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Abstract 
Voxel functional magnetic resonance imaging (fMRI) time courses are complex-valued signals giving rise to 
magnitude and phase data. Nevertheless, most studies use only the magnitude signals and thus discard half of the 
data that could potentially contain important information. Methods that make use of complex-valued fMRI (CV-
fMRI) data have been shown to lead to superior power in detecting active voxels when compared to magnitude-
only methods, particularly for small signal-to-noise ratios (SNRs). We present a new Bayesian variable selection 
approach for detecting brain activation at the voxel level from CV-fMRI data. We develop models with complex-
valued spike-and-slab priors on the activation parameters that are able to combine the magnitude and phase 
information. We present a complex-valued EM variable selection algorithm that leads to fast detection at the 
voxel level in CV-fMRI slices and also consider full posterior inference via Markov chain Monte Carlo (MCMC). 
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Model performance is illustrated through extensive simulation studies, including the analysis of physically based 
simulated CV-fMRI slices. Finally, we use the complex-valued Bayesian approach to detect active voxels in human 
CV-fMRI from a healthy individual who performed unilateral finger tapping in a designed experiment. The 
proposed approach leads to improved detection of activation in the expected motor-related brain regions and 
produces fewer false positive results than other methods for CV-fMRI. Supplementary materials for this article are 
available online. 

Keywords: Bayesian modeling, Complex-valued time series, CV-fMRI, Variable selection 

1. Introduction 
As an imaging modality, fMRI is able to indirectly measure neuronal activity by detecting changes in the blood 
oxygen level dependent (BOLD) signal. In a typical task-related fMRI experiment, hemodynamic activity over the 
entire brain volume is observed at T time points while a subject performs a series of tasks, leading to a set 
of T large-dimensional fMRI scans, typically T rectangular lattices with about 5K–10K voxels. 

In MRI and fMRI, images or voxel measurements are complex-valued due to phase imperfections after Fourier 
encoding and inverse Fourier image reconstruction. Thus in fMRI, voxel time course measurements consist of real 
and imaginary components (Bernstein, Thomasson, and Perman 1989; Macovski 1996; Haacke et al. 1999) and 
these are generally converted to magnitude and phase voxel time courses. However, most fMRI brain activation 
studies discard the phase information and rely on magnitude-only image time courses. When this is done, the 
original complex-valued data are unrecoverable as operations that involve magnitude-only reconstruction are not 
unique. Some attempts have been made to avoid working with complex-valued voxel time courses or standard 
magnitude-based reconstruction algorithms. For instance, Bernstein, Thomasson, and Perman (1989) and Prah 
et al. (2010) showed that detectability in low signal-to-noise (SNR) regions of magnetic resonance images is 
improved by using a phase-corrected real reconstruction instead of magnitude-only reconstructions. In this 
article, we develop a Bayesian model for detecting activation that uses both the real and imaginary components 
in CV-fMRI data, leading to more accurate activation results. 

Bandettini et al. (1992) demonstrated that voxel time courses can be used as effective tools for localizing brain 
function in humans. Early common model-based approaches to the analysis of magnitude fMRI data relied on the 
general linear model (GLM), as first proposed by Friston, Jezzard, and Turner (1994). In this model, the observed 
magnitude-only fMRI signal is modeled as the underlying expected BOLD response plus a noise component. In 
other words, for each voxel v = 1, …, V, the voxel-wise GLM can be written as 

y𝑣𝑣 = X𝑣𝑣𝛃𝛃𝑣𝑣 + 𝛜𝛜𝑣𝑣, (1) 

where  yv is the T × 1 response vector of magnitude-only fMRI time course for voxel v,  Xv is the T × q design matrix 
whose components include the expected BOLD responses for each of p experimental tasks or input stimuli and 

possibly other regressors such as trends (and so, p ⩽ q), 𝛃𝛃𝑣𝑣 is a q × 1 vector of regression coefficients and 𝛜𝛜𝑣𝑣  is 
a T × 1 error vector, which captures random noises due to scanner artifacts and any additional subject-related 
physiological noise. In the absence of intercepts, trends, or any other covariates that are not task-specific, that is, 
when q = p, each of the p BOLD responses in  Xv is the discretized convolution of a stimulus on-and-off signal with 
the so-called hemodynamic response function (HRF) that models the hemodynamic delay in the magnetic 
resonance signal (Friston et al. 2007). In addition, the HRF is often assumed to be the same across voxels, 
resulting in  Xv =  X for all v. 
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Sophisticated Bayesian models, including spatial and spatio-temporal approaches, have been developed for 
magnitude-only fMRI data. For instance, Bowman et al. (2008) considered a two-stage Bayesian hierarchical 
model with temporal correlations at the first stage and spatial correlations at the second stage. In Lee et al. 
(2014), temporal dependence is characterized via autoregressive models, Zellner’s g-priors are assumed for the 
regression coefficients, and a binary spatial Ising prior is used to specify anatomical information and spatial 
interaction between voxels. In Zhang et al. (2014), a general error structure is used to capture general 
dependence, and a Markov random field (MRF) prior is used to detect activations in a nonparametric way. 
Alternative Bayesian approaches for magnitude-only data are summarized in Zhang, Guindani, and Vannucci 
(2015), Zhang et al. (2016), and Chiang et al. (2017). These sophisticated and well-constructed models, 
however, are based only on the magnitude information provided by the data and do not incorporate the phase 
information. Furthermore, many of these magnitude-only approaches also work under the assumption that the 
errors are normally distributed which may be problematic, resulting in incorrect standard errors that can produce 
inaccurate activation results. In fact, if both the real and imaginary components of the CV-fMRI signals have 
independent normally distributed errors with the same variance, the magnitude-only signals actually follow a 
Ricean distribution that is approximately normal only in the case of large SNRs (Rice 1944; Gudbjartsson and 
Patz 1995; Rowe and Logan 2004). However, the SNRs may not be large enough in practice for this approximate 
normality to hold. This is increasingly true in cases with higher voxel resolutions and for voxels with a large degree 
of signal drop-out, that is, those for which the signal is not available or has small SNR, such as voxels located near 
air/tissue boundaries. In particular, Adrian, Maitra, and Rowe (2013) showed that with magnitude-only models, 
tests derived using Ricean modeling are superior to Gaussian-based activation tests for SNRs below 0.6. Rowe 
(2005b) also showed that Gaussian-based activation parameter estimates were biased for SNRs under 10. Our 
approach overcomes these limitations of magnitude-only models by jointly considering the real and imaginary 
components of CV-fMRI data. 

Complex-valued modeling has been widely used in several applied areas allowing full utilization of real and 
imaginary, or equivalently magnitude and phase, information in certain signals and images, providing a general 
framework for the analysis of several classes of processes (see, e.g., Mandic and Goh, 2009). The incorporation of 
phase information has proven key in communications and imaging (Oppenheim and Lim 1981), as complex-
valued modeling simultaneously handles the intensity and direction when dealing with radar, sonar, and wind 
data. In the fMRI context, CV-fMRI data that jointly consist of magnitude and phase images are not provided by 
the scanners as the default output, but they are usually readily available. For instance, GE scanners typically 
provide an output file that contains the raw complex-valued k-space data and other information, as well as the 
magnitude images. Magnitude and phase images, or real and imaginary images, can be easily obtained by simply 
changing a preset control variable in an input file, making CV-fMRI data available to neuroimaging researchers and 
practitioners. 

A number of tools for CV-fMRI data analysis have been proposed in the literature, including nonmodel-based 
exploratory independent component analysis (ICA; Calhoun et al. 2002), as well as direct modeling of the 
complex activation data (Lai and Glover 1997; Rowe and Logan 2004, 2005; Rowe 2005a; Lee et al. 2007; 
Rowe 2009; Lee, Shahram, and Pauly 2009). Approaches such as those in Rowe and Logan (2004, 2005); Rowe 
(2005a); and Rowe (2005b) model the phase to directly estimate the phase angle using a polar coordinates 
representation, while the methods in Lee et al. (2007) and Lee, Shahram, and Pauly (2009) are based on 
Cartesian representations. More recently, complex-valued models with temporal correlations (including 
autoregressive structures) have also been developed (Kociuba and Rowe 2016; Adrian, Maitra, and Rowe 2017). 
In particular, Rowe (2005a) specified the following structure for the complex-valued image measurement at 
time t and voxel v,  
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𝑦𝑦𝑡𝑡𝑣𝑣 = 𝑦𝑦𝑡𝑡,𝑅𝑅𝑅𝑅
𝑣𝑣 + 𝑖𝑖𝑦𝑦𝑡𝑡,𝐼𝐼𝐼𝐼

𝑣𝑣 ∈ ℂ, 

𝑦𝑦𝑡𝑡𝑣𝑣 = 𝜌𝜌𝑡𝑡𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙𝑡𝑡𝑣𝑣) + 𝑖𝑖𝜌𝜌𝑡𝑡𝑣𝑣𝑐𝑐𝑖𝑖𝑠𝑠(𝜙𝜙𝑡𝑡𝑣𝑣) + 𝜂𝜂𝑡𝑡𝑣𝑣 , (2) 

where 𝜌𝜌𝑡𝑡𝑣𝑣 = 𝛽𝛽0𝑣𝑣 + 𝛽𝛽1𝑣𝑣𝑥𝑥1,𝑡𝑡 + ⋯+ 𝛽𝛽𝑝𝑝1
𝑣𝑣 𝑥𝑥𝑝𝑝1,𝑡𝑡  is the magnitude of yvt with p1 magnitude regressors, 𝜙𝜙𝑡𝑡𝑣𝑣 =

𝛼𝛼0𝑣𝑣 + 𝛼𝛼1𝑣𝑣𝑢𝑢1,𝑡𝑡 + ⋯+ 𝛼𝛼𝑝𝑝2
𝑣𝑣 𝑢𝑢𝑝𝑝2,𝑡𝑡is the phase of yvt with p2 regressors, and 𝑖𝑖 = √−1.. All the regression coefficients βv0, 

…, βp1
v and αv0, …, αp2

v are real-valued. Here, aRe and aIm generically denote the real and imaginary parts of any 
complex-valued quantity a = aRe + iaIm. The noise term ηvt is also assumed to be complex-valued, that is, ηvt = 
ηt, Rev + iηvt, Im. When αv0 ≠ 0 and αvj = 0 for all j = 1, …, p2, we have the Rowe-Logan constant phase model. Note that 
when no trends are included, the magnitude and phase regressors could be chosen to be identical to the expected 
bold responses associated with the p experimental tasks, that is, p1 = p2 = p and xj, t = uj, t for all j = 1, …, p. Rowe 
(2005a) identified active voxels using a generalized likelihood ratio test. 

Lee et al. (2007) and Lee, Shahram, and Pauly (2009) proposed a method based on a Cartesian model 
representation which has the following matrix form: 

y𝑣𝑣 = X𝛄𝛄𝑣𝑣 + 𝛈𝛈𝑣𝑣, (3) 
with  yv = (yv

1,…, yT
v)′, 𝛄𝛄𝑣𝑣 = 𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣 + 𝑖𝑖𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣 , 𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣 = (𝛾𝛾𝑅𝑅𝑅𝑅,1

𝑣𝑣 , … , 𝛾𝛾𝑅𝑅𝑅𝑅,𝑞𝑞
𝑣𝑣 )′, 𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣 = (𝛾𝛾𝐼𝐼𝐼𝐼,1

𝑣𝑣 , … , 𝛾𝛾𝐼𝐼𝐼𝐼,𝑞𝑞
𝑣𝑣 )′, with q = p + 1,  X = (x′1, 

…, xT′)′, where xt = (1, x1, t, …, xp, t)′, t = 1, …, T, and complex-valued noise vector 𝛈𝛈𝑣𝑣 = (𝜂𝜂1𝑣𝑣 , … , 𝜂𝜂𝑇𝑇𝑣𝑣).. Lee et al. (2007) 
combined this general linear model representation in Cartesian coordinates with a Hotelling’s T2-test to detect 
active sites. Model (3) is equivalent to the Rowe–Logan constant phase complex-valued model (Rowe and 
Logan 2004) if p1 = p, 𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣 = �𝛽𝛽0𝑣𝑣, … ,𝛽𝛽𝑝𝑝𝑣𝑣�

′𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼0𝑣𝑣) and 𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣 = (𝛽𝛽0𝑣𝑣 , … ,𝛽𝛽𝑝𝑝𝑣𝑣)′𝑐𝑐𝑖𝑖𝑠𝑠(𝛼𝛼0𝑣𝑣).. Model (3) is also equivalent to 
the complex-valued magnitude and phase activation model in Rowe and Logan (2005) when there is only a single 
regressor in both, magnitude and phase, corresponding to a 0/1 vector representing a boxcar block design. 

The references cited above show that modeling the complete CV-fMRI data leads to superior power in detecting 
active voxels when compared to magnitude-only approaches, especially for situations in which the SNRs are 
relatively small. However, in spite of their advantages, currently available methods for CV-fMRI data rely on 
mechanisms that control some notion of error to correct for multiple testing, such as Bonferroni corrections, and 
therefore involve two-step procedures. The first step provides estimates of the potentially active voxels according 
to some model, while the second step involves using one of the standard methods to correct for multiple testing. 
Furthermore, available methods for CV-fMRI data assume that the voxels are independent and do not offer a 
principled framework for parameter learning through borrowing information across voxels. 

Here, we present a Bayesian approach that allows us to infer active voxels using both the real and imaginary 
information provided by the CV-fMRI data. This approach builds on Bayesian variable selection methods to detect 
active voxels and hence does not suffer from the multiple comparison issues that typically affect multiple 
hypothesis testing (Scott and Berger 2006). Activation detection and parameter estimation are achieved by a 
model-based framework that allows us to borrow information across voxels. In addition to obtaining full posterior 
inference via Markov chain Monte Carlo (MCMC), we develop a complex-valued extension of the Expectation-
Maximization (EM) algorithm for Bayesian variable selection of Rockova and George (2014) that allows for fast 
detection of active voxels in large-dimensional CV-fMRI. The advantages of our approach are illustrated in the 
analysis of simulated data, including physically realistic simulated CV-fMRI data, as well as human CV-fMRI data. 
We show that the proposed methods lead to more accurate activation results than those obtained from 
magnitude-only methods or from currently available methods for CV-fMRI data. Section 2 presents the models 
and algorithms for posterior estimation and inference. Section 3 illustrates the performance of the Bayesian 
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approach for detecting active voxels in simulated datasets, including physically realistic synthetic CV-fMRI data. 
Section 4 shows and discusses the results obtained from analyzing a human CV-fMRI dataset with the proposed 
Bayesian approach. Finally, Section 5 presents a discussion and future extensions. 

2. Bayesian Models for Detecting Activation in Complex-Valued fMRI Data 
As mentioned above, we develop a model that makes use of the complete magnitude and phase information 
provided by the CV-fMRI data. However, unlike previous approaches (Rowe and Logan 2004, 2005; 
Rowe 2005a, 2009; Lee et al. 2007), we use a fully Bayesian framework for identifying active voxels via variable 
selection in the complex-valued domain. 

We follow the Cartesian coordinates approach of Lee et al. (2007) given in (3) and further assume independent 
and identically distributed complex-normal error vectors, that is, 

y𝑣𝑣 = X𝛄𝛄𝑣𝑣 + 𝛈𝛈𝑣𝑣,𝛈𝛈𝑣𝑣 ∼ CN𝑇𝑇(𝟎𝟎, 𝚪𝚪𝑣𝑣 ,C𝑣𝑣), (4) 
with CN𝐿𝐿(𝛍𝛍,𝚪𝚪,C) denoting a complex normal distribution of dimension L with mean 𝛍𝛍, complex-valued, Hermitian 
and nonnegative definite covariance matrix 𝚪𝚪, and complex-valued symmetric relation matrix  C. As shown below, 
the linear structure in this representation is computationally relevant, as it leads to fast Bayesian posterior 
estimation of active sites. Note also that any complex-valued normal distribution of dimension L has a real-valued 
normal representation of dimension 2L (Wooding 1956; van den Bos 1995; Picinbono 1996 Pici). Thus, 
letting 𝚺𝚺𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅

𝑣𝑣 = 1
2
𝑅𝑅𝑅𝑅(𝚪𝚪𝑣𝑣 + C𝑣𝑣), 𝚺𝚺𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼

𝑣𝑣 = 1
2
𝑅𝑅𝑅𝑅(𝚪𝚪𝑣𝑣 − C𝑣𝑣), 𝚺𝚺𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼

𝑣𝑣 = 1
2
𝐼𝐼𝐼𝐼(−𝚪𝚪𝑣𝑣 + C𝑣𝑣), and 𝚺𝚺𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅

𝑣𝑣 = 1
2
𝐼𝐼𝐼𝐼(𝚪𝚪𝑣𝑣 +

C𝑣𝑣), model (4) also has a real-valued representation as 

�
y𝑅𝑅𝑅𝑅
𝑣𝑣

y𝐼𝐼𝐼𝐼
𝑣𝑣 � = �X 𝟎𝟎

𝟎𝟎 X� �
𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣

𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣
� + �

𝛈𝛈𝑅𝑅𝑅𝑅𝑣𝑣

𝛈𝛈𝐼𝐼𝐼𝐼𝑣𝑣 ,� , (5) 

or equivalently, 

y𝑟𝑟
𝑣𝑣 = X𝑟𝑟𝛄𝛄𝑟𝑟𝑣𝑣 + 𝛈𝛈𝑟𝑟𝑣𝑣, (6) 

with  yv
r = (( yRe

v)′, ( yv
Im)′)′,  Xr = blockdiag( X,  X), 𝛄𝛄𝑟𝑟𝑣𝑣 = ((𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣 )′, (𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣 )′)′, and 𝛈𝛈𝑟𝑟𝑣𝑣 = ((𝛈𝛈𝑅𝑅𝑅𝑅𝑣𝑣 )′, (𝛈𝛈𝐼𝐼𝐼𝐼𝑣𝑣 )′)′, where 𝛈𝛈𝑟𝑟𝑣𝑣 ∼

𝑁𝑁2𝑇𝑇(𝟎𝟎,𝛴𝛴𝑣𝑣) with 

 𝛴𝛴𝑣𝑣 = �
𝚺𝚺𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅
𝑣𝑣 𝚺𝚺𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼

𝑣𝑣

𝚺𝚺𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅
𝑣𝑣 𝚺𝚺𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼

𝑣𝑣 � . 

The simplest possible structure for 𝛈𝛈𝑣𝑣 is that obtained by taking 𝛈𝛈𝑣𝑣 ∼ CN𝑇𝑇(𝟎𝟎, 2𝜎𝜎𝑣𝑣2I𝑇𝑇 ,𝟎𝟎) or equivalently, 
setting 𝛴𝛴𝑣𝑣 = 𝜎𝜎𝑣𝑣2I2𝑇𝑇 in the real-valued Gaussian representation. This implies that there is no correlation within the 
real components and within the imaginary components of 𝛈𝛈𝑣𝑣 , and also that there is no correlation between the 
real and imaginary components of 𝛈𝛈𝑣𝑣. These assumptions can be relaxed to include correlations within the real 
and imaginary components to capture temporal structure (as illustrated in some of the analysis of synthetic and 
human CV-fMRI data presented in Sections 3 and 4), or correlations between the real and imaginary components 
for more structured noise. 

Below we describe the priors and the corresponding posterior inference for the simplest noise structure, focusing 
on complex-valued priors for 𝛄𝛄𝑣𝑣 that lead to posterior inference of activation in CV-fMRI at the voxel-specific 
level. 
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2.1. Priors 
In the absence of any trends and intercepts, and without loss of generality, that is, for the case in which  X in (4) 
contains only the expected BOLD signals for each of p stimuli/tasks with no baselines or trends, activation can be 
viewed as a variable selection problem (Xia, Liang, and Wang 2009; Zhang, Guindani, and Vannucci 2015). In other 
words, if γv

j = γRe, j
v + iγv

Im, j ≠ 0 for voxel v and task j, such voxel is identified as active under task j. Note that 
complex-valued priors must be considered for γv

j. Here we develop a complex-valued domain analogue of the 
Bayesian variable selection methods of George and McCulloch (1993, 1997) and Rockova and George (2014). If 
trends and/or intercepts are needed, they can easily be included in the model along with priors on their 
corresponding parameters and integrated out, as done in the applications illustrated in Sections 3 and 4. Thus, we 
focus the discussion below to the case in which  X only consists of the expected BOLD signals associated with each 
of the p experimental stimuli/tasks. 

Our proposed complex-valued spike-and-slab priors for γv
j extend the widely used real-valued spike-and-slab 

priors by considering 

�𝛾𝛾𝑗𝑗𝑣𝑣| 𝜓𝜓𝑗𝑗𝑣𝑣� ∼ �1−𝜓𝜓𝑗𝑗𝑣𝑣�𝑔𝑔0�𝛾𝛾𝑗𝑗𝑣𝑣� + 𝜓𝜓𝑗𝑗𝑣𝑣𝑔𝑔�𝛾𝛾𝑗𝑗𝑣𝑣�, 
with g0( · ) and g( · ) complex-valued distributions with mean zero, and ψvj ∈ {0, 1}, where ψvj = 1 indicates that 
voxel v is active during task j. Therefore, this prior allows us to determine if a voxel is active by jointly considering 
the real and imaginary components of γvj. In general, we consider priors with g0(γvj) = CN1(0, σ2vω0, σ2vλ0), and g(γvj) 
= CN1(0, σ2vω1, σ2vλ1), and their corresponding vectorial representation given by 

𝛄𝛄𝑣𝑣|𝛙𝛙𝑣𝑣 ∼ 𝐶𝐶𝑁𝑁𝑝𝑝(𝟎𝟎,𝜎𝜎𝑣𝑣2𝛀𝛀𝑣𝑣
,𝜎𝜎𝑣𝑣2𝚲𝚲𝑣𝑣), (7) 

with 𝛀𝛀𝑣𝑣 = diag �(1 − 𝜓𝜓1𝑣𝑣)𝜔𝜔0 + 𝜓𝜓1𝑣𝑣𝜔𝜔1, … , �1 − 𝜓𝜓𝑝𝑝𝑣𝑣�𝜔𝜔0 + 𝜓𝜓𝑝𝑝𝑣𝑣𝜔𝜔1� , 𝚲𝚲𝑣𝑣 = diag((1 −𝜓𝜓1𝑣𝑣)𝜆𝜆0 + 𝜓𝜓1𝑣𝑣𝜆𝜆1, … , (1 −

𝜓𝜓𝑝𝑝𝑣𝑣)𝜆𝜆0 +𝜓𝜓𝑝𝑝𝑣𝑣𝜆𝜆1) and 𝛙𝛙𝑣𝑣 = [𝜓𝜓1𝑣𝑣 , … ,𝜓𝜓𝑝𝑝𝑣𝑣]. The real-valued representation of this prior is �
𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣

𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣
� ∼

𝑁𝑁2𝑝𝑝�𝟎𝟎,𝜎𝜎𝑣𝑣2𝛴𝛴(𝛙𝛙𝑣𝑣)�, where 𝛴𝛴(𝛙𝛙𝑣𝑣) = �
𝛴𝛴𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅(𝛙𝛙𝑣𝑣) 𝛴𝛴𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼(𝛙𝛙𝑣𝑣)
𝛴𝛴𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅(𝛙𝛙𝑣𝑣) 𝛴𝛴𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼(𝛙𝛙𝑣𝑣)�. Given 𝛙𝛙𝑣𝑣, we 

obtain 𝛴𝛴(𝛙𝛙𝑣𝑣) from 𝛀𝛀𝑣𝑣 and 𝚲𝚲𝑣𝑣 via 𝛴𝛴𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅(𝛙𝛙𝑣𝑣) = 1
2
𝑅𝑅𝑅𝑅(𝛀𝛀𝑣𝑣 + 𝛴𝛴𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼(𝛙𝛙𝑣𝑣) = 1

2
𝑅𝑅𝑅𝑅(𝛀𝛀𝑣𝑣 − 𝚲𝚲𝑣𝑣), 𝛴𝛴𝑅𝑅𝑅𝑅,𝐼𝐼𝐼𝐼(𝛙𝛙𝑣𝑣) =

1
2
𝐼𝐼𝐼𝐼(−𝛀𝛀𝑣𝑣 + 𝚲𝚲𝑣𝑣), and 𝛴𝛴𝐼𝐼𝐼𝐼,𝑅𝑅𝑅𝑅(𝛙𝛙𝑣𝑣) = 1

2
𝐼𝐼𝐼𝐼(𝛀𝛀𝑣𝑣 + 𝚲𝚲𝑣𝑣). 

In the data analyses presented below, we take g0(γvj) = CN1(0, 2v0σ2v, 0) and g(γvj) = CN1(0, 2v1σ2v, 0), with 
parameters 0 < v0 < v1, and with smaller values of v0 favoring the detection of even weakly activated voxels. As 
shown in Section 2.2, this prior structure leads to a closed-form complex-valued EMVS algorithm, referred to as 
C-EMVS here, that allows for fast identification of active voxels. Once again, note that the real-valued 
representation of this prior is given by 

�𝛾𝛾𝑗𝑗,𝑅𝑅𝑅𝑅 ,𝛾𝛾𝑗𝑗,𝐼𝐼𝐼𝐼�
′ ∼ �1−𝜓𝜓𝑗𝑗𝑣𝑣�𝑔𝑔0𝑟𝑟 ��𝛾𝛾𝑗𝑗,𝑅𝑅𝑅𝑅

𝑣𝑣 , 𝛾𝛾𝑗𝑗,𝐼𝐼𝐼𝐼
𝑣𝑣 �′�

+𝜓𝜓𝑗𝑗𝑣𝑣𝑔𝑔𝑟𝑟 ��𝛾𝛾𝑅𝑅𝑅𝑅,𝑗𝑗
𝑣𝑣 , 𝛾𝛾𝐼𝐼𝐼𝐼,𝑗𝑗

𝑣𝑣 �′�
 

with 𝑔𝑔0𝑟𝑟((𝛾𝛾𝑅𝑅𝑅𝑅,𝑗𝑗
𝑣𝑣 , 𝛾𝛾𝐼𝐼𝐼𝐼,𝑗𝑗

𝑣𝑣 )′) = 𝑁𝑁2(𝟎𝟎, 𝑣𝑣0𝜎𝜎𝑣𝑣2I2)  and 𝑔𝑔𝑟𝑟((𝛾𝛾𝑅𝑅𝑅𝑅,𝑗𝑗
𝑣𝑣 , 𝛾𝛾𝐼𝐼𝐼𝐼𝑣𝑣 , 𝑗𝑗)′) = 𝑁𝑁2(𝟎𝟎, 𝑣𝑣1𝜎𝜎𝑣𝑣2I2). 

We complete the prior specification taking σ2v ∼ IG(aσ, bσ), ψvj ∼ Bernoulli(θj), with θj ∼ Beta(aθ, bθ), for all j = 1, 
…, p and aσ, bσ, aθ, bθ constants. In particular, as discussed in the examples, we consider aσ = bσ = 1/2 and values 
of v0, v1, aθ, and bθ selected following guidelines similar to those provided in Rockova and George (2014) and 
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Wang et al. (2015). This prior structure relates voxels through the common probability that the binary variables 
for a given task j are equal to one, that is, Pr(ψvj = 1|θj) = θj, for all the voxels v = 1, …, V. 

2.2. Posterior Inference 
We summarize the algorithms for posterior inference below. We first describe a complex-valued EMVS algorithm, 
C-EMVS, that leads to fast detection of active sites under the Bayesian model. A similar EMVS algorithm can be 
derived for magnitude-only models. We then provide a Markov chain Monte Carlo (MCMC) scheme that allows us 
to obtain full posterior inference. The simulations and experimental data analyzed in Sections 3 and 4 focus on 
the performance of the complex-valued and magnitude-only EMVS algorithms, as full MCMC is usually not 
computationally efficient for the analysis of large-dimensional voxel-level fMRI and CV-fMRI. 

2.2.1. A C-EMVS Algorithm for Fast Posterior Computations 
Rockova and George (2014) proposed an expectation-maximization approach to Bayesian variable selection 
(EMVS) that takes advantage of the continuity of the spike distribution to produce rapidly computable closed-
form expressions. Here, we develop an EMVS-based approach to posterior computation that combines the linear 
and complex-valued Gaussian structure in (4), the complex-valued spike-and-slab prior for 𝛄𝛄𝑣𝑣 in (7), and the priors 
for the remaining model parameters described in Section 2.1 above. More specifically, we now summarize the 
steps of the C-EMVS algorithm for the simplest model specification considered in the simulation studies presented 
in Section 3 (algorithms for general models are detailed in the online Appendices). This model is given by 

y𝑣𝑣 = X𝛾𝛾𝑣𝑣 + 𝜂𝜂𝑣𝑣, 𝜂𝜂𝑣𝑣 ∼ CN𝑇𝑇(𝟎𝟎,2 𝜎𝜎𝑣𝑣2I ,𝟎𝟎),
𝛾𝛾𝑗𝑗𝑣𝑣 ∣ 𝜓𝜓𝑗𝑗𝑣𝑣 ∼ �1 −𝜓𝜓𝑗𝑗𝑣𝑣�CN1(0 ,2 𝑣𝑣0𝜎𝜎𝑣𝑣2,0)

+𝜓𝜓𝑗𝑗𝑣𝑣CN1(0 , 2𝑣𝑣1𝜎𝜎𝑣𝑣2, 0), 𝑗𝑗 = 1, … , 𝑝𝑝,
𝜎𝜎𝑣𝑣2 ∼ IG(𝑎𝑎𝜎𝜎,𝑏𝑏𝜎𝜎),𝜓𝜓𝑗𝑗𝑣𝑣 ∣ 𝜃𝜃𝑗𝑗 ∼ Bernoulli�𝜃𝜃𝑗𝑗�,
𝜃𝜃𝑗𝑗 ∼ Beta(𝑎𝑎𝜃𝜃,𝑏𝑏𝜃𝜃).

 (8) 

Note that, for each task j, model (8) relates voxels through the common probability that the binary variables that 
specify the activation at the voxel-level for such task are equal to one, that is, Pr(ψv

j = 1∣θj) = θj for all voxels v = 1, 
…, V and each task j = 1, …, p. Letting 𝛄𝛄 = [𝛄𝛄1, … ,𝛄𝛄𝑉𝑉],𝛙𝛙 = [𝛙𝛙1, … ,𝛙𝛙𝑉𝑉], with 𝛙𝛙𝑣𝑣 = (𝜓𝜓1𝑣𝑣 ,⋯ ,𝜓𝜓𝑝𝑝𝑣𝑣)′, 𝛉𝛉 =
(𝜃𝜃1, … ,𝜃𝜃𝑝𝑝)′, 𝛔𝛔2 = [𝜎𝜎12, … ,𝜎𝜎𝑉𝑉2],, and  y = [ y1, …,  yV], we find that the full posterior density is given by 
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𝜋𝜋(𝛾𝛾,𝛙𝛙,𝛉𝛉,𝛔𝛔2∣y) ∝ �[𝑓𝑓(y𝑣𝑣 mid 𝛄𝛄𝑣𝑣 , 𝜎𝜎𝑣𝑣2) 𝜋𝜋(𝛄𝛄𝑣𝑣∣𝛙𝛙𝑣𝑣, 𝜎𝜎𝑣𝑣2)
𝑉𝑉

𝑣𝑣=1
× 𝜋𝜋(𝛙𝛙𝑣𝑣∣𝛉𝛉) 𝜋𝜋(𝜎𝜎𝑣𝑣2)]𝜋𝜋(𝛉𝛉)

∝ �[CN𝑇𝑇
(y𝑣𝑣∣X 𝛄𝛄𝑣𝑣 ,2 𝜎𝜎𝑣𝑣2I ,𝟎𝟎)

𝑉𝑉

𝑣𝑣=1

× CN𝑝𝑝
(𝛄𝛄𝑣𝑣∣𝟎𝟎, 𝜎𝜎𝑣𝑣2𝛀𝛀𝑣𝑣

,𝟎𝟎)�

× ��𝜋𝜋(𝜎𝜎𝑣𝑣2)∏𝑝𝑝
𝑗𝑗=1

Bernoulli �𝜓𝜓𝑗𝑗𝑣𝑣∣𝜃𝜃𝑗𝑗��
𝑉𝑉

𝑣𝑣=1

× �Beta�𝜃𝜃𝑗𝑗 ∣𝑎𝑎𝜃𝜃 ,𝑏𝑏𝜃𝜃�
𝑝𝑝

𝑗𝑗=1

,

 

(9) 
where 𝛀𝛀𝑣𝑣 = 2 × diag((1 − 𝜓𝜓1𝑣𝑣)𝑣𝑣0 + 𝜓𝜓1𝑣𝑣𝑣𝑣1, … , (1 − 𝜓𝜓𝑝𝑝𝑣𝑣)𝑣𝑣0 + 𝜓𝜓𝑝𝑝𝑣𝑣𝑣𝑣1). 

An EM algorithm for maximizing the full posterior 𝜋𝜋(𝛾𝛾,𝛉𝛉,𝛔𝛔2 ∣ y) for this complex-valued model, referred to as C-
EMVS, is derived by iteratively maximizing the objective function 

 
𝑄𝑄(𝛾𝛾,𝛉𝛉,𝛔𝛔2 ∣ 𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙))
= E𝛙𝛙∣·[𝑙𝑙𝑐𝑐𝑔𝑔𝜋𝜋(𝛾𝛾,𝛙𝛙,𝛉𝛉,𝛔𝛔2 ∣ y)|𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙),y],

 

 

at iteration l + 1, where E𝛙𝛙|·(·) = E𝛙𝛙∣𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙),y(·).. Note that at iteration l + 1, the function Q( · ) uses the 
maxima found at iteration l. Given the form of the log posterior in this case, we can write 

𝑄𝑄(𝛾𝛾,𝛉𝛉,𝛔𝛔2 ∣ 𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙))
= 𝑄𝑄1(𝛾𝛾,𝛔𝛔2 ∣ 𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙)) + 𝑄𝑄2(𝛉𝛉 ∣ 𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙)) + 𝐾𝐾𝑄𝑄 ,

 (10) 

 

with 𝑄𝑄1(𝛾𝛾,𝛔𝛔2 ∣ 𝛾𝛾(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝛔𝛔2,(𝑙𝑙)) = � 𝑄𝑄1𝑣𝑣 � 𝛾𝛾𝑣𝑣,𝜎𝜎𝑣𝑣2 ∣∣ 𝛾𝛾𝑣𝑣,(𝑙𝑙),𝛉𝛉(𝑙𝑙),𝜎𝜎𝑣𝑣
2,(𝑙𝑙) �

𝑉𝑉

𝑣𝑣=1
 and KQ a 

constant. For the E-step, we compute the conditional expectations E𝜓𝜓𝑣𝑣∣·[𝜓𝜓𝑗𝑗𝑣𝑣] and E𝜓𝜓𝑣𝑣∣·[
1

(1−𝜓𝜓𝑗𝑗
𝑣𝑣)𝑣𝑣0+𝜓𝜓𝑗𝑗

𝑣𝑣𝑣𝑣1
].. The 

M-step solves for (𝛾𝛾(𝑙𝑙+1),𝛔𝛔2,(𝑙𝑙+1)) and 𝛉𝛉(𝑙𝑙+1) by maximizing Qv
1 for v = 1, …, V and Q2 in (10). The complete 

details for this C-EMVS algorithm, as well as those for algorithms under more general complex-valued priors (e.g., 
noncircular priors) can be found in the online Appendices. 

https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1476244#m0010


The C-EMVS algorithm is iterated until ∥ 𝛄𝛄(𝑙𝑙) − 𝛄𝛄(𝑙𝑙−1) ∥< 𝜖𝜖, ∥ 𝛉𝛉(𝑙𝑙) − 𝛉𝛉(𝑙𝑙−1) ∥< 𝜖𝜖 and ∥ 𝛔𝛔2,(𝑙𝑙) − 𝛔𝛔2,(𝑙𝑙−1) ∥< 𝜖𝜖, with 
ε small. In the analyses of simulated and human experimental data presented in Sections 3 and 4, we use ε = 10− 3. 
We assess convergence by monitoring that the log-posterior distribution increases at each step of the algorithm. 
Once the EM algorithm converges, we obtain estimated posterior modes 𝛾𝛾�, 𝛔𝛔�2, and 𝛉𝛉�. Then, for each voxel we 
compute 𝑃𝑃𝑃𝑃(𝜓𝜓𝑗𝑗𝑣𝑣 = 1 ∣ 𝛾𝛾�,𝛉𝛉�,𝛔𝛔�2,y), and we label a given voxel v active for task j if 𝑃𝑃𝑃𝑃(𝜓𝜓𝑗𝑗𝑣𝑣 = 1 ∣ 𝛾𝛾�,𝛉𝛉�,𝛔𝛔�2,y) > 𝛿𝛿, 
where δ is a fixed threshold value. This is equivalent to saying that a voxel is active if its corresponding strength is 
greater than some real-valued threshold γ*, v

j, that is, |𝛾𝛾�𝑗𝑗𝑣𝑣| > 𝛾𝛾𝑗𝑗
∗,𝑣𝑣 .. A common choice of δ is 0.5, which leads to a 

local version of the median probability model of Barbieri and Berger (2004). Some researchers in the fMRI 
community suggest using δ = 0.8722 for magnitude-only models. Smith and Fahrmeir (2007) gave a clear 
description of the motivation for this threshold value in the context of a Bayesian spatial model. Given that our 
models do not explicitly incorporate a spatial structure, we use δ = 0.5 in the following analyses. A further 
alternative that could be considered within a Bayesian decision-theoretical framework is to choose the threshold 
by minimizing a well-defined loss function, or via Bayesian false discovery rates (see, e.g., Müeller, Parmigiani, and 
Rice, 2006 and Sun et al., 2015). 

Finally note that, if desired, the algorithm can also be implemented for the real-valued version of the model in (8) 
given by 

�
y𝑅𝑅𝑅𝑅
𝑣𝑣

y𝐼𝐼𝐼𝐼
𝑣𝑣 � = X𝑟𝑟𝛄𝛄𝑟𝑟𝑣𝑣 + 𝛈𝛈𝑟𝑟𝑣𝑣,𝛈𝛈𝑟𝑟𝑣𝑣 ∼ 𝑁𝑁2𝑇𝑇(𝟎𝟎,𝜎𝜎𝑣𝑣2I2𝑇𝑇),

𝛄𝛄𝑟𝑟𝑣𝑣 = �
𝛄𝛄𝑅𝑅𝑅𝑅𝑣𝑣

𝛄𝛄𝐼𝐼𝐼𝐼𝑣𝑣
� ∼ 𝑁𝑁2𝑝𝑝 �𝟎𝟎, 𝜎𝜎𝑣𝑣2�

𝛴𝛴𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅(𝛙𝛙𝑣𝑣) 𝟎𝟎
𝟎𝟎 𝛴𝛴𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼(𝛙𝛙𝑣𝑣)�� ,

 

and the same priors on σ2v, ψvj, and θj specified above. 

2.2.2. Posterior Inference via Markov Chain Monte Carlo 
Full posterior inference can be obtained via MCMC. Similar to the C-EMVS case described above, we generalize 
the Stochastic Search Variable Selection algorithm (SSVS) proposed by George and McCulloch (1993) to the 
complex-valued domain. Suppose we have a simplified complex-valued model such as (8) except that we now use 
a “nonconjugate” version of the spike-and-slab prior on 𝛄𝛄𝑣𝑣, that is, γv

j∣ψv
j ∼ (1 − ψv

j)CN1(0, 2v0, 0) + ψv
jCN1(0, 2v1, 

0), j = 1, …, p. The general vectorized form of this prior can be written as 𝛾𝛾𝑣𝑣 ∣ 𝛙𝛙𝑣𝑣 ∼ CN𝑝𝑝(𝟎𝟎,𝛀𝛀𝑣𝑣 ,𝟎𝟎), with 𝛀𝛀𝑣𝑣 =
2 × diag[(1 − 𝜓𝜓1𝑣𝑣)𝑣𝑣0 + 𝜓𝜓1𝑣𝑣𝑣𝑣1, … , (1 − 𝜓𝜓𝑝𝑝𝑣𝑣)𝑣𝑣0 + 𝜓𝜓𝑝𝑝𝑣𝑣𝑣𝑣1].. Then, the posterior full conditional distributions for a 
Gibbs sampling scheme can be derived as follows: 
 
For each v, v = 1, …, V, 𝛾𝛾𝑣𝑣 ∣ y𝑣𝑣,𝜎𝜎𝑣𝑣2,𝛙𝛙𝑣𝑣 ∼ CN𝑝𝑝(𝜇𝜇𝛾𝛾𝑣𝑣 ,𝛀𝛀𝑝𝑝𝑝𝑝𝑝𝑝

𝑣𝑣 ,𝟎𝟎), with 𝛀𝛀pos
𝑣𝑣 = (2−1𝜎𝜎𝑣𝑣−2X′X + 𝛀𝛀𝑣𝑣

−1)−1, and 𝜇𝜇𝛾𝛾𝑣𝑣 =
𝛀𝛀pos
𝑣𝑣 X′y𝑣𝑣/𝜎𝜎𝑣𝑣2. 

𝜎𝜎𝑣𝑣2 ∣ y𝑣𝑣 ,𝛾𝛾𝑣𝑣 ∼ IG(𝑎𝑎𝜎𝜎
𝑣𝑣,pos, 𝑏𝑏𝜎𝜎

𝑣𝑣,pos), with 𝑎𝑎𝜎𝜎
𝑣𝑣,pos = 𝑇𝑇 + 𝑎𝑎𝜎𝜎 and 𝑏𝑏𝜎𝜎

𝑣𝑣,pos =∥ y𝑣𝑣 − X𝛄𝛄𝑣𝑣 ∥2/2 + 𝑏𝑏𝜎𝜎 . 

Pr(𝜓𝜓𝑗𝑗𝑣𝑣 = 1 ∣ y𝑣𝑣 ,𝛾𝛾𝑣𝑣 ,𝜎𝜎2,𝜃𝜃,𝛙𝛙−𝑗𝑗
𝑣𝑣 ) =

𝑐𝑐𝑗𝑗
𝑣𝑣

𝑐𝑐𝑗𝑗
𝑣𝑣+𝑅𝑅𝑗𝑗

𝑣𝑣, with 𝑐𝑐𝑗𝑗𝑣𝑣 = 𝜋𝜋(𝛄𝛄𝑗𝑗𝑣𝑣 ∣ y𝑣𝑣,𝜓𝜓𝑗𝑗𝑣𝑣 = 1,𝛙𝛙−𝑗𝑗
𝑣𝑣 ) × 𝜃𝜃𝑗𝑗and𝑅𝑅𝑗𝑗𝑣𝑣 = 𝜋𝜋(𝛄𝛄𝑗𝑗𝑣𝑣 ∣ y𝑣𝑣,𝜓𝜓𝑗𝑗𝑣𝑣 =

0,𝛙𝛙−𝑗𝑗
𝑣𝑣 ) × (1 − 𝜃𝜃𝑗𝑗). Here 𝜋𝜋(𝛄𝛄𝑗𝑗𝑣𝑣 ∣ y𝑣𝑣 ,𝜓𝜓𝑗𝑗𝑣𝑣 = 1,𝛙𝛙−𝑗𝑗

𝑣𝑣 ) and 𝜋𝜋(𝛄𝛄𝑗𝑗𝑣𝑣 ∣ y𝑣𝑣,𝜓𝜓𝑗𝑗𝑣𝑣 = 0,𝛙𝛙−𝑗𝑗
𝑣𝑣 ) are complex-normal densities 

(see online Appendices for details). 
For each j, j = 1, …, p, 𝜃𝜃𝑗𝑗 ∣ y,𝛙𝛙𝑣𝑣 ∼ Beta(∑𝑉𝑉𝑣𝑣=1 𝜓𝜓𝑗𝑗𝑣𝑣 + 𝑎𝑎𝜃𝜃,𝑉𝑉 − ∑𝑉𝑉𝑣𝑣=1 𝜓𝜓𝑗𝑗𝑣𝑣 + 𝑏𝑏𝜃𝜃). 

To decide whether a voxel v is active or not after MCMC convergence is achieved, we look at the posterior 
probability of ψv

j = 1, for each task-related BOLD signal j = 1, …, p. A detailed derivation of general complex-valued 
SSVS algorithm and the corresponding full conditional distributions above can be found in the online Appendices. 
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3. Simulation Studies 
We show the performance of the proposed complex-valued variable selection methods for detecting activation in 
two simulation studies. The first study compares the C-EMVS algorithm to computationally fast alternatives that 
are often used in practice, such as lasso and adaptive lasso (Tibshirani 1996; Zou 2006). We also compare the 
results obtained by the proposed complex-valued model and priors via the C-EMVS algorithm with those obtained 
using a magnitude-only Bayesian model with the real-valued priors in Rockova and George (2014). The 
magnitude-only voxel time series courses are obtained by taking the moduli of the CV-fMRI signals at each voxel. 
The second study considers a physically realistic simulated CV-fMRI dataset. 

3.1. Simulation Study I 
We simulated 20 datasets consisting of 48 × 48 CV-fMRI slices with a constant baseline signal and a single 
expected BOLD signal (i.e., p = 1) resulting from the convolution of a stimulus indicator function and the canonical 
hemodynamic response function. Three activation regions were simulated using the function specifyregion in 
the R package neuRosim (Welvaert et al. 2011). More specifically, for v = 1, …, 48 × 48, and t = 1, …, 200, the 
time series for each voxel v were simulated as follows: 
𝑦𝑦𝑡𝑡,𝑅𝑅𝑅𝑅
𝑣𝑣 = (𝛽𝛽0 + 𝛽𝛽1𝑓𝑓𝑣𝑣𝑧𝑧𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼0) + 𝜂𝜂𝑡𝑡,𝑅𝑅𝑅𝑅

𝑣𝑣 , 𝜂𝜂𝑡𝑡,𝑅𝑅𝑅𝑅
𝑣𝑣 ∼ 𝑁𝑁(0,𝜎𝜎2)

𝑦𝑦𝑡𝑡,𝐼𝐼𝐼𝐼
𝑣𝑣 = (𝛽𝛽0 + 𝛽𝛽1𝑓𝑓𝑣𝑣𝑧𝑧𝑡𝑡)𝑐𝑐𝑖𝑖𝑠𝑠(𝛼𝛼0) + 𝜂𝜂𝑡𝑡,𝐼𝐼𝐼𝐼

𝑣𝑣 , 𝜂𝜂𝑡𝑡,𝐼𝐼𝐼𝐼
𝑣𝑣 ∼ 𝑁𝑁(0,𝜎𝜎2),

 (11) 

whereFigure 1fv is the BOLD signal strength or intensity rate of voxel v, with fv = 0 if voxel v is nonactive and fv ≠ 0 if 
voxel v is in an active region. The values of fv for active voxels were specified using the argument fading in the 
function specifyregion in neurosim. Here, the fading of the expected BOLD signal decays exponentially 
depending on the distance of the active voxel v with coordinates (i, j), to the center of the active region with 
coordinates (i′, j′), that is, the fading for voxel v is given by 

𝑓𝑓𝑣𝑣(𝑖𝑖, 𝑗𝑗) =
1
4

{2 · exp[−((𝑖𝑖 − 𝑖𝑖′)2 + (𝑗𝑗 − 𝑗𝑗′)2) · 𝜚𝜚] + 2}, 

where ϱ is the decay rate in [0, 1] with 0 and 1 corresponding, respectively, to no decay and to the strongest 
decay. zt in (11) is the BOLD signal given by the convolution of the canonical HRF, denoted as ht, and the stimulus 
indicator function st, that is, zt = ht⊗st. 

We used α0 = π/4 and different values of β0 and β1 to examine the performance of the proposed complex-valued 
models using the C-EMVS algorithm for posterior computations. These were chosen to set specific values of the 
SNR and the contrast-to-noise ratio (CNR) as defined in Rowe and Logan (2004), with SNR = β0/σ and CNR = β1/σ. 
Note that active voxels have different CNRs given by CNRv = (β1fv)/σ, with CNR𝑣𝑣 ≤ CNR for all v, as fv ∈ [0, 1]. 
Hence, the largest CNR for active voxels is β1/σ, computed using no fading, while the smallest CNR is 𝛽𝛽1𝑓𝑓min/𝜎𝜎, 
where 𝑓𝑓min = 𝐼𝐼𝑖𝑖𝑠𝑠{𝑣𝑣∈𝐴𝐴}𝑓𝑓𝑣𝑣 and A is the set of active voxels. The average CNR is ∑{v ∈ A}β1fv/|A|. In this simulation, we 
used 𝑓𝑓min ≈ 0.50 and ∑{v ∈ A}fv/|A| ≈ 0.71, with |A| = 103 active voxels, which accounts for 4.47% of all voxels. 
The top left plot in Figure 1 shows the experimental block design, with st = 1 if the stimulus is on and st = 0 
otherwise. It consists of five epochs of 20 sec on and 20 sec off with an observation interval of 1. The resulting 
BOLD signal zt is shown in the bottom left plot. The right plot displays the active regions with the 
corresponding fv values. The three active regions are centered at the coordinates (20, 20), (30, 30), and (40, 10), 
with radius arguments 3, 2, 1, and fading arguments 0.5, 0.01, and 0.3, respectively, for each region. The bottom-
right region is a square and the other two are circles. 
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Figure 1. Left: Block experimental design (top); expected BOLD signal obtained from convolving the stimulus 
indicator signal with the canonical hemodynamic function (bottom). Right: Activation regions and fv values for 
active voxels. 

 
Four different SNRs, 0.5, 1, 5, and 10, and three different CNRs, 0.5, 1, and 1.5, were considered, resulting in 12 
different SNR-CNR data types. These are numbered as shown in Table 1. We generated 20 simulated datasets for 
each SNR-CNR data type and computed classification performance measures (sensitivity, specificity, precision, and 
accuracy) to examine how well our algorithm and other methods perform in the different scenarios. 

Table 1. Twelve data types and their corresponding SNR and CNR. 
SNR   0.5     1     5     10   
CNR 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 
Data type 1 2 3 4 5 6 7 8 9 10 11 12 

 

Four methods are compared in this simulation study, the proposed Bayesian complex-valued model using the C-
EMVS algorithm for posterior computations (referred to as CV in the results below), the Bayesian magnitude-only 
model with the EMVS algorithm (MO), and the lasso (LA) and adaptive lasso (ALA), both for magnitude-only data. 

The Bayesian complex-valued model used here has the form 

𝑦𝑦𝑡𝑡𝑣𝑣 = 𝛾𝛾1∗ + 𝛾𝛾2
∗,𝑣𝑣𝑥𝑥𝑡𝑡 + 𝜂𝜂𝑡𝑡𝑣𝑣 , 𝜂𝜂𝑡𝑡𝑣𝑣 ∼ CN1(0, 2𝜎𝜎2, 0), 

with γ*1 a baseline parameter and γ*, v
2 the complex-valued activation parameters for each voxel and xt = zt. For 

the baseline parameter, we use a prior of the form π(γ*1)∝1. For the activation parameters and the remaining 
model parameters, we used the following priors: 

𝛾𝛾2
∗,𝑣𝑣 ∣ 𝜓𝜓𝑣𝑣 ∼ (1−𝜓𝜓𝑣𝑣)CN1(0,2𝑣𝑣0𝜎𝜎2, 0) + 𝜓𝜓𝑣𝑣CN1(0,2𝑣𝑣1𝜎𝜎2, 0),

𝜎𝜎2 ∼ IG(1/2, 1/ 2),𝜓𝜓𝑣𝑣 ∣ 𝜃𝜃 ∼ Bernoulli(𝜃𝜃),
𝜃𝜃 ∼ Beta(1,1).

.(12) 

 



TheFigure 2baseline parameter was integrated out before proceeding with the C-EMVS or MCMC algorithms for 
posterior inference and detection of active sites, so we used the algorithms outlined in Section 2 and detailed in 
the online Appendices. 

We also consider a Bayesian model for the magnitude-only data. The magnitude-only time courses are obtained 

as 𝑦𝑦𝑡𝑡,Mag
𝑣𝑣 = �(𝑦𝑦𝑡𝑡,𝑅𝑅𝑅𝑅

𝑣𝑣 )2 + (𝑦𝑦𝑡𝑡,𝐼𝐼𝐼𝐼
𝑣𝑣 )2. The MO model used to analyze these data is essentially the same as the CV 

model used for the complex-valued data, except that the linear model is now real-valued and the priors on the 
regression coefficients are real-valued Gaussian spike-and-slab priors. This is 

 

𝑦𝑦𝑡𝑡,Mag
𝑣𝑣 = 𝛾𝛾Mag,1

∗ + 𝛾𝛾Mag,2
∗,𝑣𝑣 𝑥𝑥𝑡𝑡 + 𝜂𝜂𝑡𝑡𝑣𝑣, 𝜂𝜂𝑡𝑡𝑣𝑣 ∼ 𝑁𝑁(0 ,𝜎𝜎2),

𝛾𝛾Mag,2
∗,𝑣𝑣 |𝜓𝜓Mag

𝑣𝑣 ∼ �1 −𝜓𝜓Mag
𝑣𝑣 �𝑁𝑁1(0, 𝑣𝑣0𝜎𝜎2) + 𝜓𝜓Mag

𝑣𝑣 𝑁𝑁1(0 ,𝑣𝑣1𝜎𝜎2),

𝜎𝜎2 ∼ IG �1  2 , 1 2� ,𝜓𝜓Mag
𝑣𝑣 |𝜃𝜃 ∼ Bernoulli(𝜃𝜃),

𝜃𝜃 ∼ Beta(1,1),

 

and 𝜋𝜋(𝛾𝛾Mag,1
∗ ) ∝ 1.. 

The tuning parameters in the Bayesian CV and MO models above, v0 and v1, are chosen as suggested in Rockova 
and George (2014) and Wang et al. (2015). More specifically, we fix v1, taking v1 = 1 and choose the optimal v0 in 
each case, denoted as 𝑣𝑣0CV and 𝑣𝑣0MO,, for the CV and MO models, respectively, by maximizing the marginal 
posterior 𝜋𝜋0(𝛙𝛙 ∣ y) that evaluates 𝛙𝛙 according to the submodel that contains only those variables for which ψv

j = 
1. This marginal can be derived in closed form up to a normalizing constant. From our experience with the real 
and simulated datasets analyzed here, the optimal v0 takes values around 1 �100𝑇𝑇𝑝𝑝⁄  and usually lies in the 
interval (1/�1000𝑇𝑇𝑝𝑝, 1/�10𝑇𝑇𝑝𝑝), where p is the number of tasks. In this simulation, we only have one task so p = 
1. 

Finally, we also applied the lasso (LA) and adaptive lasso (ALA) methods (Tibshirani 1996; Zou 2006) to the 
magnitude-only data. Both LA and ALA use a regularization parameter and ALA uses additional weights to allow 
for different penalizations in the regression coefficients (the 𝛾𝛾Mag,2

∗,𝑣𝑣  parameters in our case). The regularization 
parameter was chosen using a five-fold cross-validation approach and the weights in the ALA were set 
to 1 |⁄ 𝛾𝛾�Mag,2

∗,𝑣𝑣 |,, where 𝛾𝛾�Mag,2
∗,𝑣𝑣  is the ordinary least-square estimator of 𝛾𝛾Mag,2

∗,𝑣𝑣 . LA and ALA were implemented using 
the R package glmnet (Friedman, Hastie, and Tibshirani 2010). 

The resulting average performance measures over the 20 simulated datasets for the four different methods are 
summarized in Figure 2. Note that this simulation contains 2201 nonactive voxels out of a total 2304 voxels, so 
any model can achieve 95.53% accuracy by simply classifying all voxels as nonactive. Hence, the accuracy 
subfigure is plotted from 0.95 to 1 for clear comparison. Similarly, the specificity is plotted from 0.997 to 1. 

Figure 2. Sensitivity (top-left), specificity (top-right), precision (bottom-left), and accuracy (bottom-right) for four 
models: Complex-valued EM (CV; blue, solid), magnitude-only EM (MO; red, dash), Lasso (LA; brown, dotted), and 
adaptive Lasso (ALA; green, dash-dotted). 
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First, we seeFigure 3that both Bayesian variable selection approaches, the one for the CV-fMRI and the one for 
magnitude-only data (MO), dominate the traditional lasso (LA) and adaptive lasso (ALA) for magnitude-only data 
in terms of sensitivity (power), precision, and accuracy. The Bayesian approaches are able to eliminate most of the 
false positives by borrowing strength across voxels via the common probability of activation parameter θ. The 
Bayesian CV and MO methods are comparable to lasso and adaptive lasso in terms of specificity, while the first 
provide a more complete inferential analysis. The main advantage of the Bayesian CV model with respect to the 
Bayesian MO model is that the CV model significantly detects more true positives than the MO when the SNR is 
small, which leads to higher sensitivity, precision, and accuracy. When the SNR is fairly large, using the 
information provided only by the magnitude leads to good activation results in these simulated scenarios. In fact, 
the MO model even has a slightly larger sensitivity than the CV model when the SNR is 5 or 10. On the other hand, 
the CV model leads to higher specificity and precision than the MO model even when the SNR is 5 or 10. 
Moreover, the performance of the CV model is very consistent across different SNRs. Hence, when the CV-fMRI 
data are recorded under small SNRs or when researchers are uncertain about the magnitude of the SNR in their 
data, the CV model stands out as the best option among the models considered here. Given that improved MRI 
technology allows for improved spatial resolution and therefore reduces SNR, we would expect that complex-
valued models will become an essential tool for detecting active sites in CV-fMRI data. 

Figure 3 shows the true activation and strength maps for one of the 20 simulated datasets with SNR = 0.5 and CNR 
= 1 along with the estimated activation and strength maps (only for sites labeled as active) obtained from the C-
EMVS (CV), the magnitude-only EMVS (MO), and adaptive lasso (ALA). The strength maps for lasso are not shown, 
as lasso detected no active sites. Both activation maps for the complex-valued and magnitude-only EMVS display 
activation levels that result from setting v1 = 1 and choosing the optimal values of v0 for each method as discussed 
above. For this dataset and with our prior distribution settings, we found that the optimal values were 𝑣𝑣0CV =
0.0071 and 𝑣𝑣0MO = 0.0056. The C-EMVS approach clearly outperforms all the other approaches: it has higher 
power for detecting active voxels while simultaneously controlling for false positives, and also leads to more 
accurate estimation of the activation strength (note that MO and ALA clearly underestimate the strength). In 
relation to this point, we computed the mean squared errors (MSEs) for this simulated dataset under the C-EMVS, 
MO, and ALA approaches for voxels that are labeled as active for at least one of the three methods and found that 
the MSEs values were, respectively, 0.0080, 0.0084, and 0.1162. The complex-valued model also leads to more 
accurate inference for σ. Magnitude-only models underestimate σ when the SNR is small as a consequence of the 
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fact that the MO error distribution is truly Ricean at low SNRs. This can lead to an increase of false positives when 
detecting activation (in fact, we can see that the specificity values obtained with the complex-valued model are 
generally higher than those obtained with magnitude-only model as shown in Figure 2). For example, for a dataset 
generated under a true value of σ = 0.5, when SNR = 0.5, we found 𝜎𝜎�CV = 0.497, while 𝜎𝜎�MO = 0.346. To obtain 
better estimates of σ with MO models, we need to considerably increase the SNR. For instance, for a simulated 
dataset with SNR = 10, we obtained 𝜎𝜎�MO = 0.495 which is closer to the true value 0.5. These results are 
consistent with the findings of Rowe (2005b). 

Figure 3. Activation and strength maps for a simulated dataset with SNR = 0.5 and CNR = 1. (a) Activation maps 
showing the true active sites, and the activation results obtained from C-EMVS, MO-EMVS, Lasso, and Adaptive 
Lasso. Activated sites are colored in red. (b) Strength maps: true strength and estimated strengths from C-EMVS, 
MO-EMVS, Lasso, and adaptive Lasso. 

 

Finally, we also implemented the MCMC sampling approach outlined in Section 2 and detailed in the online 
Appendices to achieve full posterior inference for the complex-valued models. We obtained similar results to 
those from the C-EMVS algorithm in terms of the number of active sites and the strength of those sites, but we 
highlight that, in addition, the MCMC approach allows us to compute uncertainty measures related to activation 
strength and any other functions of the model parameters. For instance, Figure 4 shows posterior mean strength 
maps and 95% posterior credibility strength maps for a single dataset obtained from the complex-valued model. 
As seen in this figure, the posterior mean estimates for the strength are similar to those obtained via the C-EMVS 
algorithm but the MCMC-based posterior credibility maps provide additional information about the strength 
maps. We see that, in general, there is less uncertainty about activation strength for voxels located in region 
centered at (30,30) than for voxels located in the region centered at (40,10). This makes sense given the true 
strength maps used to generate the simulated data (see Figure 3). In cases where this Gibbs sampling scheme is 
not computationally feasible (e.g., when several large-dimensional images for multiple subjects need to be 
analyzed), one could consider a hybrid approach that, say, uses the C-EMVS method to determine which sites are 
active and then uses the Gibbs sampling scheme only on regions of the brain that present active sites to obtain 
posterior uncertainty measures on strength maps and/or activation maps for those regions only. Alternative 
methods based on obtaining approximate inference via variational Bayes could also be considered (see, e.g., Yu 
et al., 2016). 

Figure 4. Strength maps for a simulated dataset with SNR = 0.5 and CNR = 1 obtained from a complex-valued 
model via MCMC. Left: 2.5% quantile map; Middle: Posterior mean map; Right: 97.5% quantile map. 
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3.1.1. Additional Structure: Temporal Correlation 
We also analyzed synthetic CV-fMRI data simulated under (11) but with errors following an autoregressive 
structure of order one, that is, ηvt, Re = ϕηt − 1, Rev + ζvt, Re, with ζvt, Re independent Gaussian for all t, ζvt, Re ∼ N(0, σ2), and 
ηvt, Im = ϕηt − 1, Imv + ζvt, Im, with ζvt, Im also independent Gaussian for all t, ζvt, Im ∼ N(0, σ2) and ϕ ∈ [0, 1) the AR 
coefficient. We considered values of ϕ ranging from 0.1 to 0.9, and the same 12 SNR-CNR scenarios described in 
the previous simulation, with σ2 = 0.25. We analyzed these data using two versions of the model yvt = γ1* + 
γ*, v2xt + ηvt: one version with ηvt iid complex normal, and another version with ηvt following a complex-valued 
AR(1) structure in ηvt = ηt, Rev + iηvt, Im as described above. Figure 5 displays the sensitivity, specificity, precision, 
and accuracy for the two versions of the CV model (independent and autoregressive errors) and two types of data 
(AR errors with ϕ = 0.5 and ϕ = 0.9). Overall we find that the larger the value of ϕ the harder it is to detect active 
sites, particularly for small SNR and CNR. This makes sense, as AR(1) errors with ϕ close to 1 may add a temporal 
structure that locally resembles a linear trend and can easily hide/mask the temporal behavior that characterizes 
active sites due to increased variability in the observed time series. We also see that while the CV model with 
independent errors has higher sensitivity, it also leads to a larger number of false positives (we only have about 
77% specificity for the model with independent errors while we obtain 100% specificity for the model with AR 
errors when ϕ = 0.9). Therefore, the CV model with AR errors is overall a better option in terms of specificity, 
precision, and accuracy, particularly when ϕ is large. 

Figure 5. Sensitivity, specificity, precision, and accuracy plots for synthetic AR(1) CV-fMRI data with AR 
coefficients 0.5 (top plots) and 0.9 (bottom plots). The plots are based on results obtained from analyzing 20 
datasets using models that assumed independent errors (dotted lines) and AR(1) errors (solid lines). 
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3.1.2. Additional Structure: HRF Effect and Prior Sensitivity Analyses 
We also studied the effects of the HRF choice and the prior distributions. Regarding the HRFs, we 
analyzed the simulated and human data presented in Sections 3 and 4 with three different classes of HRF 
functions, namely, canonical, gamma, and boxcar with different choices for the parameters that define 
each particular class. For a given HRF, we can select the optimal v0 and then choose the HRF and 
corresponding v0 that leads to the smallest MSE (mean squared error) for a particular dataset. Overall we 
found that the MSEs for the optimal HRFs within each class were comparable. Furthermore, the results in 
terms of the number and locations of the sites labeled as active were also similar across the optimal HRFs 
within each class. 
 

We studied the sensitivity of our posterior results with respect to the prior distributions. In particular, as 
mentioned above, we generally assume θ ∼ Beta(1, 1). In cases where a sparser structure is desired a 
priori, that is, when it makes sense biologically to assume that the number of active sites is just a very 
small percentage of the total number of sites, priors of the form θ ∼ Beta(1, b) with b large can be used. 
In this simulation study, we found that the activation results were essentially the same for any prior 
with b ⩽ 1000. Priors with values of b > 1000 lead to sparser results (i.e., less active sites) in the simulated 
data. For the human data presented in Section 4, we found that we are able to detect similar numbers 
and locations of active sites for priors with values of b ∈ [1, 100, 000]. Note that choosing b = 1000 leads 
to a fairly informative prior, with about 0.09% of active sites expected a priori and rarely above 0.4% of 
active sites expected a priori. 
Finally, we assessed the effect of using noncircular complex-normal priors on 𝛄𝛄𝑣𝑣 ,, that is, priors of the form 𝛄𝛄𝑣𝑣 ∣
𝛙𝛙𝑣𝑣 ∼ CN𝑝𝑝(𝟎𝟎,𝜎𝜎𝑣𝑣2𝛀𝛀𝑣𝑣 ,𝜎𝜎𝑣𝑣2𝚲𝚲𝑣𝑣), with 𝚲𝚲𝑣𝑣 ≠ 𝟎𝟎,, so that there is a nonzero correlation between the real and imaginary 
components of 𝛄𝛄𝑣𝑣 .. As expected, allowing for a correlation structure between the real and imaginary components 
of 𝛄𝛄𝑣𝑣 . leads to improved results when such underlying structure is present in the data, that is, having a more 
flexible prior that accounts for this correlation leads to higher power for detecting activation and reduces the 
number of false positives. On the other hand, such priors also lead to models that are more computationally 
costly and may potentially lead to biases in the posterior results. Therefore, we recommend the use of noncircular 
priors only when there is a strong indication that there is a significant correlation between the real and complex 
components of 𝛄𝛄𝑣𝑣 ., and that such correlation structure is similar for active and nonactive voxels. Alternative priors 
will be developed and investigated in the future but are out of the scope of this work. We now illustrate the use of 
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noncircular priors in the analysis of a simulated dataset with high correlation among the real and imaginary 
components for both types of voxels, active and nonactive. The data were simulated following: 

𝑦𝑦𝑡𝑡,𝑅𝑅𝑅𝑅
𝑣𝑣 = �𝛽𝛽0+𝛽𝛽1,𝑅𝑅𝑅𝑅

𝑣𝑣 𝑧𝑧𝑡𝑡�𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼0) + 𝜂𝜂𝑡𝑡,𝑅𝑅𝑅𝑅
𝑣𝑣 , 𝜂𝜂𝑡𝑡,𝑅𝑅𝑅𝑅

𝑣𝑣 ∼ 𝑁𝑁(0,𝜎𝜎2),
𝑦𝑦𝑡𝑡,𝐼𝐼𝐼𝐼
𝑣𝑣 = �𝛽𝛽0+𝛽𝛽1,𝐼𝐼𝐼𝐼

𝑣𝑣 𝑧𝑧𝑡𝑡�𝑐𝑐𝑖𝑖𝑠𝑠(𝛼𝛼0) + 𝜂𝜂𝑡𝑡,𝐼𝐼𝐼𝐼
𝑣𝑣 , 𝜂𝜂𝑡𝑡,𝐼𝐼𝐼𝐼

𝑣𝑣 ∼ 𝑁𝑁(0,𝜎𝜎2),
 

with α0 = π/4, σ2 = 0.1, SNR = 0.4, β0 = 0.8, and the same zt used in the previous simulation study. In addition, the 
parameters βv1, Re and βv1, Im were obtained from complex-normal distributions as follows. For active voxels, we 
sampled βv1, Re + iβ1, Imv from a complex noncircular normal with mean 0.7 and covariance and relation values that 
lead to a correlation of 0.9 between βv1, Re and βv1, Im. For nonactive voxels, we sampled βv1, Re + iβ1, Imv from a 
complex noncircular normal with mean 0 and covariance and relation values that lead to a correlation of 0.9 
between βv1, Re and βv1, Im. Note that ηvt, Re and ηvt, Im are assumed independent for all the voxels and also across 
time. The location of the active voxels was determined using the same activation map used in the previous 
simulation and displayed in the left plot of Figure 3(a). 

Figure 6 shows the results obtained from a model that uses a noncircular prior on γv that captures the induced 
correlation structure in these coefficients (left plot) and also shows the results obtained using a circular prior that 
assumes no correlation structure. Clearly, the model with a noncircular prior leads to much better results as it 
adequately identifies the active regions and leads to a much smaller number of false positives than those 
obtained under the model with the circular prior. The model with the noncircular prior also leads to better results 
in terms of estimation of activation strength and reduced MSE. 

Figure 6. Left: Activation results obtained from a model with a noncircular prior. Right: Activation results 
obtained with a circular prior. The data were simulated so that the real and complex components of the activation 
coefficients are highly correlated. 

 

3.2. Simulation Study II: Physically Realistic Simulated Data 

A more realistic simulated dataset wasFigure 7, Figure 8generated using a discrete version of the 
magnetic resonance (MR) signal equation after steady-state magnetization (Karaman, Bruce, 
and Rowe 2015). This equation is given by 
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𝑐𝑐(𝑘𝑘𝑥𝑥,𝑘𝑘𝑦𝑦 ∣ 𝑡𝑡) = ∫  ∞
−∞ ∫  ∞

−∞ 𝜌𝜌(𝑥𝑥,𝑦𝑦)𝑅𝑅−𝑡𝑡/𝑇𝑇2∗(𝑥𝑥,𝑦𝑦)

× �1−𝑅𝑅−𝑇𝑇𝑅𝑅/𝑇𝑇1(𝑥𝑥,𝑦𝑦)�𝑅𝑅𝑖𝑖𝛤𝛤𝐻𝐻𝛥𝛥𝛥𝛥(𝑥𝑥,𝑦𝑦)𝑡𝑡𝑅𝑅−𝑖𝑖2𝜋𝜋(𝑘𝑘𝑥𝑥𝑥𝑥+𝑘𝑘𝑦𝑦𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦,
(13) 

where s(kx, ky|t) is the k-space location at intra slice time t, ρ(x, y) is the proton spin density 
(PSD), T*2(x, y) is the transverse relaxation rate (TRR), T1(x, y) is the longitudinal relaxation rate 
(LRR), ΔB(x, y) is the magnetic field inhomogeneity (MFI), and ΓH is the proton gyromagnetic ratio 
(Haacke et al. 1999Haacke, E., Brown, R., Thompson, M., and Venkatesan, R. (1999), Magnetic 
Resonance Imaging: Principles and Sequence Design, New York: Wiley. [Google Scholar]). The k-
space points in (13) are defined by the temporal integral of the magnetic field gradients Gx( · ) 
and Gy( · ): 

𝑘𝑘𝑥𝑥 =
𝛤𝛤𝐻𝐻
2𝜋𝜋� 𝐺𝐺𝑥𝑥(𝑡𝑡′)𝑑𝑑𝑡𝑡′,and𝑘𝑘𝑦𝑦

𝑡𝑡

0
=
𝛤𝛤𝐻𝐻
2𝜋𝜋� 𝐺𝐺𝑦𝑦(𝑡𝑡′)𝑑𝑑𝑡𝑡′.

𝑡𝑡

0
 

 
As input to this data-generation process, 3.0 T tissue specific physical parameters (Peters et al. 2006) for the brain 
slice as given in Table 2 and displayed in Figure 7 were used. The units of measurement for T*2 and T1 are msec. In 
generating these data, a simplified version of (13) was used where the MFI ΔB(x, y) was not included. Without the 
inclusion of ΔB(x, y) MFI, the k-space array after being reconstructed yielded a real-valued image with a maximum 
around one. The average value in gray matter of this image was computed, and the entire image multiplied by a 

magnitude signal-to-noise ratio SNRM × 𝜎𝜎/GM
‾

, where σ = 1 is the standard deviation of noise added to the 

simulation, SNRM = 25 is the signal-to-noise ratio for the simulation, and GM
‾

= 0.3545 is the average gray matter 
value before scaling. This scaled real-valued image was used as the magnitude of the true images. To have 
nonzero mean phase, baseline phase as shown in Figure 8(b) was added to each tissue type according to α0, OB = 0 
for outside brain, α0, WM = π/12 for white matter, α0, GM = π/6 for gray matter, and α0, CSF = π/4 for cerebrospinal 
fluid. The remaining imaging parameters were selected to mirror those of an experimental dataset with field of 
view (FOV) = 240 mm, time to echo (TE) = 50 msec, flip angle (FA) = 90°, effective echo spacing (EESP) = 720 μsec, 
and bandwidth (BW) = 125 kHz. 
 
Figure 7. Slice physical parameters. 

 

Figure 8. True simulated image values. 
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Table 2. Tissue physical parameter values. 
  Gray matter White matter Cerebrospinal fluid Outside brain 
PSD 0.83 0.71 1.00 10−9 
T*2 59.7 54.6 2200 1010 
T1 1331 832 4000 10−6 

 

The simulated data have slices of dimension 96 × 96 over T = 490 time points. The true activation regions are the 
two 5 × 5 red squares shown in the left panel of Figure 9. Each active voxel has different intensity and the voxels 
near the center of the region have stronger intensities than the ones around the edges of the region. At each time 
point, the magnitude contrast (β1) in Figure 8(c) was multiplied by a task response waveform and then added to 
the magnitude baseline (β0) in Figure 8(a) to form the image magnitude. At each time point, the phase contrast 
(α1) in Figure 8(d) was multiplied by a task response waveform then added to the phase baseline (α0) 
in Figure 8(b) to form the image phase. Independent zero mean and unit variance normal noise was also added to 
the real and imaginary parts at each time point. In this simulation, the maximum magnitude CNR in the center of 
each ROI was set to CNRM = β1/σ = 0.5/1 and the maximum phase CNR in each ROI was set to CNRP =
𝛼𝛼1/SNRM = (𝜋𝜋/120)/25. The contrast values (β1 and α1) in each ROI were then multiplied by an unnormalized 
Gaussian kernel with full-width-at-half-max (FWHM) = 4 voxels. 

Figure 9. Left: True activation map. Middle: Activation map from C-EMVS at optimal v0. Right: Activation map from 
magnitude-only EMVS at optimal v0. 

 
We fitted a Bayesian complex-valued (CV) model given by 

𝑦𝑦𝑡𝑡𝑣𝑣 = 𝛾𝛾1
∗,𝑣𝑣 + 𝛾𝛾2

∗,𝑣𝑣𝑡𝑡/𝑇𝑇 + 𝛾𝛾3
∗,𝑣𝑣𝑥𝑥𝑡𝑡 + 𝜂𝜂𝑡𝑡𝑣𝑣 , 𝜂𝜂𝑡𝑡𝑣𝑣 ∼ CN1(0, 2𝜎𝜎2, 0),(14) 

with γ*, v
1 and γ*, v

2 baselineFigure 9Table 3Figure 10and trend parameters, and γ*, v
3 the activation parameters for v = 1, 

…, V. Here, we set xt to be the BOLD response obtained from the convolution of the experimental block design 
and the canonical HRF. We used priors of the form π(γ*, v

1)∝1 and π(γ*, v
2)∝1 for the baseline and trend 

parameters. For the activation parameters γ*, v
3 for v = 1, …, V, we used priors of the form γ*, v

3∣ψv ∼ (1 − 
ψv)CN1(0, 2v0σ2, 0) + ψvCN1(0, 2v1σ2, 0), and for σ2, ψv, and θ we used the priors given in (12). As done in the 
simulation study I, we also fitted a magnitude-only version of this model (MO). The posterior results for both 
models summarized here were obtained after integrating out the baseline and trend parameters. In both models, 
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we chose the optimal values of v0 by maximizing the marginal posterior 𝜋𝜋0(𝛙𝛙 ∣ y) as described in the previous 
simulation study. In this case, the optimal v0 values were found to be 𝑣𝑣0MO = 𝑣𝑣0CV = 0.006.. 

The posterior activation maps for each model are shown in Figure 9. First note that both Bayesian models, the 
complex-valued model (CV) and the magnitude-only one (MO), perform reasonably well in terms of detecting 
active sites, particularly considering that the CV-fMRI data were not generated from these models and instead 
followed a much more complicated physically realistic model, and also considering the low SNR and CNR in this 
setting. The main advantage of the Bayesian CV and MO models is that their linear structure allows us to obtain 
posterior estimates in a computationally feasible manner that scales well with the large dimension of the images. 
Regarding the comparison between the complex-valued and magnitude-only models, we see that, once again, the 
CV model shows a better performance than the MO model. The MO model produces a larger number of false 
positives without detecting more true positives than the CV model. Table 3 shows the performance measures for 
both models. We also see that the mean squared errors are smaller for the CV model. 

Table 3. Performance measures obtained from the complex-valued EMVS and magnitude-only EMVS in simulation 
study II.  

  True positives False positives     MSE MSE 
Model (50 active) (9166 nonactive) Precision Accuracy (all) (active) 
CV 24 0 1.000 0.9972 0.0046 0.0147 
MO 23 5 0.821 0.9965 0.1582 0.0915 

 

In terms of the strength, the CV model also leads to more accurate results. Figure 10 shows the estimated 
strengths obtained from the C-EMVS and MO EMVS approaches with their corresponding optimal v0 values. The 
magnitude-only model overestimates the strengths for the true active sites and does not appropriately capture 
the fading effect observed in the true strength map. Finally, we note that full posterior results obtained via MCMC 
(not shown) were similar to those obtained through the EM approaches for both models. 

Figure 10. Left: True strength map. Middle: Strength map from C-EMVS at optimal v0. Right: Strength map from 
magnitude-only EMVS at optimal v0. 

 

4. Analysis of Human CV-fMRI Data 
We analyzed humanFigure 11data recorded during an fMRI experiment performed on a single subject on a 3.0-T 
General Electric Signa LX magnetic resonance imager. The experiment consisted of a unilateral finger-tapping task 
performed with a visual cue indicating whether to tap or rest. A block designed experiment with an initial 20 sec 
of rest followed by 16 epochs of 15 sec on and 15 sec off was used. The full dataset is composed of seven 2.5 mm 
thick axial slices of dimension 96 × 96. A single slice was used for the analysis presented here. Further details 
about the experiment, the dataset and previous analyses of these data are found in Karaman, Bruce, and Rowe 
(2014). The original time series at each voxel had 510 TRs, however, following the approach of Karaman, Bruce, 
and Rowe (2014), we discarded the first 20 observations for the analysis with the C-EMVS approach. Activation 
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from this finger-tapping experiment is well-studied. However, the methods that have been used so far could have 
limitations in detecting activation—as suggested by the simulation studies. Our goal here is to demonstrate that 
our novel Bayesian complex-valued method is able to simultaneously produce activation results that are 
consistent with previous results and additionally lead to a reduction of spurious results, such as activation outside 
of the brain or in regions that are not implicated in the finger tapping task. 

Karaman, Bruce,Table 4and Rowe (2014) analyzed these data with three different models: a complex-valued 
constant phase activation model that linearly describes the temporally varying magnitude (we refer to this model 
as KBR14-CV), a similar magnitude-only activation model (KBR14-MO), and a nonlinear model referred to as 
DeTeCT-ING that incorporates tissue and imaging parameters T1 and T*2 into physical magnetization equation to 
model magnetic resonance (MR) magnetization. More specifically, the DeTeCT-ING model considers the physical 
nonlinear signal equation to model MR magnetization, uses the first scans of the CV-fMRI data to estimate the 
parameters T1 and T*2, and incorporates these GM (gray matter) parameter values to detect active voxels. Further 
details about these models and related activation maps obtained by Karaman, Bruce, and Rowe (2014) are 
included in the Appendices. 

We applied the C-EMVS approach to these human CV-fMRI data using models with baseline, trend, and activation 
parameters and considered different noise structures. As in the previous examples, we used reference priors on 
the baseline and trend parameters and the proposed complex-valued spike-and-slab prior on activation 
parameters. We also used the canonical HRF to obtain the BOLD signals for all the voxels. Other classes of HRFs 
were considered, as explained in Section 3, resulting in similar activation results to those presented here for the 
canonical HRF. Regarding the noise structure, we considered independent noise and noise with a temporal 
correlation modeled in terms of an autoregressive process of order one or AR(1). The model with AR(1) noise was 
specified as follows,  

𝑦𝑦𝑡𝑡𝑣𝑣 = 𝛾𝛾1
𝑣𝑣,∗ + 𝛾𝛾2

𝑣𝑣,∗𝑡𝑡/𝑇𝑇 + 𝛾𝛾3
𝑣𝑣,∗𝑥𝑥𝑡𝑡 + 𝜂𝜂𝑡𝑡𝑣𝑣,

𝜂𝜂𝑡𝑡𝑣𝑣 = 𝜑𝜑𝑣𝑣𝜂𝜂𝑡𝑡−1𝑣𝑣 + 𝜁𝜁𝑡𝑡𝑣𝑣, 𝜁𝜁𝑡𝑡𝑣𝑣 ∼
iid 𝐶𝐶𝑁𝑁1(0,2 𝜎𝜎𝑣𝑣2, 0),

 

where ϕv is the AR(1) coefficient for voxel v. For this model, we considered a prior structure with π(γ*, v
1)∝1, 

π(γ*, v
2)∝1, γ*, v

3∣ψv ∼ (1 − ψv)CN1(0, 2v0σ2
v, 0) + ψvCN1(0, 2v1σ2

v, 0),σ2
v ∼ IG(1/2, 1/2), ψv∣θ ∼ Bernoulli(θ), θ ∼ 

Beta(1, 1), and ϕv ∼ U( − 1, 1). In addition, we also considered models with common variance for all voxels, that is, 
σ2

v = σ2 for all v and σ2 ∼ IG(1/2, 1/2) and models with common AR coefficient for all voxels, that is, ϕv = ϕ with ϕ 
∼ U( − 1, 1). All the different models that were considered are summarized in Table 4. 

Table 4. CV models considered for the human CV-fMRI data. 

Error structure Common variance Voxel-specific variance 
independent model (i): σ2 model (iv): σ2

v 
AR(1), common AR parameter model (ii): σ2, ϕ model (v): σ2

v, ϕ 
AR(1), voxel-specific AR parameter model (iii): σ2, ϕv model (vi): σ2

v, ϕv 
Here, we only present the results for models (iii) and (vi). We found that these two models led to better activation 
maps (i.e., smaller numbers of clear false positives in areas outside the brain) than the other models considered. 
The left and center plots in Figure 11 show the estimated values of ϕv for models (iii) and (vi). These pictures 
demonstrate that there is a large variability in the estimated AR coefficients at the voxel level. The voxels outside 
the brain essentially show no temporal correlation since the estimated AR coefficient values are close to zero. We 
also see that some voxels have relatively large temporal correlation with 𝜑𝜑�𝑣𝑣  around 0.6, however these voxels do 
not lie in the activation areas. Figure 11 also shows the estimated values of σ2

v from model (vi) (right plot). It is 
clear from this plot that the estimated σ2

v are larger for those voxels inside the brain than for those outside. These 
estimated values are also able to differentiate gray matter from the rest and are consistent with results in 
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Karaman, Bruce, and Rowe (2015). In particular, the right plot in Figure 11 shares similarities with the 
estimated T1 map in Karaman, Bruce, and Rowe (2015). This is an important result given that our proposed 
models are able to capture a relatively sophisticated brain structure without incorporating nonlinear physically 
based components that would make posterior computations extremely challenging for these large dimensional 
data. 

Figure 11. Human data: Estimated values of ϕ2
v for the CV model with a single σ2 (model (iii), left plot) and the CV 

model with voxel-specific σ2
v (model (vi), center plot); estimated values of the ϕvs in model (vi). 

 
Figure 12 shows the strength maps obtained from models (iii) (left plot) and (vi) (right plot). These maps are fairly 
similar for both models. Comparing these C-EMVS results with those results obtained from the model of Karaman, 
Bruce, and Rowe (2014), we observe that the C-EMVS models have higher power of detecting active sites than the 
magnitude-only KBR14-MO model, and also show a better performance than the complex-valued KBR14-CV 
model (KBR14 maps provided in the online Appendices). The maps obtained from models (iii) and (vi) show either 
no false positives outside of the brain and also no false positives in the upper left side of the brain close to the no 
signal area (model (iii)), or a much more reduced number of false positives (model (vi)) when compared to the 
activation map obtained from model KBR14-CV. In addition, The KBR14-MO and KBR14-CV models both use an 
FWE of 5% and are therefore procedures that require two steps. The Bayesian C-EMVS approach is a one-step 
procedure and does not require additional adjustments for multiple comparisons. The C-EMVS approach also 
compares favorably with the more physically realistic nonlinear DeTeCT-ING model. Models (iii) and (iv) identify 
most of the sites in the left and supplementary motor region and produce none or a reduced number of the false 
positive sites in the anterior left side of the brain than those that were obtained by the DeTeCT-ING model. These 
findings are not trivial especially given that, unlike the DeTeCT-ING model, the proposed Bayesian C-EMVS 
approach does not incorporate any physical aspects to model MR magnetization. This example shows that 
methods with improved power for detecting activations, such as the one developed here, are essential to increase 
the understanding of human brain function, particularly in scenarios that involve CV-fMRI images with low SNR. 

Figure 12. Human data: Strength maps obtained from models (iii) (left) and (vi) right. 
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5. Conclusion 
Our main contribution in this article is a new Bayesian variable selection approach for detection of brain activation 
from single or multi-task complex-valued fMRI signals at the voxel-specific level. Although we focused on circular 
complex-valued priors and the methods were only illustrated in the context of CV-fMRI data, the models and 
algorithms proposed here are general, and can be applied to the general case of noncircular complex-valued 
priors and to other types of data. 

Our simulation studies show that by considering both, real and imaginary information, the Bayesian complex-
valued variable selection methods are able to detect more true positives and less false positives than magnitude-
only models, especially when the SNR is small. We also found that both, the Bayesian complex-valued and 
magnitude-only EMVS approaches performed better than lasso and adaptive lasso and were computationally fast, 
with run times comparable to those needed by lasso or adaptive lasso. Finally, we demonstrated that the 
activation results in the finger-tapping experiment obtained from the C-EMVS approach compared favorably to 
those results obtained from more sophisticated nonlinear models that are physically realistic as they incorporate 
tissue and imaging parameters. The computational efficiency and the performance obtained in the analysis of 
experimental and simulated complex-valued fMRI data presented here make the C-EMVS approach a very useful 
tool for detecting brain activation. 

We note that the new Bayesian complex-valued models considered here do not use any sophisticated spatio-
temporal structure that can more appropriately describe fMRI data (we only considered an AR(1) temporal 
structure). Adding spatio-temporal structure that can better describe the data could potentially lead to further 
improved results, but would also lead to more computationally intensive models that may be not be feasible for 
detecting brain activation at the voxel-specific level. Future work will explore Bayesian complex-valued spatio-
temporal extensions that are computationally scalable as well as multi-subject models. The C-EMVS methods 
presented here serve as a highly useful starting point, especially for analyzing high-dimensional CV-fMRI data. 
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