160,280 research outputs found

    PEAR: PEriodic And fixed Rank separation for fast fMRI

    Full text link
    In functional MRI (fMRI), faster acquisition via undersampling of data can improve the spatial-temporal resolution trade-off and increase statistical robustness through increased degrees-of-freedom. High quality reconstruction of fMRI data from undersampled measurements requires proper modeling of the data. We present an fMRI reconstruction approach based on modeling the fMRI signal as a sum of periodic and fixed rank components, for improved reconstruction from undersampled measurements. We decompose the fMRI signal into a component which a has fixed rank and a component consisting of a sum of periodic signals which is sparse in the temporal Fourier domain. Data reconstruction is performed by solving a constrained problem that enforces a fixed, moderate rank on one of the components, and a limited number of temporal frequencies on the other. Our approach is coined PEAR - PEriodic And fixed Rank separation for fast fMRI. Experimental results include purely synthetic simulation, a simulation with real timecourses and retrospective undersampling of a real fMRI dataset. Evaluation was performed both quantitatively and visually versus ground truth, comparing PEAR to two additional recent methods for fMRI reconstruction from undersampled measurements. Results demonstrate PEAR's improvement in estimating the timecourses and activation maps versus the methods compared against at acceleration ratios of R=8,16 (for simulated data) and R=6.66,10 (for real data). PEAR results in reconstruction with higher fidelity than when using a fixed-rank based model or a conventional Low-rank+Sparse algorithm. We have shown that splitting the functional information between the components leads to better modeling of fMRI, over state-of-the-art methods

    A Bayesian Variable Selection Approach Yields Improved Detection of Brain Activation From Complex-Valued fMRI

    Get PDF
    Voxel functional magnetic resonance imaging (fMRI) time courses are complex-valued signals giving rise to magnitude and phase data. Nevertheless, most studies use only the magnitude signals and thus discard half of the data that could potentially contain important information. Methods that make use of complex-valued fMRI (CV-fMRI) data have been shown to lead to superior power in detecting active voxels when compared to magnitude-only methods, particularly for small signal-to-noise ratios (SNRs). We present a new Bayesian variable selection approach for detecting brain activation at the voxel level from CV-fMRI data. We develop models with complex-valued spike-and-slab priors on the activation parameters that are able to combine the magnitude and phase information. We present a complex-valued EM variable selection algorithm that leads to fast detection at the voxel level in CV-fMRI slices and also consider full posterior inference via Markov chain Monte Carlo (MCMC). Model performance is illustrated through extensive simulation studies, including the analysis of physically based simulated CV-fMRI slices. Finally, we use the complex-valued Bayesian approach to detect active voxels in human CV-fMRI from a healthy individual who performed unilateral finger tapping in a designed experiment. The proposed approach leads to improved detection of activation in the expected motor-related brain regions and produces fewer false positive results than other methods for CV-fMRI. Supplementary materials for this article are available online

    Appendix A: “The Basic Postulates of Accounting”

    Get PDF
    Functional Magnetic Resonance Imaging (fMRI) is a relatively new imaging technique, first reported in 1992, which enables mapping of brain functions with high spatial resolution. Functionally active areas are distinguished by a small signal increase mediated by changes in local blood oxygenation in response to neural activity. The ability to non-invasively map brain function and the large number of MRI scanners quickly made the method very popular, and fMRI have had a huge impact on the study of brain function, both in healthy and diseased subjects. The most common clinical application of fMRI is pre-surgical mapping of brain functions in order to optimise surgical interventions. The clinical fMRI examination procedure can be divided into four integrated parts: (1) patient preparation, (2) image acquisition, (3) image analysis and (4) clinical decision. In this thesis, important aspects of all parts of the fMRI examination procedure are explored with the aim to provide recommendations and methods for prosperous clinical usage of the technique. The most important results of the thesis were: (I) administration of low doses of diazepam to reduce anxiety did not invalidate fMRI mapping results of primary motor and language areas, (II) the choice of visual stimuli equipment can have severe impact on the mapping of visual areas, (III) three-dimensional fMRI imaging sequences did not perform better than two-dimensional imaging sequences, (IV) adaptive spatial filtering can improve the fMRI data analysis, (V) clinical decisions should not be based on activation results from a single statistical threshold

    A review of fMRI simulation studies

    Get PDF
    Simulation studies that validate statistical techniques for fMRI data are challenging due to the complexity of the data. Therefore, it is not surprising that no common data generating process is available (i.e. several models can be found to model BOLD activation and noise). Based on a literature search, a database of simulation studies was compiled. The information in this database was analysed and critically evaluated focusing on the parameters in the simulation design, the adopted model to generate fMRI data, and on how the simulation studies are reported. Our literature analysis demonstrates that many fMRI simulation studies do not report a thorough experimental design and almost consistently ignore crucial knowledge on how fMRI data are acquired. Advice is provided on how the quality of fMRI simulation studies can be improved

    Graph-Based Decoding Model for Functional Alignment of Unaligned fMRI Data

    Full text link
    Aggregating multi-subject functional magnetic resonance imaging (fMRI) data is indispensable for generating valid and general inferences from patterns distributed across human brains. The disparities in anatomical structures and functional topographies of human brains warrant aligning fMRI data across subjects. However, the existing functional alignment methods cannot handle well various kinds of fMRI datasets today, especially when they are not temporally-aligned, i.e., some of the subjects probably lack the responses to some stimuli, or different subjects might follow different sequences of stimuli. In this paper, a cross-subject graph that depicts the (dis)similarities between samples across subjects is used as a priori for developing a more flexible framework that suits an assortment of fMRI datasets. However, the high dimension of fMRI data and the use of multiple subjects makes the crude framework time-consuming or unpractical. To address this issue, we further regularize the framework, so that a novel feasible kernel-based optimization, which permits nonlinear feature extraction, could be theoretically developed. Specifically, a low-dimension assumption is imposed on each new feature space to avoid overfitting caused by the highspatial-low-temporal resolution of fMRI data. Experimental results on five datasets suggest that the proposed method is not only superior to several state-of-the-art methods on temporally-aligned fMRI data, but also suitable for dealing `with temporally-unaligned fMRI data.Comment: 17 pages, 10 figures, Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI-20

    Modeling and inference of multisubject fMRI data

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a rapidly growing technique for studying the brain in action. Since its creation [1], [2], cognitive scientists have been using fMRI to understand how we remember, manipulate, and act on information in our environment. Working with magnetic resonance physicists, statisticians, and engineers, these scientists are pushing the frontiers of knowledge of how the human brain works. The design and analysis of single-subject fMRI studies has been well described. For example, [3], chapters 10 and 11 of [4], and chapters 11 and 14 of [5] all give accessible overviews of fMRI methods for one subject. In contrast, while the appropriate manner to analyze a group of subjects has been the topic of several recent papers, we do not feel it has been covered well in introductory texts and review papers. Therefore, in this article, we bring together old and new work on so-called group modeling of fMRI data using a consistent notation to make the methods more accessible and comparable

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections
    • …
    corecore