues, high-throughput methods are advisable. Nevertheless,
high-sensitivity strategies are best suited either when analyzing low
expressed genes or classifying rare cell populations [32].

However, if on one side scRNA-seq allows to dissect cellular
heterogeneity at high-resolution, it also carries two key drawbacks.
The first one is a low gene retrieval yield, with usually a 1–5% of
transcripts per cell representing highly expressed genes (about
5000 genes per cell), thus leading to significant observational
uncertainty. This drop-out effect introduces a high cell-to-cell
variability and low signal-to-noise ratio (SNR) [33]. A further
drawback is evidently the cost burden of scRNA-seq commercial
technologies, while noncommercial platforms (inDrop, Drop-seq)
require considerable operator expertise. Consequently, the imple-
mentation of scRNA-seq techniques is still not broadly accessible
for many laboratories in the field [34, 35]. However, these obsta-
cles shall not hold the promise of scRNA-seq to expand beyond the
genomic research frontier, as overcoming the current challenges
will widen the future outlooks for medicine and biological studies.
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3 The Computational Workflow of scRNA-seq

Unlike previous genome-wide transcriptomic assays, scRNA-seq
necessitates innovative analysis tools to address the emerging
single-cell associated challenges, including large-scale data and
high levels of noise interference due to dropout events
[33, 35]. Indeed, more than 600 standalone tools are available to
analyze and explore single-cell transcriptomic data [36], but with
the lack of universal standardization [37, 38], a newcomer to
blend in.

The challenge in achieving standardized pipelines stems from
several reasons, including the relative immaturity of the field.
Depending on the platform of choice, individual procedural steps
may be processed differently, resulting in inconsistent downstream
analysis outputs for the same entry dataset [6]. In addition, the
choice of a specific analytic tool is largely swayed by a programming
language preference such as R or Python, and thus restricting their
usage to a narrower audience specialized in a specific programming
language. A further, and probably the most significant hurdle, is the
need to find a common analytic strategy that could fit various
biological data types (cell lines, cancer cells, stem cells, etc.). How-
ever, due to their high diversity and distinct biological inquiries at
hand, ad hoc computational strategies might be needed.

In this review we aim to address all the above-mentioned
challenges, outlining a standardized workflow that will guide the
reader through the key steps of scRNA-seq data analysis, regardless
of specific tools and different biological data types. Herein, we
propose four ready-to-use computational pipelines, which include
raw counts normalization, feature selection, dimensionality reduc-
tion, and clustering (Fig. 2). Completing these steps enables the
users to analyze their respective data without any loss of informa-
tion. The proposed pipelines cover both R and Python program-
ming languages, and employ Seurat (R) [39], Scanpy (Python)
[40], Monocle (R) [41, 42], and gf-icf (R) [43] platforms, which
are all easily accessible for a newcomer.

A case study employing the four proposed pipelines is demon-
strated using a subset of Tabula Muris [44] public dataset retrieved
by the Chromium technology, outlining the different steps with
plots and command lines, all available on github [45]. As the
proposed pipelines might be permissive or too restrictive for a
given assay, we offer guidelines for tailoring the analytic settings
to meet user’s data requisites.
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4 Raw Reads Demultiplexing, Alignment, and Expression Quantification

Captured transcript fragments that are processed by sequencers,
termed “reads,” are stored into a text-based format called FASTQ
[46]. FASTQ files contain both nucleotide sequence reads and their
corresponding quality scores encoded as ASCII (American Stan-
dard Code for Information Interchange) characters.

While the majority of bulk approaches are suitable for the
preprocessing of full-length scRNA-seq datasets, 30-end scRNA-
seq protocols require distinctive analytic tools. The preprocessing
workflow of 30-end scRNA-seq raw data includes three steps,
(1) assigning captured RNA fragments to their associated sample
and store them in FASTQ files (i.e., demultiplexing); (2) aligning
the reads to a reference genome; (3) quantifying UMI per gene and
assigning them to their associated barcode (i.e., cell). Eventually,
each sample compiles into gene/barcode matrices that can be
further filtered and analyzed.

Fig. 2 Computational analysis of single-cell RNA sequencing. ScRNA-seq analysis embraces six underlying
steps, including raw-data preprocessing, filtering via QC covariants, normalization, feature selection, linear
dimensional reduction, visualization, and clustering: (I ) Raw reads are processed and quantified to generate
gene/barcode matrices. (II) Cells in the count matrix are then filtered to avoid misinterpretation of ambient
gene expression, apoptotic cells, and multiplets. (III) Count reads normalization is required, as the analysis is
disrupted by low input and weak SNR, following which data is primed for downstream analysis. (IV) A lesser
number of highly variable features are selected for the purpose of realizing a faster and accurate procedure.
(V ) Based on the designated genes, a PCA is performed to lower data dimensionality. (VI) Clustering and
nonlinear dimensionality reduction steps utilize a subset of significant principal components to overcome data
noisiness. Subsequently, cells are clustered and visualized based on their PCA scores
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4.1 Demultiplexing Herein, we employ a commonly used subpipeline of the CellRanger
platform [10], namely, mkfastq, exclusively designed for prepro-
cessing raw data obtained from the 10x-Genomics® platform.
Although CellRanger offers additional analytical tools for cluster-
ing and gene expression analysis, we have narrowed its use only to
the preprocessing steps.

As input, CellRangermkfastq uses raw sequencer’s reads in the
form of BCL files. Providing sample index sequences,mkfastq will
demultiplex the raw data into sample-specific FASTQ files using the
sample indexes.

4.2 Mapping

and Expression

Quantification

Before quantifying gene expression, the raw reads are first aligned
to a reference genome, grouped by genes, and assigned to their
original cellular barcode. These steps can be applied either by
CellRanger-count for data retrieved via the 10�-Genomic® plat-
form, or through the STARsolo tool [47, 48] for all other
protocols.

Both tools require the raw FASTQ files obtained by the demul-
tiplex step as input, and perform: (1) error correction of cell bar-
codes using a predefined whitelist; (2) mapping using STAR
aligner; (3) correction and deduplication of UMI, and finally
(4) quantification of gene expression per cell by counting the
number of unique UMI per gene (i.e., transcripts).

Through the mapping step, read alignment assigns raw
sequences to the most proper position in a reference genome.
Although the alignment can employ a transcriptional reference, it
is preferable to use a whole-genome reference, as it allows easier
removal of “off-target” captured sequences that are not forced to
be aligned on a transcriptional reference, but filtered out (seeNotes
1 and 2).

Next, inconsistent cell barcodes and UMIs are filtered to avoid
data misrepresentation. During this step, the presence of each
barcode is verified in a predefined list of known cell barcode
sequences provided by the single-cell platform. Accordingly,
incompatible cell barcodes are either discarded or corrected by
the most abundant barcode separated with a single editing distance.
Similarly, CellRanger and STARsolo will assess the quality of UMIs
and correct a single mismatch to a higher count UMI sequence if
they both share a cell barcode and gene sequence.

Both CellRanger and STARsolo output two count matrices,
filtered and unfiltered, so the user can choose which to include in
the downstream analysis. The filtered count matrix consists of
barcodes/identifiers that represent genuine cells and the expression
levels for each gene. Differently from STARsolo, last CellRanger
versions (above 3.1) employ a statistical method called EmptyDrop
[49] to distinguish cells from empty barcoded drops. In this review,
we will demonstrate how to apply EmptyDrop autonomously using
the unfiltered count matrix, as it is common to both STARsolo and
Cellranger outputs.
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5 Quality Control and Cell Filtering: How to Identify Viable Cells

Current limitations of scRNA-seq are mainly related to low capture
efficiency that can result in an increased level of technical noise. As
of today, even the highly sensitive scRNA-seq protocols produce a
small portion of low-quality barcodes due to lysed or apoptotic
cells. Therefore, before proceeding with the downstream analysis,
cellular barcodes that do not correspond to viable cells must be
filtered out. These cells are usually recognized by detecting outliers
in the distribution of QC covariates and filtered out by threshold-
ing (see Notes 3 and 4). This step is common to all scRNA-seq
pipelines and based on the analysis of three QC covariates distribu-
tion: (1) the number of captured genes per cell barcode; (2) the
fraction of mitochondrial reads per barcode to identify dying cells;
and (3) the number of unique UMIs per barcode (i.e., coverage
depth of a cell).

5.1 Identify Empty

Barcoded Drops

It is common to have empty drops when using droplet-based
technology, as cells are highly diluted in order to yield a single-
cell scaling. Empty drops might be contaminated with free RNA
molecules, also called “ambient” RNA [37], that originated from
cell lysis, which can be wrongly considered as cell-specific tran-
scripts. To avoid misleading results, empty barcoded drops should
not be included in downstream analysis. A recent method for
identifying and filtering out empty drops is through the aforemen-
tioned emptyDrops function, provided by the DropletUtils pack-
age [49]. EmptyDrops is a function designed to test how
significantly the barcode expression profile deviates from the ambi-
ent one using a Dirichlet-multinomial model. As input, it takes an
unfiltered feature-barcode matrix and returns a data frame, where
each barcode is associated with a p-value, obtained by permutation
testing, and its relative FDR correction. Putting a threshold to this
latter parameter allows the identification of ambient profiles with a
significant deviation from cell-containing droplets, which are then
considered as genuine cells. Here we show how to read data gen-
erated from the cellRanger count pipeline and detect empty dro-
plets in the case of Tabula Muris dataset (Fig. 3a), where read data
have been originally generated with the cellRanger count pipeline.
Notably, since significance is retrieved by using permutations, a
seed needs to be set.

5.2 Multiplet

Identification

Multiplets occur when two or more cells are captured in a single
drop and thus assigned to the same cell barcode [50]. This error
may be misinterpreted as higher gene counts in an individual cell.
Thereby, doublets can be simply filtered by identifying outliers in
the count depth distribution. In the case of datasets generated by
the aggregation of different samples and with different depth of
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coverage among them, it is essential to perform multiplets filtered
separately (Fig. 3b, seeNote 5). Although a thresholding approach
is usually sufficient to identify cell multiplets, new specific tools have
been developed recently, offering more elegant and potentially
better solutions [50–52].

5.3 Cells Lysis Cell barcodes associated with transcripts originated by lytic cells are
usually characterized by low count depth with few detected genes
(Fig. 2c) and a high fraction of mitochondrial reads. In this case,
unlike cytoplasmic RNA, most mitochondrial RNA is conserved
thanks to undamaged mitochondrial membranes. Hence, it is
acceptable to filter out barcodes with more than 10% of
mitochondrial-associated reads. However, when setting a thresh-
old, the biological property of the dataset should always be consid-
ered, therefore the threshold for an acceptable percentage of
mitochondrial reads may vary according to the biological model
of study. For cancer cells or specific cell types with increased respi-
ratory or metabolic processes, the high levels of mitochondrial
RNAs are inherent to the model itself [53] (see Note 6).

6 Start Working with the Scanpy, Seurat, Monocle, and gf-icf Pipelines

With the outburst of single-cell sequencing technologies, numer-
ous statistical methods have been developed to address distinct
steps of scRNA-seq analysis. Different toolkits like Seurat, Monocle
3, Scanpy, and gf-icf assembled these standalone methods to offer a
single workflow. One of the most popular code-based platforms is
Seurat, which offers a wide range of tutorials and analytical tools

Fig. 3 Cell QC on Tabula Muris dataset. (a) Detection of empty droplet by using emptyDrop function from
DropUtils R package on Tabula Muris dataset. (b) Identification of cell multiplets in each independent run of
Tabula Muris Dataset. (c) Distribution number of detected genes across the cells in the Tabula muris dataset.
(d) PCA components as a function of their percentage of explained variance on Tabula Muris dataset (elbow
plot)
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[54]. An additional well-adapted platform is Monocle, which
largely facilitated the trajectory inference field since its first intro-
duction [41]. The latest version, Monocle 3, provides both pseu-
dotemporal ordering and the basic scRNA-seq clustering pipeline
for user convenience [42]. Scanpy, a relatively new addition in the
field, allows for analyzing large size datasets up to one million cells
and more, as it has improved the computational scaling. Here we
also tested a recently introduced method named gf-icf, which is
based on a data transformation model called term frequency-
inverse document frequency (TF-IDF) that has been extensively
used in the field of text mining, where sparse and zero-inflated data
are common [55]. For downstream analysis, each pipeline employs
either R or Python programming language. In order to interpret
outputs and understand the basics of the analytical tools, each step
will be examined and compared in all four pipelines.

7 Gene Filtering: How to Remove “Noisy” Genes

A scRNA-seq dataset often includes over 25,000 genes measured
across thousands of cells, many of which might be uninformative as
they mostly contain zero counts, and should be filtered out before
starting the downstream analysis. Gene filtering can help to speed
up data processing by dipping its dimensions and reducing the
excess of zeros counts, consequently improving the data normali-
zation step and all downstream analysis. Usually, a fixed threshold is
defined, whereby genes detected in a small number of cells are
removed (see Notes 7 and 8).

8 Data Normalization: How to Make Gene Expression Comparable Across
Individual Cells

Data normalization addresses the unwanted biases arisen by count
depth variability while preserving true biological differences. The
quantity of mRNA captured from each cell may diversify due to
either biological variability or technical effects inherited through-
out the scRNA-seq procedure, including single-cell preparation,
library construction, and sequence steps [56–58]. With normaliza-
tion, the expression of each gene is rescaled, considering the abun-
dance of mRNA molecules that have been captured for each cell, in
order to make gene expression comparable across individual cells.
The way in which this scaling factor is estimated for each cell mainly
differs across the plethora of currently available normalization
methods.

As discussed above, scRNA-seq data is usually sparse due to
both biological and technical reasons (dropouts). Hence, normali-
zation methods adopted from bulk RNA-seq, such as TMM [59]
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and DESeq [60], might be biased by zero inflation. To address this
issue, single-cell normalization procedures have evolved in recent
years [61, 62]. However, at present, the most commonly used
method for scRNA-seq data normalization is count per million
(CPM), a linear global scaling approach that has been inherited
from bulk RNA-seq.

An additional source of variation not related to the biological
process under study can result from handling samples in different
batches. The batch effect may arise when an experiment with
identical cells is repeated independently, for example, by different
operators or sampling different experimental time-lines. Standard
normalization procedures do not correct for batch effect,
compromising the analysis of the real biological effects. Several
methods have been recently developed to account for the batch
effects in scRNA-seq data [63], although ComBat [64], a method
originally developed for microarray data, performs well also for
single-cell experiments of low-to-medium complexity [65].

All four pipelines proposed here account for the normalization
step through the CPM method. Seurat, Monocle, and Scanpy use
log transformation of the CPM to reduce cell depth variability (see
Notes 9–11) and few advanced options to rescale the data for some
sources of variation, including the effect cell cycle [39]. With the
gf-icf pipeline, genes are rescaled by their inverse cell frequency and
cells are rescaled to have Euclidean norm equal to one
(L2 normalization), in order to account for cell depth variability.

9 Feature Selection: How to Discard “Uninformative” Genes

A large-scale scRNA-seq dataset can easily include over 25,000
genes measured across more than 10,000 cells, with many of
these genes being uninformative because mostly containing zero
counts.

Feature selection aims to detect genes with relevant biological
information, while excluding the uninformative ones. ScRNA-seq
data dimensions can remain quite high, with a large number of
genes (>10,000) still retained even after gene filtering. Feature
selection can largely speed up the processing as it reduces data
dimensionality by filtering “uninformative” genes. This is usually
accomplished by selecting a limited number of highly variable genes
(HVG) to direct further analysis. HVG are highly informative as
they have a significant impact on the data configurations, and
therefore allow to preserve the integrity and reproducibility of the
data. Usually, 1000–5000 HVG are selected depending on the size
of the assay (see Note 12). Each pipeline implements a unique
method for the detection and selection of HGVs. Using Scanpy,
genes are binned by their mean expression, and genes with the
highest variance-to-mean ratio are selected as HVGs in each bin.
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Seurat, on the other hand, first modeled the mean-variance rela-
tionship using a local polynomial regression function. Then, given
the expected variance by the fitted curve and the observed mean,
the feature values are standardized, and for each gene, the variance
across all cells is computed [66] (see Note 13). Unlike Seurat and
Scanpy, Monocle does not cover this step, while gf-icf feature
selection is performed only when differentially expressed genes
across clusters need to be identified. Although with few differences,
also in gf-icf the feature selection is performed by modeling the
mean/variance relationship as proposed by Chen et al. [67]. The
feature selection in gf-icf pipeline is built in the normalization step
when gene expression is rescaled by their inverse cell frequency
[43], and the total number of filtered genes is considered for the
dimensionality reduction step.

10 Dimensionality Reduction: How to Summarize and Visualize scRNA-seq Data

10.1 Linear

Dimensional

Reduction: For

the Summarization

of scRNA-seq Data

Dimensionality reduction aims to condense the complexity of the
data into a lower-dimensional space by optimally preserving its key
properties. Dimensionality reduction methods are essential for
clustering, visualization, and summarization of scRNA-seq data.
Linear dimensionality reduction methods are commonly used as a
preprocessing step for nonlinear dimensionality reduction meth-
ods. The most popular linear dimensionality reduction algorithm is
the PCA (Principal Component Analysis) [68]. Usually, 10–50
significant principal components are selected and later used as
input for nonlinear dimensionality reduction methods. Principle
components are highly indicative of primary sources of heteroge-
neity in the dataset.

PCA is used to summarise a dataset throughout the top N
principal components (see Note 14). The number of PCA to use
is usually determined by manually inspecting the elbow plot
(Fig. 3d), in which principal components are plotted as a function
of the variability they account for, and the number of PCA to use is
determined by the point in which an “elbow” is observed. Addi-
tional methods can be used, including jackstraw [69] and heat maps
of leading genes in each principal component. However, when
choosing the significant principal components to use, it is better
to err on the higher side to avoid information loss.

10.2 Nonlinear

Dimensionality

Reduction

for the Visualization

of scRNA-seq Data

Dimensionality reduction for visualization of scRNA-data uses
methods that capture the nonlinearity of the scRNA-seq data,
avoiding the overcrowding of the representation (see Note 15).
The two most commonly used methods are the t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) [70] and the UniformMan-
ifold Approximation and Projection (UMAP) [71]. t-SNE is a
stochastic method that efficiently highlights local data structure in
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low dimensions, representing cell populations as distinct clusters.
However, t-SNE is not able to preserve the global structure, so the
distance between clusters is meaningless. UMAP is a more recent
nonlinear dimensionality-reduction technique, that is instead able
to preserve both local and global structure of the data outperform-
ing t-SNE also with a shorter run time for really large-scale scRNA-
datasets.

Several additional methods exist for both linear and nonlinear
data dimensionality reduction, but it is out of the scope of this
tutorial to review all the existing methods, while we prefer to focus
on best practices andmethods currently accepted by the scRNA-seq
community. However, a detailed review of linear and nonlinear
methods for dimensionality reduction of single-cell transcriptomic
data can be found in Moon et al. [72].

11 Clustering Analysis: How to Identify Cellular Subpopulations

As transcriptionally distinct populations of cells usually correspond
to distinct cell types, a key goal of scRNA-seq consists in the
identification of cell subpopulations based on their transcriptional
similarity [73]. Thus, organizing cells into groups (i.e., clusters)
can allow for de novo detection of cell types or identification of
different subpopulations in a single cell state (see Note 16).

Clustering is an old unsupervised machine learning problem,
which aims to determine the intrinsic grouping in a set of unla-
belled objects by knowing their similarity score (i.e., distance). A
plethora of distance measures has been proposed in the literature to
compute similarity scores among objects of interest, including
Euclidean distance, Cosine distance, and correlation-based
distances.

Several unsupervised clustering methods have been applied to
partition single-cell data and can be further divided into three
groups: (1) k-means, (2) hierarchical clustering, and (3) community
detection approaches. For single-cell data analysis, all methods are
applied after feature selection and data dimensionality reduction on
the PC-reduced space. The identified clusters of cells are then
overlaid onto the visualization space.

The k-means algorithm uses an iterative approach to partition
cells into a predefined number of clusters (k). At each iteration, cells
are assigned to the closest centroid using the Euclidean distance.
Alternative distances, like correlation-based or cosine distances, can
also be used for single-cell data analysis [74]. The position of the
centroids is recomputed at the end of each iteration, and since the
starting position of centroids is randomly selected, it is common to
run the k-means algorithm multiple times [75]. Although fast, k-
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means requires to know the initial number of clusters (k) in which
to partition cells, which is usually unknown and must be settled
with additional complex analyses.

Hierarchical clustering is a partitioning method that seeks to
build a hierarchy of clusters, and it is generally divided into two
types, namely agglomerative or divisive. An agglomerative hierar-
chical clustering technique follows the “bottom-up” approach,
where initially each cell represents an individual cluster, and gradu-
ally similar clusters are merged until getting a unique cluster. On
the other hand, a divisive hierarchical clustering follows the “top-
down” approach, where all cells start from a single cluster and are
then progressively split. Hierarchical clustering produces a dendro-
gram where clusters are obtained by cutting the tree at a predeter-
mined distance that can heuristically be settled using bootstrap
approaches [76]. Examples of the application of hierarchical clus-
tering in scRNA-seq data can be found in CIDR [77], SINCERA
[78], and pcaReduce [79]. However, hierarchical clustering meth-
ods generally work slower than k-means, and do not perform well
on a large-scale scRNA-seq dataset.

Community detection techniques are scalable clustering
approaches, which are appropriate for large-scale graphs and can
be used to cluster a hundred thousand or even millions of cells
efficiently. By definition, a graph G ¼ (V,E) consists of a collection
of nodes V (i.e., cells) and edges representing the degree of similar-
ity between pairs of cells. This graph of cells can be built using the
K-Nearest Neighbors (KNN) algorithm [80] applied on the
PC-reduced space, where each cell is connected to its Kmost similar
cells. Then, edge weight between any two cells is refined by Jaccard
similarity, by using the proportion of neighbors they share.

Finding communities means gathering cells into groups, with a
higher density of edges within groups than between them [81]. A
measure of the community structure of a graph is modularity [82],
namely, the fraction of edges that fall within the given groups minus
the expected fraction if edges were randomly distributed. Modu-
larity is based on the idea that a random graph is not expected to
have a cluster structure. The most popular detection algorithm
based on modularity is Louvain, which was introduced by Pheno-
Graph and also used by Seurat, Scanpy, and gf-icf.

When running a graph-based clustering, it is necessary to set
the resolution parameter for the community detection algorithm
based on modularity optimization. The resolution parameter is
correlated to the scale of observing communities. In particular,
the higher is the resolution parameter, the larger is the number of
smaller communities. In our pipelines, we set the resolution param-
eter to 0.5, which usually represents a good trade-off.
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12 Differential Expression: How to Annotate Cell Populations

Characterization and annotation of the groups of cells identified by
a clustering algorithm can be managed by identifying marker genes
(i.e. cluster gene signature) via differential expression analysis.
Marker genes are identified by comparing cells of every single
cluster to all other cells. Some differentially expressed testing meth-
ods have been developed specifically for handling the presence of
dropout elements in scRNA-seq data, including the Bayesian
approach [83] and MAST [84], but they are not computationally
efficient when considering large-scale scRNA-seq datasets. Hence,
faster tests are used for detecting differentially expressed genes, like
Wilcoxon rank-sum test implemented in Seurat, Scanpy, and gf-icf,
while Monocle uses a generalized additive model (VGAM). Addi-
tional complex tests are also provided by Seurat, Scanpy, and Mon-
ocle. Once gene signatures of each cluster have been identified,
additional analysis including Gene Ontology Enrichment Analysis
(GOEA) and Gene Set Enrichment Analysis (GSEA) [85] can be
used to identify the biological processes active in each cell’s cluster.

13 Results Evaluation and Comparison Among the Implemented Pipelines

To evaluate the performance of the four pipelines in identifying
groups of cells (Fig. 4a–d), we calculated the agreement across
clusters produced by the different methods, by using the average
Jaccard coefficient [86] among each pair of clusters (Fig. 4e). We
then used the retrieved clusters from each method to hierarchically
cluster cell types (Fig. 4f), and showed that the different methods
produce biologically meaningful partitions. We also observed that
cells in the same cluster belong to the same lineage but with
different levels of granularity, which can be tuned by changing the
resolution parameter used to identify cell clusters.

14 Additional Analyses: How to Reconstruct Cell Transcriptional Dynamics

Depending on the biological question to address, one may think to
investigate further single-cell data leveraging other existing tools
that may provide other levels of information. Biological mechan-
isms are highly dynamic processes and thus cannot always be well
described by using a discrete approach, such as clustering. Cells can
transit across several transcriptional states governed by environ-
mental changes and external perturbations. Thus, to model such
continuance biological systems, including developmental pro-
cesses, a new class of computational methods, called trajectory
inference, have been developed in the last few years. These methods
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use scRNA-seq data generated from a population of cells underly-
ing a biological process that were collected at different time-points,
and try to computationally order them along an evolutionary tra-
jectory, which can have different topologies (i.e. linear, bifurcating
or even more complex graph structure). Once cells have been
ordered, gene expression patterns throughout the inferred trajec-
tories can be used to identify key regulator genes governing cell fate
decisions.

We first introduced the concept of pseudotime withMonocle as
a robust methodology to describe developmental systems
[41]. Since Monocle, which is at its third version now [42], the
number of available methods has grown exponentially
[87]. Recently, a newly proposed method to infer developmental
trajectories that substantially differ from others, was modeling
cellular processes using the optimal transport problem [88]. Inter-
estingly, to date, more than 100 methods have been developed to
infer cell trajectory [87].

Once trajectories have been reconstructed, RNA velocities [89]
can be overlaid onto the inferred trajectory to add directionality to
the reconstructed dynamical process.

15 Discussion and Future Directions

With the outburst of scRNA-seq technology, an increasing number
of analytic methods have been introduced to the scientific commu-
nity. Despite the wide range of analytic options, the absence of
standardization leads to high entry barriers. In the present review,
we propose four ready-to-use pipelines for the analysis of scRNA-
seq data that could fit various biological data types. With a novice in
mind, these computational pipelines provide an effective and simple
workflow, including normalization of raw counts, feature selection,
dimensionality reduction, and data clustering. The proposed pipe-
lines cover both R and Python programming languages, and
employ Seurat (R), Scanpy (Python), Monocle (R), and gf-icf
(R) platforms.

As it is important to have the ability to interpret outputs in
order to ensure data coherence, we reviewed the key steps of
scRNA-seq analysis. We also highlighted guidelines and offered
standardized values to filter and reduce data dimensionality. It is
the user’s responsibility to carefully assess the output of their analy-
sis, and if necessary, adjust the pipeline default settings to fit source
data. Furthermore, as the field evolves rapidly, this review might lag
behind the up-to-date tools. Therefore, we recommend referring to
this review as a basic workflow guideline while keeping in line with
innovations in the field.
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As single-cell sequencing is no longer limited to transcriptional
experiments but allows for capturing also other data types, includ-
ing DNA, ChIP, and ATAC, we presume that future pipelines must
be able to cope with multiomics data integration. Single-cell mul-
tiomics will simultaneously allow gaining information on all levels
of the living cells, including DNA, RNA, proteins, and epigenetic
modification [90–92]. Integration of these different “omics” infor-
mation into a single dimension will allow having a more compre-
hensive understanding of the cell fate regulations and phenotypes.

Interestingly, another new technology that necessitates high
scaling computational tools is the spatial transcriptomics, which
allows to identify the cell type spatial composition of tissues
[93, 94]. This approach may help to increase the accuracy of the
investigated system by adding another guiding dimension to the
data. By positionally annotating the cells, it would be possible to
precisely cluster different subpopulations in highly heterogeneous
systems, such as organoids, and track the spatiotemporal dynamics
between them. Therefore, the ability to conserve the spatial posi-
tion will provide a better perception of tissue organization, func-
tionality, and development.

An additional perspective is the use of high-throughput
scRNA-seq technology for personalized medicine. Several efforts
have been made to screen different cell types and tissues via scRNA-
seq to tailor appropriate medical treatment to patients’ individual
characteristics [95, 96]. Developing new tools that incorporate
machine learning approaches may increase the advancement in the
field of precision medicine, and bring it closer to clinical usage. We
believe that innovative tools occupying the aforementioned proper-
ties will stand at the forefront of science.

16 Notes

1. Before proceeding with further analyses, it is recommendable
to go through sequencing and mapping statistics, which are
often provided by the bioinformatic tool used for preproces-
sing. For instance, less than 70% of barcode-associated reads
might suggest high levels of ambient RNA (due to a significant
level of lysed cells or insufficient washes after tissue
dissociation).

2. Reads confidently mapped to the genome should exceed 80%
of the total.

3. QC-based outlier detection, that is, multiplet and lytic cell
filtering, should be performed taking these covariates
concomitantly.

4. The threshold for filtering outlier cells should be as permissive
as possible to avoid excessive dropout effect. It could be further
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adjusted once downstream analyses have been performed to
better interpret data.

5. As transcripts coverage may differ between samples, it is essen-
tial to set the threshold for each one separately.

6. When setting a threshold, the biological property of the dataset
should be considered, as increased respiratory or metabolic
processes may also cause high mitochondrial reads.

7. The selected threshold should be as permissible as possible to
avoid a dropout effect or removal of a rare cell population.

8. An acceptable guideline is to adjust the threshold to the smal-
lest cluster size or to the number of genes expressed in more
than 1–5% in the dataset.

9. Despite the normalization method of choice, data transforma-
tion (e.g., log transformation) should always be applied since
most tools for downstream analyses expect normally
distributed data.

10. Try to avoid correcting biological batches, unless you want to
infer trajectories and such correction does NOT mask other
biological information of interest.

11. When performing batch correction on technical as well as
biological covariates, it should be done simultaneously.

12. The choice of HVGs may influence downstream analysis,
although it has been shown that choosing between 200 and
2400HVGs does not affect representation in lower dimensions
(i.e., PCA space) [9].

13. Feature selection based on mean and variance cannot be per-
formed on data scaled to zero mean and unit variance.

14. Principal components can also be used to inspect the effect of
technical covariates on data [65], or to address the role of
specific genes across the dataset [69].

15. Nonlinear dimensionality reduction methods are a powerful
tool for data visualization, NOT summarization.

16. Downstream analyses require summarized data, for example,
PCA or diffusion maps.
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Chapter 20

RNA-Seq Data Analysis in Galaxy

Bérénice Batut, Marius van den Beek, Maria A. Doyle, and Nicola Soranzo

Abstract

A complete RNA-Seq analysis involves the use of several different tools, with substantial software and
computational requirements. The Galaxy platform simplifies the execution of such bioinformatics analyses
by embedding the needed tools in its web interface, while also providing reproducibility. Here, we describe
how to perform a reference-based RNA-Seq analysis using Galaxy, from data upload to visualization and
functional enrichment analysis of differentially expressed genes.

Key words Galaxy, Workflow, Visualizations, Quality control, Sequence mapping, Differential gene
expression, Functional enrichment

1 Introduction

In recent years, RNA sequencing (in short RNA-Seq) has become a
very widely used technology to analyze the continuously changing
cellular transcriptome, that is, the set of all RNA molecules in one
cell or a population of cells. One of the most common aims of
RNA-Seq is the profiling of gene expression by identifying genes or
molecular pathways that are differentially expressed (DE) between
two or more biological conditions.

The computational workflow for the detection of DE genes
and pathways from RNA-Seq data requires the use of several
command-line tools and substantial computational resources that
most users may not have access to.

Galaxy [1] is a powerful and easy to use web-based platform for
scientific data analysis. Steps in an analysis are executed by running
Galaxy tools, which describe how to translate parameters for
command-line software into a user-friendly web interface.

The graphical web interface and a large amount of high-quality,
community-developed and maintained tools and training materials
enable rapid interactive analyses for novices and expert users alike.

For each step in an analysis, Galaxy captures several metadata
(e.g., tool identifier and version, inputs, and parameters) enabling
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reproducibility. Galaxy also allows users to easily share their work-
flows and data.

Galaxy’s backend architecture can interface with various cloud
and high-performance computing (HPC) environments, thereby
providing the necessary computing resources to run computation-
ally demanding analyses, while the end users only need access to a
web browser.

Galaxy is free, open source software and can be installed locally
or used on more than 120 publicly available servers. Galaxy is
supported by a large community of users and developers. An
important community-maintained resource is the Galaxy Training
Material (available at https://training.galaxyproject.org) [2], which
hosts a wide range of step-by-step hands-on tutorials for common
bioinformatic analysis tasks. In particular, this chapter is based on
the “Reference-based RNA-Seq data analysis” tutorial (https://
training.galaxyproject.org/topics/transcriptomics/tutorials/ref-
based/tutorial.html), and we defer the reader to additional expla-
nations there.

In this chapter we will use a selection of Galaxy tools to show
step-by-step how to find differentially expressed genes, from data
upload to functional enrichment analysis, using real
experimental data.

2 Materials

2.1 RNA-Seq Dataset In the study of [3], the authors identified genes and pathways
regulated by the pasilla (ps) gene (the Drosophila melanogaster
homologue of the mammalian splicing regulators Nova-1 and
Nova-2 proteins) using RNA-Seq data. They depleted the ps gene
in D. melanogaster by RNA interference (RNAi). Total RNA was
then isolated and used to prepare both single-end and paired-end
RNA-Seq libraries for treated (ps-depleted) and untreated samples.
These libraries were sequenced to obtain RNA-Seq reads for each
sample. The RNA-Seq data for the treated and untreated samples
can be compared to identify the effects of the ps gene depletion on
gene expression.

In this chapter, we illustrate the analysis of the gene expression
data step by step using seven of the original datasets:

l Four untreated samples: GSM461176, GSM461177,
GSM461178, GSM461182.

l Three treated samples (ps gene depleted by RNAi):
GSM461179, GSM461180, GSM461181.

In the first part of this chapter, we will use the files for two out
of the seven samples to demonstrate how to calculate read counts
(a measure of the gene expression) from FASTQ (https://en.
wikipedia.org/wiki/FASTQ_format) files.
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2.2 Computational

Resources

The entire analysis described in this article can be conducted effi-
ciently on any Galaxy server which has the required tools and
reference genome; a list can be found in the “Available on these
Galaxies” menu on the “Reference-based RNA-Seq data analy-
sis” tutorial webpage mentioned above. However, to be sure, the
authors recommend using the Galaxy Europe server (https://
usegalaxy.eu).

3 Methods

This chapter provides a detailed workflow for the detection of DE
genes and gene ontologies from raw RNA-Seq data using Galaxy
(Fig. 1). The tutorial starts from quality control of the reads using
FastQC and Cutadapt [4]. The reads are then mapped to a refer-
ence genome using STAR [5] and checked using the Integrative
Genomics Viewer (IGV) [6] and other tools. From the mapped
sequences, the number of reads per annotated genes are counted
using featureCounts [7]. For each step, quality reports are aggre-
gated using MultiQC [8]. DESeq2 [9] is then used on the read
counts to normalize them and extract the differentially expressed
genes.Heatmap2 andVolcano Plot are used to visualize DE genes
and finally, functional enrichment analysis of the DE genes is per-
formed using goseq [10] to extract interesting Gene Ontologies.

3.1 Upload FASTQ

to Galaxy

RNA-Seq analysis usually starts with raw data from the sequencing
machine in FASTQ format. Therefore, we first need to upload the
FASTQ files for two out of the seven samples into Galaxy.

The Galaxy user interface is split up into four main areas:

l The top panel for navigating different modes (Analysis, Work-
flows, Library, Shared Data, User Preferences).

l The left hand side contains a searchable menu, called the Tool-
box, which is used to find and select Tools in the Analysis and
Workflow mode.

l The center panel, whose content changes during the different
parts of an analysis. When preparing to run a Galaxy tool or
workflow, the user can see and change tool parameters, while it
may also be used to show information and metadata for a dataset
or its content.

l The right hand side, called the History, which in the analysis
mode shows the list of datasets uploaded or created by previ-
ously executed and currently executing tools.

Please login or register for a free account at the Galaxy server
you are using to run the tutorial (e.g., https://usegalaxy.eu).
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Hands-on: Data Upload

1. Create a new history for this RNA-Seq exercise:
(a) Click the + icon at the top of the history panel.

(b) Click on Unnamed history.

(c) Write a proper name, for example, Reference-based
RNA-seq data analysis.

2. Import the FASTQ file pairs from the Shared data library:
(a) Go into Shared Data (top panel) then Data Libraries.

(b) Click on GTN—Material then Transcriptomics, Refer-
ence-based RNA-seq data analysis, and https://doi.
org/10.5281/zenodo.1185122.

Fig. 1 Overview of the analysis pipeline used
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(c) In the search box type fastq to see just the FASTQ files.

(d) Select the following files:
l https://zenodo.org/api/files/1d804082-4153-47f1-

a320-4ac261ce091d/GSM461177_1.fastqsanger

l https://zenodo.org/api/files/1d804082-4153-47f1-
a320-4ac261ce091d/GSM461177_2.fastqsanger

l https://zenodo.org/api/files/1d804082-4153-47f1-
a320-4ac261ce091d/GSM461180_1.fastqsanger

l https://zenodo.org/api/files/1d804082-4153-47f1-
a320-4ac261ce091d/GSM461180_2.fastqsanger

(e) Click on the Export to History button near the top and
select as Datasets from the drop-down menu.

(f) In the pop-up window, select the history you want to
import the files to (or create a new one).

(g) Click on Import.

(h) Click the green pop-up box or Analyze Data in the top
panel to move to the analysis page.

3. Rename each dataset according to the sample id (e.g.,
GSM461177_1):
(a) Click on the pencil icon for the dataset to edit its

attributes.

(b) In the central panel, change the Name field.

(c) Click the Save button.

4. Check that the datatype (i.e., format) of each dataset is fas-
tqsanger, not fastq (if needed, click on the dataset name to
expand the box to see). If it is not, please change the datatype
to fastqsanger.
(a) Click on the pencil icon for the dataset to edit its

attributes.

(b) In the central panel, click on the Datatypes tab on
the top.

(c) Select fastqsanger.

(d) Click the Change datatype button.

5. Add to each dataset a tag corresponding to the name of the
sample (#GSM461177 or #GSM461180):
(a) Click on the dataset.

(b) Click on the Edit dataset tags icon.

(c) Add a tag starting with #. Tags starting with # will be
automatically propagated to the outputs of tools using
this dataset.

(d) Check that the tag is appearing below the dataset name.
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The reads are raw data from the sequencing machine without
any preprocessing. They first need to be assessed for their quality.

3.2 Quality Control

and Trimming

During sequencing, errors are introduced, such as incorrect
nucleotides being called. These are due to the technical limitations
of each sequencing platform. Sequencing errors might bias the
analysis and can lead to a misinterpretation of the data. Adapters
may also be present if the reads are longer than the fragments
sequenced and trimming these may improve the number of reads
mapped.

Sequence quality control is therefore an essential first step in
every analysis. We recommend to use tools such as FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
to create a report of sequence quality, MultiQC [8] to aggregate
generated reports, and Cutadapt [4] to improve the quality of
sequences via trimming and filtering (see Note 1 for alternative
tools). Note that to find a tool in Galaxy, you can search for it in
the search box at the top of the tool panel on the left. To run a tool
after selecting the parameters, just click the Execute button on the
tool form.

Hands-on: Quality Control
1. FastQC:

(a) For the “Short read data from your current history” input:
l Click on the Multiple datasets button.

l Select all the input datasets you have uploaded by
keeping the Ctrl (or COMMAND ) key pressed and
clicking on the various datasets.

2. MultiQC with the following parameters to aggregate the
FastQC reports:
(a) In “Results”.

l “Which tool was used generate logs?”: FastQC.

l In “FastQC output”.
– “Type of FastQC output?”: Raw data.

– “FastQC output”: the 4 RawData files (output of
FastQC).

3. Inspect the web page output from MultiQC for each FASTQ
dataset.

The aggregate report shows that everything seems good for
three of the files, but in one file (reverse reads of GSM461180) the
quality decreases quite a lot at the end of the sequences (Fig. 2).

We should trim the reads to get rid of bases that were
sequenced with high uncertainty (i.e. low quality bases) at the
read ends, and also remove reads of overall bad quality.
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Hands-on: Read Trimming and Filtering

1. Cutadapt with the following parameters to trim low quality
sequences:
(a) “Single-end or Paired-end reads?”: Paired-end.

l “FASTQ/A file #1”: both fastqsanger datasets ending
with “_1”, selected using the multiple datasets option.

l “FASTQ/A file #2”: both fastqsanger datasets ending
with “_2”, selected using the multiple datasets option.

(b) In the “Filter Options” section:
l “Minimum length”: 20

(c) In the “Read Modification Options” section:
l “Quality cutoff”: 20

(d) In the “Output Options” section:
l “Report”: Yes.

2. Inspect the generated Report datasets in your history.

For GSM461177, 5,072,810 bp has been trimmed for the
forward reads (read 1) and 8,648,619 bp for the reverse (read 2)
because of quality. For GSM461180, 10,224,537 bp for forward
and 51,746,850 bp for the reverse. It is not a surprise: we saw that
at the end of the reads the quality was dropping more for the
reverse reads than for the forward reads, especially for
GSM461180.

3.3 Mapping To make sense of the reads, we need to first figure out where the
sequences originated from in the genome, so we can then deter-
mine to which genes they belong. When a reference genome for the
organism is available, this process is known as aligning or
“mapping” reads to the reference.

In this study, the authors usedD. melanogaster cells. We should
map the quality-controlled sequences to the reference genome of
D. melanogaster [11], i.e. the set of nucleic acid sequences assem-
bled as a representative example of the species’ genetic material.

With eukaryotic transcriptomes most reads originate from pro-
cessed mRNAs lacking introns, therefore they cannot be simply
mapped back to the genome as we normally do for DNA data
(Fig. 3). Instead, several splice-aware mappers (e.g., TopHat [12],
HISAT2 [13, 14], STAR [5]) have been developed to efficiently
map transcript-derived reads against a reference genome. Here we
will map our reads to the D. melanogaster genome using STAR.

Fig. 3 The types of RNA-Seq reads (adapted from Fig. 1a from [13]), reads that mapped entirely within an exon
(in red), reads spanning over two exons (in blue), read spanning over more than two exons (in purple)
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Hands-on: Spliced Mapping

1. Import the Ensembl gene annotation for D. melanogaster
(Drosophila_melanogaster.BDGP6.87.gtf) from the Shared
Data library into your current Galaxy history.
(a) Rename the dataset if necessary.

(b) Verify that the datatype is gtf and not gff, and that the
database is dm6. If not, click on the pencil icon and edit its
attributes.

2. RNA STAR to map the reads from both samples on the
reference genome:
(a) “Single-end or paired-end reads”: Paired-end

(as individual datasets)
l “RNA-Seq FASTQ/FASTA file, forward reads”: “Read

1 Output” for both samples (outputs of Cutadapt),
selected using the multiple datasets option.

l “RNA-Seq FASTQ/FASTA file, reverse reads”: “Read
2 Output” for both samples (outputs of Cutadapt),
selected using the multiple datasets option.

(b) “Custom or built-in reference genome”: Use a built-in
index.
l “Reference genome with or without an annotation”:

“use genome reference without builtin gene-model”.
– “Select reference genome”: Fly (Drosophila Melano-

gaster): “dm6 Full”.

– “Gene model (gff3,gtf) file for splice junctions”: the
imported Drosophila_melanogaster.BDGP6.87.
gtf.

– “Length of the genomic sequence around annotated
junctions”: 36 (This parameter should be length of
reads—1).

3. MultiQC to aggregate the STAR logs:
(a) In “Results”.

l “Which tool was used generate logs?”: STAR.

l In “STAR output”.
– “Type of STAR output?”: Log.

– “STAR output”: log files (outputs of RNA STAR).

TheMultiQC report reveals that around 80% of reads for both
samples are mapped exactly once to the reference genome. Percen-
tages below 70% should be investigated for potential contamina-
tion, so here we can safely proceed with the analysis. Both samples
have a low (less than 10%) percentage of reads that mapped to
multiple locations on the reference genome. This is in the normal
range for Illumina short-read sequencing, but the range expected
may be lower for long-read sequencing datasets that can span larger
repeated regions in the reference sequence.
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The main output of STAR is a BAM (https://en.wikipedia.
org/wiki/Binary_Alignment_Map) file. The BAM files contain
mapping information for all our reads, making it difficult to inspect
and explore in text format. A powerful tool to visualize the content
of BAM files is the Integrative Genomics Viewer (IGV).

Hands-on: Inspection of Mapping Results

1. Install IGV from https://software.broadinstitute.org/soft
ware/igv/download (if not already installed).

2. Start IGV locally.

3. Expand the mapped.bam file (output of RNA STAR) for
GSM461177.

4. Click on the local in display with IGV local D. melanogaster
(dm6) to load the reads into the IGV browser.

5. IGV: Zoom to chr4:540,000–560,000 (Chromosome
4 between 540 kb to 560 kb) (Fig. 4a).

6. IGV: Inspect the splice junctions using a Sashimi plot
(Fig. 4b).
(a) Right click on the BAM file (in IGV).

(b) Select Sashimi Plot from the menu.

After the mapping, we have now the information on where the
reads are located on the reference genome and how well they were
mapped (see Note 2 for more quality checks). The next step in
RNA-Seq data analysis is quantification of the number of reads

Fig. 4 Inspection of BAM file with IGV on chromosome 4. (a) On the top, the coverage plot shows the sum of
mapped reads at each position as grey peaks. In the middle, each read is displayed where it maps. The blue
lines indicate the junction events (or splice sites), that is, reads that are mapped across an intron. On the
bottom, the reference genome with its genes is represented. (b) Sashimi plot showing the coverage in red with
the arcs representing the splice junctions. The numbers refer to the number of reads spanning the junctions.
On the bottom, the different groups of linked boxes represent the different transcripts from the genes at this
location that are present in the GTF file

376 Bérénice Batut et al.

https://en.wikipedia.org/wiki/Binary_Alignment_Map
https://en.wikipedia.org/wiki/Binary_Alignment_Map
https://software.broadinstitute.org/software/igv/download
https://software.broadinstitute.org/software/igv/download


mapped to genomic features (genes, transcripts, exons, . . .). Here
we will focus on the genes as we would like to identify the ones that
are differentially expressed because of the pasilla gene knockdown.

3.4 Count

the Number of Reads

per Annotated Genes

To compare the expression of single genes between different con-
ditions (e.g., with or without ps depletion), an essential first step is
to quantify the number of reads per gene, or more specifically the
number of reads mapping to the exons of each gene. A fast and
efficient tool for this task is featureCounts [7] (see Note 3 for
alternative tools).

Hands-on: Counting the Number of Reads per Annotated Gene

1. featureCounts to count the number of reads per gene:
(a) “Alignment file”: mapped.bam files (outputs of RNA

STAR).

(b) “Specify strand information”: Unstranded (see Note 4).

(c) “Gene annotation file”: in your history.
l “Gene annotation file”: Drosophila_melanogaster.

BDGP6.87.gtf.

(d) “Output format”: Gene-ID “\t” read-count (MultiQC/
DESeq2/edgeR/limma-voom compatible).

(e) “Create gene-length file”: Yes.

(f) In “Options for paired-end reads”:
l “Count fragments instead of reads”: Enabled; frag-

ments (or templates) will be counted instead of reads.

(g) In “Advanced options”:
l “GFF feature type filter”: exon.

l “GFF gene identifier”: gene_id.

l “Allow reads to map to multiple features”.

l “Minimum mapping quality per read”: 10

2. MultiQC to aggregate the report:
(a) In “Results”:

l “Which tool was used generate logs?”: featureCounts.

l “Output of FeatureCounts”: Summary files (outputs of
featureCounts).

The main output of featureCounts is a table with the number
of reads (or fragments in the case of paired-end reads) mapped to
each gene (in rows, with their ID in the first column) in the
provided annotation. FeatureCounts can also generate a file with
the length of each gene, a file we will need later for the functional
enrichment analysis.
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3.5 Identification

of Differentially

Expressed Genes

To be able to identify differential gene expression induced by ps
depletion, all datasets (three treated and four untreated) must be
analyzed following the same procedure. To save time, we have run
the previous steps for you and generated seven files with the counts
for each gene of D. melanogaster for each sample.

Hands-on: Import all Count Files

1. Create a new empty history.

2. Import the seven count files from the same Shared Data library:
GSM461176_untreat_single.counts, GSM461177_untreat_-
paired.counts, GSM461178_untreat_paired.counts,
GSM461179_treat_single.counts, GSM461180_treat_paired.
counts, GSM461181_treat_paired.counts, GSM461182_un-
treat_single.counts.

3. Rename the datasets to the names above (i.e., remove the path
prefix).

We would like now to calculate the extent of differential gene
expression. DESeq2 [9] is a tool for differential analysis of count
data which uses negative binomial generalized linear models (see
Note 5 for alternative tools). DESeq2 takes read count files from
different samples, combines them into a big table (with genes in the
rows and samples in the columns) and applies normalization for
sequencing depth and library composition. Gene length normali-
zation does not need to be accounted for because we are comparing
the counts between sample groups for the same gene.

DESeq2 also runs the differential gene expression analysis,
whose two basic tasks are as follows:

l Estimate the biological variance using the replicates for each
condition (see Note 6 about replicates).

l Estimate the significance of expression differences between any
two conditions.

Multiple factors can be incorporated in the analysis describing
known sources of variation (e.g., treatment, tissue type, gender,
batches), with two or more levels representing the conditions for
each factor. After normalization we can compare the response of the
expression of any gene to the presence of different levels of a factor
in a statistically reliable way.

In our example, we have samples with two varying factors that
can contribute to differences in gene expression: Treatment (either
treated or untreated) and Sequencing type (paired-end or single-
end). Here, treatment is the primary factor that we are interested
in. The sequencing type is further information we know about the
data that might affect the analysis. Multifactor analysis allows us to
assess the effect of the treatment, while taking the sequencing type
into account too.
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Hands-on: Determine Differentially Expressed Features

1. DESeq2 with the following parameters:
(a) “how”: Select datasets per level.

l In “1: Factor”.

– “Specify a factor name”: Treatment

– In “Factor level”:
1. In “1: Factor level”:

(a) “Specify a factor level”: treated.
(b) “Counts file(s)”: the three gene count files with

“treat” in their name.

2. In “2: Factor level”:
(a) “Specify a factor level”: untreated
(b) “Counts file(s)”: the four gene count files with

“untreat” in their name.

l Click on “Insert Factor” (not on “Insert Factor level”).

l In “2: Factor”.
– “Specify a factor name”: Sequencing

– In “Factor level”:
1. In “1: Factor level”:

(a) “Specify a factor level”: PE
(b) “Counts file(s)”: the four gene count files with

“paired” in their name.

2. In “2: Factor level”:
(a) “Specify a factor level”: SE
(b) “Counts file(s)”: the three gene count files with

“single” in their name.

(b) “Files have header?”: No.

(c) “Visualising the analysis results”: Yes.

(d) “Output normalized counts table”: Yes.

DESeq2 generated three outputs. The first output is the table
with the normalized counts for each gene (rows) in the samples
(columns). The second output is a graphical summary of the
results, useful to evaluate the quality of the experiment:

l Plot with the first two dimensions from a principal component
analysis (PCA) run on the normalized counts of the samples
(Fig. 5a). It shows the samples in the 2D plane spanned by
their first two principal components. Each replicate is plotted
as an individual data point. This type of plot is useful for visua-
lizing the overall effect of experimental covariates and batch
effects.

l Heatmap of the sample-to-sample distance matrix (with cluster-
ing) based on the normalized counts (Fig. 5b). The heatmap

RNA-Seq in Galaxy 379



gives an overview of similarities and dissimilarities between sam-
ples: the color represents the distance between the samples. Dark
blue means shorter distance, that is, closer samples given the
normalized counts.

l Dispersion estimates: gene-wise estimates (black), the fitted
values (red), and the final maximum a posteriori estimates used
in testing (blue). This dispersion plot is typical, with the final
estimates shrunk from the gene-wise estimates toward the fitted
estimates. Some gene-wise estimates are flagged as outliers and
not shrunk toward the fitted value. The amount of shrinkage can
be more or less than seen here, depending on the sample size,
the number of coefficients, the row mean and the variability of
the gene-wise estimates.

l Histogram of p-values for the genes in the comparison between
the two levels of the first factor.

l MA plot. It displays the global view of the relationship between
the expression change of conditions (log ratios, M), the average
expression strength of the genes (average mean, A), and the
ability of the algorithm to detect differential gene expression.
The genes that passed the significance threshold (adjusted p-
value <0.1) are colored in red.

Fig. 5 Graphical summary of DESeq2 results. (a) Plot with the first 2 dimensions from a principal component
analysis (PCA) run on the normalized counts of the samples. The first dimension is separating the treated
samples from the untreated samples and the second dimension the single-end datasets from the paired-end
datasets. The datasets are grouped following the levels of the two factors. No hidden effect seems to be
present on the data. If there is unwanted variation present in the data (e.g., batch effects) it is always
recommended to correct for this, which can be accommodated in DESeq2 by including in the design any
known batch variables. (b) Heatmap of the sample-to-sample distance matrix (with clustering) based on the
normalized counts. The samples are first grouped by the treatment (the first factor) and secondly by the
sequencing type (the second factor), as in the PCA plot
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The main output of DESeq2 is a summary file with the follow-
ing values for each gene:

l Gene identifier.

l Mean normalized counts, averaged overall samples from both
conditions.

l Fold change in log2 (logarithm base 2). The log2 fold changes
are based on the primary factor level 1 vs factor level 2, hence the
input order of factor levels is important. Here, DESeq2 com-
putes fold changes of ‘treated’ samples against ‘untreated’ from
the first factor ‘Treatment’, i.e. the values correspond to up- or
downregulation of genes in treated samples (see Note 7 for
details about other factors and levels comparisons).

l Standard error estimate for the log2 fold change estimate.

l Wald statistic.

l p-Value for the statistical significance of this change,

l p-Value adjusted for multiple testing with the Benjamini–Hoch-
berg procedure, which controls the false discovery rate (FDR).

For example, the gene FBgn0003360 is differentially expressed
because of the treatment: it has a significant adjusted p-value
(4.0 � 10�178, much less than 0.05) and it is less expressed (� in
the log2FC column) in treated samples compared to untreated
samples, by a factor ~8 (2|log2FC|).

Some of the tools we will use in the rest of the chapter require a
header row in the DESeq2 result file so we will add column names
before going further.

Hands-on: Add Column Names

1. Create a new file from the following (header line of the
DESeq2 output) by pasting the line below into the Galaxy
upload file Paste/Fetch data box:

GeneID Base-mean log2(FC) StdErr Wald-Stats P-value
P-adj

(a) In Type, select “Tabular”.

(b) In Settings, click on “Convert spaces to tabs”.

2. Concatenate datasets to add the header line to the annotated
genes.
(a) “Concatenate”: the Pasted entry dataset.

(b) “Dataset”: the DESeq2 result file.

We would like to extract the most differentially expressed genes
due to the treatment and with an absolute fold change >2 (equiva-
lent to an absolute log2FC > 1).
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Hands-on: Extract the most Differentially Expressed Genes

1. Filter data on any column using simple expressions to
extract genes with a significant change in gene expression
(adjusted p-value below 0.05) between treated and untreated
samples:
(a) “Filter”: output of Concatenate.

(b) “With following condition”: c7 < 0.05

(c) “Number of header lines to skip”: 1

2. Rename the output “Genes with significant adj p-value”.

3. Filter data on any column using simple expressions to
extract genes with an absolute fold change (FC) > 2.
(a) “Filter”: Genes with significant adj p-value.

(b) “With following condition”: abs(c3) > 1

(c) “Number of header lines to skip”: 1

We now have a table with 131 lines corresponding to the most
differentially expressed genes. For each gene, we have its ID, its
mean normalized counts (averaged overall samples from both con-
ditions), its log2FC and other information.

The ID for each gene is something like FBgn0003360, which is
an ID from the corresponding database, here Flybase [15]. These
IDs are unique but sometimes we prefer to have the gene symbols,
even if they may not reference a unique gene (e.g., duplicated after
reannotation), as they may hint already to a function or they help
you to search for desired candidates. We would also like to display
the location of these genes on the genome. We can extract such
information from the annotation file which we used for mapping
and counting.

Hands-on: Annotate the Differentially Expressed Genes

1. Using View all histories, drag and drop the Ensembl gene
annotation for D. melanogaster (Drosophila_melanogaster.
BDGP6.87.gtf) from the previous history into this history.

2. Annotate DESeq2/DEXSeq output tables with:
(a) “Tabular output of DESeq2/edgeR/limma/DEXSeq”:

output of the last Filter.

(b) “Input file type”: DESeq2/edgeR/limma.

(c) “Reference annotation in GFF/GTF format”: Drosophi-
la_melanogaster.BDGP6.87.gtf.

The generated output is an extension of the previous file:
(1) Gene identifiers, (2) Mean normalized counts overall samples,
(3) Log2 fold change, (4) Standard error estimate for the log2 fold
change estimate, (5) Wald statistic, (6) p-value for the Wald statis-
tic, (7) p-value adjusted for multiple testing with the Benjamini–
Hochberg procedure for the Wald statistic, (8) Chromosome,
(9) Start, (10) End, (11) Strand, (12) Feature, (13) Gene name.

382 Bérénice Batut et al.



With this extra information, we can see that FBgn0025111,
one of the most significantly overexpressed genes, is located on the
reverse strand of chromosome X, between 10,778,953 bp and
10,786,907 bp, and is also named Ant2, that is, that it corresponds
to adenine nucleotide translocase 2.

3.6 Visualization We can visualize the differentially expressed results with volcano
plots and heatmaps.

We can generate a heatmap of expression for the top differen-
tially expressed genes in the different samples. To do this we need
the normalized counts for these genes. To extract the normalized
counts for the interesting genes, we join the normalized count table
generated by DESeq2 with the table of the top differentially
expressed genes that we just generated. We can then use heatmap2
to create the heatmap. In heatmap2 we will select to scale the data
by row (genes), which converts the expression values to z-scores
and prevents highly expressed genes from dominating the plot.
However, note that heatmap2 performs clustering before scaling,
so if you want to view the clustering after scaling, use the
Table Compute tool to compute Z-scores before creating the
heatmap.

Hands-on: Create an Expression Heatmap for the Top Differentially
Expressed Genes

1. Join two Datasets side by side on a specified field to
keep only the most differentially expressed genes in the
DESeq2 normalized counts file:
(a) “Join”: the DESeq2 normalized counts file.

(b) “using column”: Column: 1.

(c) “with”: output from Annotate DESeq2/DEXSeq.

(d) “and column”: Column: 1.

(e) “Keep lines of first input that do not join with second
input”: No.

(f) “Keep the header lines”: Yes.

2. Cut columns from a table to extract the columns with the
gene IDs and normalized counts:
(a) “Cut columns”: c1-c8

(b) “Delimited by”: Tab.

(c) “From”: the output of the previous Join.

3. heatmap2 to create a heatmap:
(a) “Input should have column headers - these will be the col-

umns that are plotted”: the file from the previous Cut.

(b) “Plot title”: Top differentially expressed genes

(c) “Data transformation”: Log2(value) transform my data.
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(d) “Enable data clustering”: Yes.

(e) “Clustering columns and rows”: Cluster rows and
columns.

(f) “Labeling columns and rows”: Label columns and
not rows.

(g) “Coloring groups”: Blue to white to red.

(h) “Data scaling”: Scale my data by row.

Based on the normalized counts for the 130 top differentially
expressed genes, the samples (in columns) are clustered primarily by
treatment (Fig. 6a). We can see that the samples within each treat-
ment type (treated and untreated) tend to have similar expression
patterns for these genes (low expression is blue and high expression
is red), which is good. We can see also clusters of genes based on
their expression.

Volcano plots are commonly used to display the results of
RNA-Seq or other omics experiments. A volcano plot is a type of
scatterplot that shows statistical significance (P value) versus mag-
nitude of change (fold change). It enables quick visual
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Fig. 6 Visualization of the expression results. (a) Heatmap of normalized expression (z-scores) for the top
130 differentially expressed genes in the 7 samples. Blue indicates relatively low expression in a sample, red
indicates high. (b) Volcano plot for the comparison between treated and untreated samples, showing all genes,
with log2FC on the X-axis and�log10 of the P-value on the Y-axis. The points in grey correspond to genes that
are not significantly differentially expressed (using a threshold of 0.05 on the adjusted p-value and absolute
log2FC of 1), in red the significantly overexpressed genes (log2FC > 1) and in blue the significantly under-
expressed genes (log2FC < �1)

384 Bérénice Batut et al.



identification of genes with large fold changes that are also statisti-
cally significant. These may be the most biologically significant
genes. In a volcano plot, the most upregulated genes are toward
the right, the most downregulated genes are toward the left, and
the most statistically significant genes are toward the top. We will
make a volcano plot showing the names of the top ten most
differentially expressed genes.

Hands-on: Creating a Volcano Plot
1. Filter data on any column using simple expressions to

remove genes with NAs from the DESeq2 result:
(a) “Filter”: output from Concatenate.

(b) “With following condition”: c7!¼'NA'

(c) “Number of header lines to skip”: 1

2. Join two Datasets side by side on a specified field to add the
gene names for the most differentially expressed genes to the
DESeq2 results file:
(a) “Join”: output from the previous Filter.

(b) “using column”: Column: 1.

(c) “with”: output from Annotate DESeq2/DEXSeq.

(d) “and column”: Column: 1.

(e) “Keep lines of first input that do not join with second
input”: Yes.

(f) “Keep the header lines”: Yes.

3. Volcano Plot to create a volcano plot:
(a) “Specify an input file”: output of the previous Join.

(b) “FDR (adjusted P value)”: Column: 7.

(c) “P value (raw)”: Column: 6.

(d) “Log Fold Change”: Column: 3.

(e) “Labels”: Column: 20.

(f) “Significance threshold”: 0.05

(g) “LogFC threshold to colour”: 1.0

(h) “Points to label”: Significant.
l “Only label top most significant”: 10

(i) In “Plot options”:
l “Label boxes”: No.

Figure. 6b shows a volcano plot for this dataset. The signifi-
cantly differentially expressed genes (using thresholds of adjusted p-
value 0.05 and absolute log2FC of 1) are colored red if they are
upregulated and blue if they are downregulated. The top ten most
significantly differentially expressed genes by P value are labeled. In
this plot we can see that the most significantly upregulated gene is
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Ant2, the most downregulated is Kal1, and that the top ten genes
are mostly downregulated (8/10 genes).

3.7 Functional

Enrichment Analysis

We have extracted genes that are differentially expressed in treated
(ps gene-depleted) samples compared to untreated samples. Now,
we would like to know if the differentially expressed genes are
enriched transcripts of genes which belong to more common or
specific categories in order to identify biological functions that
might be impacted. Gene Ontology (GO) analysis is widely used
to reduce complexity and highlight biological processes in genome-
wide expression studies. To perform the GO analysis of RNA-Seq
data, we will use the goseq tool [10]. goseq provides methods for
performing GO analysis of RNA-Seq data while taking gene length
bias into account. Goseq could also be applied to other category-
based tests of RNA-Seq data, such as KEGG pathway analysis.

goseq needs two files as inputs:

l A tabular file with differentially expressed genes from all genes
assayed in the RNA-Seq experiment with two columns: the Gene
IDs (unique within the file), in uppercase letters; a Boolean
indicating whether the gene is differentially expressed or not
(“True” if differentially expressed and “False” if not).

l A file with information about the length of a gene to correct for
potential length bias in differentially expressed genes.

Hands-on: Prepare the Datasets for Goseq
1. Compute an expression on every row with.

(a) “Add expression”: bool(c7 < 0.05)

(b) “as a new column to”: the DESeq2 result file.

2. Cut with.
(a) “Cut columns”: c1,c8

(b) “Delimited by”: Tab.

(c) “From”: the output of the Compute.

3. Change Case with.
(a) “From”: the output of the previous Cut.

(b) “Change case of columns”: c1

(c) “Delimited by”: Tab.

(d) “To”: Upper case.

4. Rename the output to “Gene IDs and differentially
expression”.

5. Drag and drop one of the feature length datasets generated by
featureCounts into this history using the View all histories.

6. Change Case with.
(a) “From”: the feature lengths (output of featureCounts).
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(b) “Change case of columns”: c1

(c) “Delimited by”: Tab.

(d) “To”: Upper case.

7. Rename the output to “Gene IDs and length”.

We now have the two required input files for goseq.

Hands-on: Perform GO Analysis

1. goseq with.
(a) “Differentially expressed genes file”: Gene IDs and differ-

entially expression.

(b) “Gene lengths file”: Gene IDs and length.

(c) “Gene categories”: Get categories.
l “Select a genome to use”: Fruit fly (dm6).

l “Select Gene ID format”: Ensembl Gene ID.

l “Select one or more categories”: GO: Cellular Compo-
nent, GO: Biological Process, GO: Molecular
Function.

(d) In “Output Options”.
l “Output Top GO terms plot?”: Yes.

l “Extract the DE genes for the categories (GO/KEGG
terms)?”: Yes.

The main output of goseq is a table (“Ranked category list -
Wallenius method”) with the following columns for each GO term:

1. GO category (“category”).

2. p-Value for overrepresentation of the term in the differentially
expressed genes (“over_rep_pval”).

3. p-Value for underrepresentation of the term in the differentially
expressed genes (under_rep_pval).

4. Number of differentially expressed genes in this category
(“numDEInCat”).

5. Number of genes in this category (“numInCat”).

6. Details about the term.

7. Ontology with MF for “Molecular Function” (molecular activ-
ities of gene products), CC for “Cellular Component” (where
gene products are active), BP for“Biological Process” (path-
ways and larger processes made up of the activities of multiple
gene products).

8. p-Value for overrepresentation of the term in the differentially
expressed genes, adjusted for multiple testing with the Benja-
mini–Hochberg procedure (“p.adjust.over_represented”).
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9. p-Value for underrepresentation of the term in the differentially
expressed genes, adjusted for multiple testing with the Benja-
mini–Hochberg procedure (“p.adjust.under_represented”).

From this table we can extract the 31 overrepresented GO
terms (using the Filter tool on column 8) and the 83 underrepre-
sented terms (using the Filter tool on column 9), and then group
them (using Group data tool on column 7 and count on column
1) to identify that over the 31 overrepresented GO terms, 20 are
BP, 3 CC, and 8 MF.

goseq generates also a graph with the top ten overrepresented
GO terms and a table with differentially expressed genes (from the
list we provided) associated to the GO terms (DE genes for cate-
gories (GO/KEGG terms)).

In this chapter, we covered only GO enrichment analysis with
goseq, but other gene set enrichment analysis can be done with
Galaxy (see Note 8).

3.8 Sharing

the Results

Using Galaxy to perform this analysis makes it is both reusable and
shareable. In fact, it is possible to simply extract a workflow from a
Galaxy history that describes each step of the analysis (tool with
parameters used, connections to previous and following steps).
This workflow can then be applied on the same or different data,
guaranteeing reproducibility.

Moreover, Galaxy histories and workflows can be effortlessly
shared with other selected users (via their Galaxy user account or a
link), or made publicly available to anyone. See the Galaxy 101 tuto-
rial (https://training.galaxyproject.org/training-material/topics/
introduction/tutorials/galaxy-intro-101/tutorial.html) for more
details.

4 Conclusion

In this tutorial, we have used the Galaxy platform to perform a
complex reference-based RNA-Seq analysis through a web interface
in a reproducible and easily shareable way. We extracted meaningful
information from the RNA sequencing data, such as which genes
are up or downregulated by the depletion of the pasilla gene, and
also which GO terms are enriched.

5 Notes

1. As alternative to Cutadapt, theTrimGalore! orTrimmomatic
tools can be used.
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2. In addition to checking the mapping percentage and quick
visual check using IGV, the quality of the data and mapping
can be checked further:
(a) Duplicate reads: Duplicate reads can come from highly

expressed genes, therefore they are usually kept in
RNA-Seq differential expression analysis. But a high per-
centage of duplicates may indicate an issue, for example,
overamplification during PCR of low complexity library.
MarkDuplicates from the Picard suite (http://bro
adinstitute.github.io/picard/) can examine aligned
records from a BAM file to locate duplicate reads, that is,
reads mapping to the same location (based on the start
position of the mapping). In general, up to 50% of dupli-
cation can be considered normal to obtain. So both our
samples are good.

(b) Number of reads mapped to each chromosome: To assess the
sample quality (e.g., excess of mitochondrial contamina-
tion), check the sex of samples, or see if any chromosome
have highly expressed genes, we can check the numbers of
reads mapped to each chromosome using IdxStats from
the Samtools suite.

(c) Gene body coverage: The gene body is the different regions
of a gene. It is important to check if reads coverage is
uniform over gene body or if there is any 50–30 bias. For
example, a bias toward the 50 end of genes could indicate
degradation of the RNA. Alternatively, a 30 bias could
indicate that the data is from a 30 assay. To assess this, we
can use the Gene Body Coverage tool from the RSeQC
tool suite [16]. This tool scales all transcripts to
100 nucleotides (using a provided annotation file) and
calculates the number of reads covering each nucleotide
position.

(d) Read distribution across features: With RNA-Seq data, we
expect most reads to map to exons rather than introns or
intergenic regions. Before going further in counting and
differential expression analysis, it may be interesting to
check the distribution of reads across known gene features
(exons, CDS, 50 UTR, 30 UTR, introns, intergenic
regions). For example, a high number of reads mapping
to intergenic regions may indicate the presence of DNA
contamination. We can use the Read Distribution tool
from the RSeQC tool suite, which uses the annotation file
to identify the position of the different gene features.

3. As an alternative to featureCounts, the HTSeq-count [17]
tool can be used.

4. RNAs that are typically targeted in RNA-Seq experiments are
single stranded (e.g., mRNAs) and thus have polarity (50 and 30

RNA-Seq in Galaxy 389

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


ends that are functionally distinct). During a typical RNA-Seq
experiment, the information about strandness is lost after both
strands of cDNA are synthesized, size selected, and converted
into a sequencing library. However, this information can be
quite useful for the read counting step, especially for reads
located on the overlap of two genes that are on different
strands.

Some library preparation protocols create so called
stranded RNA-Seq libraries that preserve the strand informa-
tion. This information can be estimated using a tool called
Infer Experiment from the RSeQC [16] tool suite. This tool
takes the BAM files from the mapping, selects a subsample of
the reads and compares their genome coordinates and strands
with those of the reference gene model (from an annotation
file). Based on the strand of the genes, it can gauge whether
sequencing is strand-specific, and if so, how reads are stranded
(forward or reverse).

5. Alternative tools that could be used instead of DESeq2 are
edgeR and limma-voom.

6. The expression analysis is estimated from read counts and
attempts are made to correct for variability in measurements
using replicates, which are absolutely essential for accurate
results. For your own analysis, we advise you to use at least
3, but preferably 5, biological replicates per condition. It is
possible to have different numbers of replicates per condition.

A technical replicate is an experiment which is performed
once but measured several times (e.g., multiple sequencing of
the same library). A biological replicate is an experiment per-
formed (and also measured) several times.

In our data, we have four biological replicates (here called
samples) without treatment and three biological replicates with
treatment (pasilla gene depleted by RNAi).

We recommend to combine the count tables for different
technical replicates (but not for biological replicates) before a
differential expression analysis.

7. DESeq2 in Galaxy returns the comparison between the differ-
ent levels for the first factor, after correction for the variability
due to the second factor. In our current case, treated against
untreated for any sequencing type. To compare sequencing
types, we should run DESeq2 again switching factors: factor
1 (treatment) becomes factor 2 and factor 2 (sequencing)
becomes factor 1.

To compare the effect of two factors, for example to see if
there is a difference in the treatment effect detected with
paired vs. single end data, we should run DESeq2 another
time but with only one factor with the following four levels:
treated-PE, untreated-PE, treated-SE, untreated-SE. By
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selecting “Output all levels vs all levels of primary factor (use
when you have >2 levels for primary factor)” to “Yes,” we can
then compare treated-PE vs treated-SE.

8. goseq can also be used to identify interesting pathways by
replacing GO terms with KEGG pathways. The KEGG data-
base is a collection of pathway maps representing the current
knowledge on the molecular interaction, reaction and relation
networks. A map can integrate many entities including genes,
proteins, RNAs, chemical compounds, glycans, and chemical
reactions, as well as disease genes and drug targets.

From the goseq output, we could investigate which genes
are involved in which pathways by looking at the second file
generated by goseq. This can be less cumbersome if the path-
ways are represented as a diagram: Pathview [18] can help to
generate automatically pathway representation with informa-
tion about the genes (e.g., expression).

Other gene set enrichment tools available for Galaxy
include fgsea [19] and EGSEA [20]. fgsea (fast gene set
enrichment analysis) takes a ranked list of genes and some
gene sets to test, such as from the Molecular Signatures Data-
base (MSigDB), and identifies enriched gene sets. It produces a
table of enriched gene sets and barcode plots showing the
ranking of the gene set. MSigDB only provide gene sets for
human, but if you are using another species you could first map
the nonhuman gene ids to human. EGSEA (Ensemble of Gene
Set Enrichment Analyses) is another gene set enrichment tool
that takes a table of counts and built-in gene sets, including
MSigDB, and runs a number of enrichment algorithms. It
produces a table of enriched gene sets and different types of
plots, such as KEGG diagrams. EGSEA provides built-in gene
sets for human, mouse and rat, including those from MSigDB.
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Chapter 21

RAP: A Web Tool for RNA-Seq Data Analysis

Mattia D’Antonio, Pietro Libro, Ernesto Picardi, Graziano Pesole,
and Tiziana Castrignanò

Abstract

Since 1950 main studies of RNA regarded its role in the protein synthesis. Later insights showed that only a
small portion of RNA codes for proteins where the rest could have different functional roles. With the
advent of Next Generation Sequencing (NGS) and in particular with RNA-seq technology the cost of
sequencing production dropped down. Among the NGS application areas, the transcriptome analysis, that
is, the analysis of transcripts in a cell, their quantification for a specific developmental stage or treatment
condition, became more and more adopted in the laboratories. As a consequence in the last decade new
insights were gained in the understanding of both transcriptome complexity and involvement of RNA
molecules in cellular processes. For what concerns computational advances, bioinformatics research devel-
oped newmethods for analyzing RNA-seq data. The comparison among transcriptome profiles from several
samples is often a difficult task for nonexpert programmers. Here, in this chapter, we introduce RAP
(RNA-Seq Analysis Pipeline), a completely automated web tool for transcriptome analysis. It is a user-
friendly web tool implementing a detailed transcriptome workflow to detect differential expressed genes
and transcript, identify spliced junctions and constitutive or alternative polyadenylation sites and predict
gene fusion events. Through the web interface the researchers can get all this information without any
knowledge of the underlying High Performance Computing infrastructure.

Key words HPC, Bioinformatics, Genomics, Transcriptomics, RNA-Seq, Alternative splicing sites,
Fusion transcripts

1 Introduction

The analysis of transcriptome through next generation sequencing
(NGS) technology is considered today a golden standard and it is
completely replacing the expression profiling based on the micro-
array technology, that dominated the field for more than a decade.
With the advent of massively sequencing, more than 10 years ago,
the RNA sequencing (RNA-seq) was grown as a technological tool
in molecular biology [1–3] to gain a better comprehension of the
gene expression process, estimating the expressed mRNAs [4]
through the sequencing of a complete transcriptome in any cell/
tissue type and condition. The importance of this sequencing
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technology is due to the investigation of many aspects of molecular
biology, such as the ability of studying mRNA splicing [5], the
regulation of gene expression by noncoding RNAs [6] and
enhancer RNAs [7]. Over 100,000 alternative isoforms were
detected with RNA-seq experiments [5], but identifying functional
transcripts is still challenging. In a NGS experiment a standard
laboratory workflow begins with RNA extraction and ends with
the preparation of the sequencing library. The library is then
sequenced generating several million short reads typically hundreds
of bases in length. The primary computational application of
RNA-seq is to determine the quantitative changes in expression
levels between experimental groups (e.g., expression at gene
and/or transcript level). Other computational strategies are also
investigated (alternative splicing events, alternative polyadenylation
sites, fusion events, etc.) depending on the biological questions.
However, as the throughput of experimental data continues to
grow and bioinformatics is de facto entered in the era of big data
[8], interpreting the results of the comparisons between the various
RNA-seq samples becomes increasingly complex. Parallel to the
technological developments of NGS, huge primary repositories of
raw sequencing data (Sequence Read Archive—SRA [9], Tumor
Cancer Genome Atlas—TCGA [10], Genotype-Tissue Expres
sion—GTex [11], Cancer Cell Line Encyclopedia—CCLE [12])
have been populated with incredible speed and the data deluge.
These archives contain, among different kind of omics data, a huge
amount of RNA-seq samples available for new analyses [13–15] and
reuse of data for in silico comparisons and validations [16].

In the last decade, several pipeline tools have been implemen-
ted for RNA-seq data analysis [17–21]. In this context, we have
developed RAP, a web tool implemented in cloud on Cineca HPC
infrastructure, that allows users to analyze big transcriptomic data
in main model organisms [22]. A great benefit of web applications,
such as RAP, is the possibility to analyze RNA-Seq data without the
need of IT competences nor the knowledge about the underlined
High Performance Computing infrastructure (computational
resources are completely transparent to the users). In addition, a
very intuitive web interface allows to customize the analysis and
data results are often provided in tabular fashion allowing to further
filter subsets of results. The execution of this pipeline is totally
automated and optimized on HPC infrastructure. Through RAP
the user is able to quickly perform a very complex transcriptome
analysis identifying the differential expressed genes, transcripts,
splice junctions, polyadenylation sites, and fusion events, thanks
to the use of a simple and intuitive interface. The web interface is
based on a cloud architecture that completely hides the underlined
HPC infrastructure. Both the dedicated hardware and the software
environment is described in the following Subheadings 1.1 and 1.2.
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1.1 Computational

Hardware

The Galileo supercomputer, whose nodes are also dedicated to
transcriptome analysis, has the purpose of enabling new classes of
“BigData” bioinformatic applications. It can manage and process
large amount of raw data, coming from both experiments or data
reuse. Galileo is composed by 1022 nodes made of 2 � 18-cores
Intel Xeon E5-2697 v4 at 2.30 GHz. Therefore each node, with
128 GB of RAM, has 36 cores, for a total of 36.792 cores. Galileo
was designed to optimize density and performance, allowing to
analyze large data repositories in CINECA. The storage area
accessed by Galileo nodes is composed by high-throughput GPFS
disks for a total amount of about 2 PB. Such a storage is also
connected with a large capacity tape library for a total actual
amount of 12 PB.

1.2 Computational

Software

RAP has been developed as an ensemble of modules interconnected
through their dependencies and can be schematized as a direct
acyclic graph. Its architecture allows each module to run indepen-
dently, using data stored in MYSQL relational databases. The pro-
gram which manages RAP modules is completely written in PHP
Object Oriented, while mysql libraries are used for database inter-
actions. RAP integrates several open source third-party analysis
tools as well as in-house developed python and bash scripts into
one single completely automated pipeline. All required computa-
tional tasks are managed and distributed on nodes of the clusters
depending on the computational needs.

All the analysis, from the raw sequence data uploading to the
achievement of final results can be handled and visualized by using
an interactive, web-based graphical user interface (GUI). The RAP
web-based GUI is written in PHP: Hypertext Preprocessor (PHP)
language using HyperText Markup Language (HTML) and JQu-
ery for a better user interaction. The web interface is based on
Foundation 4, an advanced responsive CSS front-end framework.
RAP is available at the following web address: https://bioinformat
ics.cineca.it/rap.

1.3 Computational

Bioinformatic

Workflow

The bioinformatic analysis workflow (Fig. 1) can be divided in six
branches, each focused on specific biological entities:

l A main branch, mandatory, for reads mapping and expression
profiling. This branch can be completed with differential analysis
at transcript level (branch A) and gene level (branch B).

l Detection of fusion transcripts (branch C). The activation of this
branch is optional.

l Detection and quantification of splice junctions. This branch is
optional and can be completed by a differential analysis of
observed junctions (branch D).
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l Extraction of polyadenylation sites. This branch is optional and
can be completed by a differential analysis of observed poly
(A) sites (branch E).

We introduce now with more level of detail the single steps of
the pipeline.

Quality checks. The first step of the pipeline provides several
quality control checks on raw sequence data by running FastQC
tool [23] (Fig. 1, step 1). It produces a set of quality results
formatted in HTML report pages, which give a quick overview of
whether user data has any problems and therefore how to consider
the rest of the downstream analysis. Some samples of the dataset
could be indeed biased and contaminated.

Law quality discard and trimming. The action of filtering out
low quality reads to increase the overall dataset quality, is performed
by the execution of NGS QC Toolkit [24]. It allows to process in
the next steps of the pipeline only high-quality reads and therefore
provide more robust results in the next mapping phase. This
trimming step is launched in parallel with the previous step of
quality control (no dependency is applied between the steps 1 and
2). In addition both FastQC and NGSQCtoolkit are optimized to
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Fig. 1 Completely automated bioinformatic workflow of RAP
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handle several samples at a time and developed to work in a multi-
threaded fashion, distributing the computational load on the avail-
able HPC resources.

Read mapping. A very crucial phase for analysis consists of
aligning the reads against the reference genome and transcriptome
(when an annotation is provided). A tool able to perform both
kinds of alignment is TopHat2 [25] (Fig. 1, step 3) that includes,
as mapping engine, Bowtie2 [26]. TopHat2 is able to use during
the analysis the full-length transcripts defined by annotations in
order to improve both sensitivity and accuracy. The computational
strategy implemented in TopHat2 is able to align the reads with
true indels (insertions and deletions), also taking advantage of
Bowtie2 ability to detect short indels very accurately. The first
step of the method consists in transcriptome mapping of the reads
and, in a second step, those unmapped or poorly aligned are
mapped against the reference genome in order to detect those
reads entirely within exons. Also in this phase some reads, the
multiexon spanning reads, are unmapped and, in the next step,
they are split into smaller segments that mapped against the refer-
ence genome. Fragments are then aligned to the junction (splice
site) flanking sequences and stitched together to shape whole read
alignments. The last step consists in realigning the reads minimally
overlapping the introns against the exons.

As an alternative alignment workflow RAP allows to replace
Tophat2 with STAR [27] for faster but still sensitive analyses.

Gene/isoform expression quantification and differential analysis.
The building of the transcriptome assembly and the evaluation of
the expression level of all detected isoforms is a specific task of
Cufflink, which takes as input the results of Tophat2 mapping
(Fig. 1, step 6). Cufflink builds the transcript assembly starting by
a gene reference annotation. In this phase the user has the oppor-
tunity to choose between two assembler algorithms: Cufflinks and
RABT [28] assembler.

The first module assembles aligned RNA-Seq reads into a
parsimonious set of transcripts, then estimates the abundances of
the transcripts considering how many reads support each one.

The second allows to include in the calculus both reference
transcripts and novel assembled genes and isoforms. This second
assembler is particularly useful for those organisms where a deep
annotation does not already exist. The differential analysis at
transcript-level resolution of RNA-seq experiments and controls,
based on expression levels calculated by Cufflinks, is performed by
Cuffdiff2 (branch A). It both provides more accurate transcript-
resolution estimates of changes in gene expression, performing
statistical computations at isoform-level resolution, and considers
the variability in measurements across biological replicates of an
experiment.
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At gene expression level, another parallel branch (branch B) in
the workflow is executed to estimate the raw-count. The third-
party software launched is HTSeq [29] that models each gene as
the union of all its exons. In particular htseq-count is the script of
HTSeq designed for RNA-Seq data analysis: taken a GTF file as
input from the previous step, it counts for each gene how many
aligned reads overlap exactly its exons whereas the reads overlap-
ping with more than one gene are discarded. These counts will be
used for gene-level differential expression analyses performed by
the next step.

Fusion events detection and annotation. A further optional
branch of RAP workflow, branch C, can be activated with the aim
of detecting chimeric transcripts (Fig. 1, step 8), made of exons
from two different genes that encode novel putative proteins. The
workflow integrates ChimeraScan [30], a software built over Bow-
tie aligner to identify putative fusion breakpoints. The reads
mapping is performed against a mixture of genome-transcriptome
reference. Read pairs not aligned concordantly are split into smaller
segments (default ¼ 25 bp) and realigned. Reads that align to
distinct references or distant genomic locations of the same refer-
ence are added in a list of putative 5–3 transcript pairs that could be
chimera candidates. A new reference index from the list of
sequences is built and candidate junction-spanning reads are rea-
ligned against this index. In order to reduce false-positive chimeras,
the incorporated spanning reads are filtered, discarding those sup-
ported by few reads or those with fragment sizes greater than the
range of the distribution.

Splice junction detection. The analysis of splice junctions is
performed by the execution of branch E. High Quality Reads,
derived from NGS QC Toolkit, are mapped with Bowtie against
the reference genome and are discarded from the initial dataset
(Fig. 1, step 4). The unmapped reads, that may potentially contain
a splicing site, are mapped again by using always Bowtie to a
custom-built splice junction library (Fig. 1, step 5). This reference
is built starting from a gene annotation model in GTF format
[31]. It includes two different categories of splice junctions:
known junctions derived from RefSeq [32] and novel junctions,
obtained through a combinatorial exon skipping procedure by
considering all compatible exon skipping patterns.

Polyadenylation site detection. Another optional branch (E) is
executed in cascade from the previous branch D and concerns the
analysis of Polyadenylation sites. Residual reads still unmapped
from alignments against genome, transcriptome and junctions
may contain information about polyadenylation sites (Fig. 1, step
7). In this phase, Poly(A) tags (reads containing a stretch of A at the
end of the sequence) are extracted, trimmed, and aligned to the
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genome. Another spliced alignment with Tophat2 is applied to
verify if the sequence also contains a splice junction related to the
final exon. As final step, a parsing procedure is applied to annotate
the concurrent occurrence of polyadenylation signal (PAS)
sequences. In addition to the canonical polyadenylation signal
(AAUAAA) a total of 10 known variants are considered [33].

Differential expression analysis. The correct identification of
differentially expressed biological entities (such as, in RAP work-
flow, the identification of differential expressed genes, transcripts,
polyadenylation sites, and splice junctions) between specific condi-
tions, each eventually represented by more replicates, is a key in the
understanding phenotypic variation. The branches deputed to this
kind of analysis are respectively, branch A, B, D, and E in Fig. 1. In
particular, RAP detects differentially expressed genes by using
DESeq [29] taking as input raw counts calculated by HTSeq
(Fig. 1, step B). According to the DESeq algorithm the variance
is the sum of a term of raw variance (derived from biological
variability) and end of gunshot noise (from counts uncertainty).
This method allows to process data without or with very few
replicates, putting genes together with similar expression levels.

Cuffdiff2 [34] is the tool used to estimate the differential
expressed transcripts from transcript abundances determined in
the previous step by Cufflinks (Fig. 1, step A). It calculates differ-
ential analysis at transcript-level and controls the variability across
replicates and the uncertainty in abundance expression estimates
caused by ambiguously mapped reads. In case of incorrect rejec-
tions of a true null hypothesis (false positives) it introduces also the
Benjamini–Hochberg correction [35] for multiple testing of differ-
ential expression (false discovery rate, FDR).

The differential expression analysis of junctions and polyade-
nylation sites, performed in branches D, E are managed by two
home-made PHP parser scripts specific to the output format results
from the respectively previous steps 7 and 5 in Fig. 1.

1.4 Reference

Genomes

and Transcripts

Included in RAP

RAP supports the analysis of RNA-seq reads from several organ-
isms. At present, the workflow is available for Homo sapiens (gen-
omes hg18, hg19, and hg38), Mus musculus (genomes mm9 and
mm10), Rattus norvegicus (genome rn4), Drosophila melanogaster
(genome dm3), Saccharomyces cerevisiae (genome sacCer3), Equus
ferus caballus (genome equCab2), Danio rerio (genome
danRer10), Zea mays (genomes maize3 and Mo17_v1), and Ara-
bidopsis thaliana (genome tair10). Additional reference genomes
and annotations can be added on the HPC cloud becoming avail-
able for further analysis, upon users’ request.
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2 Material

To access the RAP pipeline and results it is not required any special
hardware or software, apart from a common web browser
(Chrome, Firefox, Internet Explorer, and Safari are mostly all
supported).

Each account is granted for a 60 days period with a limitation of
2 projects, 2 analyses per projects and 12 files per analysis. Upload
of files via web is limited to 2 GB but a FTP account can be
requested to be able to upload files without any size limitation.
Files can be uploaded as compressed archives (zip, gz) so a com-
pression software can be very useful to limit the bandwidth.

3 Methods

To ensure the confidentiality of data, the use of RAP requires a
personal account and by default only the data owner can access to
uploaded files and obtained results. All academic users who provide
an institutional email address can request for an account via the
registration module on the website (the logging form for the
registration and authentication is highlighted in red square in
Fig. 2).

Fig. 2 RAP Login Form
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A workflow scheme of RAP web user interface is shown in
Fig. 3.

The first step to submit a dataset to RAP is the creation of a new
study. RAP implements a data architecture inspired by the data
format standard proposed by the European Nucleotide Archive
(ENA) curated by the European Bioinformatics Institute (EBI).
According to ENA guidelines, a study is a homogenous collection
of data about a single sequencing project. The creation of a new
study in RAP only requires little information such as a title, a
description and an access level (private, group, or public).

A private study can be accessed only by the owner while a public
study will be accessed by everyone. After the creation (Fig. 4a), the
user can open the study by clicking its name or using the view icon.
The owner can also edit the given information or delete own studies
(Fig. 4b).

After the Study creation, the web user interface shows a work-
flow composed of three steps: “Add Files,” “Process Files,” and
“Analyze Files” (Fig. 5).
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Fig. 3 RAP Web User Interface workflow
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Before starting any analysis, the user has to upload one or more
input files. The upload engine offers several options for the sub-
mission of the input files: WebUpload, Web Link and FTP protocol
(Fig. 6).

The Web Upload is implemented by using JavaScript and
allows the user to upload several files at once, but the size of the
single file is limited to 2 Gb. The user can verify the upload progress
and interact with the system by adding or removing files also during
the transfer. Nevertheless, any web based upload widget has limita-
tions, for example during the upload process the page cannot be

Fig. 4 (a) Creation of a new Study in RAP. (b) View of the archive on created or submitted Studies

Fig. 4 (continued)
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closed, otherwise the upload is interrupted. To overcome these
limitations as well as the maximum allowed file size the user can
provide one or more links and the system will handle the download
in batch. The user will be notified by email when downloads are
completed. As a third option, the user can access the RAP user
space by using a FTP client.

Several input formats are supported such as text-based raw
sequences produced by Illumina sequencing platforms (i.e.,
FASTQ), prealigned data (i.e., BAM and SAM), and compressed
reads (i.e., SRA archives). The user can also upload these files in a
compressed archive to speed up the uploading process (several
common compressed formats are supported, such as zip, tar, gzip,
and bz2).

Fig. 5 Workflow of the three main steps: “Add Files,” “Process Files,” and “Analyze Files”

Fig. 6 Uploading options for input files
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At the end of the upload if the files are produced through a
paired-end sequencing protocol, the user will be allowed to specify
each pair of files that comes from the same lane, using a simple drag
and drop utility provided by the GUI. The same utility can also be
used to reorder lanes, if needed. After that, the user has to assign to
each file (or pair of files for PE read data) a unique label (file
tagging). A good label should be short and explanatory enough
to recognize the input since it will be used in the results pages as
replacement for the file raw name. The user can also associate one
or more samples, adding information about the sequenced mate-
rial. This metadata information (i.e., organism, tissue, cellular line,
phenotype, and strain) can be useful to describe the input files and
are especially important in the case of public experiments.

After the metadata assignment, the uploaded files are imported
into the project and can be used to start a new analysis by selecting
one or more inputs. The user can choose between two different
workflows: one based on Tophat2 and the other based on STAR
alignment algorithm. Before starting the analysis the user can
accept a set of default parameters to perform a standard workflow
or can customize the parameters to tailor the analysis on own data.
Parameters are divided into six categories: Common parameters,
Quality check and filtering, Genome spliced alignment, Transcript
assembly and abundance estimation, Determination of polyA reads,
Gene fusions detections in paired-end RNA-Seq datasets.

The first category contains parameters common to all or many
pipelines modules, such as the reference database and the
Reference-GTF. If input files have been associated with an organ-
ism during the annotation phase, only database for such organism
are reported here, simplifying the analysis customization and thus
preventing potential errors. A set of flags (search-junctions, search-
polya, search-chimeric) enable or disable the optional branches.

With the Quality check and filtering parameters the user can
modify the behavior of quality control and trimming module. With
the quality and length parameters is respectively possible to modify
the cutoff value for the PHRED quality score for high-quality
filtering (default value is 20) and the percentage of read length
that should be of given quality (default value is 70%). This module
can also remove primers and adaptors by selecting one of provided
libraries (Genomic DNA/Chip-Seq Library, Paired End DNA
Library, DpnII gene expression Library, NlaIII gene expression
Library, Small RNA Library, Multiplexing DNA Library) or
uploading a file containing user defined sequences (one per line).

With Genome alignment parameters, the user can customize
the mapping phase performed by TopHat2 or STAR (based on the
selected workflow). An additional option (GenerateBigWig) allows
the user to request the automatic conversion of alignments into

404 Mattia D’Antonio et al.



BigWig format. It is a convenient file format for display dense data
to be loaded into the University of California, Santa Cruz (UCSC)
Genome Browser.

In the Transcript assembly and abundance estimation section
the user can enable the reconstruction of novel-transcripts or pro-
vide a GTF list (MaskFile) containing transcripts to be ignored
during the assembly.

Finally, in the Determination of poly(A) reads and Gene fusions
detections in paired-end RNA-Seq datasets categories, the user can
customize the poly(A) extraction step and chimeric transcripts
determination step, respectively.

Once configured, the analysis is automatically submitted on a
queue system based on torque Resource Manager. The user can
follow the analysis progress through a monitor page (that can be
opened by clicking on the monitor icon, highlighted with a red
square in Fig. 7a; a list of all steps are displayed (Fig. 7b) with
corresponding running status (to be done, queued, running,
skipped, completed, error), the used software and parameters, the
intermediate output results if completed.

Fig. 7 (a) list of the launched analyses (based on Tophat and Star aligners respectively with monitor icon
squared in red); (b) a screenshot of the monitoring page associated to Tophat analysis
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After the analysis completion of each step the result files can be
accessed from the monitoring page (see Fig. 8) and the analysis
summary table in the project page. Analysis results can be accessed
from the analysis summary table (see Fig. 9a) and the output from
Quality checks is shown by default. Further results can be visualized
by enabling the side menu (see Fig. 9b).

For a better comprehension about the output organization and
visualization of RAP, real data set have been used from project
“RNA seq in Alzheimer’s Disease patients” https://www.ncbi.
nlm.nih.gov/bioproject/PRJNA232669. The output summary
results of the analysis of the bioprojet PRJNA232669 are available
for users at the following URL:

l https://bioinformatics.cineca.it/rap/results.php?
a¼7282#data_summary for a summary of RNA-seq metrics.

l https://bioinformatics.cineca.it//rap/results.php?a¼7282&
gene¼%09RPPH1&submit¼Search#gene_expression for
“Gene and transcript expression summary”.

l https://bioinformatics.cineca.it//rap/results.php?a¼7282&
gene¼%09RPPH1&submit¼Search#differential_expression for
“Differential gene and transcript expression”.

Fig. 8 Example of list of result files produced by the FastQC step; the results are available after the completion
of the step and can be visualized by clicking on the green bar (pointed by the big green arrow into the Monitor
Page)
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l https://bioinformatics.cineca.it//rap/results.php?
a¼7282#junctions for a “Summary of splice junction”.

l https://bioinformatics.cineca.it//rap/results.php?
a¼7282#fusion_transcripts for “Fusion transcripts”.

In this analysis samples named CTRL_* are “control” samples
whereas samples named AD_* are Alzheimer’s Disease samples.

Each of the URLs, loading a summary page report, allow users
to go in details of results of interest. By clicking on each summary
count number in the summary table a page opens visualizing the
result of interest (genes, transcripts, fusion transcripts, junctions,
etc).

Other kind of results (“Gene Expression,” “Search by Gene,”
“Differential Expression,” and so on) can be consulted by the user,
clicking on the menu item “Open other results tabs,” in the top-left
corner of the gray frame. For instance, if the user is interested in
“Gene Expression” results tab, clicking on the specific tab, the
system will show the below navigable results page (Fig. 10):

Fig. 9 (a) List of results in case of Tophat and Star aligners. (b) Result summary page for Quality Checks
opened by clicking on the lent icon in the list
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In case the user is interested about “Highly expressed tran-
scripts” in sample named “CTRL_1”, by clicking on the blue icon
with the number “390” in the first row of Fig. 10, a page opens
with the list of the transcripts of interest (genes, transcripts, geno-
mic position, strand, transcript length, number of exons, FPKM,
associated Coverage, class compared to reference annotation, ID of
reference transcript, and biotype based on gencode annotation)
(Fig. 11).

3.1 Analysis Results

and Differential

Expression

After the completion of the analysis, all output files are parsed into a
MySQL database for ease of visualization from the web interface.
Results are divided into several sections: Quality checks, Data Sum-
mary, Gene Expression, Search by Gene, Differential Expression,
Junctions, PolyA Sites, Fusion Transcripts, Pathways, and Plots.

The first section (Quality checks) reports the output provided
by FastQC and NGS QC Toolkit, arranged in a comprehensive
summary table with color-coded labels to give to the user a prompt
quality overview (Fig. 12). Green labels indicate passed filters, red
labels point to failed filters and the orange is the color used to
report filters warnings. Each label can be explored visualizing the
corresponding FastQC output.

The Data Summary section reports a quantitative analysis of
obtained results with metrics such as the total amount of short
reads (both raw and high-quality reads as filtered by NGS QC

Fig. 10 Gene and Transcript Expression summary page for the analyzed samples
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Fig. 11 Details on highly expressed transcripts found for ‘CTRL_1’

Fig. 12 The comprehensive summary table of Quality Check results
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Toolkit), mapping statistics, junction alignment metrics, informa-
tion from poly(A) extraction phase, the distributions of mapped
reads across functional gene regions and transcripts coverage eval-
uation. Furthermore this section contains a utility to load data into
the Integrative Genomics Viewer (IGV), a free Java desktop appli-
cation supporting interactive exploration of large-scale genomic
data sets on standard desktop computers.

The Gene Expression section reports expression values as esti-
mated by Cufflinks. The summary table reports, for each lane,
colored-boxed numbers of both expressed genes (in green) and
transcripts (in blue). Four different default FPKM cutoffs are pro-
posed, to give a comprehensive idea about the number of low- or
high-expressed genes and transcripts (Fig. 10). Each colored-boxed
can be clicked to open the expression overview, a detailed list of all
expressed genes (or transcripts) in a given sample with detailed
information associated (Fig. 11). This set of results (as any other
overview table describe below) can be filtered using customizable
thresholds to facilitate the identification of functionally significant
variants. Every column can be used to filter results and filters can be
combined to produce complex queries. The output tables, as
reported after the application of a set of filters, can be exported as
textual/Excel files for offline downstream analyses.

The Search by Gene section allows to query simultaneously all
expression results. With this form the user can retrieve the expres-
sion values of a given gene or transcript obtaining as result a table
reporting, for each lane and each isoform the genomic position, the
gene FPKM, the transcript FPKM and the transcript coverage. In
case of resulting transcripts belong to the same a graphical gene
structure is also displayed (Fig. 13).

The Junctions section reports all results obtained by the
mapping on the splice junctions library (Fig. 14).

The detail page lists the whole set of observed junctions, each
annotated by many information. Both gene and transcript common
names are dynamically linked to NCBI, respectively to Gene and
Nucleotide databases. Then, several coordinates identify the precise
junction by reporting chromosome, start and end position of junc-
tion, upstream exon and downstream exon (Fig. 15).

The Poly(A) Sites Section reports a summary table of the
number of observed event and coupled with a graphical view of
the chromosomal distribution. The user can access to the sortable,
filterable, downloadable details page. The frequency of polyadeny-
lation sites (PAS) hexamers is also shown. The canonical PAS
(AAUAAA) is clearly expected to overcome the other known var-
iants but, with a sufficient number of sites, the expected relative
frequencies should be observed. In the case of bioproject
PRJNA232669 the list polyadenylation sites is not available since
the library was built without enriching fragments that carry poles
(A) tail.
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The Fusion Transcripts section reports chimeric isoforms as
detected by ChimeraScan. The information schema is the same
already proposed in the previous sections: a summary table reports
the number of events for each input (Fig. 16) and a details page
gives information and annotations for each chimera (Fig. 17). Sev-
eral information is associated to each chimeric transcript such as the
coordinates and gene and transcript ids of both 50 partner and 30

partner; the number of supporting reads; and the fusion type (read-
through, intrachromosomal, or interchromosomal).

The Pathways section is a utility page used to link results
obtained by RAP to an external service, Graphite Web, allowing
for pathway analyses and network visualization by using expressed
genes as input.

The Plot section imports data obtained from both expression
and differential expression sections exploiting the filtering engine
and allows the user to created several plots by leveraging the
CummeRbund package. Typical plots included in the suite are
PCA (principal component analysis), MDS-plot (MultiDimen-
sional Scaling plot), boxplots, scatterplots, density plots, heatmaps,
and sashimi plots.

RAP implements several differential expression (DE) analyses,
such as transcripts expression, gene expression, Poly(A) site usage,
and alternative exon skipping events. RAP allows for the execution

Fig. 13 Result of Search by Gene by querying GLUL. The gene structure and expression levels of the three
isoforms are shown
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Fig. 14 Summary results of detected junctions

Fig. 15 The report page of observed junctions, each annotated by many information
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of differential analyses only starting from a completed main analy-
sis, through the result sections, because DE is based on a statistical
comparison of results obtained from two or more independents
inputs.

A specific section of results (named Differential Expression) is
devoted to configure and visualize differential expression opera-
tions. At first, this section only contains the list of input files, the
user can request for a differential expression by selecting inputs to
be included in the operation and assigning them to custom groups.

Fig. 17 Detailed information and annotations for each gene fusion event

Fig. 16 Summary table of the number of gene fusion events for each input and dynamical chromosomal
distribution of fusion breakpoints
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The user can select the type of differential expression operation by
choosing between transcript level (based on Cuffdiff2), gene level
(based on DESeq2) and both. Once configured the requested
operation, the section is enriched by the differential expression
request by reporting the list of selected files with corresponding
assigned groups as well as the job execution status. After the
operation completion, the expand results button allows to visualize
results. This button opens an operation matrix reporting all ana-
lyzed pairs and a summary of configured parameters.

The differential usage of Poly(A) sites can be requested starting
from the PolyA Sites section. The input selection and grouping
strategy is the same already described above. Differential usage of
polyadenylation sites is computed by a combination of custom
scripts and DESeq2.
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Chapter 22

iDEP Web Application for RNA-Seq Data Analysis

Xijin Ge

Abstract

RNA sequencing (RNA-seq) has become a routine method for transcriptomic profiling. We developed a
user-friendly web app called iDEP (integrated differential expression and pathway analysis) to help biolo-
gists interpret read counts or other types of expression matrices derived from read mapping.
With iDEP, users can easily conduct exploratory data analysis, identify differentially expressed genes, and
perform pathway analysis. Due to its intuitive user interface and massive annotation database, iDEP is being
widely adopted for interactive analysis of RNA-seq data. Using a public dataset on the effect of heat shock
on mouse with and without functional Hsf1, we demonstrate how users can prepare data files and conduct
in-depth analysis. We also discuss the importance of critical interpretion of results (avoid p-hacking and
rationalizing) and validation of significant pathways by using different methods and independent annota-
tion databases.

Key words iDEP, Integrated differential expression and pathway analysis, RNA-seq, Bioconductor,
Differential gene expression, Transcriptomic analysis, Pathway analysis, Gene set enrichment analysis,
DESeq2

1 Introduction

As sequencing cost gets cheaper, the lack of access to experienced
bioinformaticians becomes a major barrier for many biologists to
take full advantages of the sequencing technologies. This barrier is
especially severe in developing countries or smaller institutions with
limited resources. Many high-quality command-line tools have
been developed, but most are out of reach for busy biologists. To
empower biologists across diverse fields, we created a user-friendly,
interactive tool for in-depth, reproducible analysis of RNA-Seq data
called iDEP (integrated differential expression and pathway analy-
sis) [1]. It enables biologists to effortlessly conduct visualization,
statistical analyses, and in-depth pathway analysis using read-counts
and other gene-level expression data.

Prior to using iDEP, the raw reads need to be processed and
mapped, as iDEP requires summarized expression data as input.
Focusing on such data enabled us to leverage many existing R
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packages and the power of the Rstuio Shiny platform to greatly sim-
plify and streamline the bioinformatics workflow. Integrating over
60 R and Bioconductor packages with a massive annotation and
pathway database for over 2000 species, iDEP provides functional-
ities for (1) high-quality static and interactive graphics, (2) common
statistical analysis like preprocessing, data transformation, hierar-
chical clustering, k-Means clustering, principal component analysis
(PCA), t-SNE, and other dimension reduction methods, (3) differ-
ential gene expression analysis (limma, DESeq2) and pathway anal-
ysis (GSEA, GAGE, PGSEA, ReactomePA), biclustering, and
coexpression networks. The main workflow is illustrated in Fig. 1.
Through an example, we demonstrate how this web application
democratizes access to high-throughput technologies and help
biologists pinpoint molecular pathways from large data.

2 Materials

This demonstration uses iDEP v0.91, accessed on May 3, 2020 at
http://bioinformatics.sdstate.edu/idep/.

Data files used are available on Zenodo (https://doi.org/10.
5281/zenodo.3783838).

A video tutorial is also available on YouTube (https://youtu.
be/Hs5SamHHG9s).

Fig. 1 Flowchart and functional modules of iDEP
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3 Methods

3.1 Acquire

and Prepare Input Files

iDEP provides access to a large compendium of published, uni-
formly processed RNA-seq data. As shown in Table 1, we have
collected 5470 human and mouse RNA-seq data from ARCHS4
[2] database. We also provided an API interface to DEE2 [3],
which can be used to access12,960 datasets from nine species
(human, mouse, rat, zebrafish, worm, fly, E. coli, and Arabidopsis).

Users can start searching for public data by clicking on the
“Analyzing public RNA-seq datasets for 9 species” button in
the entry page of iDEP. By choosing ARCHS4_mouse and enter-
ing the keyword “heat shock,” we identified several datasets. Select-
ing the row for GSE95602, we obtained metadata about this
dataset. More information about this experiment is obtained by
searching for GSE95602 in Google, which leads us to the NCBI’s
Gene Expression Omnibus (GEO) page (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc¼GSE95602) with the associated
publication [4]. The entire dataset contains expression data for
three genotypes under four conditions. For heat shock treatment,
the core body temperature of mice was raised to 41.5 �C for
15 min. RNA samples were harvested from muscle tissues and
sequenced 4 h afterward. A subset of the data is used in our analysis
to make a typical 2 � 2 design, namely two genotypes (wild type
and Hsf1 knockout) with and without heat shock treatment.

Processed read count file is also available on the GEO page. We
download the ARCHS4 dataset by clicking the Gene-level counts

Table 1
Processed public RNA-seq data currently accessible in iDEP

Source Species #Datasets #Samples

ARCHS4 Human 2861 65,429

Mouse 2609 72,363

DEE2 Arabidopsis 622 18,875

E. coli 61 847

Fly 507 11,804

Human 4979 162,197

Mouse 5682 198,903

Rat 259 5744

Worm 258 5868

Yeast 302 6352

Zebrafish 290 9130
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button, as it uses relatively new genome and annotation (GRCm38
with the GRCm38.88 annotation file) [4]. The downloaded CSV
file is opened in Microsoft Excel. We delete the samples on R6/2
genotype and the HSP90 inhibition treatments. The columns
names are then changed into a shorter, more informative names
so that the plots are easily interpretable. It is often convenient to
copy the column names and paste them transposed into a separate
Excel file (Table 2), edit the column names, and then paste them
back to the original file transposed.

After the expression data file is edited, we recommend users
create an experimental design file. Such files are unnecessary for
experiments with only one factor as iDEP automatically put samples
into groups. Factorial design is widely adopted in expression analy-
sis, even though many do not realize it when conducting bioinfor-
matics analysis. As shown in Table 2, the two factors are clear in this
experiment: treatment and genotype. The last three columns of
Table 2 can be transposed and saved as a design file. Note that the
sample names in the design file must match the sample names in the
data matrix. For detailed explanation and example please consult
the documentation of iDEP (https://idepsite.wordpress.com/
data-format/).

Note that it is well-documented that Excel can automatically
format some gene symbols into dates [5–7]. For example,
“SEPT2,” the symbol for Septin 2 gene, is converted to 2-Sept by
default. In iDEP, we solved this issue by adding a space character in
front of gene names. Users should be careful when gene symbols
are used as the only identifier and edited files are saved for down-
stream analysis. One way of overcoming this is to use other stable
gene IDs as the main identifiers. If we use the Ensembl genome
sequences and annotations in the read mapping stage, we will
obtain summarized expression data that identified by Ensembl
gene IDs, which are natively supported by iDEP.

Table 2
Renaming samples and constructing of design file

Original sample titles Shortened Genotype Treatment

GSM2517903 Hsf1�/� control heat shock rep1 Hsf1_ctrl_1 Hsf1 Ctrl

GSM2517904 Hsf1�/� control heat shock rep2 Hsf1_ctrl_2 Hsf1 Ctrl

GSM2517905 Hsf1�/� heat shock rep1 Hsf1_heat_1 Hsf1 Heat

GSM2517906 Hsf1�/� heat shock rep2 Hsf1_heat_2 Hsf1 Heat

GSM2517911 wild type control heat shock rep1 wt_ctrl_1 wt Ctrl

GSM2517912 wild type control heat shock rep2 wt_ctrl_2 wt Ctrl

GSM2517913 wild type heat shock rep1 wt_heat_1 wt Heat

GSM2517914 wild type heat shock rep2 wt_heat_2 wt Heat
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3.2 Uploading

the Input Files to iDEP

We start the analysis by first uploading the expression file. As iDEP
can guess the species by mapping gene IDs, we leave the species
drop-down menu as “Best matching species”. Since this is read
counts data, we use the default “Read counts data (recom-
mended)” option. We recommend users upload read counts data
whenever possible. iDEP also accepts normalized expression data in
various formats (Table 3). We first browse and upload the expres-
sion file and then upload the experimental design file. The upload-
ing process seems slow, because iDEP immediately applies the
default filter to remove lowly expressed gene. All gene IDs passed
the filter are then compares against all IDs known to iDEP, over
200 million in total, to help determine what the types of gene ID
and species best match the uploaded identifiers. This is one of the
many ways we make iDEP user friendly. The bottom left of the
Load Data tab shows the species ranked by the numbers of
matched genes in parentheses, such as “Mouse (13709)”. This
number is how many genes passed the filter and matched the
database. As iDEP correctly guessed mouse as the organism, we
can move on to the next step. Otherwise, users can manually
choose their organisms. The design matrix and the top 20 rows of
the expression matrix are also printed out for users to double check
(Fig. 2).

Errors encountered in this step often arise due to mismatched
sample names between the design matrix and the expression matrix.
We recommend users to first copy-and-paste columns names from
the read counts file into Excel and construct a file like Table 2. Then
the shortened file names can be copy-and-pasted back to both the
expression matrix and the design file. Another possible error is that

Table 3
Different types of RNA-seq data

Read counts The numbers of reads mapped to a gene. The data matrix are integers. Outputs
from alignment-free methods such as kallisto [26] could also be decimals

Counts per million
(CPM)

Reads counts are scaled so that the total for each library are one million

RPKM Reads Per Kilobase of transcript per million mapped reads. Read counts is
normalized by library size and transcript length

FPKM Fragments Per Kilobase of transcript per million mapped reads. The key difference
is that a fragment is defined as two reads uniquely mapped to the same transcript
when the library is generated by paired-end sequencing

Other normalized
data

Data could be obtained using DNA microarray or proteomics. Note that data
needs to be normalized first

Fold-change and
P values

This could be several pairs of fold-change and P values derived from other
methods such as cuffdiff. Users can conduct hierarchical clustering, k-means
clustering and pathway analysis
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multiple gene ID columns. iDEP only allows the first column to
contain gene IDs. The rest of the columns are treated as
expression data.

3.3 Preprocessing The main challenge in analyzing transcriptomic data is to overcome
the inherent noise at the low end of the detection limit. The
function of a type of tissue often requires a subset of all proteins
encoded in the genome. Thus, in a typical RNA-seq dataset, as
much as 20–50% of the annotated genes in the genome are nearly
undetectable with close to zero read counts across all samples.
Removing these genes will increase the signal-to-noise ratio in
downstream analysis. In the preprocessing step, we filter out
genes that are expressed at very low levels across all samples. The
default is that we only keep genes expressed at least 0.5 counts per
million (CPM) in at least one library. See Table 4 for detailed
explanation of all the parameters in iDEP. In our dataset, this
criterion means that we remove genes expressed less than 10 reads
in all samples, as the libraries have around 20 million reads each. In
addition, we can increase the n libraries cutoff to require a certain
level be reached in two or more samples. With the default filter,
only 13,845 (42%) of the 32,544 genes passed the filter. We
decrease the Min. CPM filter to 0.2 and got 15,611 genes.
Among these, 13,501 is converted to Ensembl IDs, a central
gene ID used in the annotation and pathway databases by iDEP.
The 2110 unrecognized genes remain in the dataset using original
IDs, and will be used for clustering and DEG analysis, but not in
enrichment analysis. Unconverted gene IDs could be due to mis-
matches in genome versions and different annotation files used in
the processing of raw reads. We recommend the use of reference
genome sequences and annotation files from Ensembl to ensure
that most of the genes be recognized by iDEP.

Fig. 2 Uploaded files are shown in iDEP for confirmation
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Table 4
Parameters in iDEP

Parameter Default Options and reasons for adjustment in this dataset

Preprocessing

Min. CPM 0.5 A gene needs to have 0.5 counts per million (CPM) in one
or more (specified by the n libraries below) samples.
Otherwise removed from further analysis. In our dataset,
this eliminates 58% of genes, so it is reduced to 0.2

n libraries 1 Sometimes we require a minimal level be detected in two or
more genes. This is used together with the Min. CPM to
weed out lowly expressed genes

Transformation EdgeR EdgeR: log2(CPM + c). Read count are first normalized
to CPM, and then a pseudo count is added to all counts
before log-transformation. This is set as default because
it is faster and generally does a good job

rlog: The regularized log in the DESeq2 package. This is a
more robust method but is slow. Here we used rlog as
our data is small

VST: Variance stabilizing transformation described in the
DESeq2 package

Heatmap

Most variable genes 1000 Genes are ranked by standard deviation(SD) across all
samples. The top 1000 is used in heatmap. Based on the
“Gene SD distribution,” we increase it to 2000, as more
genes are differentially expressed

Distance Correlation Correlation: 1 � PCC, where PCC is the Pearson’s
correlation coefficient. Euclidian: Euclidian distance.
AbsolutePCC: 1 � |PCC|. The absolute values are used
to treat positive and negative correlation the same

Linkage Average Hierarchical clustering trees can be built with many
methods such as average, single, complete, median,
centroid, and Mcquitty [27]. For most cases, we
recommend the default average linkage

Cutoff Z score 4 The heatmap.2 function uses the largest and smallest
numbers in the data matrix to determine a range for
color mapping. To avoid the situation where a few
extreme values skew the color range, values outside
4 SDs from the median is trimmed. In this example data
set, we set this to 3. Smaller cutoff will visually enhance
the contrast

Center genes TRUE Mean is subtracted from each gene before hierarchical
clustering

(continued)
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Table 4
(continued)

Parameter Default Options and reasons for adjustment in this dataset

Normalize genes FALSE After the mean centering, we could further normalize the
data by dividing each row with its SD. This will make the
variation uniform across genes. This is rarely the case in
real expression data but can help scale the genes so that
we focus on the pattern

Center samples FALSE The mean is subtracted from each column (sample)

Normalize samples FALSE Each column is divided by its SD, so all columns have SD of
1. This is typically done after the centering to standardize
the columns

k-Means clustering

Normalization Mean
center

Mean center: Genes are centered by subtracting the mean.
Standardization: Genes are mean centered and then
divided by its SD so that all genes have mean of zero and
SD of one. L1 normalization: Each row in the matrix is
divided by the sum of the absolute values of each of
values

Remove redundant genesets Yes When showing enrichment results, if two gene sets overlap
more than 90% of the genes, then only the gene set with
the most significant FDR values are shown

Rerun As a heuristic algorithm, k-means initiates randomly and
updates cluster memberships iteratively. Thus, different
random initiation can lead to different clusters

DEG1

Method DESeq2 We recommend users upload raw read counts and use the
DESeq2 method to identify DEGs. In addition to the
power of DESeq2 package, we also have tested it more
thoroughly. Methods like voom and limma-trend [28]
are also have great performance. When the number of
total reads vary greatly between libraries limma-voom
have better performance than limma-trend. When users
upload normalized expression data, limma is used by
default and this box is hidden

FDR cutoff 0.1 This is the cutoff for false discovery rate (FDR) for DEGs.
If there are too many (several thousands) or too few
(only several dozens) of DEGs, users can adjust this
cutoff

Fold-change 2 Genes must have more than twofold increase or decrease.
This cutoff needs to be adjusted based on the magnitude
of expression change in a specific experiment

Pathway analysis

(continued)
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Table 4
(continued)

Parameter Default Options and reasons for adjustment in this dataset

Methods GAGE GAGE (generally applicable gene set enrichment) [22] is a
parametric method for pathway analysis that conducts t-
tests andmeta-tests on fold-changes. It is default method
as it is fast. For the popular GSEA (gene set enrichment
analysis) [21], we adopted a novel implementation
provided by the fgsea package [29] to analyze genes
preranked by the fold-change. The standalone GSEA
programs are more powerful and flexible as it can analyze
normalized expression values through permutations.
Based on the parametric analysis of gene set enrichment
(PAGE) algorithm [14], the PGSEA package [13] can be
used to visualize pathway that are differently activated
among sample groups

Select a comparison If there are more than one comparison, a list of
comparisons will be displayed

Geneset size: Min. 15 After merging the annotation database with fold-change, if
a pathway has less than 15 genes, this pathway is filtered
out. This can be reduced to as few as 5, if some pathway
of interest only has a small number of genes. But smaller
genesets introduce noise

Geneset size: Max. 2000 If a pathway contains too many genes, it is not used in
pathway analysis

Pathway significance cutoff
(FDR)

0.2 This significance level can be adjusted. Note that only a
limited number of pathways are displayed depending on
the choice below

Number of top pathways to
show

30 Pathways are filtered first by FDR and then ranked by the
test statistic

Use absolute values of fold-
change

FALSE When enabled, this converts original fold-changes to the
absolute values of fold-changes. Essentially, we treat the
up- and downregulations as the same. By ignoring the
directionality of expression change, we can identify most
affected pathways. Some pathways could be regulated by
upregulating some while downregulating other genes in
the pathway

Remove genes with big FDR
before pathway analysis:

1 Before conducting pathway analysis, users can eliminate
some genes with very large FDRs (e.g., >0.5) in the
differential expression analysis, thus increasing the signal
to noise ratio. This value should not be too small like
0.05, as it will drastically reduce the number of genes
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We then apply transformations so that lowly expressed genes do
not introduce as much noise in exploratory data analysis (EDA, see
Subheadings 3.4–3.6). As shown in Fig. 3, various methods have
different effects in reducing the variability of expression scores. The
rlog transformation is the most aggressive but is slower. Since we
only have eight samples, we choose rlog. You can see the effects of
the transformation by observing the scatter plots and boxplots. We
want to make sure that we have similar distribution in the density
plot and boxplot across samples. Note that for read counts data
transformations only affect EDA, as the identification of differen-
tially expressed genes (DEGs) is based on the modeling of the read
counts directly using discrete distributions. If users uploaded nor-
malized expression data, the transformed data is used in all
subsequent analyses (see Fig. 1).

3.4 Hierarchical

Clustering Heat Map

EDA is an essential part of the bioinformatics analysis of RNA-seq
data. Even though not directly related to the identification of
DEGs, EDA enables researchers to examine, observe, and interact
with the data. This could help reveal potential issues in the dataset.
Potential errors could arise from many of the previous steps: the
original biological experiment, RNA extraction, removal of ribo-
somal RNA, library construction, sequencing, adapter removal,
alignment, and quantification. We should always be skeptical, espe-
cially when some of the steps are outsourced. Sample mislabeling
happens in as much as 4% of the RNA-seq datasets [8] and can have

Fig. 3 Effects of various transformations on data distribution

426 Xijin Ge



devastating effect on a study. In our own experience, we once
accidently found that a purchased RNA sample for normal mouse
testis shows the typical expression profiles of uterus, after a graduate
student had worked on the data for over a year. Another benefit of
EDA is that we can gain insights into the trend in expression
change. Intuitive understanding of the data forms a foundation
for downstream analyses. To encourage biologist to conduct
EDA, we put several methods in front of the DEG and pathway
analysis tabs.

As one of the most direct and effective methods for EDA,
heatmap and hierarchical clustering can be customized in many
ways in iDEP. One trivial adjustment is to make the browser
window narrower, which forces iDEP to rerender the heatmap
to achieve a desired aspect ratio. The only option we changed for
this dataset is the Cut-off Z score from the default value of 4 to
3. This enhances the contrast of the heatmap, as values deviating
from the median by more than 3 standard deviations are replaced
with these upper or lower bounds.

As shown in Fig. 4, heatmaps give us a big picture of the overall
patterns in gene expression. Using 2000 genes with the most
variation across all samples, we observe that the two genotypes
differ substantially in the expression profiles of many genes. Repli-
cates are grouped together as expected. We manually marked some
of the gene groups (Fig. 4). Genes in Groups 1 and 3 are up- and
downregulated genes by Hsf1 knockout compared to wild type,
respectively. While genes in Group 2 are upregulated by heat shock
in both genotypes, those in Group 4 are induced only in wild type.
With tools like iDEP, users can obtain several dozen plots quickly, it
is essential to carefully examine and critically interpret these results.
Starting with the heatmap, users should begin to obtain intuitive
impression of the overall quality of the data, and the trend of gene
expression changes.

Data normalization before clustering can be done at different
levels. The least aggressive is the mean centering by genes, which is
often recommended for most expression studies. Mean centering
enables us to observe relative fold-changes as the most highly
upregulated and downregulated genes will be marked by bright
red and green in the default color scheme. On top of this centering
we can further divided each row by its standard deviation (SD).
Sometimes referred to as standardization, each row now has mean
of zero and SD of one. This can be useful in visualizing the trend of
changes, but the drawback is that we lost the information on the
absolute fold-changes and can amplify noise if genes with minimal
changes are included. Similarly, centering and standardization can
be applied to the columns (samples).
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Some experiments induce drastic changes in the transcription
of thousands of genes. For example, the heat shock experiment in
this example. Other experiments, however, has minimal effects on
most genes. Users should respect whatever the data is telling them
and select an appropriate number of genes with expression change.
The Gene SD distribution chart can guide the user in deciding
how many genes should be included in hierarchical clustering. We
typically examine a few hundred to a few thousand genes with the
most variations in expression characterized by SD.

3.5 k-Means

Clustering

With k-Means clustering, we can explicitly divide genes into groups
and carry out enrichment analysis to gain insights on what types of
genes are responding to treatment. First, users can take a quick look
at theGene SD distribution to determine howmany genes should
be included for clustering, like what we did in the Heatmap tab. To
decide on a proper k, the number of clusters, users can look at the
plot of within-group sum of squares (WSS) by clicking on the

Fig. 4 Hierarchical clustering of the top 2000 genes reveals patterns of gene
expression. Several groups of genes are marked
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button labeled “How many clusters?” We should choose a num-
ber where an additional cluster does not lead to substantially
decrease in WSS. This is often subjective and for this dataset,
k ¼ 9 seems appropriate. Users are encouraged to try different
choices. In general, if the dataset contains more biological samples,
we need a larger k, which will give us more refined grouping. When
we start to see many small clusters with no coherent enrichment
results, we need to decrease k.

In this dataset, we settled on k ¼ 9 (Fig. 5). Genes in clusters A
and D are up- and downregulated by Hsf1 knockout, respectively.
These differences are not responsive to the heat shock treatment.
Induced by heat shock in both genotypes, cluster I genes are related
to response to stress, based on the enrichment results that were
conducted automatically. Genes in cluster H are more strongly
upregulated in the wide type animals and are also related to cellular
response to stimulus. Cluster G contains a small group of 24 genes,
of which 12 are related to protein folding, including many heat
shock proteins (HSPs) involved in Hsf1 mediated heat response.
The names of the genes in each cluster can be obtained by down-
loading the file by clicking the Enrichment details button.

Users should avoid over-interpret results to fit a “story”. In
addition to Gene Ontology (GO), there are many other types of
pathway databases. Many of the enriched terms with moderately

Fig. 5 With k-means clustering, the top 2000 genes are divided into nine groups
with distinct expression patterns
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significant P values like 10�3 are often noise. We recommend that
users focus on the most significantly enriched terms. Based on the
hypergeometric test, the most significant enrichment is fatty acid
metabolic process with false discovery rate (FDR) of 3.9� 10�18 in
cluster C. This is unexpected and this group of genes are highly
expressed in wild-type animals regardless of treatment. Searching
the literature on the link between Hsf1 and fatty acid metabolism,
we found the work of Jin et al. [9], who demonstrated that loss of
Hsf1 in mice results in the strong downregulation of adipose-
specific genes like PPARG, which is included in Cluster
C. Therefore, this result is consistent with the observation that
Hsf1 is essential for lipid metabolism. The secondmost significantly
enriched term is protein folding (FDR < 1.17 � 10�17) in cluster
G. As much as 12 (50%) of the 24 genes in this cluster are related to
this function. Eight are clearly HSPs based on their names. These
genes are induced by heat shock only in wild-type animals, suggest-
ing that their induction is dependent on Hsf1. The Hsf1-
independent responses in Cluster H are enriched with response to
chemical stimulus (FDR < 4.0 � 10�12). The fourth most signifi-
cant group of GO Biological Process (GOBP) terms are related to
development, especially circulatory system development
(FDR < 4.7 � 10�10), overrepresented in Cluster E. There are
strong evidence that Hsf1 plays a role in development [10]. A
hierarchical clustering tree of enriched pathways can be generated
with the Visualize enrichment button. By interacting with the
data, users can start to understand the data and form hypothesis
on the molecular pathways.

3.6 Principal

Component Analysis

(PCA)

PCA is a dimensionality reduction method that enables the
mapping of RNA-seq samples on a scatter plot that captures overall
variability in expression profiles. From Fig. 6, we can see that
technical replicates are plotted close to each other as expected.
While the four knockout samples are located on the top left, the
wild-type samples are on the lower right. Other methods such as
multidimensional scaling (MDS) and t-SNE are nonlinear and
maybe more useful for complex datasets.

The principal components (PCs) represents directional changes
in gene expression and can be meaningful. As shown in Fig. 6, each
of the samples has coordinates on each of PCs. We can conduct an
ANOVA on these projections to see if each of PCs are correlated
with the factors in the design matrix. If correlation is detected,
P values will be printed out. We do not detect significant
(P < 0.05) correlation for this dataset. But for the demo data
built in iDEP [11] which studies the effect of whole-body ionizing
radiation (IR) on the mouse with or without p53, the first PC is
correlated with ionization radiation. In addition, each of the PCs
has loadings on each of the genes. Called metagenes by some
researchers [12], these PCs can be correlated with a certain
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pathways. We can treat these loadings vectors as fold-changes and
conduct pathway analysis using PGSEA [13, 14]. For this dataset,
we can see that the first two PCs are related to mitochondrion
organization and cell migration, respectively. The fourth and fifth
PCs are associated with fatty acid metabolism and immune
response, respectively. This is one of the innovations iDEP intro-
duced to combine PCA with pathway analysis.

3.7 Differentially

Expressed Genes

(DEGs)

We recommend users to upload read counts instead of FPKM or
RPKM data, which loses information through normalization. Read
counts will enable us to take advantage of the power of DESeq2
package [15] to directly model discrete distributions. In addition,
iDEP has been tested more thoroughly for read count data. By
default, the DEG1 tab conducts an all-vs-all comparison for all
sample groups. For simple experiments, this might be enough. In
this case we have an 2� 2 factorial design, so we need to define our
model by clicking on the Select factors & comparisons button.

For this experiment, we choose both the treatment and geno-
type as factors (Fig. 7). To make the results easily interpretable, it is
imperative to set reference (base) levels for each of the factors. By
default, it is set alphabetically. For the treatment, we select “ctrl”
as the reference level. For genotype, we choose the Hsf1 knockout
as reference as it does not have a functional HSF1 protein. This will
enable us to conveniently observe the additional effect of introdu-
cing Hsf1 in the wild type during heat stress. We also select the
interaction term as we are interested in the differential response
between the genotypes.

Fig. 6 Principal component analysis (PCA) of the eight samples
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After setting up the statistical model, we have the option to
decide the direction of the comparisons. For genotype, we choose
to compare wild type vs. Hsf1 mutant, while for treatment we are
interested in heat treatment vs. control (Fig. 7). This is to ensure
that we can easily interpret the fold-change values. Figure 8 illus-
trates how all the four possible comparisons are named and

Fig. 7 Interface to select factors and make models

Fig. 8 How comparisons are coded in iDEP. It is important to set reference levels
for factors. The reference levels are omitted in the names of the comparisons.
For example, “wt-Hsf1” means wt vs. Hsf1 under “ctrl” condition. A positive
fold-change number will mean genes highly expressed in wild type compared
with Hsf1 knockout under control condition. “wt-Hsf1_for_heat” means the
difference of gene expression in wild type compared with Hsf1 knockout both
with heat treatment. If a gene has a positive fold-change, it is more highly
induced by heat in wild type than in Hsf1 knockout
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interpreted across the four biological samples. Once we submit the
models, DESeq2 is rerun and a table and a bar plot of the number
of DEGs are shown for each comparison. Here, since the numbers
of DEGs are small, we decrease the Fold-change cutoff from 2 to
1.5. The FDR cutoff is set at the default of 0.1. As shown in Fig. 9,
heat shock induces 511 genes in the wild type, much more than the
255 in Hsf1 knockout. Also, under control conditions, Hsf1
knockout downregulated 473 genes, suggesting that Hsf1 is essen-
tial in normal physiological conditions outside heat shock. Asso-
ciated with the interaction term, 111 genes are specifically
upregulated by heat stress in wild-type animals, constituting an
Hsf1-dependent response.

Using theVennDiagram button, we can compare these lists of
DEGs. For example, Fig. 10a shows that 186 genes are upregulated
in both genotypes, but heat shock induces more genes in wild type
than those in Hsf1 knockout. While Hsf1 plays an essential role in
heat shock response, there are Hsf1-independent responses. The
186 genes are part of a Hsf1-independent response.

The DEG2 tab enables detailed examination of the individual
comparisons. For each of the comparison, iDEP can produce static
and interactive versions of volcano plots, MA plots, and scatter
plots. We start with the response to heat stress in wild-type animals
by choosing the “heat-ctrl_for_wt” comparison. The scatter plot
in Fig. 10b indicates the drastic upregulation of Hspa1b.
Figure 11a shows the enriched GOBP terms arranged into groups
based on overlapping genes. Upregulated genes are divided into
several themes, for example, stimulus response, development, and
metabolisms. For model organisms, iDEP provides a large database

Fig. 9 The numbers of DEGs for all comparisons
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of pathways including GO, KEGG, many specialized pathway data-
bases, transcription factor (TF) and microRNA target genes, and
drug associations. Switching the database from GOBP to TRED
(TF.Target.TRED) [16], we get Fig. 11b, which suggests a signifi-
cant overrepresentation of 10 HIF1 target genes in this list
(FDR< 3.9� 10�18). The upregulated genes also include 12 target
genes of p53, which is part of the stress response, perhaps

Fig. 10 (a) Venn diagrams comparing genes induced by heat in wild type and Hsf1 knockout. (b) Interactive
scatter plot comparing the average expression of DEGs in treated vs untreated wild-type animals

Fig. 11 Overrepresented GO Biological Process terms (a) and transcription factor target genes (b) in treatment-
induced DEGs in wild-type animals
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independent of HSF1. Other factors include androgen receptor
(AR) and several regulators of lipid metabolism (PPARA, PPARD
and PPARG).

Similar analysis can be done on the “heat-ctrl” comparison,
representing the response to heat in knockout animals. The
GOBP terms also contain the stress response, but also includes
cytokines and programmed cell death (data not shown). The upre-
gulated genes are enriched with target genes of RELA, ATF1, and
TP53. As RELA is part of the NF-κB, a strong inflammatory
response is triggered by heat shock in animals without the Hsf1.
There is a complex interplay between HSF1 an p53 pathways
[17]. Our results suggest that p53 might be part of the heat
response independent of Hsf1.

We then can examine DEGs linked to the interaction terms,
which represent the additional heat response in wild-type animals.
The expression patterns of these genes are shown in Fig. 12a, which
indicates a group of genes only upregulated by heat treatment in
wild type. The top two most upregulated (over 100�) genes are
Hspa1b and Hspa1a, two members of the Hsp70 family. The most
significantly downregulated gene is Mmrn1 (Multimerin 1). These
groups of genes are clearly related to protein folding and heat
response based on overrepresented GOBP terms (Fig. 12b).
Many other databases can be explored to gain further insights.
For example, using Comparative Toxicogenomics Database
(CTD) [18], we found that the interaction term is highly correlated
(FDR< 5.7� 10�10) with gedunin, which is a tetranortriterpenoid

Fig. 12 (a) The expression profiles of DEGs associated with the interaction term contains genes specifically up-
or downregulated with functional HSF1. (b) These genes are related to protein folding
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isolated from the Indian neem tree. Used to treat malaria and
shown to have anticancer activity, gedumin modulates Hsp90
[19] to activate the heat-shock response. Based on the data here,
the effect of gedumin is dependent on Hsf1. Therefore, for human
and mouse, it is possible to identify drugs associated with expres-
sion signatures.

Users can employ the API (application program interface)
access to STRING-db web server [20] to double-check the enrich-
ment results. The results are based on analysis by the STRINB-db
server, independent of iDEP. STRING-db has the additional capac-
ity of enrichment analysis of protein family and domains as well as
the retrieval of protein–protein interaction (PPI) networks. For
example, Fig. 13 shows interactive PPI among the top 30 highly
expressed genes in the interaction term. This plot is generated by
API access to STRING-db with links to underlying literature. We
can see many heat shock proteins interacting with each other.

Fig. 13 Protein–protein interactions of the top 30 genes associated with the interaction term. This is rendered
by API access to STRING-db
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3.8 Pathway

Analysis

The list of DEGs are sensitive to thresholds of FDR and fold-
change. Subsequently, the enrichment analysis based on these
gene lists can also vary depending on user’s choices. One solution
is to analyze the expression data of all genes to detect pathways
whose member genes are coherently regulated, even below the
DEG threshold. In iDEP, pathway analysis is implemented through
the analysis of fold-changes of all genes. Some pathway analysis
methods, such as the standalone GSEA [21], use expression levels
of all samples directly, which retain more information, to enable
permutations of sample groupings. Therefore, pathway analysis in
iDEP has its limitations due to the use of fold-changes. We recom-
mend users try different tools. Even though sensitive to arbitrary
cutoffs, the enrichment analysis on DEGs (see Subheading 3.7) can
sometimes be more powerful than pathway analysis. Thus, users
should combine results from both types of analyses.

With the combination of various pathway databases and the
four different types of pathway analysis methods, iDEP can produce
a lot of results quickly. Many of them might be merely noise. The
danger is to try all the different combinations and search for the
results we want. This is called P-hacking or selective reporting. It
is a serious issue that we as developers worry about. Instead of
picking the pathways, users should use the different combinations
to corroborate and double check if the results are robust (see Note
1).

First, we focus on the heat response in wild-type animals, which
is represented by fold-changes labeled with “heat-ctrl_for_wt”. The
default method GAGE [22] fails to identify any pathways using the
GOBP. Switching to GSEA [21], we detect pathways (Fig. 14a)
consistent with what we observed in enrichment analyses of k-
Means clusters and DEGs. The results from GSEA precisely pin-
points the “Cellular response to heat” pathway that involves
54 genes. Their expression patterns are conveniently displayed
below the pathway table. The adjusted P values are dependent on
the number of permutations in the fgsea implementation of GSEA
(see Table 4). With the 10,000 permutations as the current setting,
the smallest unadjusted P value is 1 � 10�4. That is why we see the
same for all top pathways. Users should look at the test statistic to
see the relative effect size of different pathways. That is how signifi-
cant pathways are ranked. Users should pay attention to the path-
ways with the highest the NES (normalized enrichment scores) in
GSEA results. As shown in Fig. 14a, the top pathways identified by
GSEA are directly related to heat stress in wild-type animals. By
switching pathway database to TRED, we can again detect the
upregulation of 37 HIF1A target genes(Fig. 14b), in agreement
with the results from the enrichment analysis of DEGs (Fig. 11b).
The difference is only 10 of the 37 genes are among the DEGs as we
are using fold-changes of all genes. Other TFs listed in (Fig. 14b)
maybe involved in heat response, namely androgen receptor (AR),
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SMAD3, PPARA, and TP53. By switching from GOBP to KEGG
pathways, we can identify the regulated KEGG pathways. Figure 15
shows the change in gene expression on pathway diagrams of the
top KEGG pathway, “Protein processing in endoplasmic reticulum
(ER).” Heat shock causes the accumulation of misfolded proteins
in the ER; HSP are known to regulate ER [23].

Second, we examined the pathways associated with heat
response in animals without Hsf1. The fold-changes are labeled
“Heat-ctrl”. As the knockout genotype is the reference level, it is
skipped in the comparison name. Without Hsf1, heat shock induces
inflammatory response (Fig. 16). The upregulated GOBP terms
forms two big clusters. One is related with inflammatory response,
especially iterleukin-1 (IL1) induced. The other is related to migra-
tion of various immune cells (macrophage, monocyte, neutrophil).
The representation of enriched GO terms as hierarchical clustering
trees is a novel feature introduced in iDEP to aid the interpretation
of GO terms, which are often redundant and overlapping. These
enriched terms are different from what we observed in the wild-

Fig. 14 Results of pathway analysis of heat stress in wild-type animals using GSEA method on GO Biological
Process database (a) and the transcription factor target genes (b)
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type animals, where the most of the significantly upregulated path-
ways are related to chaperone-mediated protein folding and heat
response (Fig. 14a). This result is consistent with findings that
HSF1 suppresses interleukin 1β (IL1B) by directly binding to its
promoter [24].

Third, we can directly study the difference in response by
analyzing the interaction term “I:genotype_wt-Treatment_heat”.
The FCs are calculated by subtracting the treatment-induced FCs
in knockout animals from those in the wild-type animals. The
interaction term thus measures the additional effect of heat on
animals with a functional Hsf1 gene. Applying the GSEA on
GOBP pathways, we observe the upregulation of chaperone-
mediated heat response and the downregulation of immune cell
migration related terms (data not shown). This agrees with our
observation above. To visualize pathway activity, we use the PGSEA
method (Fig. 17a), which shows that the chaperone-mediated
protein folding pathway is specifically activated in wild-type animals
after treatment. We can select this pathway to confirm the expres-
sion profiles of the genes. Part of the heat map is shown in Fig. 17a,
indicating strong upregulation of heat shock factors, specifically in
wild-type animals with treatment. Finally, we can use the

Fig. 15 KEGG pathway showing the expression profiles of genes related to protein processing in the
endoplasmic reticulum. The fold-changes are heat response in wild-type animals
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ReactomePA package [25] to detect significant pathways indepen-
dent of the iDEP database. As shown in Fig. 17c, the HSF1-
dependent transactivation pathway is detected alongside many
heat response related pathways. As ReactomePA uses an indepen-
dent database and calculation, this serves as a confirmation. Truly
significant pathways should be robustly detected.

3.9 Reanalyzing

Public Data

iDEP also offers access to many uniformly processed public RNA-
seq data. For example, using “heat shock” as key words, we can find
many similar datasets. We found a dataset (GSE81520) in worm
that has similar design (Hsf1 knockout) with and without heat
treatment. The files are available at Zenodo (https://doi.org/10.
5281/zenodo.3783838). Analyzing this dataset with iDEP, we can

Fig. 16 Pathway analysis using GSEA on GO Biological Processes for the heat response in animals
without HSF1
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also identify the enrichment of protein-folding and heat-stress
induced genes in wild type, but not in knockout animals. With
iDEP, users can easily analyze multiple datasets.

4 Notes

1. Critical interpretation: iDEP is developed thus far by a tiny
team without much funding. As a result, it has not been thoroughly
tested and evaluated. We thus welcome feedbacks or bug reports
either through email or through our GitHub repository. We have

Fig. 17 Pathways analysis using the fold-changes associated with the interaction term. (a) PGSEA using GOBP
visualizes the activities of the pathways in the sample groups. The chaperone-mediated protein folding is only
active in wild-type animals with heat treatment. The expression pattern of the associated genes are shown in
(b). (c) Results using ReactomePA method which confirms the upregulation of HSF1 pathway and the
subsequent heat response
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recently secured funding to thoroughly test and address bugs. To
check the robustness of pathway analysis, users can:

1. Compare with enrichment analysis from k-Means clusters.

2. Compare with enrichment analysis of DEGs.

3. Use different pathway databases (many are overlapping).

4. Compare results using different pathway analysis methods.

5. Use independent data sources and methods accessible via
STRING-db and ReactomePA.

iDEP also provides functionalities to visualize fold-changes on
chromosomes. For larger datasets, users can also run biclustering
and coexpression networks. These modules are still in development
stage and need further enhancement.
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Chapter 23

Exploring Noninvasive Biomarkers with the miRandola
Database: A Tool for Translational Medicine

Francesco Russo

Abstract

Noninvasive biomarkers are required for addressing crucial clinical needs. The ideal biomarker should be
easily accessible and provide a unique characteristic for a healthy status or a pathological condition. In the
last years, microRNAs (miRNAs) have been proposed as promising tissue-based biomarkers for several
diseases such as cancer and cardiovascular diseases. Recently, miRNAs have shown great potential as novel
noninvasive biomarkers, due to their high stability in human body fluids such as serum, plasma, and urine.
Furthermore, many other noncoding RNAs (ncRNAs) such as long noncoding RNAs (lncRNAs) and
circular RNAs (circRNAs) have shown to be novel biomarkers as well. The aim of this exciting research field
is to offer novel tools, allowing translational scientists to develop new strategies for diagnosis, screening,
and monitoring of diseases. In this book chapter, the miRandola database and its applications will be
introduced. The database offers the possibility to explore information on ncRNAs as noninvasive biomar-
kers, manually extracted from scientific literature and public available resources.

Key words MicroRNAs, ncRNAs, Biomarkers, Database, Body fluids

1 Introduction

The miRandola database is a compendium of RNA classes found in
several body fluids and released by different cell lines [1, 2]. The
database represents an important tool for the translational medicine
community, since it offers comprehensive information about the
potential role of RNAs as noninvasive biomarkers in several
biological contexts and pathological conditions.

The main RNA class in the database consists of miRNAs, which
are small ncRNAs (21–23 nt long) that regulate gene expression by
binding mRNAs (and other RNAs) [3]. Usually, miRNAs down-
regulate their targets, but it has been reported that they can also
cause the upregulation of genes [4]. miRNAs bind at the 30-UTR of
transcripts but other locations have been reported as well [5].

The database reports data about other RNA classes, including
lncRNAs and circRNAs. LncRNAs, are ~200 nt long and have
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several functions since they can interact with other RNAs or pro-
teins. It has been reported that lncRNAs can act like “sponges” for
miRNAs, by reducing the gene expression of one or more miRNAs
at the same time. The sponge effect has downstream consequences
in the regulation of miRNA targets, through complex loops of
regulations [6, 7]. LncRNAs can also bind proteins [8], demon-
strating their multifunctional role in the regulation of biological
processes and pathological conditions.

CircRNAs are one of the most recent RNA classes. Like the
linear lncRNAs, they can also act as sponges for miRNAs having
high accessibility for miRNA binding sites in the circular sequence
[9–11]. Some circRNAs have also been involved in development
and in the transcriptional or posttranscriptional gene regulation of
their host genes. For example, the CDR1as circRNA may promote
the expression of CDR1 sense mRNA, but the mechanism behind it
is still unknown [12].

These RNA classes have been found to be very stable in several
body fluids, complexed in membrane-bound vesicles such as exo-
somes, which offer them protection from RNAses [13, 14]. miR-
NAs are also found with Argonaute 2 (Ago2) protein [15], part of
the RNA-induced silencing complex (RISC) responsible of the
RNA silencing process. Furthermore, they can be complexed with
high-density lipoprotein (HDL) and actively transported into tar-
get cells [16].

In this book chapter, the functionalities of miRandola will be
presented giving the users a practical guide for the use of the
database as important resource in translational medicine.

2 Material

The miRandola database is freely accessible at http://mirandola.iit.
cnr.it/. The full database or individual files can be downloaded and
used for noncommercial purposes at http://mirandola.iit.cnr.it/
download.php. The individual tab delimited text files include infor-
mation about the list of papers reported in the database, data for
miRNAs, lncRNAs, and circRNAs.

3 Methods

Most of the data in miRandola are based on searches in PubMed
(https://pubmed.ncbi.nlm.nih.gov/). In the first versions of the
database, articles reporting studies in the field of ncRNAs as non-
invasive biomarkers were retrieved using keywords such as “micro-
RNA,” “circulating,” and “extracellular.” In the newest version, a
text mining–assisted curation was introduced for helping the
human biocurators to identify and prioritize papers for manual
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curation by applying the tagger software [17]. Then, the relevant
information is manually extracted, such as the extracellular RNA
forms, RNA type, experimental procedures, associated diseases and
sample type.

The database also includes some studies from two publicly
available resources, ExoCarta [18] and Vesiclepedia [19], manually
curated databases on extracellular vesicles. Overall, miRandola con-
tains 314 studies, 14 organisms, 3283 entries, 1002 miRNAs,
12 lncRNAs, 8 circRNAs, 7 extracellular RNA forms, 47 sample
types, and 25 drugs having an effect on the release of ncRNAs into
the bloodstream. Data are organized in a MySQL database running
on an Apache server and Bootstrap (https://getbootstrap.com/) is
used as front-end framework. The website is very dynamic, having
several links between pages and it offers different options for
searching and browse the entries in the database.

In the following sections, the main characteristics of the web-
site will be introduced showing the different options for searching
the database and some of the results. All the options are accessible
through the user-friendly menu bar.

3.1 Home Page The home page of the website is very intuitive (Fig. 1a). The menu
bar on the top offers all the main options including Browse, Search,
Tools, Articles in the database, Statistics, and Download.

A text area is also available (Fig. 1b) for a quick search for RNA
molecules of interest (e.g., “hsa-miR-21”). When the user starts
typing, the autocomplete function will suggest an entry in the
database, facilitating the identification of the term of interest.
After clicking on the RNA of interest, users will have an overview
of the results, reporting the specific RNA class and extracellular
forms (Fig. 1c). The links between web pages, allow the user to
navigate the results by clicking on the RNA term (in this example
“hsa-miR-21”), RNA class (“miRNA”), or the extracellular RNA
form (“Ago2,” “circulating,” “exosome,” “microparticle,” or
“microvesicle”).

3.2 Browsing

the Database

The menu bar offers several options. The Browse option is probably
the best way to explore the database and having an overview of the
data types (Fig. 2). Users can browse for microRNAs, long
non-coding RNAs, circular RNAs,Diseases, exRNA forms, Samples,
Drugs, and Organisms.

Upon selection of the search-term of interest, users will be able
to inspect the results. It is possible to choose for three RNA classes:
microRNAs, long non-coding RNAs, and circular RNAs. Figure 3
shows, as example, the result for microRNA which represents the
largest RNA class in the database. The result table contains five
fields: Mature miRNA ID from literature (as reported in the
original research paper), miRBase ID (the official miRNA ID
extracted from the miRBase database [20]), miRBase accession
(official accession number), miRBase family, and Organism.
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Fig. 1 Webpage of the database and search bar. (a) Home page; (b) search bar
with autocomplete function; (c) overview of the result of the search

Fig. 2 Menu bar and Browse option. Users can browse for microRNAs, long non-coding RNAs, circular RNAs,
Diseases, exRNA forms, Samples, Drugs, and Organisms
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The result page offers the option of filtering for each field of the
table (in this example, we filter for “hsa-miR-21”). Upon typing,
the table is updated by showing the results related to the term we
are looking for.

The result table for Diseases shows pathologies and normal
conditions in which the RNAs were found (Fig. 4). It also contains
cell lines who released the molecules into the bloodstream. By
applying the filter, we are able to look at specific terms of interest
(in this example, “cancer”). The terms are listed as reported in the
literature.

Fig. 3 Result page for the Browse option (miRNAs). The result page for the Browse option, offers an overview
of the data types in the database. In this example, the overview for miRNAs is given. It is possible to filter for
each field of the table (in this example, we filter for “hsa-miR-21”)

Fig. 4 Result page for the Browse option (diseases). Pathologies and normal conditions in which the RNAs
were found. It also contains cell lines who released the molecules into the bloodstream
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The section of the extracellular RNA forms (exRNA forms)
consists of seven entries based on the different types of complexes:
“Ago2,” “HDL,” “membrane vesicle,” “microparticle,” “micro-
vesicle,” and “exosome.” An additional category defined in miR-
andola is “circulating.” This term is used when the other
extracellular forms are not specified in the research articles, which
is the case for more than 35% of the RNAs in the database (Fig. 5).

The database includes 47 types of samples, with serum and
plasma contributing to the largest groups (Fig. 6). The variety of
samples shows how research increased over the years, exploring the
presence of extracellular RNAs in several body fluids and their
potential role as noninvasive biomarkers.

The last two sections regard Drugs and Organisms. The drug
effects on the release of RNAs in the bloodstream, is one of the
newest research topics in this exciting field. The database includes
25 drugs used in different diseases such as cancer and cardiovascular
conditions. For example, it has been reported that aspirin prevents
the transfer of miR-126 from the platelet to the plasma compart-
ment in type 2 diabetes [21]. Another example is given by the use of
miR-21 as marker to indicate the transformation to hormone-
refractory prostate cancer, and potential predictor for the efficacy
of docetaxel-based chemotherapy [22].

3.3 Search Function

in miRandola

The search function allows the user to look for RNAs (e.g., hsa--
miR-21), diseases (e.g., prostate cancer), or samples of interest
(e.g., plasma) by typing in a text area (Fig. 7). It is also possible

Fig. 5 Distribution of extracellular RNA forms. The majority of the extracellular
RNAs in the database are found to be in exosomes but the second largest group
consists of the category “circulating,” used when the authors do not distinguish
between all the other forms
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to type a combination of RNA AND/OR disease or sample. The
implementation of the autocomplete function makes it easier to
find the term of interest.

3.4 Result Table The result table contains the main content of the database, which is
reachable from the Browse or Search options. The top part of the
main content formicroRNAs (Fig. 8), shows summary information

Fig. 6 Main samples in the database. Serum, plasma, and urine are the largest categories

Fig. 7 Search function. The database offers a convenient Search option, to look for specific RNA, disease or
sample of interest, or a combination of them
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about the specific miRNA of interest (in this example hsa-miR-
126), reporting the same fields of the Browse section (i.e., Mature
miRNA ID from literature, miRBase ID, miRBase accession, miR-
Base family, and Organism) and the number of results for the
specific search.

The second part of the result table, contains several fields
manually extracted from the research articles (Fig. 9), including
publication id (PubMed ID), title of the research article, publica-
tion year, first author, and journal. The associations to diseases,
sample types, extracellular RNA type, RNA expression level, and
the drug used in the experiment are also reported. Furthermore,
the table includes the methods used to verify the expression or
other lab techniques, and a brief description of the results summar-
izing the main findings. The “Potential biomarker role defined in
the article,” is also reported, which indicates whether the selected
RNA has a potential role as biomarker, or its role is still unknown.

3.5 Tools miRandola includes a Visualization section consisting of a graphical
representation of the different data types in the database, a circos
plot showing the disease network representing the RNAs in com-
mon for the most representative tumor types and a heat map
showing the RNA–Disease co-occurrences. Together with the Sta-
tistics section, these simple visualizations allow users to have a
general overview of the data in the database.

3.6 Conclusions miRandola was established in 2012 as first database of its kind, in
the early stage of this research field when few scientific articles were
available. Initially, the main focus of the database was to collect data
regarding human miRNAs as potential noninvasive biomarkers.
Later, the number of publications increased and the database
started to include additional ncRNAs, organisms, diseases, and
drugs. The database is manually curated, which entails the

Fig. 8 Top part of the result table. It shows summary information about the miRNA of interest
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involvement of several human biocurators and a time-consuming
process for updating it. Recently, a text mining–assisted curation
was included to support the biocurators and speed up the updates.
Future directions will consider to use more text-mining approaches
to support the curation and to have more and updated data on
noninvasive biomarkers.
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Chapter 24

Database Resources for Functional Circular RNAs

Dahui Hu, Peijing Zhang, and Ming Chen

Abstract

Circular RNA (or circRNA) is a type of single-stranded covalently closed circular RNA molecule and play
important roles in diverse biological pathways. A comprehensive functionally annotated circRNA database
will help to understand the circRNAs and their functions. CircFunBase is such a web-accessible database
that aims to provide a high-quality functional circRNA resource including experimentally validated and
computationally predicted functions. CircFunBase provides visualized circRNA–miRNA interaction net-
works. In addition, a genome browser is provided to visualize the genome context of circRNA. In this
chapter, we illustrate examples of searching for circRNA and getting detailed information of circRNA.
Moreover, other circRNA related databases are outlined.

Key words CircRNA, CircRNA function, CircRNA interaction, CircFunBase, Database

1 Introduction

Circular RNAs are a special group of endogenous RNAs character-
ized by covalent closed loops [1]. CircRNA are reported to be
expressed widespread both in animals and plants [2–4]. Thought
expression levels of most of circRNAs are low [5], increasingly
evidence shows that circular RNAs play important roles in regula-
tion of biological pathways [6]. CircRNA can perform its function
in a variety of ways, such as acting as miRNA sponges to regulate
the target genes of miRNA [7], acting as RNA binding proteins
sponges to regulate proteins function indirectly [8], working as
protein scaffold to facilitate the colocalization of enzymes and
their substrates to influence the reaction kinetics [9]. Some cir-
cRNAs have been proved to function as templates and translate to
peptides [10]. As a new member of RNA world, circRNAs have
greatly increased the complexity of transcriptional regulation.
Recent reviews have overviewed the biogenesis and function of
circRNAs [11, 12].

Ernesto Picardi (ed.), RNA Bioinformatics, Methods in Molecular Biology, vol. 2284, https://doi.org/10.1007/978-1-0716-1307-8_24,
© Springer Science+Business Media, LLC, part of Springer Nature 2021

457

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-1307-8_24&domain=pdf
https://doi.org/10.1007/978-1-0716-1307-8_24#DOI


Together with high-throughput sequencing technologies and
circRNA detection pipeline like CIRI2 [13], KNIFE [14], and
Circmarker [15], thousands of circRNAs in both animals and plants
have been identified and integrated into the circRNA databases,
such as circBase [16], circAtlas [17], and PlantCircNet [18]
(Table 1). Although these circRNA databases provide the tissue
information, the functions of circRNAs remains unclear.

To bridge the gap between circRNAs and their functions, we
collect current findings about function of circRNA from literature
and build a functional circRNA knowledgebase (CircFunBase,
http://bis.zju.edu.cn/CircFunBase).

Table 1
Resources of circRNA databases

Name Description URL Year

Circ2Traits [21] CircRNAs potentially associated with disease and
traits

http://gyanxet-beta.
com/circdb

2013

circBase [16] A unified circRNA data set from previous
publications

http://www.circbase.
org/

2014

CircInteractome
[22]

Circular RNAs and Their Interacting Proteins and
microRNAs

https://
circinteractome.nia.
nih.gov/

2016

CircNet [23] CircRNA–miRNA–mRNA interaction networks http://circnet.mbc.
nctu.edu.tw/

2016

circRNADb [24] CircRNAs with protein-coding potential http://202.195.183.
4:8000/circrnadb

2016

TSCD [25] Tissue-Specific circRNAs in human and mouse
tissues

http://gb.whu.edu.
cn/TSCD

2016

PlantcircBase
[26]

The first plant circular RNA database that derived
from public datasets

http://ibi.zju.edu.cn/
plantcircbase/

2017

PlantCircNet
[18]

Providing plant circRNA–miRNA–gene regulatory
networks, as well as circRNA information and
circRNA expression profiles

http://bis.zju.edu.cn/
plantcircnet/index.
php

2017

AtCircDB [27] Tissue-specific Arabidopsis circular RNA database http://genome.sdau.
edu.cn

2017

CSCD [28] Cancer specific circRNAs http://gb.whu.edu.
cn/CSCD/

2018

exoRBase [29] CircRNAs derived from RNA-seq data analyses of
human blood exosomes

http://www.
exoRBase.org

2018

CircR2Disease
[30]

Experimentally supported circRNA and disease
associations database

http://bioinfo.snnu.
edu.cn/
CircR2Disease/

2018

(continued)
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2 Materials

The CircFunBase database is implemented using HTML and PHP
languages with relational database MySQL. CircFunBase provides
user-friendly interface and includes flexible JQuery plugins to
enhance interactivity. Cytoscape.js was used to visualize the
circRNA-associated networks, while Dalliance [19] was used to
view the context of genome. The BLASTmodule was implemented
through SequenceServer [20]. The API module was provided by
PhalAPI service. CircFunBase is freely available at: http://bis.zju.
edu.cn/CircFunBase, updated Firefox or Chrome browsers are
recommended. At the moment, CircFunBase deposits 7289 cir-
cRNAs from 7 plants and 9 animals (Fig. 1).

In the chapter, we provide guidelines to use the CircFunBase
website. For the sequence-based module, the sequence of hsa_-
circ_0001946 which is also known as CDR1as will be used as
example. This sequence can also be found on http://bis.zju.edu.
cn/CircFunBase/detail.php?name¼hsa_circ_0001946.

>hsa_circ_0001946

GGGTTTCCGATGGCACCTGTGTCAAGGTCTTCCAACAACTCCGGGTCTTCCAGCGACTT-

CAAGTCTTCCAATAATCTCAAGGTCTTCCAGATAATCCTGAGCTTCCAGAAAATCCA-

CATCTTCCAGACAATCCATGTCTTCCGGACAATCCATGTCTTCCAAGAAGCTC-

CAAGTCTTCCAGTAAATCAAGTCTTCCAGCAAATCCAGTCTTCCAGCAAT-

TACTGGTCTTCCACCAAATCCAGATCTTCCAGGAAAATCCACGTCTTCCAGGAAATC-

CATGTCTTCCAATAATTTCAAGGTCTTCCATCAAATACAGATCTTCCAGCTAATC-

CATGTCTTCCAGAAAAATCTGTGTCTTCCACCAAATCCAAGTCTTCCAGTAAATC-

TAGTTCTTCCAGAAAAATCTAGATCTTCCAGTCAATCAGTGTCTTCCAGAAAGAAATC-

CAGGTCTTCCAGTCAATCAGTGTCTTCCAGAAAGAAATCCAGGTCTTCCAGTCAGT-

Table 1
(continued)

Name Description URL Year

CIRCpedia [31] CircRNA annotation from over 180 RNA-seq
datasets across six different species

http://www.picb.ac.
cn/rnomics/
circpedia

2018

TRCirc [32] Transcriptional regulation information of circular
RNAs

http://www.
licpathway.net/
TRCirc

2018

circAtlas [17] Integrating circRNAs and their expression and
functional profiles across six species

http://159.226.67.
237:8080/new/
index.php

2019

CircFunBase
[33]

Providing a high-quality functional circRNA
resource including experimentally validated and
computationally predicted functions

http://bis.zju.edu.cn/
CircFunBase

2019
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CAGTGTCTTCCAGAAAAATCTACGTCTTCCACCAAATCCAGGTCTTCCAGTCAATCCA-

CATCTTCCGGAAAAAATCCAGGTCTTCCAGCCAATATATGTCTTCCTGAAGATC-

CACGTCTTCCAGAAAATCCATGTCTTCCAGAAAATCCATGTCTTCCAGTAACCTCC-

CAGTCTTCCAGAAAATCCACGTCTTCCCAACAATCCAAGTCTTCCGGA-

TAATTTGGGTCTTCCTGAAAATCTACGTCTTCCAAAAAAGCCATGTCTTCCAGAAAATC-

CACATCTTCCAATGGCCTCCAGGTCTTCCAGACTATCCATGTCTTCCA-

GAAAATCCTTGTCTTCCCTTAAATCTATAGCTTCCAAAAAATCCGGGTCTTCCAG-

GAAATCCGTGTCTTCCAGCAAGTCCACGTCTTCCAACAAAGCCATGTCTTCCAGACTATC-

CATGTCTTCCAGAAAATCCTTGTCTTCCCTCAAATCCATAGCTTCCGAAAAATC-

CAGGTCTTCCAGGAAATCCGTGTCTTCCAGCAAATCCACGTCTTCCAACAAAGC-

CATGTCTTCCATCAAATTAATGTCTTCCAGCCTACTTGTGTCTTCCAACAAAGG-

TACGTCTTCCAACAAAGGTACGTCTTCCAACAAAGGTATGTCTTCCAACAAAGG-

TACGTCTTCCAGAAAATCCACGTCTTCCAACCAAGCCATGTCTTCCAGAAAATC-

CACGTCTTCCAGAAAATATATGTCTTCCAACTAAGCTACGTCTTCCAACAAATC-

CATGTCTTCCTATATCTCCAGGTCTTCCAGCATCTCCAGGGCTTCCAG-

CATCTGCTCGTCTTCCAACATCTCCACGTCTTCCAGCATCTCTGTGTCTTCCAGCATCTT-

CATGTCTTCCAACAACTACCCAGTCTTCCATCAACTGGCTCAATATCCATGTCTTC-

CAACGTCTCCAGTGTGCTGATCTTCTGACATTCAGGTCTTCCAGTGTCTGCAATATCCAG

Fig. 1 CircFunBase web interface and species

460 Dahui Hu et al.



3 Methods

Figure2showstheoverviewofCircFunBase.Userguidelinesforeach-
module are introduced in the following sections.

3.1 Search Form There are multiple ways to access data in CircFunBase. CircFun-
Base can be queried through two different search forms: (1) the
simple search form allowing basic queries on fields, such as circRNA
name; (2) the BLAST form permitting sequence queries on the
whole circRNAs nucleotide databases.

3.1.1 Keyword Search Users can visit the main search page using the Search link in the
navigation bar, which locates at the top of page. CircRNAs can be
retrieved by circRNA name, location, parental gene symbol and
other keywords. Users can also select the interested species by
clicking the red colored text. And autofill input form is implemen-
ted by typehead.js. Users can type part of keywords and a list of
candidates are provided. Examples are available in the Examples

Fig. 2 Overview of CircFunBase
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box. For instance, users can click the circRNA name has_-
circ_0001946, then press the Submit button. Basic circRNA infor-
mation table is listed in the Result panel, including circRNA name,
parental gene, species, and functions. Clicking the Detail button
can redirect to the detail page of circRNA.

Users can also copy or download the search result in CSV/PDF
format. Results can also be sorted by columns, like circRNA name
and parental gene. If no entry is available, the table will show “No
data available in table” message.

3.1.2 BLAST Search Rather than keyword-based search form, users can access the
sequence search (BLAST search) page by clicking the BLAST link
in the navigation bar. Users can paste query nucleotide sequence
(s) or uploading file containing query sequence(s) in FASTA for-
mat. Next, choose databases to blast against, multiple selection is
allowed. Then, users can specify the advanced parameters or skip
this step by using the default parameters. Detailed parameters are
listed by clicking the question mark.

For instance, paste the example hsa_circ_0001946 sequence
into the query box and choose Homo sapiens, Mus musculus and
Rattus norvegicus nucleotide databases. Then press BLAST button
and results will be returned within a few seconds. The results
consist of number of hits and details of hits.

Our example sequence returns hits that matches to two cir-
cRNAs except itself; they are chrX:139865340–139,866,824 and
mmu_circ_0001878 (Fig. 3). chrX:139865340–139,866,824 is
actually located in the almost same position with hsa_circ_0001946
while its start position is 1 nt apart from hsa_circ_0001946. We
believe that they are actually the same sequence but with two
names. mmu_circ_0001878 has 72.3% identities in Mus musculus,
which suggests hsa_circ_0001946 may be conserved in human and
mouse and may have functional similarities to some extent.

After running a search, users can redirect to the corresponding
detail page by clicking the Detail button. Users can also select
interested hits and download the BLAST results by clicking the
buttons on the right in FASTA, tabular, or XML format.

3.2 Browse and

Download

As an alternative to directed searching, users can click the Browse
link in the navigation toolbar to view all circRNAs listed under
different species. Users can click the icon of species or phylogenetic
tree of species to get all circRNAs in the specific organism. Users
can also download all the circRNAs entries via download section in
Help page.

3.3 Detail The Detail page documents the full information of functional
circRNA entry, which can be accessed from the results of Search
or Browse action. The detailed information of circRNA consists of
several parts. First part is the basic information of circRNA, includ-
ing circRNA name, detection method, and circRNA function.
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1. circRNA name, mostly based on the name that literature used,
if it is human circRNA, hyperlink to circBase is provided.

2. Species, where the circRNA is identified.

3. Location, including chromosome, start position, and end posi-
tion. If it is from human, hyperlink to USCS genome browser is
offered.

4. Parental gene, parent gene of circRNAwith NCBI Gene link. If
it’s from tomato, the Ensembl Gene link is provided.

5. Parental gene function.

6. Gene OMIM, circRNA parental gene associated OMIM ID.

7. Detection tool, bioinformatics tools to identify circRNAs.

8. Method, experimental validation methods, including
RNA-seq, microarray, qRT-PCR, and northern blotting.

9. Function, description of circRNA function.

10. Expression pattern, circRNA may display different expression
patterns in different issues, which can help us understand com-
plexity of RNA world. The red colored arrow means upregu-
lated expression; the green colored arrow means down-
regulated expression.

Fig. 3 BLAST results of hsa_circ_0001946
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The second part is the visualization part, which includes cir-
cRNA associated interaction network visualization and genome
browser. The network shows the interaction of circRNA with
miRNA and circRNA with RBP. The red circle indicates the cir-
cRNA, the blue diamond indicates the RNA binding protein and
the orange pentagon symbol indicates the miRNA. The interaction
information is also listed in tables. For example, except for the
miR-7 and miR-671 that have been validated to be interacted
with has_circ_0001946, other miRNA–circRNA interactions are
also predicted to give an insight to functions of circRNA. Users
can select the layout style and download the image by choosing the
export format.

Genome browser can be accessed by clicking the Genome tab.
Users can zoom in and out to view the context of circRNA. Users
can relocate by enter the genomic location. Users can also change
the track style and download the image through the toolbar
provided by biodalliance.js.

The last part is sequences of circRNAs and references. The
sequences of circRNAs are extracted through scripts, based on
hypothesis that circRNAs share the canonical splice sites with linear
transcripts. The references that identified and validated the cir-
cRNA can be linked to the PubMed to view the full text.

3.4 API We provide an API interface to enable users to fetch data program-
matically with machine-read format. There are three kinds of ser-
vices, circRNA detailed information retrieval, miRNA interaction
information retrieval, and RNA binding proteins interaction infor-
mation retrieval. Take Python for example:

import requests

url = “http://bis.zju.edu.cn/CircFunBase/Api/Public/circfuna-

pi/?service=CircRNA.getinfo&circRNAname=%s”

circName = “hsa_circ_0001946”

res = requests.get(url % circName )

print(res.json())

Full documentation and field description are available via our
help pages.

3.5 Submission Directed submission by the researchers is supported. Users can
submit one circRNA entry by filling the form and can also submit
a file included multiple entries. Subsequent data correction is main-
tained by our administrators. We would appreciate that users can
assist us maintaining and updating CircFunBase.
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Chapter 25

Databases for RNA Editing Collections

Claudio Lo Giudice, Luigi Mansi, Graziano Pesole, and Ernesto Picardi

Abstract

A-to-I RNA editing in humans plays a relevant role since it can influence gene expression and increase
proteome diversity. In addition, its deregulation has been linked to a variety of human diseases, including
neurological disorders and cancer.
In the last decade, massive transcriptome sequencing through the RNAseq technology has dramatically

improved the investigation of RNA editing at single nucleotide resolution. Nowadays, different bioinfor-
matics resources to discover and/or collect A-to-I events have been released. Hereafter, we initially provide
an overview of the state-of-the-art RNA editing databases and, then, we focus on REDIportal, the largest
collection of A-to-I events with more than 4.5 million sites from 2660 humans GTEx samples.

Key words RNA editing, A-to-I editing, Transcriptomics, RNAseq, Database, REDIportal

1 Introduction

RNA editing is a global term to describe a set of co-/
posttranscriptional modifications occurring in a wide range of
organisms that lead to differentiate transcripts nucleotide
sequences from their corresponding genomic templates
[1]. These modifications affect both coding and noncoding
regions, thus contributing to increase the transcriptome [1, 2]
and proteome diversity [3].

In mammals and, in particular, in humans, there are two main
types of RNA editing events: adenine-to-inosine (A-to-I) and
cytosine-to-uracil (C-to-U).

As inosine is generally interpreted as guanosine (G) by transla-
tion and splicing machineries, A-to-I editing is often referred to as
A-to-G editing. While A-to-I accounts for>95% of all RNA editing
events in the human genome [4], only few transcripts have been
described undergoing C-to-U editing [5]. Biologically, RNA edit-
ing has a pivotal role in preserving the cellular homeostasis, as
demonstrated by the fact that its deregulation in humans seems to
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be involved in aging [6], neurological [7, 8], autoimmune [9],
cardiovascular diseases [10], and cancer [11].

Novel RNA editing events can be easily discovered by compar-
ing cDNA sequences with their corresponding genomic loci, fol-
lowed by the identification of A-to-G mismatches [12]. In order to
minimize false events arising from somatic mutations, the gold
standard is to analyze both DNA and RNA data from the same
individual [13].

Thanks to the great advances in sequencing technologies,
thousands of RNA editing changes have been detected and col-
lected in freely available specialized databases, whose main charac-
teristics are reported in Table 1.

While REDIdb [14] and PED [15] are devoted to plants
organellar editomes, RADAR [16] and DARNED [17] provide
information on A-to-I changes for human, mouse, and fruit fly.

DARNED has not been updated since 2013 and does not
include editing levels, while RADAR, which has been dismissed in
2019, annotates A-to-I events in the same organisms contained by
DARNED with editing levels available for 38% of stored positions
only. DARNED content is based on a limited number of RNAseq
samples, most of them deriving from LCL cell lines, that are
thought to be not optimal for RNA editing studies [18].

Emerging evidences indicate that A-to-I editing is also present
in fungi where is involved in the sexual reproduction [19, 20]. A
specialized database of fungal A-to-I RNA editing, housing a col-
lection of A-to-I editing sites in six filamentous fungal species
together with extensive annotations for each editing site, has been
recently released [21].

The proven association between editome alterations and
human diseases has also led to the the development of specific
databases integrating molecular and clinical data. In this sense an
example is offered by the Editome Disease Knowledgebase (EDK)

Table 1
Database name, organism(s) stored, last update, PMID (PubMed IDentifier)

Database Organism(s) Last update PMID

Darned Human, fruit fly (dm3), mouse 2013 20547637

RADAR Human (hg19), fruit fly (dm3), mouse (mm9) 2014 24163250

REDIdb Plants organellar genomes 2018 29696033

REDIportal Human, mouse 2019 27587585

PED Plants 2019 30364952

EDK Editome disease knowledgebase 2018 30357418

TCEA Cancer editome 2018 31015229
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[22], a manually curated database of RNA editing events in
mRNAs, miRNAs, lncRNAs, viruses, and RNA editing enzymes,
known from the literature to be associated with human diseases.
EDK integrates data on diseases from over 200 publications and
biological information about each editing event from RADAR [16]
and REDIportal [23]. Another relevant clinical database is The
Cancer RNA Editome Atlas (TCEA) [24] that is specifically
devoted to the exploration of RNA editing in cancer. TCEA inte-
grates RNA editing events with cancer stage or survival data, allow-
ing clinician to better link editing events with tumor onset/
progression. In TCEA as well as in EDK, RNA editing annotations
derive from REDIportal.

Historically, the RNA Editing ATLAS, comprising more than
three millions of A-to-I events identified in six tissues from three
healthy individuals, was the first human inosinome atlas to be
published [25]. To date, REDIportal, representing an extension
of the RNA Editing ATLAS, is the only active resource answering
functional questions about A-to-I RNA editing, enabling the
inspection and browsing of editing levels in a variety of human
samples, tissues, and body sites. Indeed, it collects more than 4.5
millions of A-to-I events in 55 body sites of 150 healthy individuals
from the GTEx project [26].

In REDIportal, RNA Editing sites can be searched by genomic
region or gene name. Query results are reported in sortable and
downloadable tables including relevant characteristics of resulting
events such as their genomic context, the reference and edited
nucleotide, the strand, the number of edited samples, the potential
amino acid change and the conservation across vertebrates. Some
table cells are colored and interactive with hyperlinks to external
resources.

Additionally, REDIportal provides coverage values per site at
both RNA (by RNAseq data) and DNA (by WGS data) level as well
as the RNA editing levels.

In the following section, we describe the REDIportal database
and provide guidelines to efficiently query it.

2 Materials

The use of REDIportal does not require specific bioinformatics
skills. Indeed, results are organized in tables for easy and intuitive
download and visualization. REDIportal can be reached at http://
srv00.recas.ba.infn.it/atlas/.

2.1 Required

Software

Standard desktop or laptop computer with a stable Internet con-
nection and an updated browser (e.g., Internet Explorer, Chrome,
Firefox, or Safari).
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To use the REDIportal API, the Curl library is needed. For
Windows and UNIX-like operating systems, it can be easily down-
loaded from https://curl.haxx.se/download.html.

3 Methods

3.1 Hands-on:

REDIportal Web

Interface

Searching into REDIportal is quite straightforward and also users
with no bioinformatics skills can perform extensive searches across
the database (Fig. 1).

RNA editing sites are classified according to their genomic
positions and can be retrieved providing a genomic locus (“Geno-
mic Region” field) or a known gene symbol (“Gene Name” field).
Both fields are mutually exclusive (Fig. 2). As an example, in Fig. 2
we show how to search for A-to-I changes in one of the genes
coding for subunits of glutamate receptors.

Furthermore, it is possible to refine the original query by using
additional criteria:

– “Location,” which allows the selection of RNA editing sites
residing in Alu elements (ALU) or in repetitive elements
non-Alu (REP) or in nonrepetitive regions (NONREP).

– “Genic Region,” which allows the selection of RNA editing
sites residing in regions such as untranslated regions (UTR) or
intronic regions or coding/noncoding exons or intergenic
regions (following the ANNOVAR [27] nomenclature).

– “AA change,” which allows the selection of RNA editing sites
residing in protein-coding regions and affecting codon integrity.

– “Tissue,” which allows the selection of RNA editing sites residing
in specific human tissues. More than one tissue can be selected for
each search. Tissue names are according to GTEx [26].

Fig. 1 REDIportal search page
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– “Body Site,” which allows the selection of RNA editing sites
residing in specific human body sites. More than one body site
can be selected for each search. Body site names are according to
GTEx [26].

Once a search has been performed, results will be displayed in a
table (Fig. 3).

Where:

– “Ref” is the nucleotide on Reference.

– “Ed” is the Edited Nucleotide.

– “dbSNP” indicates the presence of a SNP in dbSNP (green flag
for the match).

– “Location” indicates whether RNA Editing is in repetitive or
nonrepetitive regions.

– “Repeats” indicates the class and family of repeat including the
RNA editing position.

Fig. 3 Query results

Fig. 2 (1) Genomic loci can be interrogated entering chromosome coordinates in the format Chr:start-end (for
example chr4:158101247–158308846). (2) RNA editing events in known genes can be retrieved entering the
gene symbol in the “Gene Name” field. This field embeds an autocomplete function to facilitate the selection
of the right gene
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– “Gene” is the Gene Symbol according to Gencode [28].

– “Region” is the Genic Region (according to ANNOVAR).

– “EditedIn” is the number of samples in which the specific
position appears to be edited.

– “ExFun” is the exonic function and is limited to synonymous
and nonsynonymous positions. A colored flag is used to indicate
if a site is synonymous (green) or nonsynonymous (red).

– “Phast” is the PhastCons conservation score calculated for
multiple alignments of 45 vertebrate genomes to the human
genome. It ranges from 0 (no conservation) to 1000 (max
conservation). Values derive from UCSC phastCons46way
table [29].

– “KnownIn” indicates if a site is present in other known data-
bases (A: ATLAS, R: RADAR, D: DARNED).

It is also possible to download the information in the table by
clicking on the appropriate button (Fig. 4) and choosing the col-
umns of interest (Fig. 5). An example of a downloaded table is
reported in Fig. 6.

Fig. 4 Download button in red circle

Fig. 5 Download section
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For each position, REDIportal provides additional info that
can be displayed by clicking the blue arrow in the first column.
This will cause the opening of four tabs:

– “Heat-Map” (Fig. 7) displays an RNA Editing heat-map in
which the mean editing level per body site is reported.

– “Box Plot” (Fig. 8) displays RNA Editing levels per each body
site by means of box plots.

– “Alternative Annotations” (Fig. 9) displays a table with gene/
transcript annotations from RefSeq database and UCSC
KnownGene table.

– “Editing Details” (Fig. 10) displays the number of samples,
tissues and body sites in which the position appears to be edited.
Clicking on the “View Editing Details” button will cause the
opening of new windows with a table including editing levels for
each experiment. (Fig. 11).

Fig. 7 Heat-map. Mouse over each body site to open a tooltip showing the average editing level

Fig. 8 Box PLot. Relevant values are available by mousing over each box plot
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Fig. 9 Alternative annotations

Fig. 10 Editing details

Fig. 11 Focus on “Editing Details”
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Individual run or tissue or body sites can be selected by using
the “Select” button below each column (Fig. 12).

Further details can be found at http://srv00.recas.ba.infn.it/
atlas/help.html.

3.2 REDIportal API RNA editing sites can also be retrieved by a dedicated API (Appli-
cation Programming Interface). Differently from the
web-browsing approach, API does not leverage as much bandwidth
and can also be interfaced with third-party programs able to man-
age outputs in JSON format. API service is freely accessible at
srv00.recas.ba.infn.it:5000/position/. The results displayed in
JSON format are the same contained in the corresponding REDI-
portal webpage. JSON output can be displayed in the web browser
(Fig. 13) or in the UNIX shell. To submit a query in the web
browser is sufficient to add the API address to the chromosome
coordinates in the formats “Chr:start-end” (e.g.,
chr4:158101247–158308846).

http://srv00.recas.ba.infn.it:5000/position/
chr4:158101247-158308846.

To obtain the same result in the UNIX commands shell
(Fig. 14) the syntax is:

$ curl srv00.recas.ba.infn.it:5000/position/chr4:158101247-

158308846

3.3 Browse RNA

Editing Sites

in JBrowse

All RNA editing events stored in REDIportal can be explored in
their genomic context through JBrowse [30], a fast genome
browser based on JavaScript and HTML5. This browser is embed-
ded in REDIportal and allows the visualization of basic tracks such
as individual RNA editing sites, SNPs, RefSeq gene annotations,
Alu elements, and LINEs (Fig. 15).

Main REDIportal tables are downloadable in the tab-delimited
text format. Tables with RNA editing details are exportable in PDF
or Excel formats. The download can be done by single

Fig. 12 Select “Tissue” in “Editing Details”
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chromosome or whole dataset. Relevant metadata such as samples
info, header main table, and header levels table are also available for
download.

Fig. 13 REDIportal API output (e.g., srv00.recas.ba.infn.it:5000/position/chr4:158101247-e158308846)

Fig. 14 REDIportal API terminal output

RNA Editing Databases 477



To date, REDIportal is the reference resource devoted to RNA
editing investigations and future plans include its expansion with
additional RNAseq experiments from large scale projects (GTEx or
TGCA or PsyENCODE) and further features such as hyper-edited
regions and the Alu editing index for enabling the comparison of
whole RNA editing profiles across human tissues.

Although REDIportal has been designed for human samples, it
also houses mouse A-to-I events and will collect events from other
organisms including primates, vertebrates, and invertebrates.
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Chapter 26

MODOMICS: An Operational Guide to the Use of the RNA
Modification Pathways Database

Pietro Boccaletto and Błażej Bagiński

Abstract

MODOMICS is an established database of RNA modifications that provides comprehensive information
concerning chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of
modified residues in RNA sequences, and RNA-modifying enzymes. This chapter covers the resources
available on MODOMICS web server and the basic steps that can be undertaken by the user to explore
them. MODOMICS is available at http://www.genesilico.pl/modomics.

Key words RNA, Ribonucleoside modification, Epitranscriptomics, Systems biology, Metabolic path-
ways, Enzymes, Database

1 Introduction

Modifications of ribonucleotides are post-synthesis changes to the
chemical composition of RNAmolecules, that have the potential to
alter the stability and function of the entire polymer. RNA mod-
ifications occur in all living organisms and are one of the most
conserved evolutionary features of RNAs [1]. Their chemical mod-
ifications have been known since 1950, but recently, since the
discovery of key regulatory roles they play in gene expression and
the advent of new technologies such as massive parallel sequencing
of RNA (RNA-Seq), their popularity as a research subject has
increased [2]. Various modifications are introduced, transformed,
or removed by enzymes that interact with the nucleotides of the
RNA chain by catalyzing diverse chemical reactions [3]. RNAmod-
ifications influence cell biology deeply, in a reversible and dynamic
way. Modifications can perform a large number of functions: such
as stability, folding, and decoding in tRNA [4, 5], or mRNA
[6, 7]. They are also able to change their distribution and levels in
response to stress factors, such as heat shock and nutrient depriva-
tion, modulating cellular response [8]. Human diseases, such as
cancer, diabetes, reduced fertility, or developmental delay, are
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directly or indirectly linked to the presence of specific modified
nucleosides in certain positions, especially in the tRNA chains
[9]. Many RNA chemical modifications, their pathways, functions,
and enzymes are yet to be discovered. The systematic study of RNA
modifications will allow for a better understanding of complex
mechanisms that regulate the organisms, and to design new thera-
pies for their related diseases.

The MODOMICS database (http://www.genesilico.pl/
modomics) is a resource that collects and organizes up-to-date
knowledge on RNA nucleosides chemical modifications, the chem-
ical structures of modified ribonucleosides, their biosynthetic path-
ways, the location of modified residues in RNA sequences, and
RNA-modifying enzymes [10]. It contains also browsable, by
product of interest, collection of chemical synthesis protocols.
Users will find information organized in pages, accessible through
the left menu bar. The database finds usage in the diverse areas of
knowledge, where RNA modifications are of interest—among
others are cancer research [11–13], tRNA modifications [14–16],
and viral research [17], and is described in numerous review articles
in the field. An analog to MODOMICS, a database of covalently
modified DNA nucleobases, DNAmod, has also been created [18].

MODOMICS is designed with its users in mind, with every
update performed by a commission of RNA specialists, supported
by highly valuable user’s feedback. To date, its dedicated articles
have been cited more than 1300 times by RNA researchers.

This chapter describes the MODOMICS database in an opera-
tive way. For clarity reasons, examples in this text will focus on the
N2,N2-dimethylguanosine (m2,2G, or 22G), http://www.
genesilico.pl/modomics/modifications/N2,N2-
dimethylguanosine/), one of the many RNA modifications present
in the database, to explain the various functionalities of MODO-
MICS. Bold font indicates terms as they appear in database. A link
to the help page is located at the very top of the home page.

2 Materials

2.1 Web Server The Web site backend is written in Python 3 (https://www.python.
org/) and Django (https://www.djangoproject.com/), and the
frontend is made in HTML, javascript, and bootstrap (https://
getbootstrap.com/). The server is reachable at the address:
http://www.genesilico.pl/modomics. MODOMICS relies also on
third-party javascript libraries: JSmol (http://jmol.sourceforge.
net/) allows us to visualize the 3D chemical structures of the
modified ribonucleosides in the browser, cytoscape.js (https://js.
cytoscape.org/) is used to plot the pathways graphs and datatables
(https://datatables.net/) makes tables interactive adding the ability
to filter by field, search, sort, print, and export them in different
formats like PDF or CSV.
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2.2 Data Collection MODOMICS is a manually curated database, the data is collected,
selected, and inserted from published articles and from the private
collaboration between laboratories. A list of supporting publica-
tions can be found in the “Publications” tab, in the navigation
panel.

3 Methods

The methods are described as per their order in the user menu
(navigation panel) that is visible on the left of every page of the
MODOMICS website.

3.1 Modifications The “Modifications” page (http://www.genesilico.pl/modomics/
modifications) stores a collection of naturally occurring modified
RNA nucleotides. This can be seen as two different sections, one
where all the modifications are ordered in a table (the overview
page) and another, accessible through clicking on the name of the
modification, as the description page of each modification (the
detail page). At the time of writing, it contains 172 records.

3.1.1 Overview Page The Overview Page lists all the modifications present in the
MODOMICS database. It is possible to filter the table by using
the drop-down lists at the top of the page—both by the base from
which the modified is derived (by selecting the option of interest
from the “Originating Base” list), as well as by their chemical type
of modification (analogically). Both filters can be applied at the
same time.

Following search filters are available for the nucleobase that the
modified one originates from:

– Four standard nucleoside residues present in the transcribed
RNA (Adenosine, Citidine, Guanosine, Uridine).

– Queuosine, which is synthesized first as a free modified base,
and only then attached to the ribose of RNA by a transglycosyla-
tion reaction and eventually further hypermodified.

– The 50 end of the nascent transcript, which represents the
starting point for RNA capping.

The example options of the second filter, “Chemical type of
modification” are as listed:

– Inorganic residues (e.g., ammonia, hydroxyl).

– Organic residues (e.g., amino acid, methyl group,
nucleobase).

– Atoms (e.g., heavy atom, hydrogen, sulphur).

– As well as more general ring modification, and none.
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For each of them, following information are directly presented:
full name (e.g., N2,N2-dimethylguanosine), short name (e.g.,
m2,2G), new nomenclature (e.g., 22G), naming convention that
uses only digits and standard A, G, C, U letters, (designed to be
more compatible with automated data processing that previous,
containing special characters, short names), machine-friendly
MODOMICS-specific single character abbreviation (e.g., R), a
symbol that is used in RNA sequences to identify univocally the
modification, molecular formula (e.g., C12O5N5H17), and two
molecular masses: monoisotopic (e.g., 311.123) and average
(311.2982). At the same time, obtained results can be sorted,
ascendingly and descendingly, by clicking on the appropriate
header.

As an example, we would like to display all those modifications
whose originating base is guanosine.

1. Go on the modifications page, that being the second button in
the navigation menu, or visit directly: http://www.genesilico.
pl/modomics/modifications.

2. On the “Originating base” drop-down menu select “Guano-
sine.” Chemical type of modification should be left to “all.”

3. Press the Display button.

Result: 26 RNA modifications originated from the guanosine
base will be displayed in the table, as seen in Fig. 1.

As an example, If a user would like to narrow the results and
learn which of those previous results are modified by the addition or
removal of a methyl group, the procedure would be as follows:

Fig. 1 A result of guanosine derivative modification filtering applied to the modification page
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4. From the menu “Chemical type of modification” drop-down
menu and select “methyl group.”

5. Press the Display button.

Result: 15 nucleotide modifications, which originated from a
guanosine base and were further altered by the addition or removal
of a methyl group have been displayed in the table, as seen in Fig. 2.

3.1.2 Detail Page For every result of the search presented in the Overview Page, a
Detail Page, containing further information, can be accessed by
clicking on modification’s name. It can also be accessed without
going through the Overview Page, by generating URL in the
following manner:

http://www.genesilico.pl/modomics/modifications/modifica
tion_name/.

The Detail Page contains extensive information about each
modification:

– A link to the Pathway Page of the modification’s base of origin
(described in Subheading 3.2).

– A graphical representation of its molecular structure.

– A summary table, again providing full and short name, RNA-
Mods abbreviation, as well as MODOMICS new nomencla-
ture. In addition, it presents the list of known enzymes
synthesizing it, their names also serve as links to the respective
Protein Summary (further described in Subheading 3.5). The
summary table also lists the kingdom in which it occurs (based
on the list of organisms known to possess enzymes synthesizing

Fig. 2 A result of filtering for guanosine derivative altered with methyl group addition/removal
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it), RNA types in which it occurs (based on MODOMICS
collection of modified sequences), PubChem ID and a SMI-
LES 1D structure.

– A table of physicochemical parameters of the molecule, useful
for liquid chromatography and mass spectrometry (titled “LC-
MS Information”): molecular formula, set of monoisotopic,
average, and protonated masses, with protonated fragments
ions generated from the precursor mass [M + H] + (product
ions). Where available, normalized LC elution time and LC
elution order/characteristics are provided with bibliographic
references below. However, this data is available just for a small
portion (“number”) of the modifications.

– Structural information: interactive, 3D molecule representation
of the molecule, a list of chemical groups that are modified in the
nucleobase of origin, as well as address codes of Protein Data
Bank entries, of known structures containing this modification.

– Enzymatic information: providing direct links to the MODO-
MICS detailed reaction page (described in 3. “Reactions”) of
enzymatic reactions for which the modification is either a sub-
strate or product.

As an example, we would like to display detailed information
about N2,N2-dimethylguanosine modification.

1. In the table of filtered search results, obtained in Subheading
3.1.1, step 1, Example of use step 5, click the name of the
modification of interest, or add the name of modification “N2,
N2-dimethylguanosine” after following URL template:

http://www.genesilico.pl/modomics/modifications/modifica
tion_name/

Obtaining the following direct URL:

http://www.genesilico.pl/modomics/modifications/N2,N2-
dimethylguanosine/.

Result: the user is presented with the Detail Page of N2,N2-
dimethylguanosine modification (Fig. 3).

3.2 Pathways Pathways page (http://www.genesilico.pl/modomics/pathways)
contains the graphical depiction of every known (documented)
reaction, plus many speculated, that modifies the chemical struc-
ture of any part of nucleotide, traced back to the nucleobase of
origin. Two additional enzymatic pathways are presented to the
user: queuosine pathway, originating at preQ (7-cyano-7-deaza-
guanine) and originating from 50 triphosphate end modifications.
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Following pathway from its base of origin to the modification of
interest allows the user to understand how modifications emerge
from the different unmodified residues in precursor RNA, what are
the enzymes that can catalyze the reactions and what is the reaction
types that modify the nucleosides.

Enzymatic reactions are structured in six pathway graphs repre-
senting the four nucleobases, the queuosine, and the 50 end. Select-
ing one of the nucleobases from the main page will open a related
graph, presenting a hierarchical structure with the unmodified
residue on the top, branching into a pathway of its derivatives.
The graphs are interactive and it is possible to move and zoom
them, as well to change the location of their elements, by dragging
them around on the display window. Displayed graphs can be
downloaded in various format files (such as pictures, pdf or XML)
by right-clicking on the white background of the graph.

Fig. 3 A preview of the detailed modification page for N2,N2-dimethylguanosine
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Every modification is displayed as a box, labeled with its short
name and MODOMICS new nomenclature. Clicking a particular
box links the user to modification’s Detail Page (described in
Subheading 3.1.2). Arrows connecting two modifications are col-
ored according to the type of reaction (such as exchange, removal
or transfer of the groups, or certain bonds formation), with the
dashed arrows indicating putative reactions. Their color codes are
explained in the graph legend. All arrows are also clickable and link
to the reaction-dedicated web page (described in Subheading
3.3.2).

As an example, we would like to investigate the origin of N2,
N2-dimethylguanosine modification, and its role in N2,N2,20-O-
trimethylguanosine (m2,2Gm, 022G) formation.

1. Go on the Pathways Page, that being the third button in the
navigation menu, or visit directly: http://www.genesilico.pl/
modomics/pathways.

2. Select the Guanine base of origin.

3. Search on the graph for the m2,2G/22G modification.

Result: the user is presented with the known pathways map
originating from guanine (Fig. 4). N2,N2-dimethylguanosine
(m2,2G and 22G), is denoted by a blue (reactions of methylation)
arrow, to be a product of methylation of N2-methylguanosine
(m2G, 2G), and a suspected precursor to the N2,N2,20-O-tri-
methylguanosine (m2,2Gm, 022G). Further details about reaction
can be obtained by clicking on the arrow (reaction summary page
being explained in 3.3.2). Detail Information (Subheading 3.1.2)
page can be viewed by clicking on the modification’s name.

3.3 Reactions “Modification reactions” section of MODOMICS (http://www.
genesilico.pl/modomics/reactions) catalogs both known and
putative enzyme driven nucleotide alterations, while providing an
atomistic level of details. Analogically to Modifications tab (Sub-
heading 3.1.1), this information is divided into two different sec-
tions, the Overview Page, where all the reactions are ordered in a
table, and another, accessible through clicking on the name of the
reaction, as the description page of each reaction (the Reaction
Summary page). At the time of writing, it contains 192 entries.

3.3.1 Overview Page This page lists all the reactions present in the MODOMICS data-
base. It is possible to filter the table by using the drop-down lists at
the top of the page—by the base from which the modified is
derived, by selecting the option of interest from the “Originating
Base” list (described in Subheading 3.1.1), as well as by the type of
catalyzed reaction (isomerization, group removal, group
exchange, group addition). Both filters can be applied at the
same time.
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The user will then be presented with the overview table, listing
the following information: name, consisting of standard “substra-
te_short_name:product_short_name” format (e.g., m2,2G:
m2,2Gm), three levels of reaction type (one: ex. methylation,
hydroxylation, two: ex. alkylation, acylation, three: group addition,
group exchange), machine-friendly empirical notation of input
group being modified (e.g., H, O) and resulting output group
(e.g., C, C(¼O)C). The alteration process itself (enzymatic reac-
tion) is defined by introduced group name (e.g., methyl, guanyl),
introduced group type (e.g., Hydrocarbon, nucleotide) and
placed structurally by atom address (e.g., 20O, N6) at the specified
site (e.g., phosphate, base/exocyclic). The modification level is
also designated. At the same time, obtained results can be sorted,
ascendingly and descendingly, by clicking on the appropriate
header.

As an example, we would like to know the details of the reaction
leading to the formation of N2,N2-dimethylguanosine (m2,2G).

Fig. 4 Pathways map originating from guanine.
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1. Go on the Reactions tab, that being the fourth button in the
navigation menu, or visit directly: http://www.genesilico.pl/
modomics/reactions.

2. On the “Originating base” drop-down menu select “Guano-
sine.” Chemical type of modification should be left to “all.”
Press the Display button.

3. Name is composed of the substrate:product short names. If the
user does not remember it, then it can be obtained by going back
to MODOMICS “Modifications” tab and typing its chemical
name into the search field. In this example, it is the “m2,2G”.

The modification reactions list can be scrolled until encounter-
ing entry of interest, or “m2,2G” search phrase can be typed into a
search box.

Result: A table entry containing information of the m2G:
m2,2G reaction is displayed, as seen in Fig. 5.

3.3.2 Reaction

Summary Page

This page is available for every reaction included in the database. It
can also be accessed without going through the Overview Page
(Subheading 3.3.1), by generating URL in the following manner:

http://www.genesilico.pl/modomics/reaction/reaction_name/.

It consists of three main elements:

– A convenient repetition of all the information described in the
Subheading 3.3.1.

– Graphical representations (skeletal formulas) of both substrate
and product of the reaction. Elements (atoms, residues, frag-
ments of molecules) undergoing change are highlighted in red.

– A table containing a list of known enzymes, denoting their
acronym (e.g., Trm-G10), full name (e.g., tRNA (guanine
(10)-N2)-dimethyltransferase) and organism of origin (e.g.,
Pyrococcus abyssi). The acronym is also a direct link to the
Protein Summary Page (described in Subheading 3.5.2). Puta-
tive enzymes are not indicated.

Fig. 5 Three enzymatic reactions involving N2,N2-dimethylguanosine (m2,2G), in one of those denoted as a
product
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Detailed information on each reaction comprises enzymes that
have been experimentally proven to catalyze it, chemical structures
of the substrate(s) and product(s), information about cofactors,
and other information in the free text format.

As an example, we would like to know what enzymes are
mediating the formation of N2,N2-dimethylguanosine (m2,2G).

1. On the list of results obtained in Subheading 3.3.1 Example of
use, step 3, click the reaction’s name. A direct access link is
generated by adding known reaction name “m2G:m2,2G” at
the end of the template URL:

http://www.genesilico.pl/modomics/reaction/reaction_name/

Obtaining a direct URL to the desired summary page:

http://www.genesilico.pl/modomics/reaction/m2G:m2,2G/.

This page can also be accessed by clicking on the appropriate
arrow, on the graphical representation of modification enzymatic
pathways, described in Subheading 3.2.

Result: The obtained page includes known enzymes catalyzing
this reaction (Trm-G10 and Trm1), listing their names and organ-
ism(s) of origin. Multiple homologs of Trm1 are known, resulting
in multiple listings of that enzyme, with each name being a link to
further enzyme’s description (Subheading 3.5.2). It is presented in
Fig. 6.

Fig. 6 Page containing detailed information of N2-methylguanosine (m2G) to N2,N2-dimethylguanosine
(m2,2G) conversion
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3.4 RNA Sequences The RNA sequences page (http://www.genesilico.pl/modomics/
sequences) contains a collection of tRNA, rRNA, snRNA, and
snoRNA sequences that are known to be modified at multiple
positions. During opening the page no results are shown, but
instead the user is asked to select at least an RNA type from the
above drop-down menu, and eventually filter the results by “sub-
type” and “organism.” Once the button “Display” is pressed, a
table with the available list of aligned RNA sequences is displayed.
Depending on the type of the selected RNA type the table acquires
different headers to adapt to the different features and available
information of the sequences. The full list of headers contains of
RNA “Type” and “Subtype”,” Genbank” [19] code, MINTbase
[20] link, “Amino acid type” and “Anticodon,” “Organism,” and
the “Organellum” where the sequence was identified and the
“numbering scheme for the alignment.” For tRNA the numbering
scheme above the alignment is based on the E. coli sequences. For
all other RNA types, it refers to the first sequence in the alignment.
It is possible to select a numbering based on one of the other
sequences of the alignment clicking on their GenBank or type
name. For tRNA sequences the Helical regions are colored in red,
loop and bulge regions in black. Modifications within sequences are
indicated in blue and marked with one-letter abbreviations, a
unique symbol that identifies the modification in MODOMICS.
Hovering the mouse cursor over a modified base within a sequence
allows overviewing the full name of the modification and a link to
its pathway page. Upon clicking on the full name or the symbol of a
given modified base within a sequence, the corresponding detailed
page of the Modification is shown (described in Subheading 3.1.2).
The “Draw modification profile” (available for rRNA and tRNA
sequences) allows displaying the mapping of the modified positions
on secondary structure diagrams of RNA molecules. The mapping
is done based on the sequence alignments. For rRNAs a reference
structure of E. coli SSU and LSU rRNAs is used, while for tRNAs a
consensus secondary structure diagram is used. It is possible to map
information from a user-selected set of sequences, available in
MODOMICS, onto the diagram. In such a case, the percentage
of modified ribonucleosides of any type in each alignment position
is calculated and displayed. The resulting diagrams can be down-
loaded as image files.

We would like to see all the transfer RNAs (tRNA) sequences
that contain the amino acid glutamic acid from Haloferax volcanii.

1. Go on the RNA Sequence page: http://www.genesilico.pl/
modomics/sequences.

2. On the “RNA type” drop-down menu select “tRNA.”

3. On the “Subtype” drop-down menu select “Glu.”
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4. Select “Haloferax volcanii” on the “Organism” drop-
down menu.

5. Press Display.

Results: As we can see two sequences with mentioned charac-
teristics are available in the database. At position 34 of their antico-
don domain, both have an “M” modified base.

6. Hover above the modification at position 34 on one of the
sequences.

7. Click on “N4-acetylcytidine” to open the detailed page of the
modification.

Results: We explored the modification at position 34 of the two
tRNA Glu of Haloferax volcanii (Fig. 7).

There is also a possibility to see the modification profile. For
this purpose.

8. Click on the “Draw Modification Profile” button.

Result: The modification profile can be seen on a new page
(Fig. 8). We can define how to display the modification scale by
selecting any of the options on the “display” drop-down menu.

3.5 Proteins

3.5.1 Overview Page

The “protein” page (http://www.genesilico.pl/modomics/
proteins) contains a collection of both functional enzymes and
protein cofactors necessary for multiprotein enzymatic activities
that are involved in the RNA modification process. These proteins
alter the behavior of the RNAs catalyzing different chemical reac-
tions such as deamidation, methylation, and reduction. 340 pro-
teins are available in the proteins table, which can be filtered by
species, enzyme type (e.g., methyltransferase, pseudouridine
synthase) or by type of RNA involved in the reaction. The table
contains different information, the Traditional Name is the most
often used or recommended acronym (e.g., “Ceg1”), the Full
name (e.g., “GTP-RNA guanylyltransferase”), Synonym is a list
of alternative names assigned to the protein (e.g., “GTase, Mce1”),
GI number is the number by which the protein is recognized in the
NCBI protein database [21] (e.g., “1,322,697”),ORF name (e.g.,
“CEG1”),COG that is the “Clusters of Orthologous Genes” code
the protein has in the COG database [21] (e.g., “COG5226”),
UniProt ID is the code of the protein in the UniProt database [22]

Fig. 7 Hoovering above an RNA modification symbol on the RNA sequence unravels its name and links to its
pathway graph and detail page
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(ex.”Q01159”), Structures (PDB ID) can contain a list structures
of the protein in the form of Protein Data Bank [23] codes (e.g.,”
3KYH”), Position/Modification type gives the position (e.g.,
“m:000) and the modification (ex.“m7Gpp(pN)”) and refers to the
final modification, Complex only present if the protein works as a
part of a well-characterized complex, Enzyme type is the type of
reaction catalyzed by the enzyme (ex.“guanylyltransferase”),
Organism is the organism species the protein was found in (e.g.,
“Saccharomyces cerevisiae”).

As an example, we would like to display all those proteins that
catalyze the transfer of a methyl group on nucleobases of tRNA.

1. Go on the “proteins” page, that being the sixth button in the
navigation menu, or visit directly: http://www.genesilico.pl/
modomics/proteins.

2. On the “Enzyme type” drop-down menu, select “methyltrans-
ferase” and “RNA type” set to “tRNA.”

3. Press the Display button.

Result: 87 methyltransferase proteins that operate on tRNA
will be displayed in the table, as seen in Fig. 9.

Fig. 8 Modification profile generated from the alignment of two tRNA Glutamic acid of Haloferax volcanii
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3.5.2 Summary Page Each protein has its own dedicated page that gives the user more
information about the details of each entry. The summary page has
the title as the name of the protein and organisms in which it was
identified. It consists of six elements:

– A convenient repetition of the information of all the elements
described in Subheading 3.5.1.

– The “comments” section with a short text characterizing the
protein.

– The “Protein sequence” section with the amino acid sequence of
the protein.

– A table listing the “enzymatic activities” of the protein with links
to the summary reaction page, the substrate of the reaction, the
type of RNA involved and the position of the reaction in the
RNA sequence.

– A table listing the publications related to the protein and its
activity.

– Few links to additional data sources ex. Wikipedia, relevant
PubMed search, Saccharomyces Genome Database (for yeast
proteins), EcoCyc (for E. coli proteins).

As an example, we would like to find the protein sequence of
the “CmoA” protein.

Fig. 9 A result of proteins summary filtered by Enzyme type “methyltransferase” and RNA type “tRNA”
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1. From the results obtained in Subheading 3.5.1, step 3, click
the name of the protein of interest.

2. Scroll to the section “Protein Sequence.”

Result: The user finds the protein sequence into the Overview
Page of the “CmoA” protein.

MSHRDTLFSAPIARLGDWTFDERVAEVFPDMIQRSVPGYSNIISMIGMLAERFVQPGTQ-

VYDLGCSLGAA TLSVRRNIHHDNCKIIAIDNSPAMIERCRRHIDAYKAPTPVDVIEGDIR

D I A I E N A S M V V L N F T L Q F L E P S

ERQALLDKIYQGLNPGGALVLSEKFSFEDAKVGELLFNMHHDFKRANGYSELEISQKRSM

LENVMLTDS VETHKARLHNAGFEHSELWFQCFNFGSLVALKAEDAA

3.6 Guide RNAs Small nucleolar RNAs or snoRNAs are a class of small RNA mole-
cules that primarily guide chemical modifications of other RNAs
like rRNAs, tRNAs, and snRNAs. Two main classes of snoRNAs
exist, the C/D box snoRNAs, involved in methylation and the
H/ACA box snoRNAs, involved in pseudouridylation
[24]. MODOMICS “Guide RNAs page” (http://www.genesilico.
pl/modomics/snornas/) contains a collection of RNAs from
human and yeast snoRNAs that are involved in RNA-guided
RNA modification by the C/D box and H/ACA box ribonucleo-
proteins, linked to the corresponding modification sites in human
and yeast RNAs. Information about guide RNA allows the user to
understand how modifications emerge from precursor RNA, how
to design engineered gRNAs that can participate in posttranscrip-
tional modifications, and how to use gRNAs in gene regulation
methods such as RNA mutagenesis. The page contains a list of
276 snoRNAs with the following information, if available: name
(e.g., “SNORD16”), linked to appropriate entries in HGNC data-
base [25] or The yeast snoRNA database [26] for human and yeast
snoRNAs, respectively, ORF/Alternative name (e.g., “U16”),
Modification type (e.g., “Am”), Modified position (e.g.,
“484”), Target RNA type (e.g., “rRNA SSU”), Complex (e.g.,
“C/D RNP”) and Organism (e.g., “Homo sapiens”). The list of
Guide RNAs can be filtered by the organism and/or type of modi-
fication that is found in the target position.

As an example, we would like to see all those guide RNAs in
humans whose modification type is “Am.”

1. Go on the Guide RNAs page: http://www.genesilico.pl/
modomics/snornas/.

2. On the “Organism” drop-down menu select “Homo sapiens.”

3. On the “Modification type” drop-down menu select “Am.”

4. Press Display.

Result: 41 Guide RNA in Homo sapiens with modification type
Am are now displayed in the table (Fig. 10).
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3.7 Publications The “publications” page (http://www.genesilico.pl/modomics/
papers), contains all the organized bibliography from which
MODOMICS sources its data. These publications are used to cite
the data about modifications, enzymes, reactions, that are present
in MODOMICS. The Overview Page contains a list of all the
publications utilized to build MODOMICS and to cite its data.
For every line in the list, the information about the first author, the
title of the article, and PubMed ID (or DOI) is given. It is possible
to access the detailed page for each publication by clicking on the
name of the author or the title of the article. The detailed page
relative to a publication is very simple. It shows the information
regarding its title, the authors, the journal and the abstract. If
present also the related elements of the database that refers to it.

3.8 Building Blocks This subset of database provides a browsable catalogue of publica-
tions (protocols), designed to facilitate chemical synthesis of natu-
rally occurring modified nucleosides. The substrate for such
reaction is referred in MODOMICS as a “building block,” and is
used as a base for the search/filtering engine, available at:

http://www.genesilico.pl/modomics/blocks.

Detailed information such as chemical, structural, or a protocol
itself, are provided across three progressive tiers of descriptions, for
each possible precursor of particular modification (building block)
separately.

Fig. 10 Guide RNA page after the filter “Homo sapiens” and modification type “Am” are applied
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3.8.1 Overview Page This page lists names of MODOMICS building blocks (reaction
substrates), together with the CAS number identifying the mod-
ified nucleotide (reaction product). For clarity purposes, the name
of a particular building block (reaction substrate) is kept the same as
the name of resulting nucleotide modification (reaction product).
If a multiple method of synthesis of a particular modified RNA
monomer are known, originating from different substrates, than
those would be indicated by a progressive number added to the
block’s name (e.g., BB2, BB3). User can filter the results, and a
click on the building blocks name would lead to its detailed page.

As an example, user would like to know if there are any existing
protocols for chemical synthesis of N2,N2-dimethylguanosine
(m2,2G) present in MODOMICS.

1. Go on the Building blocks tab, that being the third button
from the bottom of the navigation menu, or visit directly:
http://www.genesilico.pl/modomics/blocks.

2. A list of all building blocks would be available. By default, it is
sorted ascendingly by block’s name. A real-time search bar is
also available. Scroll down to the appropriate section. Alterna-
tively, typing “dimethylg” in the search bar would narrow the
list to the desired entries (as seen in Fig. 11).

Result: three different publications describing the chemical
synthesis of N2,N2-dimethylguanosine (m2,2G and 22G) from
three different substrates are present in theMODOMICS database.
Further details can be obtained by clicking on the building block’s
name, leading to the following subpages (described in Subheading
3.8.2 and 3.8.3).

Fig. 11 list of MODOMICS names of substrates for chemical synthesis of N2,N2-dimethylguanosine (m2,2G). In
this example, three building blocks of interest are present in the database
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3.8.2 Building Block

Summary

This page contains the majority of information about, and is avail-
able for every building block described in MODOMICS. It can be
accessed directly, by generating URL according to the formulas:

For an only known building block for particular modification,
or the first discovered (i.e., the building block’s name is the same as
modification’s):

http://genesilico.pl/modomics/block/<block_name>/.
For subsequent building blocks for the same modification:
http://genesilico.pl/modomics/block/<block_name>%20(

BB<subsequent_number>)/.
This page contains following information:

– Building block’s name (in certain cases, can be identical as
modification’s name), together with IUPAC name and CAS
number of particular RNA modification.

– Table with graphical structure of the modification (Naturally
occurring structure), and an analogical structure for currently
viewed building block (Building block structure). From those,
parts of importance (functional groups) are highlighted as a
building block characteristics. Their names, structures and
short description of chemical properties (e.g., acid labile
group, or nonnucleophilic base) are provided, as well as
“details” button, leading to the corresponding Reagent and
protecting group Summary subpage (described further in Sub-
heading 3.8.3).

– A detailed list of publications referring to the currently viewed
building block, with interactive links: button “details” directs to
the page dedicated fully to that publication (described in Sub-
heading 3.7), PubMed Id number leads to article’s entry in the
PubMed database, with DOI number, analogically, linking to
the article itself.

User would like to verify the feasibility of N2,N2-
dimethylguanosine (m2,2G) synthesis in their laboratory.

1. On the list of results obtained in Subheading 3.8.1, step 2,
investigate all three results of search for N2,N2-
dimethylguanosine building blocks. An example of Summary
page is presented in Fig. 12.

URL addresses can be used to switch between building blocks
summary pages in a more automated way, according to the formu-
las described above. In that case, the addresses for all three pages of
interest would be as follows:

http://www.genesilico.pl/modomics/block/N2,N2-
dimethylguanosine/.

http://www.genesilico.pl/modomics/block/N2,N2-
dimethylguanosine%20(BB2)/.
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http://www.genesilico.pl/modomics/block/N2,N2-
dimethylguanosine%20(BB3)/.

Result: user is presented with chemical and structural informa-
tion about compounds required for the synthesis, their functional
groups are described, and further details can be found in the source
publication (described in Subheading 3.7).

3.8.3 Reagent

and Protecting Group

Summary

This page compiles information about the building block’s func-
tional groups, and can be accessed by clicking the corresponding
“details” button on the Building block Summary page (Subheading
3.8.2). It is distributed into three main areas:

– Functional group’s structure and IUPAC Name (e.g.,
2-(dansyl)ethoxy carbonyl) with information aiding synthesis
planning process, such as Protecting group (e.g., 50-ribose),
Deprotection method (e.g., with DBU/nonnucleophilic base)
and its Synthesis reagent (e.g., nitrophenylethyl chloride).

– A list of building blocks which include that functional group,
with the name being a hyperlink to block’s summary page
(Subheading 3.8.2), together with CAS numbers of their
corresponding RNA modification.

Fig. 12 A summary page providing details about the third precursor (building block), present in MODOMICs, for
N2,N2-dimethylguanosine synthesis
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– A listing of publications referring to above mentioned building
blocks, with interactive links described in corresponding entry of
the previous section (Subheading 3.8.2).

3.9 Search The search page (http://genesilico.pl/modomics/search/
advance/) is designed to facilitate finding information in the entire
MODOMICS database. The page is organized into three tabs that
can be used to reach different types of insights. The “keyword” tab
allows the user to search by using a textual keyword, this is able to
return all the result that corresponds with the name or short-name
of modifications, the name of modifying enzymes or papers that
contains the search term in its title or abstract. This keyword-based
search is also the default search that will run when using the search
bar present at the top right corner of the home page. The other two
searches are more selective. As their name suggests “Protein
sequences” tab can be used to search for Protein by inputting an
amino acid sequence while “Nucleic sequences” is used to search
for RNA sequences by inputting a nucleic acid sequence. Both work
running BLAST (BLASTP for Amino acid and BLAST for nucleo-
tides) on our database, the results are expressed in hits.

3.9.1 Keyword Search It can be convenient sometimes to search directly for a modification
instead of browsing through the list of all the known modifications.

We read in an article that position 34 of the human tRNA
sequence can be modified with “cm5U” but we know little about
this modification. We can search it with the keyword search of
MODOMICS:

1. Go on the search page: http://genesilico.pl/modomics/
search/advance/.

2. Enter the text “cm5u” in the textbox present under the
keyword tab.

3. Press on the magnifying glass or press enter to start the search.

Result: The search tool found five modification matches that
contained the keyword cm5U, and five articles as well. We see that
5-carboxymethyluridine (cm5U) is listed as third result. We can
click on the full name of the modification to enter its detailed page
and explore it.

3.9.2 Protein Sequences

Search

If we have an amino acid sequence it can be useful to try to find if it
is a known protein to catalyze an RNA-modifying reaction. The
search page returns the output of the BLASTP search with all the
sequence names linked to the detail page of the proteins.

We have the following amino acid sequence.
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>unknown

AGVAGVVYLGRGRGLGPYYLARSGVEVVEVHPDEPLGYDPVDRLDVLLTFGGNPYLTEED-

VAAR VYCLLTGRGFDADIAPAPENLSGRVEIMVTRGDPDEAV

1. Open the search page: http://genesilico.pl/modomics/
search/advance/.

2. Go to the tab “Protein sequences.”

3. Insert a title for your search and paste your sequence in FASTA
or raw format.

4. Click submit and wait for the results. This will also generate a
unique link you can bookmark to later return back to the
results.

Result: From the search we get to a page where all the
sequences that produced a significant alignment have been listed.
We notice that the first hit “238537840|CDAT8|Methanopyrus
kandleri” has an E-value of 3e-68 and identity/positives of 100%
and 0% gaps.

> 238537840|CDAT8|Methanopyrus kandleri

Length=278

Score = 541 bits (1394), Expect = 0.0, Method: Compositional

matrix adjust.

Identities = 278/278 (100%), Positives = 278/278 (100%), Gaps

= 0/278 (0%)

Opening the page linked to the name of the sequence we reach
the detailed page of the protein, where we can see that our sequence
is just a fragment of a larger sequence composing this protein.

3.9.3 Nucleic Sequences

Search

This search must be used to explore the presence of an RNA
sequence in the MODOMICS database. This works exactly as a
Protein search, but it uses BLASTN instead of BLASTP.

We have the following sequence

>unknown

GGCGCGUAAACAAAGCGGAAAUGUAGCGGAUUGCAUAUCCGUCUAGUCCGGUUCGA-

CUCCGGAACGCGCCUCCA

1. Open the search page: http://genesilico.pl/modomics/
search/advance/.

2. Go to the tab “Nucleic sequences.”

3. Insert a title for your search and paste your sequence in FASTA
or raw format.
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4. Click submit and wait for the results. This will also generate a
unique link you can bookmark to later return back to the
results.

Result: We are brought to a page where one sequence that
produced a significant alignment has been listed. “9|Escherichia
coli” has E-value of 1e�28 and identity of 95% and 0% gaps. At
this moment this kind of search can only reveal if a similar sequence
is present on the MODOMICS database, but it is not able to point
the user to the sequence itself.

3.10 Others In the left menu of the website, we can also find Links, Downloads,
Help, and Contact pages.

These pages can be very useful. The Links page contains a
collection of links to other resources like RNA Databases, Auxiliary
databases and tools, ontology and the affiliations. The downloads
page contains a collection of flat files, modifications images, and 3D
structures extracted from the MODOMICS database, it also con-
tains references to the articles wrote about MODOMICS. The
Help page is a very useful resource that sums up the content of
the various sections of the database with few explanations on how
to use it. The contact page has a list of current and past database
developers and curators with their emails, as well it has the contacts
of the Laboratory of Bioinformatics and Protein Engineering where
MODOMICS was designed, developed and hosted.

4 Conclusions

MODOMICS has been in the years a useful tool for researchers
which serves as a valuable resource for RNA modification and
RNA-modifying enzymes. MODOMICS can offer an overall view
of all modifications, quick information of pathways, reactions, pro-
teins, and publications, visualization of the 3D structure of mod-
ified nucleosides. This can help researchers gain a proper
perspective of the RNA modifications and the molecular mechan-
isms behind it. A constant database update process is necessary to
include all the new recent discoveries in the field of RNA modifica-
tions and in the future will also be extended to include new
functions.
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Chapter 27

MeT-DB V2.0: Elucidating Context-Specific Functions
of N6-Methyl-Adenosine Methyltranscriptome

Hui Liu, Jiani Ma, Jia Meng, and Lin Zhang

Abstract

N6-methyladenosine (m6A) is the most prevalent posttranscriptional modification in eukaryotes and plays a
pivotal role in various biological processes. A knowledge base with the systematic collection and curation of
context specific transcriptome-wide methylations is critical for elucidating their biological functions as well
as for developing bioinformatics tools. In this chapter, we present a comprehensive platformMeT-DB V2.0
for elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Met-DB V2.0
database contains context specific m6A peaks and single-base sites predicted from 185 samples for 7 species
from 26 independent studies. Moreover, it is also integrated with a new database for targets of m6A readers,
erasers and writers and expanded with more collections of functional data. The Met-DB V2.0 web interface
and genome browser provide more friendly, powerful, and informative ways to query and visualize the data.
More importantly, MeT-DB V2.0 offers for the first time a series of tools specifically designed for
understanding m6A functions. The MeT-DB V2.0 web server is freely available at: http://com
pgenomics.utsa.edu/MeTDB and www.xjtlu.edu.cn/metdb2.

Key words Epitranscriptome, RNA modifications, N6-methyladenosine (m6A), MicroRNA, Single-
nucleotide polymorphisms (SNPs), Splicing factors

1 Introduction

Over a hundred fifty types of chemical modifications have been
identified in messenger RNAs (mRNAs) and noncoding RNAs
(ncRNAs) [1]. Among them, N6-methyladenosine (m6A) is char-
acterized as the most abundant and reversible RNA modification
[2, 3]. Increasing studies suggest that m6A has emerged as a critical
regulator of posttranscriptional gene expression programs and
involves with many cellular activities including splicing [4], transla-
tion efficiency [5], regulation, and gene expression. In addition,
protein “writers”, “erasers”, and “readers” of m6A have been
discovered to mediate the biological function of m6A [6]. More-
over, dysregulation of m6A can contribute to many complex human
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diseases [7, 8]. However, to our knowledge, m6A modifications
and epigenomic data have not been curated well together.

With the development of the next-generation sequencing
(NGS) technologies, MeRIP-seq [9, 10] has developed to explore
the distributions and quantitative features of m6A modifications
across the entire transcriptome, paving the path for understanding
their biological functions. The availability of large transcriptome-
wide data sets for m6A modification have stimulated the need to
develop novel tools and databases for exploring the prevalence,
mechanism, and function of m6A modifications.

Here, we present a comprehensive platform MeT-DB V2.0
[11] for annotating, visualizing, analyzing and discovering the
m6A modification from large-scale modification sequencing data.
MeT-DB V2.0 includes a comprehensive collection of m6A sites
predicted from 185 samples for 7 species from 26 independent
studies. Moreover, it is also integrated with a new database for
targets of m6A readers, erasers and writers and expanded with
more collections of functional data. To enhance its utility,
MeT-DB V2.0 also integrates functional data such as micro-RNA
target sites, Single nucleotide polymorphisms (SNPs), binding-sites
of splicing factor as well as RNA-binding protein, and information
about cancer genes. In addition, the redesigned Met-DB V2.0 web
interface and genome browser provide more friendly, powerful, and
informative ways to query and visualize the data. More importantly,
MeT-DB V2.0 offers for the first time a series of tools specifically
designed for understanding m6A functions.

2 Material

2.1 Hardware Linux, Unix, Windows, or Macintosh workstation with an Internet
connection.

2.2 Software We recommend that you always use the latest version of Chrome as
browser and set the resolution greater than 1280 � 720 for better
browsing experience. If you use other browsers, you might notice
that some functions and features would not working properly.

3 Methods

The methods presented here describe how to annotate, visualize,
and analyze the MeRIP-Seq data, the targets of m6A readers,
erasers, and writers, as well as other functional data associated
with m6A modification sites (see Fig. 1).
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3.1 Data Processing

in MeT-DB V2.0

Database

The MeT-DB database consists of three subdatabases, core data-
base, TREW database and functional database. In this section, we
summarized all data we need to construct the MeT-DB V2.0
database.

3.1.1 Identifying

Context-Specific m6A

Peaks and Single-Base

Sites for Core Database

High-throughput m6A-seq or MeRIP-seq technology provides a
powerful way to identify the context-specific m6A peaks and single-
base sites. In this section, we summarized the features and workflow
used to identify context-specific m6A peaks and single-base sites
from MeRIP-seq data in core database (see Fig. 2).

1. Quality control. Sequencing data quality was first evaluated by
FASTQC (v0.11.4). Adaptors or low-quality nucleotides were
removed by Trim Galore (v0.4.2) according to the evaluation
results of FastQC.

2. Mapping processed m6A-seq reads to reference genome. Reads
in the IP/Input FASTQ files (see Note 1) were aligned to the
genome by Tophat2 (v2.1.0) [12] with default options to
generate IP/Input BAM Files (see Note 2). BAM files were
subsequently converted to bigwig files for visualization.

3. Identifying context-specific m6A peaks. Peak calling was per-
formed on the input and IP BAM files by exomePeak [13]. For

Fig. 1 Overall design of MeT-DB V2.0 database. MeT-DB V2.0 is composed of the database and web interface.
The MeT-DB V2.0 database includes the core database that contains context-specific m6A peaks and single-
base sites, the TREW database that contains target sites of m6A readers, writers and erasers, and the
functional database such as micro-RNA target sites, binding sites of RNA binding proteins and information
about cancer genes. There are three functional modules in the web interface: table view facilitates researcher
to explore and search the data in detail, the genome browser helps the user visualize and compare m6A peaks
and functions data, and the tool module includes two useful web servers for investigating the functions of m6A
methyltranscriptome
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each predicted m6A peak, its chromosomal location including
start/end position, strand information, P-value, fold enrich-
ment, and q-value (FDR) were reported.

4. Discovering motif from m6A peaks. For each sample, sequence
motifs of predicted m6A peaks were obtained using the MEME
(v4.11.2) [14] suite and the peak distribution at a transcript
level was also plotted by the Guitar package [15].

5. Identifying single-base m6A sites. Single-base m6A sites were
also predicted by searching the RRACHmotif in peak[9]s iden-
tified by exomePeak. Transcript sequences of the peak region
that contain only exons were first extracted, from which the
location of RRACH motifs was identified. The genome posi-
tions of “A” in the identified motifs were annotated as single-
base m6A sites.

6. Calculating transcriptome-wide expression levels.
Transcriptome-wide expression levels for each sample were
also calculated based on the aligned BAM files of the MeRIP-
seq input samples; cufflinks (v4.11.2) [16] with default settings
was employed to calculate the gene/isoform expression frag-
ments per kilobase of transcript per million mapped reads
(FPKM) values and the reads counts generated by HTSeq
(v0.6.1) [17] were also provided to facilitate further analysis.

3.1.2 Identifying m6A

Targets of m6A Readers,

Erasers, and Writers

for TREW Database

TREW or the target of m6A readers, erasers, and writers is our
newly constructed database about the binding sites of m6A methyl-
transferases (METTL3, WTAP, METTL14, and KIAA1429),
demethylases (FTO and ALKBH5) and readers (YTH family pro-
teins). Like the workflow talked in the section above, ParCLIP-seq
data were retrieved directly from original publications, where the
raw data were first processed with Trim Galore and FASTXToolkit
(v0.0.13) for quality control, and then aligned to human hg19 or
mouse mm10 reference genome respectively with Tophat2. Also,
differential m6A analysis was performed with exomePeak and QNB
[18] packages under the default setting on MeRIP-seq data of m6A
methylase or demethylase perturbation. The significant differential
m6A peaks after perturbation were determined to the target peaks.
Information including overlapped binding sites of m6A readers,
writers, and erasers is provided in the TREW column in the
web-interface.

Fig. 2 The workflow to identify context-specific m6A peaks and single-base sites from MeRIP-seq data in core
database. The workflow is divided into several main stages, including quality control, reads mapping, peak
calling, motif enrichment, dentification of m6A sites with consensus motif and transcriptome-wide expression
levels calculating
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3.1.3 Collecting Relevant

Functional Datasets

to Discover the Association

Between m6A Modification

Sites and Them

To help understand the regulatory roles of m6A, we also integrated
the following six relevant functional datasets into the Met-DB v2.0
database.

1. miRNA target sites. Predicted miRNA target sites from Tar-
getScan (version 7.1) [19] for human and mouse as well as
from miRanda for human, mouse, and fly (August 2010
release) [20] were included. Furthermore, experimentally vali-
dated miRNA and target genes interaction pair information for
human, mouse, zebrafish, and fly were downloaded from
miRTarBase [21].

2. Splicing factor binding sites. A total of 655 and 125 binding
sites of human and mouse splicing factors, respectively, were
obtained from SpliceAidF (v1.1 03/2013) [22]. Each site
includes the name of the binding splicing factor and the
genome location of the binding site. SNP. 40 627 human
literature-derived collected SNP-trait associations of 30 044
SNPs obtained from GWAS (All associations v1.0.1) [23]
were included.

3. RBP-binding site. PAR-CLIP and HITS-CLIP detected bind-
ing locations of 24 human and 5 mouse RBPs were retrieved
from StarBase version 2.0 [24] and included in the database.

4. Cancer related genes. A total of 761 human and 628 mouse
tumor suppressor genes were obtained from TSGene database
version 2.0 [25]. Also, 576 cancer genes were downloaded
from COSMIC (v82) [26].

These relevant functional data are displayed as part of the query
output of the core Met-DB database. Each functional dataset can
also be downloaded from the website.

3.2 Obtaining

the Desired m6A Data

by Exploring

the Table View

Interface and Querying

the Database

A MeT-DB V2.0 website (www.xjtlu.edu.cn/metdb2 and http://
compgenomics.utsa.edu/MeTDB) was developed to support
direct query of MeT-DB V2.0 database (see Fig. 3).

3.2.1 Table View A table view (see Fig. 4) presents information of every genomic
features of an m6A peak/site as a row, thus simultaneously offering a
large amount of information about m6A. It can also show the
potential interactions between a particular m6A peak/site with
other transcriptome features and functional data. Presenting this
rich information can provide multifaceted perspectives of m6A
methylation and help generate hypotheses of their potential
biological functions.
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Fig. 3 MeT-DB V2.0 web server

Fig. 4 Illustration of table view. Table view is capable of displaying background data clearly and providing
several search methods. To be more specific, global search can query input information within entire table.
Column specific search, located in the footer of table, can perform search within corresponding column. More
important, we designed variety of advance search functions for different tables to further assistance users to
screen out most valuable elements among huge information stored in background database. Users can export
data by clicking export buttons under any search conditions for following investigate. Besides, users are able
to view detail information in genome browser of a specific entry by clicking the genome browser icon at the
very left end of each row
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3.2.2 Querying

the Database from a Global

Perspective

to a Single-Nucleotide

Resolution

Three different ways of querying the database are made available
through the MeT-DB V2.0 web page, namely by samples, by m6A
peaks and by single-base m6A sites, providing information about
m6A methyl transcriptome at different scales ranging from a global
perspective to a single nucleotide resolution.

Querying by Samples The search-by-sample function aims to provide the user with a
comprehensive view of context specific m6A methyltranscriptome.
Click on” MeT-DB Core” ! “by Samples” to query the database
by samples. The query page and result page are shown in Fig. 5.

Fig. 5 Querying by samples. (a) The query takes sample ID, experiments, species, cell line or tissue as input
and returns transcriptome-wide information about m6A. (b) For each returned sample, the user can investigate
the m6A peak distribution at a transcript level and m6A peak sequence motif and download the BED file,
detailed information of the transcriptome-wide predicted m6A peaks, the gene and isoform expression
FPKMs, and sample reads counts

Fig. 5 (continued)
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Querying by m6A Peaks

and Single-Base m6A Sites

The search-by-peak and search-by-site functions instead deliver
information about predicted m6A peaks and single-base site
integrated from all the samples and display it in the table view
interface. Click on “MeT-DB Core” ! “by m6A peaks” to query
the database by peaks. Similarly, click on” MeT-DB Core” ! “by
Single-base m6A sites” to query the database by single-base m6A
sites. In this section, we take hg19 as an example, the query results
are separately shown in the Fig. 6a, b.

3.2.3 Exploring

the Functional Data Using

Functional Database

To further facilitate functional discovery, additional functional
information including overlapped binding sites of m6A readers,
writers, and erasers; binding sties of RNA-binding proteins and
slicing factors, miRNA target sites; and SNPs and status of its
association with a tumor suppressor or a cancer gene is also
provided in the “Functional Data” column of the table view.

Fig. 6 (a) Querying result by m6A peaks. (b) Querying result by single-base m6A sites. For each peak/site, the
genomic location, associated gene name/ID, peak enrichment fold change, prediction confidence and the
number of other peaks/sites from other samples that overlap with this queried m6A peak/site are displayed in
the columns of the table

Fig. 6 (continued)
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3.3 Genome Browser Met-DB Genome Browser is built with JBrowse, which is a fast,
smooth scrolling, and zooming genome browser. Met-DB
Genome Browser can be used to browse m6A peak, TREW target
sites, and other functional data along genome.

1. Click “Browser” to open the Genome browser page.

2. Select the Group, Species, Assembly and the gene you interest,
for example WTAP (see Fig. 7a). Then the users can gain the
genome browser of interest (see Fig. 7b).

Moreover, by clicking the very left DNA icon of each record in
table view interface, users can also take a detail look of the informa-
tion of the specific record under genome browser view.

3.4 Online

Bioinformatics Tools

MeT-DB v2.0 offers two Bioinformatics tools specifically designed
for understanding m6A functions.

3.4.1 Guitar Plot Guitar plot is a tool designed for visualizing the transcript level m6A
distribution. It can also be used to visualize distributions of any
other type of genome features and transcriptome. Methylations
stored in BED files (see Note 3). MeT-DB V2.0 includes a web
server for Guitar to generate the plots of m6A distribution from

Fig. 7MeT-DB Genome Browser. (a) The location and feature information about WTAP. Users can click the “+”
or “�” button at the top to shrink or extend on the center of the annotation tracks window. Users can open the
track selection panel by clicking “Select Tracks” button located on the upper-left corner and choose different
datasets derived from various cell lines or treatments in MeT-DB. Users can open the track selection panel by
clicking “Select Tracks” button located on the upper-left corner and choose different datasets derived from
various cell lines or treatments in MeT-DB

Fig. 7 (continued)
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user custom data. The web server brings the full capability of Guitar
to generate not only the distribution plot of a single sample but also
the plot that compares distributions from multiple samples. The
plot is in PDF format and is publication ready. We take hg19 as an
example and describe how to use the MeT-DB V2.0 website to
browse the detailed information of modification sites.

1. Click “Tools” ! “Guitar plot” to open the Guitar Plot web
server.

2. Select a Species and its Genome Assembly. For example, choose
the “Animal” ! “Human” ! “UCSC hg19,Feb/2009.”

3. Provide the Genomic Regions in the BED Format.

4. Leave Your Email, Submit, and Wait around 10 min to Receive
the Results, then the Result.log and Result.pdf can be reached
once the job is done (see Fig. 8).

3.4.2 m6A-Driver m6A-Driver is a tool for predicting m6A-driven genes and asso-
ciated networks, whose functional interactions are likely to be
actively modulated by m6A methylation under a particular condi-
tion (e.g., disease or gene knockout).

1. Click “Tools” ! ” m6A-Driver” to open the m6A-Driver web
server.

2. Input txt files of lists of official gene symbols. The txt files
represent a replicate sample of context-specific m6A targeted
genes under a case–control condition obtained from, for
instance, differential m6A analysis using exomePeak or Met-
Diff. m6A-Driver predicts m6A driven genes from the provided

Fig. 8 Guitar plot web interface
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gene lists by assessing their topological and biological signifi-
cance using a randomwalk with restart algorithm applied to the
protein–protein interaction network (see Fig. 8).

3. The output of m6A-Driver web server contains two files; one is
a text that contains m6A driven genes and the edges of under-
lying m6A driven gene network and the other file is the figure of
the network (Fig. 9).

4 Notes

1. The format of raw sequencing read is FASTQ. Each read
records consists of four lines. Line 1 begins with a “@” charac-
ter and is followed by a sequence identifier. Line 2 is the raw
sequence letters. Line 3 begins with a “+” character and is often
followed by the same sequence identifier. Line 4 encodes the
quality values for the sequence in Line 2, and must contain the
same number of symbols as.

2. BAM format of alignments. BAM is the binary format of
Sequence Alignment/Map file. Please visit the following web-
site (http://genome.sph.umich.edu/wiki/SAM) to see the
detailed information.

3. The annotation data is in UCSC BED and BED12 format. The
upload file with the BED format includes chromosome, start
position, end position, name, score, and strand direction in
web-based modTool server. It should be noted that all start
coordinates are 0-based in the RMBase platform. Moreover,
the BED12 format includes 12 items. The detailed information
is as follows. URL: http://genome.ucsc.edu/FAQ FAQfor-
mat.html#format1.

Fig. 9 m6A-driver web interface

MeT-hyphen;DB: Context‐-spi1;Specific Functions Database of m6A 517

http://genome.sph.umich.edu/wiki/SAM
http://genome.ucsc.edu/FAQ/


References

1. Boccaletto P et al (2018) MODOMICS: a
database of RNA modification pathways.
2017 update. Nucleic Acids Res 46(D1):
D303–D307

2. Yang Y et al (2018) Dynamic transcriptomic m
(6)A decoration: writers, erasers, readers and
functions in RNA metabolism. Cell Res 28
(6):616–624

3. Shi H, Wei J, He C (2019) Where, when, and
how: context-dependent functions of RNA
methylation writers, readers, and erasers. Mol
Cell 74(4):640–650

4. Louloupi A et al (2018) Transient N-6-methy-
ladenosine transcriptome sequencing reveals a
regulatory role of m6A in splicing efficiency.
Cell Rep 23(12):3429–3437

5. Wang X et al (2015) N-6-methyladenosine
modulates messenger RNA translation effi-
ciency. Cell 161(6):1388–1399

6. Fu Y et al (2014) Gene expression regulation
mediated through reversible m(6)A RNA
methylation. Nat Rev Genet 15(5):293–306

7. Du T et al (2015) An association study of the
m6A genes with major depressive disorder in
Chinese Han population. J Affect Disord
183:279–286

8. Li L et al (2017) Fat mass and obesity-
associated (FTO) protein regulates adult neu-
rogenesis. Hum Mol Genet 26
(13):2398–2411

9. Dominissini D et al (2012) Topology of the
human and mouse m(6)A RNA methylomes
revealed by m(6)A-seq. Nature 485
(7397):201–U84

10. Meyer KD, Jaffrey SR (2014) The dynamic
epitranscriptome: N-6-methyladenosine and
gene expression control. Nat Rev Mol Cell
Biol 15(5):313–326

11. Liu H et al (2018) MeT-DB V2.0: elucidating
context-specific functions of N-6-methyl-aden-
osine methyltranscriptome. Nucleic Acids Res
46(D1):D281–D287

12. Kim D et al (2013) TopHat2: accurate align-
ment of transcriptomes in the presence of inser-
tions, deletions and gene fusions. Genome Biol
14(4)

13. Meng J et al (2013) Exome-based analysis for
RNA epigenome sequencing data. Bioinfor-
matics 29(12):1565–1567

14. Bailey TL et al (2009) MEME SUITE: tools
for motif discovery and searching. Nucleic
Acids Res 37:W202–W208

15. Cui X et al (2016) Guitar: an R/Bioconductor
package for gene annotation guided transcrip-
tomic analysis of RNA-related genomic fea-
tures. Biomed Res Int 2016:8367534

16. Roberts A et al (2011) Improving RNA-Seq
expression estimates by correcting for fragment
bias. Genome Biol 12(3)

17. Anders S, Pyl PT, Huber W (2015) HTSeq-a
Python framework to work with high-
throughput sequencing data. Bioinformatics
31(2):166–169

18. Liu L et al (2017) QNB: differential RNA
methylation analysis for count-based small-
sample sequencing data with a quad-negative
binomial model. BMC Bioinformatics 18

19. Lewis BP, Burge CB, Bartel DP (2005) Con-
served seed pairing, often flanked by adeno-
sines, indicates that thousands of human
genes are microRNA targets. Cell 120
(1):15–20

20. Betel D et al (2010) Comprehensive modeling
of microRNA targets predicts functional
non-conserved and non-canonical sites.
Genome Biol 11(8)

21. Chou C-H et al (2016) miRTarBase 2016:
updates to the experimentally validated
miRNA-target interactions database. Nucleic
Acids Res 44(D1):D239–D247

22. Giulietti M et al (2013) SpliceAid-F: a database
of human splicing factors and their
RNA-binding sites. Nucleic Acids Res 41
(D1):D125–D131

23. MacArthur J et al (2017) The new NHGRI-
EBI catalog of published genome-wide associ-
ation studies (GWAS catalog). Nucleic Acids
Res 45(D1):D896–D901

24. Li J-H et al (2014) starBase v2.0: decoding
miRNA-ceRNA, miRNA-ncRNA and protein-
RNA interaction networks from large-scale
CLIP-Seq data. Nucleic Acids Res 42(D1):
D92–D97

25. Zhao M et al (2016) TSGene 2.0: an updated
literature-based knowledgebase for tumor sup-
pressor genes. Nucleic Acids Res 44(D1):
D1023–D1031

26. Forbes SA et al (2017) COSMIC: somatic can-
cer genetics at high-resolution. Nucleic Acids
Res 45(D1):D777–D783

518 Hui Liu et al.



Chapter 28

WHISTLE: A Functionally Annotated High-Accuracy Map
of Human m6A Epitranscriptome

Qingru Xu, Kunqi Chen, and Jia Meng

Abstract

N6-Methyladenosine (m6A) is the most prevalent posttranscriptional modification in eukaryotes and plays a
pivotal role in various biological processes, such as splicing, RNA degradation, and RNA–protein interac-
tion. Accurately identification of the location of m6A is essential for related downstream studies. In this
chapter, we introduce a prediction framework WHISTLE, which enables us to acquire so far the most
accurate map of the transcriptome-wide human m6A RNA-methylation sites (with an average AUC: 0.948
and 0.880 under the full transcript or mature messenger RNA models, respectively, when tested on
independent datasets). Besides, each individual m6A site was also functionally annotated according to the
“guilt-by-association” principle by integrating RNA methylation data, gene expression data and protein–-
protein interaction data. A web server was constructed for conveniently querying the predicted RNA
methylation sites and their putative biological functions. The website supports the query by genes, by
GO function, table view, and the download of all the functionally annotated map of predicted map of
human m6A epitranscriptome. The WHISTLE web server is freely available at: www.xjtlu.edu.cn/
biologicalsciences/whistle and http://whistle-epitranscriptome.com.

Key words Epitranscriptome, RNAmodifications,N6-Methyladenosine (m6A), Guilt-by-association,
Machine learning

1 Introduction

More than 150 types of abundant RNA modifications have been
revealed and investigated in the human epitranscriptome
[1, 2]. Among them, N6-methyladenosine (m6A) is the most prev-
alent modification type present on eukaryotic messenger RNA
(mRNA), and has been confirmed to be actively involved in various
essential biological processes [3–9].

With the developing of the high-throughput sequencing
method, m6A-seq (or MeRIP-seq), the first whole-transcriptome
m6A profiling technique, was invented in 2012 [10, 11] and can
detect m6A sites with a resolution of around 100 nt [12, 13]. The
resolution may be further narrowed down to single base by search-
ing for the m6A motif “RRACH” within the peaks called from
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m6A-seq data. Since m6A-seq is the mostly widely used approach
for profiling m6A epitranscriptome, most existing bioinformatics
databases, such as MeT-DB and RMBase [14, 15], heavily relied on
this procedure. However, because of the randomly occurring
RRACH motif, these databases are likely to contain large number
of false positive m6A sites. Meanwhile, true single-based resolution
techniques, like miCLIP and m6A-CLIP, were also developed
[16, 17]. Unfortunately, limited by the laborious experimental
procedures, these technologies have not been very widely adopted,
and revealed only limited coverage of the epitranscriptome.

Here, with a high-accuracy map of the human m6A epitran-
scriptome obtained from our WHISTLE prediction platform [18],
we provide a web interface for directly query or download this data
as well as the functional annotation information of each individual
m6A site. The information could be useful for further exploration
of the downstream studies of this RNA modification.

2 Materials

2.1 Hardware Computers or smartphones with Internet connection.

2.2 Software The R programming language may be necessary to train the pre-
dictive model from the provided data. R for Linux, Mac OS, or
Windows can be downloaded from https://www.r-project.org. The
IDE of R language RStudio can be installed from https://www.
rstudio.com. Those websites provide installation instructions.

2.3 Packages The following R packages may be required: GenomicFeatures,
Randomforest, and Caret.

2.4 Data Sources The training and benchmarking data enrolled in this study, includ-
ing six base-resolution miCLIP (or m6A-CLIP) datasets were
retrieved from the gene expression omnibus (GEO) as well as the
supplementary data of the original references. Performance evalua-
tions were conducted on these datasets as well as the dataset from a
different technology, m6A-seq with improved protocol. The search
space of theWHISTLE framework [18] is the m6A sites recorded in
MeTDB database for the mature mRNAmodel, or RMBase for the
full transcript model. The original base-resolution data has also
been deposited into the WHISTLE website.

2.5 Web Browsers An up-to-date Internet browser, such as Google Chrome (http://
www.google.com/chrome), Safari (http://www.apple.com/
safari), Internet Explorer (http://www.microsoft.com/windows/
internet-explorer/worldwide-sites.aspx), or Firefox (http://www.
mpzilla.org/firefox).
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3 Methods

We describe here how the WHISTLE prediction framework was
built, and how to explore web-based WHISTLE platform to obtain
the desired m6A data as well as the corresponding annotation
information. The general workflow of WHISTLE framework is
shown in Fig. 1.

3.1 Predicting High-

Accuracy Map of the

Human m6A

Epitranscriptome

Using a Machine

Learning Approach

In this section, we summarized the workflow of WHISTLE frame-
work to predict the m6A sites.

1. Preparing the training and testing datasets. Six single-base
resolution m6A experiments obtained from five cell types
based on miCLIP (or m6A-CLIP) were used, and two of the
hg18 samples (CD8T and A549 m6A-CLIP) were lifted to
hg19 using UCSC liftOver tool (http://genome.ucsc.edu/
cgi-bin/hgLiftOver).

2. Features for m6A site prediction. Besides the conventional
sequence-derived features (seeNote 1), a total of 35 additional
genomic-derived features (see Note 2) were generated for the
prediction purposes.

Fig. 1 Basic framework for obtaining the prediction m6A sites on human
transcriptome, and functionally annotating them 6A sites. All results generated
by this framework are stored in MySQL database and are displayed in the web
browser
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3. Selecting the topNmost significant genomic-derived features
with greedy search. By employing the Perturb method [19] in
the R caret package, topNmost important genomic features
were selected and retained for further prediction analysis to
avoid the overfitting problem.

4. Training and evaluating datasets. For training the SVM and
random forest [20] classifiers, a fivefold cross-validation was
conducted. Dataset level Leave-one-out experiments, where
five samples were used as the training datasets and the remain-
ing one was used as the independent testing, were conducted.
To test the performance of WHISTLE framework, it was
assessed not only on these six independent datasets but also
on the dataset generated from a different technology, m6A-seq
with improved protocol [21]. To evaluate the performance of
our approach, the area under the ROC (receiver operating
characteristic) curve (AUROC) values was calculated and
used as the main performance evaluation metric.

5. Generating a map of human m6A epitranscriptome and calcu-
lating the posterior probability of m6A site. We applied the
WHISTLE framework to the entire transcriptome to search
for all the putative m6A sites. The predicted probability
(or likelihood) of a particular site to be a real m6A site under
a specific model can be obtained for the mature mRNA model
and the full transcript model, respectively. Furthermore, by
including the prior probability (see Note 3), more reliable
posterior probability is also calculated. The whole predicted
map of human m6A epitranscriptome data was deposited into
the WHISTLE website (Table 1).

3.2 Obtaining the

Desired m6A Data by

Exploring the WHISTLE

Website

A WHISTLE website (http://whistle-epitranscriptome.com) was
developed to support direct query of predicted human RNA meth-
ylation sites, their putative functions and potential association to
other methylation sites or genes, providing the requisite data for
the further epitranscriptome studies.

1. Querying m6A modification sites by function or gene. In the
home page of the server, users can select searching type by
function or name, and then enter the corresponding search
term (Fig. 2a).

2. Click on the “GO” button. Users can gain a list of m6A
modification sites of interest (Fig. 2b, c).

3. Table view of m6A modification sites. In the table page of the
server, users can view the detailed information in table format
(Fig. 3a).

4. Click on an individual m6A site, users can obtain each indivi-
dual’s information as well as its gene ontology annotation
(Fig. 3b, c). The Gene Ontology (GO) is a major
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Table 1
The 35 genome-derived features used for m6A site prediction

ID Name Description Note

1 UTR5 50 UTR Dummy variables indicating whether the site is
overlapped to the topological region on the
major RNA transcript

2 UTR3 30 UTR
3 Stop_codons Stop codons flanked by

100 bp
4 Start_codons Start codons flanked by

100 bp
5 TSS Downstream 100 bp of TSS
6 TSS_A Downstream 100 bp of TSS

on A
7 exon_stop Exons containing stop

codons
8 alternative_exon Alternative exons
9 constitutive_exon Constitutive exons
10 internal_exon Internal exons
11 long_exon long exons (exon

length � 400 bp)
12 last_exon_400bp 50 400 bp of the last exons
13 last_exon_sc400 50 400 bp of the last exons

containing stop codons

14 pos_UTR5 Relative position on 50

UTR
Relative position on the region

15 pos_UTR3 Relative position on 30

UTR
16 pos_exons Relative position on exon

17 length_UTR5 50 UTR length The region length in bp
18 length_UTR3 30 UTR length
19 length_gene_ex Mature transcript length

20 dist_sj_5_p2000 Distance to the 50 splicing
junction

Nucleotide distances toward the splicing
junctions or the nearest neighboring sites

21 dist_sj_3_p2000 Distance to the 30 splicing
junction

22 dist_nearest_p200 Distance to the closest
neighbor truncated at
200 bp

23 PC_1bp phastCons scores of the
nucleotide

Scores related to evolutionary conservation

24 PC_101bp Average phastCons scores
within the flanking 50 bp
region

25 FC_1bp fitCons scores of the
nucleotide

26 FC_101bp Average fitCons scores
within the flanking 50 bp
region

(continued)
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bioinformatics initiative to unify the representation of gene and
gene product attributes across all species; BP strands for
biological process, MF strands for molecular function, CC
strands for cellular component. Please refer to [18] for detailed
methodology of the functional annotation.

5. In the download center of the website, WHISTLE support
various data to be downloaded (Table 2), including the original
single-base resolution data generated by miCLIP and
m6A-CLIP (#1) or m6A-seq with improved protocol technol-
ogy (#2), the predicted m6A sites under full transcript (#3, #4)
with high confidence (see Note 4) and mature mRNA m6A
sites (#5, #6) with high confidence, predicted m6A function
(#7) as well as the source code of the project code.

4 Notes

1. Sequence-derived features. This encoding method around the
RRACH motif has also been applied by m6Apred and
MethyRNA [22, 23] and achieved good performance. In
detail, three distinct structural chemical properties: ring struc-
tures, functional groups, and hydrogen bonds were used. Spe-
cifically, adenine and guanine have two ring structures, while
cytosine and uracil have only one ring; adenine and cytosine
contain the amino group, while guanine and uracil contain the
keto group; adenine and uracil can form two hydrogen bonds
during hybridization, whereas guanine and cytosine can form
three hydrogen bonds. Based on the three structural chemical

Table 1
(continued)

ID Name Description Note

27 struc_hybridize Predicted RNA hybridized
region

RNA secondary structures

28 struc_loop Predicted RNA loop region

29 sncRNA sncRNA Attributes of the genes or transcripts
30 lncRNA lncRNA
31 HK_genes hoUsekeeping genes
32 miR_targeted_genes miRNA targeted genes

33 HNRNPC_eCLIP eCLIP data of HNRNPC
RNA binding sites

RNA annotations related to m6A biology

34 Verified_miRtargets miRNA targeted sites
verified by experiment

35 TargetScan Predicted miRNA targeted
sites by TargetScan
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Fig. 2 Querying m6A modification sites by function or gene from WHISTLE website. (a) Select the type of
function or gene, and then enter name of interest. (b) The search by function results of m6A websites. (c) The
search by gene results of m6A web sites
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Fig. 3 (a) Table view of m6A modification sites. (b) Primary information about an individual m6A site. (c) The
biological processes (BPs) predicted to be involving the m6A site
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properties defined above, the ith nucleotide from sequence
Scan been coded by a vector Si ¼ (xi, yi, zi):

xi ¼
1 if s i∈ A,Gf g
0 if s i∈ C,Uf g ,

�
yi ¼

1 if s i∈ A,Cf g
0 if s i∈ G,Uf g ,

�
zi

¼ 1 if s i∈ A,Uf g
0 if s i∈ C,Gf g

�
ð1Þ

Therefore, the A, C, G, andU can be encoded as a vector of
three features (1,1,1), (0,1,0), (1,0,0), and (0,0,1), respec-
tively. Additionally, a feature of the cumulative nucleotide fre-
quency is calculated for each nucleotide position in the
sequence. The density of the ith nucleotide di is defined as
the sum of all the instances of the ith nucleotide before the i + 1
position. The nucleotide frequency fi is defined by the follow-
ing formula: fi¼ di/i. Using the sequence “AUGGACACU” as
an example, the cumulative frequency for adenine is 1.00
(1/1), 0.40 (2/5), and 0.43(3/7) at the first, fifth and seven
position, respectively; while the frequency for uracil is 0.50
(1/2) and 0.11(1/9) at the second and ninth respective
position.

2. Genomic features. The description of genomic features consid-
ered in the prediction was summarized in Table 1.

Table 2
Data types could be downloaded from WHISTLE

1 Base-resolution m6A sites (miCLIP and m6A-CLIP)

2 Base-resolution m6A sites (m6A-seq with improved protocol)

3 Predicted m6A sites—full transcript (complete version)

4 Predicted m6A sites—full transcript (high confidence)a

5 Predicted m6A sites—mature mRNA (complete version)

6 Predicted m6A sites—mature mRNA (high confidence)a

7 Predicted m6A functions

8 Project source codes

aThe selection criteria of the predicted high-confidence human m6A sites are as follows:

For each gene, up to five most probable m6A sites whose methylation probability is

greater than 0.9 are selected

For genes that has less than three sites with methylation probability greater than 0.9, we
report up to two most probable sites. (We want the predicted m6A sites to cover a larger

proportion of the transcriptome)

For genes that have no reported m6A sites conforming the RRACH motif in MeTDB/

RMBase, no sites will be reported. (MeTDB and RMBase collected hundreds of samples,
and their data processing pipelines are less likely to make false negative prediction

compared to false positive prediction)
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3. When calculating the posterior probability of RNA methyla-
tion, we defined the prior probability as the average number of
m6A sites from the 6 base-resolution databases divided by the
number of occurrences of transcriptome RRACH motifs that
are supported by at least one m6A record in MeTDB or
RMBase. The likelihood ratio was extracted from the predictive
model.

4. The selection criteria of the predicted high-confidence human
m6A sites are as following:
l For each gene, up to five most probable m6A sites whose

methylation probability is greater than 0.9 are selected;

l For genes that have less than three sites with methylation
probability greater than 0.9, we report up to two most
probable sites. (We want the predicted m6A sites to cover a
larger proportion of the transcriptome.)

l For genes that have no reported m6A sites conforming to
the RRACH motif in MeTDB/RMBase, no sites will be
reported. RRACH motifs not captured in MeTDB/
RMBase databases were not considered, this is because
that MeTDB and RMBase collected hundreds of MeRIP-
seq samples, and their data processing pipelines are less likely
to make false negative prediction compared to false positive
prediction.
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Chapter 29

Transcript Identification Through Long-Read Sequencing

Masahide Seki, Miho Oka, Liu Xu, Ayako Suzuki, and Yutaka Suzuki

Abstract

RNA-seq using long-read sequencing, such as nanopore and SMRT (Single Molecule, Real-Time) sequenc-
ing, enabled the identification of the full-length structure of RNA molecules. Several tools for long-read
RNA-seq were developed recently. In this section, we introduce an analytical pipeline of long-read RNA-seq
for isoform identification and the estimation of expression levels using minimap2, TranscriptClean, and
TALON. We applied this pipeline to the public direct RNA-seq data of the HAP1 and HEK293 cell lines to
identify transcript isoforms which can be detected only using long-read RNA-seq data.

Key words Long-read sequencing, Direct RNA sequencing, Transcript isoform, Alternative splicing,
Expression estimation

1 Introduction

RNA sequencing (RNA-seq) using short-read sequencers, such as
NovaSeq6000 (Illumina), leads to fragmented cDNA reads
[1]. Therefore, it is difficult to identify the entire sequence of
RNA molecules and an accurate estimation of the expression levels
of isoforms. The emergence of long-read sequencers, such as
Sequel (Pacific Biosciences) andMinION (Oxford Nanopore Tech-
nologies), allowed for the sequencing of entire single molecules of
full-length cDNA as a single read [2, 3]. These methods, called
Iso-Seq (using PacBio sequencers) and cDNA-seq (using Nano-
pore sequencers), sequence full-length cDNA synthesized by
Smart-seq or its derivatives [2, 3]. These methods were applied to
not only the sequencing of RNA purified from bulk cells, but also
single-cell RNA-seq [4, 5]. Direct sequencing of mRNAmolecules,
called direct RNA-seq, is also possible using nanopore sequencing
[6]. Direct RNA-seq yields not only the entire sequence of RNAs,
but also information about base modifications and secondary
structure [7].
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By utilizing long-read RNA-seq data, we can especially obtain
information on full-length transcript isoforms caused with alterna-
tive transcription start/termination sites and alternative splicing
[8]. Transcript isoforms ensure variation of protein function and
their aberrations are often observed in various disease cells. Espe-
cially in cancer cells, genomic mutations induce aberrant transcript
structures [9]. Mutations disrupting or creating splice sites occa-
sionally cause aberrant RNA splicing, and structural variants includ-
ing chromosomal rearrangements are known to be causes of fusion
transcripts [10, 11]. It is important to understand comprehensive
variation of transcript isoforms which can be associated with funda-
mental cellular systems and diseases.

Most of the tools used for next-generation sequencing are
optimized for short reads and are not applicable to long reads, for
which they exhibit a high error rate. For the alignment of long
reads of RNA, splice-aware aligners, such as minimap2, deSALT,
Graphmap2, and LAST, can be used [12–15]. Because of the
relative high error rate of long-reads, splice junction after alignment
is error prone. In nanopore sequencing, the indels caused by the
sequence context, such as homopolymers, are another problem of
this approach. Therefore, it is preferable to correct the splice junc-
tions using short-read data and/or the junctions of reference tran-
script models. FLAIR and TranscriptClean can correct splice
junctions using the junctions of short reads and/or reference tran-
script models [16]. For isoform detection, FLAIR, Stringtie,
TALON, Mandalorion, and Pinfish are also available [5, 16–19].

In this section, we introduce an analytical pipeline of long-read
RNA-seq for isoform identification and the estimation of expres-
sion levels using minimap2, TranscriptClean, and TALON. We
applied this pipeline to the public direct RNA-seq data of the
HAP1 and HEK293 cell lines.

2 Materials

2.1 Dataset We used the public datasets of short-read RNA-seq and direct
RNA-seq of the chronic myelogenous leukemia cell line HAP1
and the human embryonic kidney cell line HEK293
[20, 21]. These datasets are available from the Sequence Read
Archive and the European Nucleotide Archive (Table 1). The
libraries of short RNA-seq of HAP1 and HEK293 were prepared
using a TruSeq Stranded mRNA kit (Illumina) and a NEBNext
Ultra RNA Library prep Kit (New England BioLabs) and
sequenced using HiSeq4000 and HiSeq2500, respectively. The
library of direct RNA-seq was prepared using a Direct RNA
Sequencing Kit (SQK-RNA001) and sequenced using the R9.4
flowcell of MinION.
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2.2 Reference

Genome and

Transcript Model

The human hg38 reference genome was downloaded from the
UCSC Genome browser (http://hgdownload.soe.ucsc.edu/
goldenPath/hg38/bigZips/analysisSet/hg38.analysisSet.chroms.
tar.gz). We used the FASTA file that concatenated the FASTA files
of chr1–22, X, Y, M, and EBV, with the exception of the files of
chrUn_*.fa and chr*_random.fa. The comprehensive gene annota-
tion of GENCODE release 33 was downloaded from the website of
GENCODE (ftp://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_33/gencode.v33.annotation.gtf.gz)
and used as the reference transcript model [22].

2.3 Software We installed the following tools on the virtual environment of
miniconda3 v 4.5.11: python v3.7.6, minimap2 v2.17 (r941),
Trimgalore v0.6.4, STAR v2.7.3, Bedtools v2.29.0, Samtools
v1.9, pybedtools v0.8.0, and pyfasta v0.5.2. We downloaded Tran-
scriptClean v2.0.2 (https://github.com/dewyman/Tra
nscriptClean.git) and TALON v4.4.2 (https://github.com/
dewyman/TALON.git) from GitHub. We installed TALON by
pip command on the virtual environment. For visualization of
alignment and gene annotation, we used the Integrative Genomics
Viewer (IGV) [23].

3 Methods

We employed the pipeline via minimap2 for the alignment of direct
RNA-seq reads, TranscriptClean for error correction, and TALON
for isoform identification and read counting (Fig. 1). We also used
short-read RNA-seq data to prepare the database of splice junctions
using STAR.

3.1 Alignment of

Direct RNA-seq Reads

Minimap2 is one of the most frequently used alignment software
for long-read sequencing data [12]. The parameters optimized for
direct RNA-seq and cDNA nanopore sequencing, as well as for
Iso-seq using SMRT sequencing, are available in the tutorial of
minimap2 (https://github.com/lh3/minimap2). The -uf option

Table 1
Datasets used in this chapter

Cell line Method Accession Number

HAP1 Short-read RNA-seq ERR3218280
MinION direct RNA-seq ERR3218372

ERR3218374

HEK293 Short-read RNA-seq SRR8181090
MinION direct RNA-seq ERR3218376

ERR3218379
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of minimap2 considers only forward-strand reads, such as direct
RNA-seq. The -k14 option is optimized for direct RNA-seq reads
with a higher error rate vs. DNA reads. Because long reads are error
prone, misalignment around junctions occurs occasionally. Since its
2.17 version, minimap2 supports the --junc-bed option. This
option allows the input of a splicing junction database. Using this
option, the junction in the database is selected when there are
multiple candidates of splice alignment (Fig. 2a). The splicing
database can be generated from the GTF file of the transcript
annotation using paftools.js gff2bed.

The SAM file is generated by the alignment of reads and con-
tains information pertaining to reads and alignment results
[24]. For visualization on the IGV, it is necessary to convert the
SAM file to a sorted BAM file and generate and index file of the
sorted BAM file (bam.bai file) using samtools.

1. (Optional) Convert the GTF file of gene annotation to the
bed12 format using paftools.js of minimap2.

$paftools.js gff2bed gencode.gtf > gencode.bed

2. Align direct RNA-seq reads to the genome using minimap2.

$minimap2 -ax splice -uf -k14 --secondary=no --junc-bed

gencode.bed reference_genome.fa dRNA.fq > dRNA.sam

Fig. 1 Workflow of the data analysis of long-read RNA-seq
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3. (Optional) For the visualization of alignment results on the
IGV, convert the SAM file to the BAM format and generate an
index file.

$samtools view -bS dRNA.sam -o dRNA.bam

$samtools sort dRNA.bam -o dRNA.bam

$samtools index dRNA.bam

3.2 (Optional)

Alignment of Illumina

RNA-seq Reads

In cases in which the cDNA insert is shorter than the length of the
reads, sequences containing the cDNA and adapter sequences are
read. The bases of the 30 prime end of reads occasionally show a
lower base quality. To obtain accurate alignment, it is preferable to
trim the adapter sequence and the low-quality bases. We used the
trimming software Trim Galore!, with comprises the adapter-
trimming software Cutadapt and a FASTQ quality-check software
FastQC [25–27]. Other software, such as Trimmomatic, can also
be used for the same purpose [28].

STAR is an ultrafast alignment software for short-read RNA--
seq [29]. First, reference index files are generated from a reference
genome FASTA file and a gene annotation file using the –runMode
genomeGenerate option of STAR. Second, the FASTQ files are
aligned to the reference genome by STAR. We employed the para-
meters of STAR used in a previous study [17]. After alignment,

Fig. 2 Alignment and error correction of direct RNA-seq reads. (a) The direct RNA-seq reads of HAP1 cells
aligned using minimap2 without and with the guide of GENCODE annotation. (b) The aligned reads before and
after error correction using TranscriptClean are shown. (c) The splice junction detected by short-read
RNA-seq, the aligned reads before and after correction are shown. (d) The junction-uncorrected reads are
shown
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SAM file, SJ.out.tab file, and log files were generated. The SJ.out.
tab file contained splice junction information in a tab-delimited
format. The SJ.out.tab file is usable as the database of splice junc-
tions for TranscriptClean.

1. Perform adapter and quality trimming of Illumina reads.

$trim_galore --illumina --paired read1.fastq.gz read2.

fastq.gz --basename trimed_out

2. Prepare the genome indexes.

$STAR --runMode genomeGenerate --runThreadN 10 –

genomeFastaFiles reference_genome.fa --sjdbGTFfile gencode.

gtf --genomeDir output

3. Align the Illumina reads to the reference genome.

$STAR --runThreadN 4 --genomeDir ../reference/star_genome

--readFilesIn trimmed_out_val_1.fq.gz trimmed_out_val_2.fq.gz

--readFilesCommand gunzip -c --outFileNamePrefix Illumina_ --

outFilterType BySJout --outFilterMultimapNmax 20 --alignSJo-

verhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax

999 --outFilterMismatchNoverLmax 0.04 --alignIntronMin 20 --

alignIntronMax 1000000 --alignMatesGapMax 1000000 --outSAMat-

tributes NH HI NM MD jM jI --outSAMtype SAM

3.3 Correction of

Errors and Splice

Junctions Using

TranscriptClean

As mentioned above, the sequencing and alignment errors of long
reads can lead to misidentification of isoforms. TranscriptClean is a
tool that is used for error correction of the SAM file of long reads
(Fig. 2b, c). The FASTA file of the reference genome can be used
for base correction, and the SJ.out.tab file obtained from STAR can
be used for splice junction correction. Although we did not per-
form this analysis, it is able to perform variant-aware correction by
also using a VCF file (�-variants/�v option), including variant
information such as polymorphism and mutation. Variant-aware
correction is advantageous for the detection of variants on tran-
scripts and for haplotype phasing of reads using heterozygous
SNPs. TranscriptClean outputs the corrected SAM file, corrected
FASTA file, Transcript error log file (TE.log), and Transcript log
file (.log). The transcript error log file contains information for each
potential error regarding read name, position, error type, size (bp),
with/without correction, and the reason for the absence of correc-
tion when the error was not corrected in the tab-delimited format.
The transcript log file contains information per read about mapping
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type (primary, secondary, and unmapped) and the number of errors
that were corrected or remained uncorrected among each error
type. Because nanopore sequencing is error prone, it might be
better to remove the reads containing uncorrected splicing junc-
tions from the SAM file, for a more confident isoform identification
(Fig. 2d).

1. Execute TranscriptClean.py to correct the SAM file of direct
RNA-seq reads.

$python TranscriptClean.py --sam dRNA.sam --genome

reference_genome.fa --outprefix dRNA --spliceJns Illumina_R-

NA_SJ.out.tab

2. (Optional) For the visualization of alignment results on the
IGV, convert the SAM file to a sorted BAM format and gener-
ate an index file.

$samtools view -bS dRNA_clean.sam -o dRNA_clean.bam

$samtools sort dRNA_clean.bam -o dRNA_clean.bam

$samtools index dRNA_clean.bam

3.4 Isoform

Detection and

Abundance Estimation

TALON can detect transcript isoforms by comparing transcript
models [17]. TALON is intended for strand-specific RNA-seq
data. The use of data without strand specificity allows the recogni-
tion of the reads harboring the same splice junction as different
isoforms if their strands are different. TALON classifies the reads
into six categories: known, incomplete splice match (ISM), novel in
catalog (NIC), novel not in catalog (NNC), antisense, and genomic
transcripts. ISM is a truncation form of transcript. NIC is a novel
isoform harboring only the splice junction annotated in transcript
models. NNC is a novel isoform harboring more than one non-
annotated splice junction. First, the database is prepared from the
GTF file of GENCODE using the talon_initialize_database com-
mand. The config file containing the details and path to the SAM
files of samples is prepared by the text editor. Using the talon
command, the mapping results of SAM files and transcript annota-
tion of GENCODE are compared, and the result of the comparison
is added to the database file of TALON. QC.log file and talon_rea-
d_annot.tsv are also generated. The QC.log file contains informa-
tion about the aligned base fraction and the identity per read.
TALON uses these criteria for the quality check of reads. The
default parameters of aligned base fraction (coverage) (-c/--cov
option) and identity (-i/--identity) were 0.9 and 0, respectively. A
coverage of 0.9 is too strict for the libraries of sequenced transcripts
with an adapter sequence. In the presence of reads with an adapter
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sequence, a coverage threshold lower than that of the default
parameter should be used, or adapter trimming of long reads
should be performed. The talon_read_annot.tsv file contains the
information of the transcript annotation of each read, including
transcript ID and novelty. To remove artifacts, talon_filter_tran-
scripts command can create the list of the novel transcripts that are
commonly detected in at least two samples within replicates and the
known transcript that are detected in at least one sample. The list
obtained by talon_filter_transcripts can be used as a white list for
subsequent steps by using the --whitelist option. The talon_abun-
dance command can estimate the read counts of each isoforms.
Unlike the expression value normalized to both read count and
transcript length, such as RPKM (reads per kilobase of transcript
per million mapped reads), used in short-read RNA-seq, the value
normalized only by read count, such as RPM (Reads Per Million
mapped reads), is used in long-read RNA-seq. The Talon_crea-
te_GTF command can create a GTF file of the identified transcripts.

1. Prepare the config file regarding the input SAM files for
TALON. The config file is in csv format, and the following
information is required: “dataset name,” “sample description,”
“platform,” “full path to sam file.”

(Example of config file)

HAP1_1,HAP1,MinION_dRNA-seq,HAP1_1.sam

HAP1_2,HAP1,MinION_dRNA-seq,HAP1_2.sam

HEK293_1, HEK293,MinION_dRNA-seq, HEK293_1.sam

HEK293_2, HEK293,MinION_dRNA-seq, HEK293_2.sam

2. Prepare the database for TALON.

$talon_initialize_database --f gencode.v33.annotation.

gtf --a gencode_v33 --g hg38 --o output

3. Execute TALON.

$talon --f config.csv --db talon.db --build hg38 --o

output

4. Create the summary file of the detected transcripts.

$talon_summarize --db talon.db --v --o output
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5. Prepare the paring list of experimental replicates in csv format.

(Example of paring file)

HAP1_1,HAP1_2

HEK293_1,HEK293_2

6. Prepare the transcript list for filtering.

$talon_filter_transcripts --db talon.db -a gencode_v33 -p

paring.csv --o filter_out.csv

7. Estimate the abundance of the transcript.

$talon_abundance --db talon.db --whitelist filter_out.csv

-a gencode_v33 --build hg38 --o output

8. Create GTF file of the detected isoforms.

$talon_create_GTF --db talon.db --whitelist filter_out.

csv -a gencode_v33 --build hg38 --o output

3.5 Analysis of the

Direct RNA-seq Data of

HAP1 and HEK293

We analyzed the direct RNA-seq data of HAP1 and HEK293 via
short-read RNA-seq using this pipeline. We used the duplicate data
of each cell line. We detected 21,292 known, 14,018 ISM, 6364
NIC, 524 NCC isoforms, 214 antisense, and 222 intergenic tran-
scripts (Fig. 3a). Although 11,353 ISM transcripts were suffix type
and lacked the 50 end of the existing transcripts, only 140 of those
were prefix type and lacked the 30 end of the existing transcript.
This indicates that the majority of ISM transcripts originated from
artifacts of depredated RNA and disrupted sequencing, as previ-
ously suggested previously [17]. We calculated the RPM value from
the read count matrix obtained from TALON, with the exception
of mitochondrial genes and the suffix type of ISM transcript. We
compared the expression levels between duplicates. The existence
of a strong Pearson correlation between duplicates (R ¼ 0.99) was
shown in both HAP1 and HEK293 cells (Fig. 3b, c). We also
compared the average transcript expression of the duplicates
between the two cell lines and observed a strong correlation
(R¼ 0.93) (Fig. 3d). We exemplified the genes that were expressed
differentially between HAP1 and HEK293 cells in Fig. 3e. For the
UQCRH gene, the isoform exhibited skipping of the third exon
and was newly detected by TALON. This isoform showed a higher
expressed in HAP1 compared with HEK293 cells.
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Chapter 30

Transcript Isoform-Specific Estimation of Poly(A) Tail
Length by Nanopore Sequencing of Native RNA

Adnan M. Niazi, Maximilian Krause, and Eivind Valen

Abstract

The poly(A) tail is a homopolymeric stretch of adenosine at the 30-end of mature RNA transcripts and its
length plays an important role in nuclear export, stability, and translational regulation of mRNA. Existing
techniques for genome-wide estimation of poly(A) tail length are based on short-read sequencing. These
methods are limited because they sequence a synthetic DNA copy of mRNA instead of the native
transcripts. Furthermore, they can identify only a short segment of the transcript proximal to the poly
(A) tail which makes it difficult to assign the measured poly(A) length uniquely to a single transcript
isoform. With the introduction of native RNA sequencing by Oxford Nanopore Technologies, it is now
possible to sequence full-length native RNA. A single long read contains both the transcript and the
associated poly(A) tail, thereby making transcriptome-wide isoform-specific poly(A) tail length assessment
feasible. We developed tailfindr—an R-based package for estimating poly(A) tail length from Oxford
Nanopore sequencing data. In this chapter, we describe in detail the pipeline for transcript isoform-
specific poly(A) tail profiling based on native RNA Nanopore sequencing—from library preparation to
downstream data analysis with tailfindr.

Key words Poly(A) tail, Nanopore sequencing, Native RNA, tailfindr, R, Transcriptomics

1 Introduction

A poly(A) tail is formed by the nontemplated addition of a stretch
of adenosines to the 30-end of messenger RNA (mRNA) during
RNA processing in the nucleus [1]. It mediates the transfer of
processed RNA from nucleus into the cytoplasm in eukaryotes
[2]. Furthermore, it is known to stabilize or destabilize the
mRNA depending on its length: relatively long poly(A) tails inhibit
degradation of mRNA by 30-exonucleases and 50-cap hydrolysis,
whereas short poly(A) tails mark the mRNA for degradation by the
exosome [3]. Additionally, the length of the poly(A) tail can, under
certain conditions, influence the translational efficiency of the
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mRNA [4–6]. Measuring isoform-specific poly(A) tail length over
the whole transcriptome is therefore important in understanding its
role in regulation of mRNA localization, mRNA half-life and trans-
lation regulation.

Existing methods for transcriptome-wide estimation of poly
(A) tail length—which are primarily based on Illumina short-read
sequencing technology [5, 7, 8]—have numerous limitations. First,
RNA in its native form cannot be sequenced using Illumina
sequencing: the RNA must first be reverse transcribed into
cDNA, and subsequently amplified with PCR cycles to form clus-
ters on the flow cell that are sequenced by synthesis. The conversion
of RNA into cDNA results in loss of information; for example, the
occurrence of native RNA modifications might be interesting to
study along with the poly(A) tail length. Second, the repeated PCR
cycles may introduce artefacts in the homopolymer regions that
may cause errors in poly(A) tail length estimation [9–11]. Third,
most of these methods estimate poly(A) tail length indirectly by
inferring cDNA poly(A) or poly(T) segments using elaborate
library preparation steps or custom-designed software for proces-
sing raw images of the sequencing clusters.

This renders these methods not only time-consuming but also
technically challenging. Lastly, as Illumina sequencing is a short-
read sequencing technology, a sequenced read from these methods
contains only a small segment reflecting parts of the transcript
proximal to the poly(A) tail. With such partial transcript fragments,
transcript isoform-specific poly(A) tail assignment is hard, and in
many instances impossible. This is because a read may align equally
well to two or more transcript isoforms, making it impossible to
decipher as to which transcript the read—and its associated poly
(A) tail measurement—belongs to (see Fig. 1). Until recently it was
therefore impossible to address whether different transcript iso-
forms have different poly(A) tail lengths.

With the advent of long read sequencing methods it recently
became possible to sequence full length transcripts and their asso-
ciated poly(A) tails [12–14]. In addition to offering long read
sequencing only limited by the molecules integrity [15], Oxford
Nanopore Technologies (ONT) novel sequencing approach also
allows to sequence native RNA molecules without the conversion
into cDNA [16]. This new technology has the potential to address
isoform-specific poly(A) length measurements and RNA modifica-
tion detection in a single assay [14, 17].

In this chapter, we will explain how ONT’s sequencing
approaches allow direct poly(A) measurement of native RNA (Sub-
heading 2), describe the necessities for efficient Nanopore library
preparation (Subheading 3), and how to process the data generated
using tailfindr to perform transcriptome-wide isoform-specific
poly(A) tail profiling (Subheading 4).
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2 Nanopore Sequencing

In ONT sequencing approaches, a protein nanopore is suspended
in a hydrophobic material (membrane) that separates two buffer-
filled wells [18]. A cross-membrane voltage of �180 mV is applied
such that the trans side of the membrane is set at a positive potential
compared to the cis side (see Fig. 2). This causes a constant ionic
current to flow through the pore. The molecule to be sequenced,
which can be either DNA or RNA, is located on the cis side of the
membrane. Under the influence of the applied voltage, the nega-
tively charged nucleotide strand threads through the pore. To
ensure a homogeneous translocation rate (450 bps for DNA and
70 bps for RNA [19]), and to minimize the influence of secondary
structure or DNA duplex binding energy, the DNA or RNA is fed
into the pore by the ratcheting action of a motor protein. The
nucleotides located in the constriction of the pore—5–6 nucleo-
bases at any given time—modulate the current passing through the

5` 3`
AAAAAAAAAAA

mRNA transcript with exons
shown in different colours

Poly(A)
tail

Full-length transcript
5` 3`

AAAAAAAAAAA

AAAAAAAAAAA

Gene A, Isoform X

Gene A, Isoform Y

(a)

(b)

Gene A, Isoform Y

Gene A, Isoform X

(c)

Partially-sequenced
transcript

Fig. 1 (a) A poly(A)-tailed mRNA. (b) A full-length transcript uniquely and
unambiguously maps to the isoform that it originated from. In the illustrated
case, the read perfectly aligns to isoform X of gene A, and the measured poly
(A) tail length can be uniquely attributed to isoform X. (c) A partially sequenced
transcript can map equally well to multiple transcript isoforms, making it
impossible to decipher from which of the many possible isoforms the read
originated from. In this case, the partially sequenced transcript aligns equally
well to both isoform X and isoform Y of gene A. Thus transcript-isoform specific
poly(A) tail length assignment is not possible
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pore, thereby creating sequence-specific modulations in the cur-
rent. This current is sampled at a rate of 3012 samples/second and
saved as an array in a .fast5 file by MinKNOW—the data acquisi-
tion and experiment management software provided by ONT. The
resulting signal trace—the so-called squiggle—thus contains the
information of the contiguous nucleotide strand and possible
RNA modifications and should be stored as “raw data files.” The
raw data files are then used by a basecaller to predict the original
sequence.

In the special case of ONT native RNA sequencing, the motor
protein is added at the 30-end of the molecule by poly(A)-guided
ligation. Reverse transcription is optional, as the synthesized cDNA
strand will not be sequenced at any time. Nevertheless, it is recom-
mended to perform reverse transcription, as the resulting RNA–
cDNA heteroduplex is devoid of secondary structure that poten-
tially interferes with pore translocation. Furthermore, the RNA–
cDNA heteroduplex is more stable than single-stranded RNA
toward degradation by RNases (see Note 1). The added motor

Motor protein

Protein nanopore

Driving
voltage
approx.
180mV

cis

transLipid bilayer
membrane

Single-stranded RNA
coming out of the
nanopore 

RNA-cDNAduplex
feeding into the pore

Tethers

A
+

_

Fig. 2 RNA sequencing using ONT Direct-RNA sequencing. The RNA to be
sequenced is first reverse-transcribed to make an RNA–cDNA duplex; this step
removes RNA secondary structure that may otherwise cause pore blockage. The
RNA–cDNA duplex, along with the ligated adaptor that contains the motor
protein, is initially located on the cis side of the membrane. The tethers attached
to the DNA adaptor have an affinity for the lipid membrane and help anchor the
RNA–cDNA duplex to it. Under the influence of the applied voltage, the duplex
shifts toward the pore, and eventually the RNA part of the duplex threads through
the pore. The motor protein unwinds the RNA–cDNA duplex, and ratchets the
RNA through the nanopore one base at a time. The fluctuations in the pore
current as the RNA strand translocates through the pore are recorded
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protein threads the RNA through the pore from its 30-end to the
50-end. The resulting current signal thus contains in this order:
signal for the adaptor sequence that initially carried the motor
protein, the poly(A) tail and the full-length transcript.

Although in theory it should be possible to infer the length of
the poly(A) tail from the basecalled sequence alone, in practice this
is not the case. When the raw signal is basecalled, the number of
adenosines (reflected as A in sequence) called by the current base-
callers in the poly(A) tail region is far lower than the actual number
of adenosines in the poly(A) tail of the original RNA sequence (see
Fig. 3). This is because the raw signal corresponding to a homopol-
ymeric stretch of adenosine is a monotonous current devoid of any
detectable transition from one adenosine to the next [20, 21]. The
basecaller cannot decide where the signal of one adenosine ends
and the next one starts; the entire poly(A) tail signal is therefore
treated as a single adenosine base that got stalled in the nanopore
for a long time. Thus, the poly(A) tail length currently cannot be
faithfully estimated from basecalled sequences directly as it will
often underestimate the actual poly(A) tail length. To accurately
estimate the poly(A) tail length from Nanopore sequencing data,
we developed an R package—tailfindr [12]. The software uses
basecalled .fast5 files and annotates the reads with poly(A) tail
estimates (for more details refer to Subheading 4).

5`
CAGUUCACGGAUUGCGACCGGACGUUGUGUUGCGUGUCUUGUGCUAAAAAAAAAAAAAAAAA

3` Original sequence

Raw nanpore signal

5`3` Base-called sequence
CAGUUCACGGAUUGCGACCGCACGAUGUGUUGCGUGUCUUGUGGUA

(a)

(b)

(c)

Fig. 3 Current basecalling algorithms underestimate poly(A) tail length. (a) A full-length mRNA with a 17-nt
long poly(A) tail. (b) Raw signal generated by ONT sequencing when the sequence shown in (a) passes through
the nanopore. Notice that the signal corresponding to the poly(A) tail is low-variance and monotonous. (c)
Sequence predicted by the basecaller. Notice that the basecaller predicts only one adenosine in the poly(A) tail
whereas the original sequence has 17 adenosines in the poly(A) region. This shows that although the raw
signal for poly(A) tail is captured using Nanopore sequencing, it is not basecalled properly, preventing poly
(A) tail length estimation directly from basecalling. N.B.: The sequences shown in this figure represent
exemplified data
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In the following sections, we will describe how to successfully
perform library preparation for native RNA sequencing using
Nanopore, and how to use tailfindr to obtain isoform-specific
poly(A) tail measurements from the obtained data.

3 Library Preparation

ONT sequencing provides single-molecule long-read sequencing
applications for RNA for the first time. However, the quality of the
produced data and—most importantly—the quantity of data out-
put directly depends on the quantity and quality of the provided
RNA. It is therefore essential to make sure that enough RNA of
good quality can be achieved prior to planning the experiment. Any
RNA degradation not only affects the read length of the data
obtained, but also makes library preparation inefficient, as it is
based on poly(A)-dependent ligation of DNA adapters (Fig. 4).
Therefore, all experimental procedures upstream of sequencing
should be reviewed for forces that could degrade molecules, such
as vigorous shaking or pipetting. Furthermore, RNA should be
extracted as fresh as possible, or alternatively stored at -80C in
RNA storage medium (TRI reagent or RNALater). Extraction
should be chosen to avoid any contaminants, as these could be
detrimental to the sequencing chemistry. In our experience, silica-
column based purification strategies not only degrade RNA by
physical force, but also retain Guanidine-hydrochloride contamina-
tion. We thus recommend the use of phenol-chloroform extraction
methods, such as the use of TRI reagent. These are more time-
consuming, but in our hands yield higher quality RNA with mini-
mal contaminant carry-over. An example workflow for the use of
TRI reagent for purification, as well as poly(A) enrichment based
on the Poly(A)Purist MAG Kit, is described in an exemplary proto-
col at the end of this section.

Enriching for poly(A)-containing RNA is necessary in current
ONT protocols, as the adapters are added specifically to the poly
(A) tail. The addition of adapters happens through RNA ligation.
However, the presence of high amounts of nonpolyadenylated
RNA (such as rRNA) can significantly impact the efficiency of
adapter ligation by titrating the enzyme or adapters by nonproduc-
tive binding events. Poly(A) enrichment based on magnets is the
gold-standard experimental approach, but any other strategies that
do not involve physical forces—such as vortexing, vigorous pipet-
ting, or column-based purification—would work as well.

The efficiency of library preparation solely depends on the
efficiency of DNA–RNA ligation procedures. A schematic workflow
of Nanopore Library preparation is provided in Fig. 4. Any con-
taminant that reduces ligation efficiency will impact the sequencing
performance of the library. It is thus important to follow the
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recommendations given in the Nanopore protocols (nanoporetech.
com) for RNA quality and quantity measures. The only exception
are ligation and bead purification incubation times, which we rou-
tinely double. A longer incubation time at room temperature might
increase the risk of RNA degradation, yet also increases the chance
of successful ligation or DNA binding or elution events to beads,
which leads to a more efficient library preparation. Finally, it is

AAAAAAAAAAA

AAAAAAAAAAA

T T TT

AAAAAAAAAAA
T T TTTTTTTTT

T T TT

Primer 
annealing and 

ligation

Reverse
transcription

Ligation of 
sequencing 
adaptor and 
dual tethers

+

AAAAAAAAAAA
T T TTTTTTTTT

Full length RNA transcript

Oxford Nanopore
MinION sequencer

Fig. 4 Representation of ONT Direct-RNA library preparation protocol. The reverse transcription adaptor
containing a T-overhang is ligated to the full-length RNA (shown in grey). This adaptEr can only bind at the
30-end of the transcript and initiates reverse transcription. The reverse transcription creates a DNA strand
(shown in orange). In this way, an RNA–cDNA duplex is formed. Next, a sequencing adaptor containing the
motor protein is ligated to the RNA–cDNA duplex along with dual tethers. During sequencing on a ONT MinION
sequencer, these tethers anchor the DNA strand to the lipid bilayer membrane, which helps to efficiently feed
the RNA strand through the pore

Native RNA poly(A) Length Estimation 549

http://nanoporetech.com
http://nanoporetech.com


crucial to proceed quickly from the final ligation to actual sequenc-
ing and avoid harsh chemicals and temperatures with the final
library, as an active protein has been added whose function is
essential for sequencing. An example protocol for library prepara-
tion including total RNA extraction and poly(A) enrichment
together with notes arising from our library preparation experience
can be found at dx.doi.org/10.17504/protocols.io.9cjh2un.

4 Bioinformatics Analysis

To accurately estimate the poly(A) tail length from Nanopore
native RNA sequencing data, we developed an R package—tail-
findr [12]. Briefly, tailfindr estimates poly(A) tail length by first
locating the monotonous stretch of current signal corresponding to
the poly(A) tail within the raw signal, and then calculating its
duration in samples (see Fig. 5). Next, a read-specific translocation
rate is computed; it specifies the average of samples per nucleotide
translocation. After estimating this translocation rate, it is used to
normalize the tail length in samples found earlier to yield tail length
in nucleotides. During all these steps, tailfindr only needs base-
called FAST5 files to estimate the poly(A) tail length, making it
independent of downstream data processing and thus implemen-
table in real-time data analysis pipelines. The following paragraphs
will give you detailed instructions on how to use tailfindr toward
obtaining isoform-specific poly(A) measurements from Nanopore
native RNA sequencing.

4.1 Requirements

4.1.1 Test Dataset

We extracted RNA from Zebrafish (Danio rerio) using the protocol
described above, and sequenced it on a MinION sequencer. A
subset of reads from this experiment can be downloaded from
tiny.cc/polya_rna_data. We will now demonstrate the various
steps involved in transcript isoform-specific poly(A) tail length
assessment using this example dataset, but you can use your own
dataset as well.

4.1.2 Hardware

Requirements

The example dataset can be processed on any laptop or desktop
computer running a UNIX-based operating system with at least
3GB of free disk space. For a large real-world dataset, it is recom-
mended that the pipeline is run on a Linux cluster, or a powerful
workstation. For accelerating the basecalling speed, GPUs can be
used. For more details on which GPUs are compatible with the
current basecaller, please refer to this link: https://community.
nanoporetech.com/posts/guppy-3-0-gpu-recommendati
(requires community login).
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4.1.3 Software

Requirements

The following software should be installed on the analysis
computer:

l Python 3 environment.

l R (version 3.5.3 or greater).

l Git.

4.2 Data Analysis

Pipeline

There are various steps involved in going from raw reads produced
by ONT sequencing to transcript isoform-specific poly(A) tail
length assignment, as shown in Fig. 6. We will now describe each
of these steps in detail.

Primer adaptor Transcript

Poly(A)
tail

Sample index
0 1500 3000 4500 6000 7500

0 1500 3000 4500 6000 7500
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ur
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nt

 (
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A
)

(a)

(b)
500

samples

Read-specific translocation rate = 30
samples

nucleotide

(c)

(d)
Poly(A) tail length estimation by tailfindr= = 17 nucleotide

samples
nucleotide30

500 samples

Fig. 5 A simplified view of how tailfindr estimates poly(A) tail length. (a) Complete raw signal corresponding to
an RNA transcript translocating through the pore. The signal consists of a series of current samples measured
in picoAmperes (pA). (b) tailfindr first locates the monotonous signal corresponding to the poly(A) tail (high-
lighted in brown). In this example, the segment is 500 samples long. (c) Next, tailfindr estimates the read-
specific translocation rate, that is, the average number of samples generated per nucleotide in a given read.
(d) Poly(A) length is calculated by dividing the tail length in samples by the read-specific translocation rate

Native RNA poly(A) Length Estimation 551



4.2.1 Basecalling Nanopore sequencing produces raw FAST5 files that record the
current signal through the pore as an RNA molecule translocates
through it (see Fig. 7a). The first step is to basecall this raw signal to
find the nucleotide sequence corresponding to the recorded cur-
rent. There are many basecallers that can do this; please refer to
[22] for a review on this topic. Some of the basecallers have been
developed by ONT, while others are developed by Nanopore users.
Albacore is a widely used basecaller developed by ONT. Guppy—a
recently released basecaller, also developed by ONT—has now
replaced Albacore because it has better basecalling performance

Prepare library

Sequence on an Oxford Nanopore device using MinKNOW

Raw FAST5
files

Merge all
FASTQs

FASTQ file

Estimate
Poly(A) tail

lengths
tailfindr::find_tails()

Quality
control
using

NanoPlot

Poly(A) tail
length

estimates in
CSV file

transcriptome

Map reads to transcriptome
with Minimap2

Assign transcript
IDs to tail length

estimations
tailfindr::annotate_tails()

Final output containing tail length for each transcript

Alignments in
SAM file

Base-call raw sequecing data using Guppy

FASTQ
files 

FAST5
files

sequencing_summary.txt

Fig. 6 Flowchart for poly(A) tail length estimation using Nanopore sequencing
and tailfindr
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and is faster than its predecessor. We recommend using the latest
version of Guppy which can be downloaded from the ONT Com-
munity website https://community.nanoporetech.com/
downloads.

Basecalling a raw FAST5 file using Guppy will add a Base-
call_1D_000 group to the FAST5 file hierarchy (see Fig. 7b).
This basecall group contains a Move table (Events table in case
of Albacore) which is used by tailfindr to compute the read-specific
translocation rate. The structure of a FAST5 file—raw or base-
called—can be easily explored by opening it in HDFView
(https://www.hdfgroup.org/downloads/hdfview/).

Guppy has both CPU and GPU versions. If you have access to
an Nvidia GPU, then install and use the GPU version of Guppy, as
it is faster to basecall on GPUs compared to CPUs. Here, we will
demonstrate basecalling using the CPU version of Guppy (seeNote
2 on where to get the latest version of Guppy). Assuming that you
have a Quad Core processor (with two threads per processor; eight
threads in total) and 16GB of RAM, basecalling can be done by
executing the following on the command line:

guppy_basecaller \

--config rna_r9.4.1_70bps_hac.cfg \

--input_path \path\to\raw\reads\folder \

--recursive \

--save_path \path\to\save\basecalled\data\to \

--fast5_out \

Fig. 7 Structure of a FAST5 file as displayed by HDFView software. (a) File structure of a raw FAST5 file
generated by MinKNOW. (b) The same file as in (a) after basecalling by Guppy. During basecalling a new
FAST5 is generated that contains not only raw signal data, but also additional basecalling information. Notice
how additional levels of information (Analyses, Basecall_1D_000 etc.) have now been added in this
new file
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--trim_strategy none \

--num_callers 1 \

--cpu_threads_per_caller 8 \

2>&1 | tee logfile.txt

Parameter Description
--config specify the model configuration to be used during

basecalling. In this case, we have chosen the “high accuracy” (hac)
RNA model for pore version 9.4.1. The hac models yield more
accurate basecalls at the cost of basecalling speed.

Refer to:

l Note 3 for choosing a faster basecalling model.

l Note 4 for selecting an appropriate config file for your experi-
ment in case you are not sure.

l Note 5 if your data is from a legacy RNA kit.

--input_path specify the path of the folder containing raw
FAST5 files produced by the ONT sequencing platform. When
using the example dataset, extract it first, and then specify the
path of the extracted directory here.

--recursive specifies that the input_path directory should
be recursively searched to discover all raw FAST5 files within any
subfolders.

--save_path specify the path of the directory where base-
called files should be stored.

--fast5_out specifies that in addition to the FASTQ files, the
basecaller should also output FAST5 files. Basecalled files contain-
ing FAST5 output is essential for tailfindr to calculate the read-
specific translocation rate for normalizing the poly(A) tail length.

--trim_strategy should be set to none so that the base-
caller does not trim off the adaptor sequence that was added to the
30 end of the poly(A) + RNA.

--num_callers specifies how many basecallers to use in
parallel.

--cpu_threads_per_caller specifies how many threads
should be used per basecaller. In general, num_callers * cpu_-
threads_per_caller should not exceed the total number of
threads available on the machine. Furthermore, there must be at
least 4GB + 1GB * num_callers RAM available. In our case, both
these criteria are satisfied for the machine that we are using. For
more exhaustive information on these settings, please refer to the
document “Guppy basecaller and Guppy basecaller server”
(https://community.nanoporetech.com/protocols/Guppy-proto
col/v/gpb_2003_v1_revm_14dec2018/guppy-basecaller-and-
guppy-basecaller-server) on the Nanopore Community.
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2>&1 | tee logfile.txt specifies that the output, and any
errors produced by the command, should be saved in a text file in
addition to being displayed in the terminal. It is a good practice to
do this for troubleshooting in case of a computer crash, power
failure etc.

After successfully running the above, the basecalled FASTQ
and FAST5 file can be found in the directory as specified in save_-
path. The structure of this directory is depicted in Fig. 8. Please
refer to Note 6 to find how the structure of this directory changes
when multi-fast5 files are basecalled.

4.2.2 Quality Control

After Basecalling

Running quality control checks after basecalling is an optional but
recommended step as it can reveal important information about the
sequencing run such as the length of the reads (Fig. 9a), sequencing
performance over time (Fig. 9b), and the quality of the reads

basecalled_data

fastq_file_1.fastq

fastq_file_2.fastq

fastq_file_3.fastq

fastq_file_3.fastq

fastq_file_4.fastq

.

.

.

sequencing_summary.txt

workspace

0

3
.
.
.

read_1.fast5

read_2.fast5

1

2

.

.

.

read_4000.fast5

Fig. 8 Structure of the output directory produced by the Guppy basecaller. Each
FASTQ file in the output of the basecaller contains sequence and quality scores
for 4000 (default) reads. The sequencing_summary.txt file contains a
summary of useful basecalling information, which is used by tools such as
NanoPlot. The workspace folder contains numbered subfolders, each of
which contain 4000 basecalled FAST5 files, which are used by tools such as
tailfindr
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(Fig. 9c). There are many tools to perform QC on Nanopore data,
but the ones that produce the most informative plots are NanoPlot
(https://github.com/wdecoster/NanoPlot) and PycoQC
(https://a-slide.github.io/pycoQC/) [23, 24].

Here, we will use NanoPlot to perform quality control checks
on the basecalled data. NanoPlot requires only the sequencing_-
summary.txt file produced by Guppy. To run NanoPlot, first
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Fig. 9 A subset of figures generated by NanoPlot. (a) Read length histogram. This plot can be useful in
understanding if RNA degradation significantly affected the sample. This particular histogram was generated
for a sequencing run in which Zebrafish RNA was spiked with a synthetic GFP RNA construct of approx. 800 bp
in length. The spike in the histogram around 800 represents these GFP reads, and the background represents
the read length distribution for the Zebrafish transcriptome. (b) Basecall quality vs. time of sequencing. This
plot is useful in assessing if the sequencing chemistry—which might degrade over time—is having an
adverse effect on the quality of the reads. Ideally, the basecalling quality should not drop dramatically during
the sequencing run. (c) Read length vs. average read quality plot. It is useful in understanding how the read
quality varies over read length. In a good sequencing run, the read quality for the majority of the reads should
be around 8–14 for RNA (9–20 for DNA). Higher reads quality are good, and lower read qualities for majority of
reads might warrant revisiting the library preparation steps and figuring out what might have gone wrong
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activate a Python 3 environment, and then run the following in the
command line:

NanoPlot \

--summary \path\to\sequencing_summary.txt \

--outdir \output\path \

--loglength

Parameter Description
--summary, path of the summary file generated by Guppy.
--outdir, path of the directory where NanoPlot output

should be saved.
--loglength, specifies that the read lengths should scaled

logarithmically in the plots.
The output of NanoPlot is an HTML file that can be viewed in

any browser of your choice.

4.2.3 Installing

and Running Tailfindr

We are now ready to estimate poly(A) tail lengths in the basecalled
data using tailfindr. Please refer to its documentation (https://
github.com/adnaniazi/tailfindr) to learn how to install it. After
installing tailfindr, poly(A) tail lengths can be estimated by using
the following commands in R:

library(tailfindr)

df <- find_tails(fast5_dir = ’/path/to/basecalled_data’,

save_dir = ’/path/to/save/folder/’,

csv_filename = ’rna_tails.csv’,

num_cores = 2)

tailfindr discovers all FAST5 files recursively within the fas-
t5_dir. The resulting CSV file—as specified in the csv_file-
name parameter—is saved in the save_dir. num_cores specifies
the number of physical cores on the machine to be used when
running tailfindr.

Please refer to:

l Note 7 if you are running tailfindr on MinKNOW Live-
basecalled data.

l Note 8 if you want to generate plots highlighting the poly
(A) tail region in the raw current data.

l Note 9 on how to use tailfindr for estimating poly(A)/
(T) length in cDNA data.

The output of tailfindr is CSV file contain six columns as
described in Table 1.
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Now that we have the poly(A) tail length for each read in the
CSV file, it is possible to perform quality control checks of this data.
For example, a distribution of poly(A) tail lengths can be plotted to
see if it aligns with the expected distribution of poly(A) tail lengths.
Furthermore, a distribution of the translocation rate sample-
s_per_nt can also be plotted. Ideally, this distribution should be
unimodal with no skew (see Note 9).

4.2.4 Concatenate

FASTQ Files

During the basecalling step, Guppy produced both FASTQ and
FAST5 files. By default, each FASTQ file contains sequences of
4000 reads (see Fig. 8). Downstream processing software, such as
the mapper Minimap2 [25], require only a single FASTQ file as
input. Therefore, all FASTQ files produced by Guppy should be
concatenated. Execute the following script in command line to
combine all FASTQ file into one:

BASECALLED_DATA_PATH=/directory/containing/basecalled/data

OUTPUT_PATH=/directory/where/concatenated/fastq/is/to/stored

# Do not edit the code below this line

cd $BASECALLED_DATA_PATH

find ${BASECALLED_DATA_PATH} -name ’*.fastq’ | cat > ${OUT-

PUT_PATH}/filenames.txt

{ xargs cat < ${OUTPUT_PATH}/filenames.txt ; } > ${OUTPUT_-

PATH}/all_reads.fq

The above shell script searches BASECALLED _DATA_PATH
directory for all files with .fastq extension and produces
the following two files in the OUTPUT_PATH directory:

1. filenames.txt file that contains the names of all FASTQ
files that were found in BASECALLED_DATA_PATH directory,
and will be concatenated.

Table 1
Description of columns in the CSV output of tailfindr

Column name
Column
type Description

read_id Character Read ID as given in the FAST5 file

tail_start Numeric Sample index of start site of the tail in raw data

tail_end Numeric Sample index of end site of the tail in raw data

samples_per_nt Numeric Read-specific translocation rate in terms of samples per nucleotide

tail_length Numeric Tail length in nucleotides. It is the difference between tail_end and tail_start
divided by samples_per_nt

file_path Character Absolute path of the FAST5 file
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2. all_reads.fq file that contains the concatenated FASTQ
sequences from all the FASTQ files recorded in the file-
names.txt file.

4.2.5 Alignment of Data

to Transcriptome

Although we have estimated poly(A) tail lengths for all reads, we
still do not know which transcript each of these reads originated
from. To find the transcript identities, the reads must be mapped to
the transcriptome of the organism from which the RNA was
extracted (please refer to Note 10 if no reliable transcriptome is
present and data should be mapped to a reference genome). The
alignment information can then be merged with tailfindr output to
associate the poly(A) tail length estimations to their respective
transcript IDs.

To map the data to the transcriptome, we will use Minimap2
(https://github.com/lh3/minimap2) [25]. Minimap2 needs a sin-
gle FASTQ file containing all the reads to be aligned. Run the
following command in command line to invoke Minimap2:

minimap2 \

-ax map-ont \

/path/to/reference.fa \

/path/to/all_reads.fq > /path/to/alignments.sam

2>&1 | tee logfile.txt

Parameter Description
Here is a description of the parameters used in the above

command:
-a specifies that CIGAR string and output alignments should

be produced in the SAM format.
-x use predefined settings for mapping. As each of these

sequencing technologies differ in their insertion, deletion and
error rates, there are a number of presets available in Minimap2 to
choose from; map-ont is one of them. It specifies that Minimap2
should use alignment parameters fine-tuned for ONT sequencing
data. This is because Minimap2 can align reads from Illumina,
PacBio, and ONT sequencing.

4.2.6 Annotating Tailfindr

Output with Transcript IDs

Now that we have the poly(A) tail length estimates from tailfindr in
a CSV file, and the alignment information in a SAM file, we are
ready to merge them together. This will annotate each read with its
corresponding transcript ID. To do this, invoke tailfindr’s built-in
convenience function annotate_tail() in R:

df_annotate <-

annotate_tails(

sam_file = "/path/to/sam/file.sam",

tails_csv_file = "/path/to/tails.csv",

output_file = "/path/to/annotated_tails.csv"

)
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This command will add three more columns to the input CSV
file as described in Table 2.

We now have the tail length and the corresponding transcript
IDs in the annotated_tails.csv file. Thus we have successfully
annotated each read with a transcript-isoform ID and a
corresponding poly(A) tail length.

4.2.7 What Next? Now that we have transcript-specific poly(A) tail lengths, we can do
a number of things. For example, we can plot the distribution of
poly(A) tail length of our dataset. We can also annotate the poly
(A) tail length of a transcript with additional features such as gene
name, gene length and its function. These steps are beyond the
scope of this chapter, however, the reader should note that they can
be easily done within R using the biomaRt Bioconductor package
[26]. With gene name annotations, we can for instance generate a
scatter plot of poly(A) tail length vs. gene length to see if there is
any interesting relationship between the two. Additionally it is
possible to plot poly(A) tail distributions from transcript isoforms
of the same genes. Many further possibilities for data analysis exist,
and implementation depends on the particular research question.
The here described tailfindr-based pipeline provides the first step
towards exploring these possibilities enabling the study of isoform-
specific poly(A) tail-dependent regulation.

5 Conclusion

We have here demonstrated how long-read ONT native RNA
sequencing in combination with tailfindr can be used for
transcriptome-wide isoform-specific poly(A) tail profiling. This
method simplifies isoform-specific poly(A) tail measurements and
avoids common caveats from short-read based sequencing
approaches, namely (1) the possible introduction of amplification
artefacts, (2) transcript isoform quantification based on statistical
analysis of short reads spanning exon borders, and (3) elaborate and
time-consuming sequencing sample preparation.

Table 2
Description of columns added to the tailfindr CSV output by merging SAM information

Column name Column type Description

transcript_id Character Transcript ID from the transcriptome

mapping_quality Numeric Mapping quality of the transcript

sam_flag Numeric SAM flag
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The portability and low investments for ONT sequencers, cou-
pled with its ability to basecall and analyze sequencing data in real-
time, enables anyone to sequence anything, anywhere. Addition-
ally, the ability of direct RNA sequencing to detect any epigenetic
modification in native RNA alleviates the need for separate assays
for detecting each RNAmodification. This enables future studies—
both in the field and in a laboratory settings—to assay poly(A) tail
length and RNA modifications in a single experiment. Such a
transcriptome-wide holistic approach would provide a valuable
insight in understanding RNA biology—one long molecule at
a time.

6 Notes

1. Reverse-transcribing RNA into an RNA–cDNA duplex is an
optional but recommended step. Without performing this
step, the throughput will be about 30% lower and basecalling
quality scores will also be slightly lower. Most likely this is
caused by secondary RNA structure affecting pore transloca-
tion, making current signal more variable. Additionally, RNA
degradation causes the average read length to be shorter. We
recommend that you perform this step unless you have a very
good reason not to.

2. We demonstrated how to basecall reads using the latest base-
caller at the time of this writing provided by ONT—Guppy
v3.2.4. However, it should be noted that the basecalling tech-
nology is constantly evolving. Always check ONT’s Software
Download section (https://community.nanoporetech.com/
downloads) to read about the latest version of the basecaller
and how to use it, as these might significantly increase base-
calling accuracy and thus transcript isoform assignment.

3. If basecalling speed is more important than basecalling accu-
racy, then use the fast model configuration filer-
na_r9.4.1_70bps_fast.cfg.

At the time of this writing, the fast models are approxi-
mately 5–8 times faster than the high accuracy model. Table 3
shows a comparison between raw read accuracy of fast and high
accuracy models.

4. If your experiment uses a pore version other than 9.4.1, then
ensure that you specify a configuration file that matches the
version of the pore used. You can find a list of all available
configuration files for every flow cell and sequencing kit by
executing the following command:

Native RNA poly(A) Length Estimation 561

https://community.nanoporetech.com/downloads
https://community.nanoporetech.com/downloads


guppy_basecaller --print_workflows

If you are still unsure as to which configuration file to use,
then, instead of specifying the configuration file, you can also
let Guppy choose the appropriate configuration file for you. In
this case, however, you have to specify the flowcell and kit
arguments. Assuming if the flow cell and kit used in the experi-
ment are FLO-MIN106 and SQK-RNA001, respectively, then
use the following command in command line to invoke Guppy:

guppy_basecaller \

--flowcell FLO-MIN106 \

--kit SQK-RNA001 \

--input_path \path\to\raw\reads\folder \

--recursive \

--save_path \path\to\save\basecalled\data\to \

--fast5_out \

--trim_strategy none \

--num_callers 1 \

--cpu_threads_per_caller 8 \

2>&1 | tee logfile.txt

5. The use of tailfindr is compatible with any RNA kit—including
legacy kits—as all of these kits sequence both the transcript and
the poly(A) tail. Thus, you can use tailfindr to find poly(A) tail
lengths on any older RNA dataset where the initial aim of the
study was something entirely different. For tailfindr to work,
the only requirement is the availability of FAST5 files—either
raw or basecalled; tailfindr cannot be used if the only file
remaining from past experiments are FASTQ files. We recom-
mend that you always re-basecall the old previously basecalled
FAST5 files before using tailfindr on it, and specify an appro-
priate value for basecall_group parameter when invoking
tailfindr.

Table 3
A comparison of raw read accuracies between fast and high-accuracy basecalling models

Sample type Model name Raw read accuracy

DNA Fast basecalling 92.1%
High-accuracy basecalling 95.0%

RNA Fast Basecalling 88.6%
High-accuracy basecalling 93.9%
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6. If the raw FAST5 files produced by MinKNOW have only one
read per FAST5 file, then reads within the workspace folder are
arranged in numbered subfolders such that each folder con-
tains 4000 FAST5 reads, as depicted in Fig. 8. However, if the
raw FAST5 files, produced by the sequencer, have multiple
reads per FAST5 file, then there are no subfolders within work-
space folder, and each basecalled FAST5 file in workspace
folder will contain multiple reads (default is 4000) inside them.

7. MinKNOW—the data acquisition software used during
sequencing on ONT sequencers—can basecall while the raw
data is being acquired. This feature is called “MinKNOW Live
Basecalling.” Currently, tailfindr does not support MinKNOW
live basecalled data because these FAST5 files do not contain
Event/Move table (see Fig. 10a). The Event/Move table is
required by tailfindr to compute a read-specific translocation
rate in order to normalize the poly(A) tail length in samples to
yield poly(A) tail length in nucleotides.

To circumvent this problem, please basecall MinKNOW
live-basecalled data again using standalone Guppy or Albacore.
This will add an additional Basecall group (Base-
call_1D_001) in the file structure of the FAST5 file (see
Fig. 10b). When using tailfindr on these re-basecalled reads,
you must correctly specify the Basecall group containing the
Event/Move table. For example, the read shown in Fig. 10, the
Event/Move table in the re-basecalled file is in the Base-
call_1D_001 in the FAST5 file structure hierarchy. Tailfindr,
in the case, should be invoked in R as shown below:

df <- find_tails(fast5_dir = ’/path/to/basecalled_data’,

save_dir = ’/path/to/save/folder/’,

basecall_group = ’Basecall_1D_001’,

csv_filename = ’rna_tails.csv’,

num_cores = 2)

The default value of basecall_group is Basecall_1D_000,
which in the command above, has been changed to
Basecall_1D_001.

8. tailfindr allows you to generate plots that show the tail location
in the raw squiggle (see Fig. 11). You can save these plots as
interactive .html files by using ’rbokeh’ as the plottin-
g_library. You can then interactively zoom in on the tail
region in the raw squiggle and see the exact location of the tail.
To generate these plots, execute the following command in R:
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df <- find_tails(fast5_dir = ’/path/to/basecalled_data’,

save_dir = ’/path/to/save/folder/’,

csv_filename = ’rna_tails.csv’,

save_plots = TRUE,

plotting_library = ’rbokeh’,

num_cores = 2)

Fig. 10 Hierarchy of contents within basecalled FAST5 files as viewed through the HDFView software. (a)
Contents of a MinKNOW live Basecalled read. Notice that under the Basecall_1D_000 group, there is no Move
table, which is required by tailfindr to find the read-specific translocation rate (b) Contents of the read shown
in (a) after it has been basecalled again using standalone Guppy. Notice the addition of Basecall_1D_001
group in the FAST5 file hierarchy, which now contains Move table. Tailfindr should now be invoked with
basecall_group parameter set to ‘Basecall_1D_001’ to ensure that it can find the Move table

Fig. 11 A plot generated by tailfindr. The poly(A) tail is highlighted in red in the current trace. Each spike in the
bottom panel shows the locations in the current trace where the basecaller has detected a nucleotide
transition. Notice how the poly(A) tail region is devoid of any base transition. This is because the basecaller
cannot distinguish when one adenosine base in the poly(A) tail ended and the next one started. It can detect a
nucleotide transition only if a more diverse sequence is encountered
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Generating plots can slow down the performance of tail-
findr. We recommend that you generate these plots only for a
small subset of your reads.

9. Although we have demonstrated how to perform poly(A) tail
profiling using Nanopore sequencing of native RNA, it is also
possible to perform poly(A)/(T) profiling using complemen-
tary DNA (cDNA) sequencing data produced by Nanopore
sequencing. Sequencing cDNA instead of RNA has many
advantages:

(a) cDNA is more stable compared to RNA which can
degrade quickly if not handled very carefully at every
step of library preparation protocol,

(b) cDNA sequencing requires less starting material com-
pared to RNA sequencing,

(c) cDNA sequencing on Nanopore devices produces ten
times more data per flowcell compared to RNA sequenc-
ing because of the faster motor protein, and,

(d) poly(A) tail length estimates in DNA are more robust
compared to RNA because the motor protein used in
DNA sequencing ratchets the DNA at a more controlled
speed compared to the motor protein used in RNA
sequencing (see Fig. 12).

For more information on poly(A)/(T) profiling in cDNA,
please refer to the tailfindr paper [12] and documentation on
GitHub.

10. Reads from RNA sequencing can be mapped either to a refer-
ence transcriptome, or to a genome. The latter is more cum-
bersome but could yield the identification of new transcript
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Fig. 12 Comparison of cDNA and RNA translocation rate estimates. RNA trans-
locates at a slower speed compared to DNA. Furthermore, the spread in RNA
translocation rate is greater than that of cDNA. This in turn translates to more
spread in RNA poly(A) tail lengths compared to cDNA poly(A)/(T) tail lengths

Native RNA poly(A) Length Estimation 565



isoforms. This is especially useful if the reference transcriptome
is known to be erroneous and is being assessed for the first time
by long-read sequencing. For aligning reads to a genome with
Minimap2, use the following command:

minimap2 \

-ax splice -uf -k14 \

/path/to/reference_genome.fa \

/path/to/all_reads.fq > /path/to/alignments.sam

2>&1 | tee logfile.txt

Parameter Description
Here is a description of additional parameters in the above

command:
-splice Specifies that spliced alignment should be done.
-uf By default, spliced alignment assumes the read orientation

relative to the transcript strand is unknown and therefore it tries
two rounds of alignment to infer the read orientation. This flag
forces Minimap2 to consider only the forward transcript strand
during mapping.

-k14 For noisy Nanopore Direct RNA-seq reads, it is recom-
mended to use a smaller k-mer size for increased sensitivity to the
first or the last exons. Default value of k-mer size is 15.
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Chapter 31

Nanopore RNA Sequencing Analysis

Tommaso Leonardi and Adrien Leger

Abstract

The recent advent of Nanopore sequencing allows for the sequencing of full-length RNA or cDNA
molecules. This new type of data introduces new challenges from the computational point of view, and
requires new software as well as dedicated analysis pipelines. In this chapter, we guide the reader through
the typical analysis steps required to process the raw data produced by the instrument into a table of counts
suitable for downstream analyses. We first describe the procedure to convert raw direct RNA-Seq and
cDNA-Seq data into sequences in fastq format. We then outline how to perform quality control and
filtering steps and how to map the filtered long reads to a reference transcriptome or genome.

Key words Nanopore, Transcriptomics, Direct RNA sequencing, cDNA sequencing, Bioinformatics

1 Introduction

The last few years have witnessed the adoption of new sequencing
technologies for nucleic acids based on arrays of nanopores. The
first company to commercialize a sequencing platform based on this
type of technology was Oxford Nanopore Technologies (ONT),
which has released methodologies for DNA sequencing as well as
RNA sequencing [1]. The RNA sequencing protocols currently
available are based on two fundamentally different approaches:
the first one entails the retrotranscription of RNA into cDNA
prior to sequencing (with an optional step of PCR amplification),
whereas the second allows the direct sequencing of RNAmolecules.
Both approaches have remarkable advantages over previous meth-
ods: they allow for sequencing of full-length transcripts, they do
not require PCR amplification and allow for the detection of alter-
native isoforms and splicing variants. Additionally, direct RNA
sequencing is also free from biases induced by retrotranscription
and allows for the detection of RNA modifications, at the expense
of a higher error rate, higher input material requirements and lower
throughput.
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The analysis of Nanopore dRNA/cDNA sequencing experi-
ments is highly dependent on the specific experimental setting
and the biological questions of interest. Nevertheless, most analyti-
cal workflows will include raw data basecalling (i.e., conversion of
the electric current recordings into a sequence), mapping and basic
quality control steps.

This protocol will provide a general workflow to conduct these
steps, in particular focusing on the following:

l Interpreting run quality metrics.

l Basecalling.

l Mapping (transcriptome/genome).

l Data quality control.

l Estimating transcript counts.

2 Materials

2.1 Operating

System and Hardware

Requirements

This protocol assumes all commands are run in a Bash shell on the
GNU/Linux operating system. However, they should all function
with little or no modification under other shells, other Unix-like
operating systems (e.g., MacOS) as well as in the Windows Subsys-
tem for Linux.

In terms of hardware requirements, the basecalling step is the
most demanding in this analysis workflow, as it requires a machine
with an i7 or Xeon CPU (with at least four cores), 16 GB of RAM
and at least 1 TB of space on an SSD drive. Although not required,
it is also highly recommended to have a CUDA-compatible NVI-
DIA GPU with NVIDIA compute version 6.1 or higher.

2.2 Fast5 Files The main output of a Nanopore sequencing run is a folder
(or multiple folders) containing a set of fast5 files. This format is a
specification over HDF5 (Hierarchical Data Format) and these files
contain the raw current measurements for each read. Each fast5 file
can contain data for a single read or for multiple reads (multifast5
format), depending on the parameters specified at the beginning of
the sequencing run. To simplify programmatic access and manipu-
lation of fast5 file ONT has released a public API in python
(https://github.com/nanoporetech/ont_fast5_api).

2.3 Reference

Genome Sequence

and Transcriptome

Annotation

Mapping Nanopore reads requires the sequence of the reference
genome in fasta format as well as an annotation of the reference
transcriptome in GTF format. For most species, these files can be
easily downloaded from the Ensembl FTP server (https://www.
ensembl.org/info/data/ftp/index.html).
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2.4 Software Running a basic Nanopore sequencing analysis pipeline requires a
computing environment with the following software installed (see
Note 1):

l Bedparse (MIT license, optional) [2].

l PycoQC (GPL-3.0 license) [3].

l Bedtools (GPL-2.0 license) [4].

l Samtools (MIT license) [5].

l Minimap2 (MIT license) [6].

l NanoCount (MIT license).

l pyBioTools (GPL-3.0 license, optional).

l Guppy (proprietary software, freely available on the ONT web-
site after registration).

The examples reported in this chapter assume that the com-
mands are executed in Bash.

3 Methods

3.1 Interpreting Run

Quality Metrics

The sequencing run is controlled by a software called MinKNOW,
which runs on the host computer (i.e., a laptop in the case of
MinION sequencers or the instrument’s inbuilt computer in case
of GridION). MinKNOW saves the sequencing data into fast5 files
in a user specified folder, and optionally can also automatically
perform basecalling. Along with the data files, MinKNOW also
generates a report file in PDF format with diagnostic graphs
about the run. Of particular interest for quality assessment and
troubleshooting purposes are the total number of reads sequenced
as well as the graph showing the pore occupancy over time, which is
an indicator of the quality of library and yield of the
sequencing run.

3.2 Basecalling The first step in the analysis of Nanopore sequencing data is the
basecalling of raw fast5 files into fastq format. There are multiple
software that implement this functionality, developed both by
ONT as well as by independent research groups. At the time of
writing the de facto standard for basecalling is Guppy (see Note 2),
the official algorithm developed by ONT and based on a Long
short-term memory (LSTM) artificial recurrent neural network
(RNN).

Guppy takes as input the fast5 files generated by MinKNOW
and does the following:

l Generates a fastq file for each fast5 file containing the basecalled
sequences and Phred qualities.
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l Generates basecalled fast5 files that contain basecalled sequences
in a dedicated slot (optional).

l Classifies fastq and fast5 files into pass/fail folders according to
the average quality score of each read (optional).

l Generates summary files for the run.

3.2.1 Example Command The guppy basecaller program has numerous command-line
options to tune its default settings, and we encourage the users to
read very carefully the help page and the descriptions of each
option, which can be obtained by invoking guppy_basecaller --

help.

3.2.2 cDNA-Seq The following is an example command suitable for basecalling a
standard cDNA sequencing experiment. This examples assumes
that the MinKNOW output folder is located at /data/fast5_files.
The parameters used have the following meanings:

l -i /data/fast5_files indicates the path of the fast5 files to be
basecalled.

l -s /data/guppy path where to save the output files.

l --fast5_out instructs guppy to save basecalled fast5 files in addition
to fastq files (optional).

l --recursive looks for fast5 files recursively inside the path specified by
-i.

l --num_callers number of basecalled threads to use.

l --flowcell Version of the flowcell used for sequencing.

l --kit version of the library preparation kit used.

> guppy_basecaller \

-i /data/fast5_files \

-s /data/guppy \

--fast5_out \

--recursive \

--num_callers 5 \

--flowcell FLO-MIN106 \

--kit SQK-DCS109

In this example sequencing was done on a flowcell of version
FLO-MIN106, while the library preparation kit was
SQK-DCS109. For a full list of supported flowcell/kit versions
users can invoke guppy with the --print_workflows option.
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3.2.3 dRNA-Seq A direct RNA sequencing run would instead require additional
options, due to the reversed direction of the sequencing (30 ! 50

as opposed to 50 ! 30), the presence of uracil instead of thymine, as
well as the need for an optimized strategy for trimming the adap-
ter’s raw signal.

> guppy_basecaller \

-i /data/fast5_files \

-s /data/guppy \

--fast5_out \

--recursive \

--num_callers 5 \

--flowcell FLO-MIN106 \

--kit SQK-RNA002 \

--reverse_sequence true \

--u_substitution true \

--trim_strategy rna

3.2.4 Output Description Guppy typically produces the following output files and folders:

l fast5_pass: contains the fast5 files that pass the qscore threshold.

l fast5_fail: contains the fast5 files that do not pass the qscore
threshold.

l fastq_pass: contains the fastq files that pass the qscore threshold.

l fastq_fail: contains the fastq files that do not pass the qscore
threshold.

l final_summary.txt: log file containing useful metadata on the
sequencing run (instrument id, flowcell id, etc.).

l [run_id]_sequencing_summary.txt: run summary file reporting
per-read quality metrics.

l report.md: MinKNOW report in Markdown format.

l report.pdf: MinKNOW report in PDF format.

The subdivision of fast5 and fastq files in pass and fail groups is
controlled by the --qscore_filtering flag and by the --
min_qscore parameter, which specifies the threshold below
which reads are categorized as failed.

3.3 Mapping After basecalling, the reads can be mapped to the reference tran-
scriptome and/or genome to produce alignments in SAM/BAM
format.

3.3.1 Generation of a

Reference Transcriptome

Fasta File

Several downstream applications (Tombo, Nanopolish, etc.) are
unable to process spliced alignments. Due to this, it is often useful
to map both to the reference genome of the species of interest as
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well as to the reference transcriptome. The sequence of the refer-
ence transcriptome can be easily obtained from a transcriptome
annotation file (in gtf format) and the genome’s sequence
(in fasta format). For most species both files can be downloaded
from Ensembl (under Downloads ! Databases); for example, for
the annotation file for the human transcriptome would be Homo_-
sapiens.GRCh38.98.gtf, whereas the genome sequence file would
be Homo_sapiens.GRCh38.dna.primary_assembly.fa. Once these
file have been downloaded, the sequence for the reference tran-
scriptome can be easily obtained with bedtools:

# To preserve transcript names in the fasta it’s

convenient to convert

# the gtf file to bed12 format bedparse

gtf2bed /data/references/Homo_sapiens.GRCh38.98.gtf \

> /data/references/reference_transcriptome.bed

bedtools getfasta \

-fi

/data/references/Homo_sapiens.GRCh38.dna.primary_assembly. fa \

-s \

-split \

-name \

-bed /data/references/reference_transcriptome.bed \

> /data/references/Homo_sapiens.GRCh38.98.fa

In the command above the -s option ensures that a transcript’s
strand is taken into account when extracting its sequence, while the
-split flag instructs bedtools to omit intronic regions, that is, to
report the sequence of spliced transcripts. Alternatively, the cDNA
sequences in fasta format for most species can be downloaded
directly from Ensembl.

Finally, in both cases the resulting fasta file should be indexed
with samtools faidx:

samtools faidx /data/references/Homo_sapiens.GRCh38.98.fa

3.3.2 Concatenate

Fastq Files

Guppy produces multiple fastq files depending on the number of
initial fast5 files and the number of threads used. Those files have to
be concatenated into a single fastq. This can be easily achieved with
the GNU Coreutils program cat. Alternatively, this step can also
be carried out with the Fastq Filter command of pyBioTools,
which allows to remove duplicated reads, to filter based on
sequence quality and length and to save the output in a compressed
format:

574 Tommaso Leonardi and Adrien Leger



pyBioTools Fastq Filter \

-i data/guppy/fastq_pass/ \

-o data/guppy/basecalled.fastq.gz \

--remove_duplicates \

--min_len 100 \

--min_qual 7

3.3.3 Mapping

to the Genome

Mapping to the genome in a splicing-aware fashion is the ideal
strategy when the user is interested in novel genes/transcripts or
when a good-quality annotation of the reference transcriptome is
not available for the species of interest.

minimap2 -a -x splice -k14 -uf \

/data/references/Homo_sapiens.GRCh38.dna.primary_assembly.fa \

/data/guppy/basecalled.fastq > /data/minimap/minimap_genome.sam

3.3.4 Mapping

to the Transcriptome

Basecalled reads can also be aligned to the reference transcriptome,
therefore not requiring that the alignment is performed in a
splicing-aware fashion.

This is the recommended option for modification detection as
the current resquiggling algorithms are not splice aware and hence
might introduce errors at the splicing junctions. It also makes sense
as transcripts are the natural setting for RNA modifications.

The following mapping commands are suitable for mapping
direct RNA sequencing data, whereas the parameters need to be
adjusted when mapping cDNA sequencing data.

minimap2 -a -x map-ont -k14 --for-only \

/data/references/Homo_sapiens.GRCh38.98.fa \

/data/guppy/basecalled.fastq \

> /data/minimap/minimap_transcriptome.sam

The --for-only flag instructs minimap2 to only map to the
forward strand of the reference sequences, whereas the -uf option
limits the search for GT-AG canonical splicing sites to the tran-
script’s sense strand only and not its reverse complement.

3.3.5 Alignment Filtering Bam files have to be filtered to remove any reads that would be
unmapped, secondary and supplementary as well as reads mapped
on the reverse strand (SAM flag 2324). Depending on the down-
stream applications reads can also be filtered based on their align-
ment score.
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samtools view /data/minimap/minimap_transcriptome.sam \

-bh \

-t /data/references/Homo_sapiens.GRCh38.98.fa \

-F 2324 > /data/minimap/minimap_transcriptome.filt.bam

An alternative and more flexible option is to use the Align-
mentFilter command of pyBioTools, which also allows to filter
based on alignment length and sequence identity between read and
reference. This also automatically generates a Bam index file.

Finally, the alignments can be sorted and indexed.

pyBioTools Alignment Filter \

-i /data/minimap/minimap_transcriptome.bam \

-o /data/minimap/minimap_transcriptome.filt.bam \

--skip_unmapped \

--skip_supplementary \

--skip_secondary \

--min_align_len 100 \

--orientation "+" \

--verbose

samtools sort /data/minimap/minimap_transcriptome.filt.bam \

-o /data/minimap/minimap_transcriptome.filt.sort.bam

samtools index /data/minimap/minimap_transcriptome.filt.sort.

bam

3.4 Data Quality

Control

pycoQC is a lightweight tool to generate an interactive quality
control report from datasets obtained with Oxford Nanopore base-
callers. pycoQC uses the sequencing summary file generated by
Guppy containing important prealignment metrics. This file can
be found at the root of Guppy output directory, together with the
fastq files. In addition, one can also generate a postalignment QC
report by providing a BAM/SAM file obtained by Minimap2 or
with another aligner.

# Basic usage for pre-alignment QC only

pycoQC -f sequencing_summary.txt -o pycoQC_report.html

# Usage for pre and post alignment QC

pycoQC -f sequencing_summary.txt -a aligned_reads.bam -o py-

coQC_report.html
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3.5 Estimating

Transcripts Count

To obtain a table of raw read counts per transcript users can simply
count the occurrences of each transcript in the filtered SAM file
resulting from the alignments to the transcriptome:

samtools view /data/minimap/minimap_transcriptome.filt.sort.

bam \

| cut -f 3 | sort | uniq -c

For more accurate estimates of transcript abundance users can
use dedicated algorithms that take into account mapping uncer-
tainty. For example, NanoCount estimates transcript abundance
from dRNA-Seq or cDNA-Seq experiments using an expectation–
maximization approach, akin to what tools like RSEM, Kallisto, and
Salmon do for short read data.

NanoCount -i /data/minimap/minimap_transcriptome.filt.sort.

bam \

-o /data/counts.txt

4 Notes

1. Analysis workflows like the one outlined in these pages often
depend on several software packages. Their installation can be a
tedious and time-consuming process, which could also be
complicated by version incompatibilities between the depen-
dencies of each packages to be installed. Furthermore, it is
often hard to keep track of the version of each program used
in an analysis when they software is installed manually. To solve
these issues and facilitate the execution of clean and reproduc-
ible analyses workflows, we encourage users to run these ana-
lyses inside software-managed environments (e.g., with
Conda) or inside containers (e.g. Docker, Singularity). These
tools greatly simplify software installation and allow each exe-
cution environments to be programmatically defined through
text files (e.g., Dockerfiles or conda environment files).

2. The basecalling step with Guppy is usually the computational
bottleneck in this type of analyses. Whenever possible we would
encourage users to perform live basecalling during sequencing
by activating the corresponding option in MinKNOW prior to
starting the run. When this is not feasible (e.g., due to the
hardware limitations of the computer running MinKNOW) it
is possible to run Guppy in a low-accuracy mode, where the
computing time is significantly reduced at the cost of a higher
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basecalling error rate. The Guppy documentation and the
ONT community forum will provide up-to-date instructions
on how to achieve this.
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