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Modeling and Inference
of Multisubject fMRI Data

Using Mixed-Effects Models for Joint Analysis 

BY JEANETTE A. MUMFORD 
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F
unctional magnetic resonance imaging (fMRI) is a
rapidly growing technique for studying the brain in
action. Since its creation [1], [2], cognitive scientists
have been using fMRI to understand how we remember,

manipulate, and act on information in our environment.
Working with magnetic resonance physicists, statisticians, and
engineers, these scientists are pushing the frontiers of knowl-
edge of how the human brain works.

The design and analysis of single-subject fMRI studies
has been well described. For example, [3], chapters 10
and 11 of [4], and chapters 11 and 14 of [5] all give acces-
sible overviews of fMRI methods for one subject. In con-
trast, while the appropriate manner to analyze a group of
subjects has been the topic of several recent papers, we do
not feel it has been covered well in introductory texts and
review papers. Therefore, in this article, we bring together
old and new work on so-called group modeling of fMRI
data using a consistent notation to make the methods more
accessible and comparable.

The analysis of single-subject fMRI data has drawn heav-
ily on signal processing techniques. As discussed in the fol-
lowing, linear time invariant systems are the standard way
to specify the model for the experimentally related signal in
fMRI. When more than one subject is considered, the model
must account for differing response magnitudes in each sub-
ject. While it is easy to specify a multisubject model that
fits different responses for each subject, standard inference
procedures do not account for the random subject-to-subject
variation in response magnitude. When this random varia-
tion is neglected, the inferences are specific to the cohort of
subjects studied. As most experimenters want to make infer-
ence on the population average magnitude, inference meth-
ods must account for heterogeneity in the population, and
specifically, a significant result must be based on statistical
confidence that the population from which these subjects
were drawn shows a given effect on average. Population
inference is the goal of group modeling, and it is a statistical
challenge not met by direct application of methods found in
a first-year statistics course. Basic statistics and regression
usually only cover ordinary least squares (OLS), linear
regression, and other fixed-effects models that do not yield
population inferences. 

In the next section, we distinguish fixed-effects models
from mixed-effects models and will motivate the importance
of a mixed-effects model for group fMRI analysis. The sec-
tions following that describe single-subject modeling and
show a general method for estimating the group model.

Fixed Effects Versus Mixed Effects
To motivate the need of a mixed-effects analysis, we use a simple
nonimaging example. Instead of measuring brain activation, per-
haps we wish to compare hair length between genders. We wish
to determine if there is evidence that American men and women
have different length hair. It isn’t feasible to measure every
American, so we will randomly select men and women from the
whole population. Based on just these two samples, we will try to
make a statement, or inference, about all Americans. In order to
make this comparison, we need the distributions of hair length for
both men and women, and once these are obtained, a statistical
comparison can determine whether or not they differ.

The experiment is conducted by randomly choosing four
men and four women and randomly selecting a single hair
from each of their heads and measuring it (in the following,
we consider measuring multiple hairs). For each group, note
that there are two sources of variation: within individual and
between individual. The between-individual variation stems
from each person having a different hair cut and hence differ-
ent hair length, while the within-individual variation is present
since, on any one person, the length of each hair varies over
the head. Let σ 2

W be the within-subject variance and σ 2
B the

between-subject variance. The top eight distributions in Figure
1 show the hair length distributions for the four men and four
women. These distributions describe the relative frequency of
hair length of a randomly selected hair from a single individ-
ual. Here we have assumed that the variation of a given indi-
vidual’s hair length is 1 in (σ 2

W = 1).
If our population of interest is precisely these eight men and

women, then between-subject variation can be neglected and a
fixed-effects analysis can be used. The question to be
answered is: How does the hair length of these particular four
men compare to that of these particular four women? The
resulting fixed-effects distributions are shown in Figure 1,
below the individuals’ distributions. Each gender’s fixed-
effect variance is σ 2

FFX = (1/4)σ 2
W = 0.25.
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If we are not just interested in these eight men and women
but the comparison of hair length between all men and women,
the next step is to construct population hair length distributions.
A mixed model treats the four men and four women as ran-
domly selected, not as the entire population of interest, and it
takes into consideration the between-individual variances as
well as the within-individual variances. The bottom of Figure 1
shows hair length distributions for men and women when the
between-individual variance is σ 2

B = 49 in. The variance of
each gender’s group distributions has two contributions:

σ 2
MFX = σ 2

W

4
+ σ 2

B

4
= 1

4
+ 49

4
= 12.5.

Note that if the fixed-effects distributions were wrongly
used to make a conclusion about all men and women, they
would show that males have shorter hair than females. In
fact, the mixed-effects distributions show considerable
overlap, and we would not, based on this small sample, be
able to conclude that men and women have dif-
ferent hair lengths.

One simplification here is that we only mea-
sured one hair per person. It would be better to
randomly select multiple hairs, measure each,
and take the average. If we instead had measured
25 hairs per person, then the distribution of each
subject’s average would have variance σ 2

W/25;
for the fixed-effect distribution 

σ 2
FFX = 1

4
× σ 2

W

25
= 0.01,

and for the mixed-effects distribution 

σ 2
MFX = 1

4
× σ 2

W

25
+ 1

4
σ 2

B = 12.26.

Observe that since σ 2
B is so much larger than

σ 2
W, increasing intrasubject precision has little

impact on the mixed-effects variance.
Returning to fMRI, the basic issues are essen-

tially the same. Instead of measuring multiple
hairs, we are measuring the brain activation at a
particular brain location multiple times. In multi-
ple subject fMRI studies, most often, the interest
is in making conclusions about populations and
not specific subjects, and hence a mixed-effects
method is necessary to get valid inferences in
group fMRI.

Single-Subject fMRI Analysis
The basis of fMRI is the blood-oxygen-level-dependent
(BOLD) effect. Due to differential magnetic susceptibility
of oxygenated (oxygen-rich) hemoglobin and deoxygenated
hemoglobin, the BOLD effect results in greater MRI inten-
sity when brain activity increases (see, e.g., [6] for details).
Since the BOLD effect is related to blood flow and volume,
which do not change instantaneously, the BOLD response is
temporally blurred and delayed relative to the experimental
stimuli presented to the subject. Any intrasubject model
must account for these effects (see Figure 2).

Consider a specific experiment, which we will revisit
throughout the article [7]. In 12 healthy subjects, the investiga-
tor wanted to study the activation of higher-level motor areas
during visually cued right-hand finger movement where the
task was either tapping the index finger only, sequentially tap-
ping the fingers, or randomly tapping the fingers. The hypoth-
esis is that motor-related brain activity would increase with
the complexity of the task, where index tapping is the most
simple and random tapping is the most complex task. The

Fig. 1. These distributions illustrate the difference between fixed- and mixed-
effects analysis, where blue and red distributions refer to males and
females, respectively. The top eight distributions are subject-specific distribu-
tions, followed by the group distributions stemming from fixed-effects and
mixed-effects analysis. The vertical lines indicate the sample means for the
two groups.
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design consisted of 30-s pseudorandomly ordered blocks of
rest and the three visually cued finger tapping tasks [7]. Figure
2 displays the experimental design for this study.

All modeling discussed here is applied in a voxelwise
fashion (a voxel is a single volume-element), i.e., each
model is fitted to the data associated with each voxel sepa-
rately. Intrasubject fMRI modeling is generally based on a
linear time-invariant systems approach to the BOLD
response. The experimental stimuli are represented by x(t),
consisting of just zeros and ones, indicating when a stimu-
lus is present. For example, a block design consists of
stimuli that are on for a duration of 2–30 s and would be
represented in x(t) by a box-car, and an event-related
design consists of transient stimuli, which are represented
by delta functions. In practice, there may be multiple
experimental  conditions,  each with indicator xj(t) ,
j = 1, . . . , J. Using an assumed hemodynamic response
function (HRF) h(t), the noiseless predicted response is
then the convolution of xj(t) and h(t)—(h ⊗ xj)(t). The pre-
dicted response is discretized into {xjt}T

t=1 and used to cre-
ate a predictor for the observed data {yt}T

t=1 . The fitted
model is then yt = β0 + ∑

xjtβj + εt , where εt is mean zero
random error. Figure 2 shows both the experimental stim-

uli and the experimental predictors that result
from the convolution with an HRF for the fin-
ger tapping experiment described previously.

In matrix notation, for the kth of N subjects,
we write Yk = Xkβk + εk, where Yk is a Tk vector
of the observed data, Xk is the Tk × p
(p = J + 1) predictor matrix, and εk is the Tk

vector of random errors [Figure 3(a), top]. Note
that column 1 of Xk consists of a 1 for the inter-
cept followed by columns {xtj}T

t=1, j = 1, . . . , J. 
If the errors εk are independent and have

homogeneous variance σ 2
k , then the Gauss-

Markov theorem [8] gives the minimum vari-
ance, unbiased estimate of βk as

β̂OLS
k = (

XT
k Xk

)−1
XT

k Yk, (1)

which has variance Cov (β̂OLS
k ) = (XT

k Xk)
−1σ 2

k .
The OLS residuals are Rk = AkYk , where
Ak = I − Xk(XT

k Xk)
−1XT

k is the residual forming
matrix. The unbiased estimate of the variance of
the errors is

σ̂ 2 OLS
k = 1

νk
AT

k Ak, (2)

where νk = Tk − p are the degrees of freedom.
This method is known as OLS. As found by
many authors, residual error in fMRI is not
independent and exhibits excess variation at low
frequencies (sometimes called 1/ f-type autocor-
relation) [9]–[12]. When Cov(εk) = Vkσ

2
k �= Iσ 2

k ,
where Vk is the correlation matrix, estimates
obtained from (1) will still be unbiased
(E(β̂k) = βk , where E(·) denotes expectation)
but will not have optimal precision (minimum
variance), and the estimate of residual variance
(2) will be biased.

The optimal approach with dependent errors
is whitening, or decorrelation of the data and

model. Instead of working directly with (1), we premulti-
ply by a matrix that renders the errors independent:
V(−1/2)

k Yk = V(−1/2)

k X kβk + V(−1/2)

k εk , where V(−1/2)

k is a
matrix such that V(−1/2)

k VkV−(1/2)

k
T = I. We rewrite this as

Y∗
k = X∗

kβk + ε∗
k , (3)

where Y∗
k , X∗

k , ε∗
k are the whitened data, model, and errors,

respectively. The Gauss-Markov estimate of βk is now just the
OLS estimate using Y∗

k and X∗
k :

β̂GLS
k = (

X∗T
k X∗

k

)−1
X∗T

k Y∗
k (4)

and is referred to as the generalized least squares (GLS) esti-
mate. The estimate β̂GLS

k has optimal variance, given by

Cov
(
β̂GLS

k

) = σ 2
k

(
X∗T

k X∗
k

)−1
, (5)

where Cov(·) is the variance-covariance matrix of the quantity
of interest. Similarly, the unbiased estimate of whitened error
variance is

Fig. 2. The experimental stimuli and predictors associated with the BOLD
response from a singe voxel (volume-element) over time. The top color bar
indicates when the subject was cued to tap their fingers randomly (red),
sequentially (green), only the index (yellow), or not at all (blue). The associ-
ated experimental stimuli are shown as well as the experimental predictors
that are created by convolving the stimuli with an HRF. Finally, the original
BOLD response (black) is shown with the predicted model fit (blue) based
on the model formed with the experimental predictors.
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σ̂ 2 GLS
k = 1

νk

(
Y∗

k − X∗
k β̂

GLS
k

)T(
Y∗

k − X∗
k β̂

GLS
k

)
. (6)

In short, with knowledge of the whitening matrix V
− 1

2
k , optimal

estimates for βk can be found with GLS.
There are two important details to single-subject mod-

eling. First, whitening assumes that the true error correla-
tion Vk is known precisely. In practice, Vk must be
estimated from the data, and an estimate may be biased
and highly variable, potentially corrupting the whitening
process and yielding estimates of βk and σ 2

k that are
worse than OLS. In fMRI, it is generally acknowledged
that some sort of spatial regularization of V̂k is required
[12]–[16]. This approach reduces the variability in V̂k by
pooling over space either locally [12]–[14] or globally
[15], [16].

The other important detail is the use of contrasts to
summarize evidence for a particular effect. Rarely does an
investigator have interest in all p elements of βk. Rather,
interest typically focuses on one condition versus another
or an average of conditions versus another. For example,
in the finger tapping experiment, we may only be interest-
ed in whether activation from random finger tapping
(Condition 3) is greater than sequential finger tapping
(Condit ion 2) ,  in which case we define contrast
c = [0 0 − 1 1] and estimate the quantity cβk = βk3 − βk2

with cβ̂k [Figure 3(a), bottom]. The variance of the esti-
mated contrast is

Cov(cβ̂k) = c
(
Cov(β̂k)

)
cT. (7)

Given user’s interest in contrasts of βk, in the remainder of this
article we focus on inference of cβk.

Inference on cβk is made with a ratio of the estimate cβ̂k to
its standard error. In contrast to the true standard deviation

√
Cov(cβ̂k),

the standard error of an estimator is its estimated standard
deviation

√
Ĉov(cβ̂k).

If the estimated BOLD response magnitude is large rel-
ative to its standard error, we conclude that the result was
unlikely to have arisen by chance. When the random
errors have a Gaussian distribution, the ratio follows a
Student’s T distribution, and it forms the basis of infer-
ence for linear models.

Model
The starting point for our statistical modeling of group
fMRI data is voxel-aligned data. That is, at each voxel, we
have data from each subject that have been motion-correct-
ed, aligned to a standard atlas brain, and perhaps smoothed

Fig. 3. Two-stage model in the case where a single contrast from each subject is taken from Level 1 to Level 2. (a) The model for
one subject of the finger tapping experiment, including the contrast that is applied to the parameter estimates to test if the
activation of sequential finger tapping is different from random finger tapping. (b) The second-level model incorporating the
first-level contrasts from 12 subjects, where the model produces group-level estimates pertaining to the first six subjects and the
last six subjects. The contrast at this level compares the two groups of subjects.
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(see “Preparations for Multisubject Modeling”). Before we
set out the various models used for group modeling, we
define notation.

Notation
It is useful to specify the complete model in stages, a first or
lower level, where a model is fit for each subject, and a sec-
ond level, which combines the different subjects.

As shown previously, the general linear model for the kth
subject of N subjects is

Yk = Xkβk + εk, (8)

where Yk is the Tk × 1 vector of fMRI response data, Xk is the
Tk × p design matrix, βk is a vector of p parameters, and the
error vector of length Tk is Gaussian distributed with variance
σ 2

k and correlation Vk, εk ∼ N(0, σ 2
k Vk). Subjects are indepen-

dent, and so Cov(εk, εk′) = 0 for k �= k ′. Note that while each
subject can have a differing number of scans (Tk), all of the
design matrices Xk must have the same number of columns,
each column expressing the same effect in each subject’s data.
In general, Vk is not diagonal and will express the autocorrela-
tion that is present in fMRI data; a typical assumption is
order-1 autoregressive [AR(1)] noise, such that (Vk)ij = ρ

|i− j|
k ,

where ρk is the first-order autocorrelation.

These N first-level models can be concisely expressed as

Y = Xβ + ε, (9)

where Y = [YT
1 , . . . , YT

N ]T , X = diag (X1, . . . , XN) ,
β = [βT

1 , . . . , βT
N ]T , and ε = [εT

1 , . . . , εT
N ]T with covariance

V = Cov(ε) = diag(σ 2
1 V1, . . . , σ 2

N VN) (diag (·) defines a
block-diagonal matrix); let T = ∑

Tk be the total number of
scans in the entire dataset.

The second-stage analysis is used to relate subject-specific
parameters βk to population parameters βg:

β = Xgβg + εg. (10)

Assuming all first-level parameters are taken to the second
level, Xg is a Np × pg second-level design matrix, βg is a
vector of length pg that contains the second-level parame-
ters, and εg ∼ N(0, σ 2

g Vg), where Vg is a block-diagonal
matrix with blocks Vgk ; note that we separate overall group
variance σ 2

g from the correlation matrix Vg. Typically, Xg

has a very simple form, with columns of ones to test the
mean response over subjects. The estimation of the para-
meters in the two-stage analysis is a challenge, since β
occurs in both (9) and (10), and β is not observed. While

There are various preprocessing steps that must be

applied to fMRI data before group modeling can be per-

formed. Of the three steps, intrasubject registration, inter-

subject registration, and spatial smoothing, the second is

the most crucial to group modeling; without intersubject

registration, different subjects’ brains will not line up and

group modeling will be impossible.

Intrasubject Registration—Movement Correction
Despite experimenters’ and subjects’ efforts, subjects

invariably move their heads in the magnet. If uncorrected,

movement can be a significant source of nuisance vari-

ability. Consider that we are interested in finding BOLD sig-

nal changes on the order of 0.1–5%, yet if a subject moves

his head a distance of one-half voxel, a voxel at the edge

of the brain will experience a 50% change in intensity.

Hence, successful estimation and correction of movement

is necessary to find the subtle effects of interest.

Motion correction methods are all generally rigid

body, estimating three translation and three rotation para-

meters to match a given image to the reference image,

typically the first image collected. This is a classic image

processing problem (see, e.g., [25]–[27]). The principal dif-

ferences between methods are on the cost function to

measure image similarity (typically least squares or mutu-

al information), the optimization method, and the interpo-

lation method used (which may differ between estimation

and the final application of movement parameters).

Intersubject Registration 
Everyone, even identical twins, has a uniquely shaped

brain. Before group modeling of fMRI data can be per-

formed, all subjects must be spatially transformed into a

common space. Sometimes known as spatial normalization,

this process finds a transformation that best warps a subject

into a common atlas brain space best corresponds to loca-

tion T(x) in a subject’s brain. Finding the best parameteriza-

tion of the transformation T is an active area of research

(see, e.g., [28]–[31]). For the purposes of this work, we simply

assume that the functional data have been spatially trans-

formed such that a given voxel in each subject corresponds

to the same atlas location, as best as is possible.

Spatial Smoothing 
Human anatomy is highly variable, and two brains cannot

necessarily be matched gyri-to-gyri even when the registra-

tion is done manually. To overcome these limitations of inter-

subject registration, spatial smoothing is applied to blur out

residual anatomical differences. Commonly used are

Gaussian kernels with full width at half maximum of 5–10 mm.

PREPARATIONS FOR MULTISUBJECT MODELING
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there are standard methods for fitting this so-called hierar-
chical model [17], they are based on all T data points and
involve iterative optimization. Since a typical group analy-
sis can have T = 20, 000 scans, with each scan having
100,000 voxels, direct application of these methods is gen-
erally not practical. A more computationally efficient
approach is to build group model-based summary statis-
tics, which is described next.

Summary Statistics Approach
The summary statistics approach is a natural approach that
involves first estimating β from (9) then estimating βg using a
modified version of (10). Because the first-level model (9) is
separable by subject, β̂ = [β̂T

1 , . . . , β̂T
N ]T can be found sub-

ject-by-subject with (4). The group model based on β̂ is

β̂ = Xgβg + εg + (β̂ − β)

= Xgβg + εg̃. (11)

Note that (10) models the unobservable, true mean responses
β for each subject, while (11) models the observed, estimated
responses β̂ for each subject. The summary statistic model’s
errors εg̃ have mean 0, variance

Vg̃ = (XTV−1X)−1 + σ 2
g Vg, (12)

where the first component can also be written
diag({σ 2

k (X∗T
k X∗

k )
−1}), and reflects the intrasubject variance-

covariance of the β̂ks, while the second component indicates
how variable the true effect is between subjects. If Vg̃ is
known, then the GLS estimate of βg is given by,

β̂g =
(

X∗T
g X∗

g

)−1
X∗T

g β̂∗ (13)

Cov
(
β̂g

)
=

(
X∗T

g X∗
g

)−1
, (14)

where X∗
g = V−1/2

g̃ Xg and β̂∗ = V−1/2
g̃ β̂ . Assuming Gaussian ε

and εg, it can be shown that this summary-statistic-based esti-
mate is identical to that found using all of the data [18]. 

A crucial observation is that this summary statistic
approach requires both the subject-level parameter esti-
mates β̂k and their variances σ 2

k (X∗T
k X∗

k )
−1. If OLS is used

with (11), ignoring the covariances, often the estimates will
be suboptimal and the standard errors incorrect. An impor-
tant special case when second-level OLS and GLS esti-
mates coincide involves contrasts.

As discussed previously, the goal is usually inference on a
particular contrast of parameters cβk. In this case, the whole
β̂ doesn’t need to be brought to the second level, only the N
contrasts [18]; β̂ becomes β̂cont = [cβ̂1, . . . , cβ̂N ]T ,  V
becomes a diagonal matrix with entries σ 2

k c(X∗
k X∗

k )
−1cT , and

Vg will have a simple form, typically just IN . If the intrasub-
ject contrast variance is homogeneous, i.e.,

σ 2
k c(X∗T

k X∗
k )

−1cT = σ 2
k′c(X∗T

k′ X∗
k′)

−1cT

for k �= k′, then the OLS and GLS estimators βg are equiv-
alent [19].

Figure 3(b) shows an example of a second-level model con-
sisting of a single contrast from each of 12 subjects. This
model produces group-level estimates of the contrast for the
group of the first six subjects (βg1) and the last six subjects
(βg2). The group model is given by (11), except the dependent
variable is β̂cont .

The following sections introduce different summary statistics
methods that have been developed. Due to the massive size of
fMRI datasets, standard statistical software is not useful, and cus-
tom software is required. Because of this, the first three sections
are organized around statistical methods implimented in three
widely used software packages, FSL (http://www.fmrib.ox.
ac.uk/fsl), fMRIstat (http://www.math.mcgill.ca/ keith/ fmristat),
and SPM (http://www.fil.ion.ucl.ac.uk/spm). While all of the
methods use the model described above, they differ in how they
find estimates for the between-subject variance Vg̃. 

FSL
The FMRIB software library (FSL) uses the summary statis-
tics group model described previously [(9) and (11)] [18], with
the restriction that only a single contrast per subject is taken
to the second level. They use Bayesian methods to estimate
βg while accounting for uncertainty in the estimates of σ 2

g
(see “Bayesian Versus Classical Inference” in “Statistics
Terms”). First we review FSL’s first-level modeling methods. 

As indicated previously, the autocorrelation Vk is needed
to find optimal intrasubject estimates β̂k (4). FSL uses three
steps to obtain V̂k for each voxel. First, a high-pass filter is
applied to data and the model to remove low-frequency noise
and reduce nonstationarity. Second, OLS residuals
(Yk − β̂OLS) are used to estimate an autocorrelation function
(ACF) which is regularized with a Tukey taper. Finally, the
voxelwise ACFs are further regularized with a spatial
smoothing; since autocorrelation tends to vary more between
tissue type and less within, a nonstationary spatial smoothing
is used, which accounts for tissue type as determined by
functional image intensity. The resulting autocorrelation esti-
mate V̂k is used in (4) and (5). 

Due to differential magnetic susceptibility of

oxygenated hemoglobin and deoxygenated

hemoglobin, the BOLD effect results in greater

MRI intensity when brain activity increases.
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STATISTICS TERMS

Efficiency
The efficiency of an estimator is the inverse of variance. If you have two estimators Ê1 and Ê2, where Ê1 is more efficient

than Ê2, this implies that Var (Ê1) < Var (Ê2).

Bayesian Versus Classical Inference
Classical statistical inference is the basis for most widely known statistical procedures. Also known as frequentist infer-

ence, the approach assumes that there is a fixed, unknown parameter that describes a feature of a population (say, the

mean BOLD response in a given brain region in a given experiment). The data, which is a random process over repetitions

of the experiment, is collected to learn about this parameter. Classical inference is couched in terms of unlimited repeat-

ed samples of the population (in our case, of fMRI subjects). For example, the interpretation of a confidence interval (an

interval about an estimate that expresses its uncertainty) requires reference to an infinite number of hypothetical replica-

tions of the experiment: A level 95% confidence interval will contain the true (fixed) parameter 95% of the time with many

repetitions of the experiment.

Bayesian statistical inference regards the parameters as random instead of as fixed. Before any data is collected, the

parameters are assigned an a priori distribution, called the prior. After the experiment, the prior is updated into a posteri-

or, based on what has been learned about the parameter; the posterior is the distribution of the parameter conditional on

the observed data. Bayesian inference is based on the posterior distribution. For example, a Bayesian confidence interval

is an interval that has a given probability of containing the (random) parameter after having seen the data. There is no

reference to the frequency of an event over ad infinitum repetitions of the experiment.

While Bayesian methods offer intuitive probabilistic statements about unknown quantities of interest (the parameters),

they can be controversial. Different investigators may have different beliefs and so use different priors, and then get differ-

ent results based on the same data. To address this, many authors use so-called noninformative priors, which exert as little

influence on the posterior as possible. The two approaches, fortunately, can be reconciled. For most problems, with more

and more data, the prior becomes less and less important, and Bayesian and classical inferences will generally agree.

Maximum Likelihood and Restricted Maximum Likelihood
For the following illustration, we use the first-level model, Yk = Xkβk + εkYk = Xkβk + εkYk = Xkβk + εk, where ε ∼ N(0, σ 2

k Vk) and Yk has length Tk. One of

the difficulties in estimation is that there are multiple parameters to estimate, the components of β and the components of

σ 2
k Vk. The maximum likelihood (ML) and ReML are two methods that are used to estimate these parameters. The starting

point of both of these methods is the formation of a likelihood equation or the joint probability distribution function of the

random variables. In the ML case, Yk ∼ N(Xkβk, σ
�
k Vk)Yk ∼ N(Xkβk, σ
�
k Vk)Yk ∼ N(Xkβk, σ
�
k Vk) for k = 1, . . . , N are the random variables of interest, and the likeli-

hood is a function of βββk and σσσ 2
kVk, given by the product of the N normal distribution functions:

L
(
βk, σ

2
k Vk

) =
N∏

k=1

{
(2π)−Tk/2

∣∣σ 2
k Vk

∣∣−1/2
exp

(
−1

2
(Yk − Xkβk)

T (
σ 2

k Vk
)−1/2

(Yk − Xkβk)

)}
. (19)

Since this likelihood cannot be maximized for both βββk and σσσ 2
kVk simultaneously, first an estimate of σσσ 2

kVk is plugged into

(19)  and the likelihood is maximized to find β̂k, then this estimate of βk is substituted into (19), and it is maximized to esti-

mate σσσ 2
kVk. This process is repeated until the estimates converge to a solution. Usually a specific structure of Vk, for exam-

ple AR(1), is assumed to simplify the estimation process by reducing the number of variance parameters that need to be

estimated. One of the pitfalls of this method is that when estimating the variance, an estimate of βββk is used instead of the

true value. This causes the variance estimate to be biased in the case of maximum likelihood. For example, the ML one

sample variance estimate is 1/N
∑

i(Yi − Y )2 and is biased by a factor of N/N − 1.

ReML starts with a different random variable Rk = AkYk, where Ak = (I − Xk(XT
kXk)

−1XT
k), which has Rk ∼ N(0, Akσ

2
k VkAT

k), and

so the likelihood is only a function of σσσ 2
kVk. This likelihood is then maximized to get the estimate of σσσ 2

kVk, and since βββk was

not involved, the result is an unbiased estimate of the variance. For example, it can be shown that the ReML one sample

variance estimate is 1/N − 1
∑∑∑

i(Yi − Y)2 and is unbiased. The ReML method only supplies an estimate for the variance para-

meters that are substituted into (19), which is maximized to find the estimate for βββk. Further details on ReML and ML can be

found in [17].
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Inference on βg is based on its posterior distribution condition-
al on the data Y, p(βg|Y). However, the posterior p(βg|Y) doesn’t
have a closed form, so a two-stage method is used to find a poste-
rior mean estimate β̂FSL

g ; first, a fast approximation is used, fol-
lowed by a slower Markov chain Monte Carlo (MCMC).

At each voxel, the posterior of βg is approximated as a
multivariate T with noncentrality parameter β̂g, variance para-
meters Cov(β̂g) [see (13) and (14)], and degrees of freedom
νg. The noncentrality and variance parameters depend on the
unknown mixed-effects covariance Vg̃ . The fast method
assumes large intrasubject degrees of freedom νk, so the intra-
subject contribution to Vg̃ is assumed known without error,
leaving only intersubject variance σ 2

g to be estimated. A max-
imum a posteriori estimate σ̂ 2FSL

g is found using iterative opti-
mization, and the degrees of freedom are estimated
conservatively as N − pg.

The point estimates of σg and βg are used to find the posterior
probability of a positive response P(βg > 0|Y). By equating the
posterior probability to a Z statistic via a P-value, voxelwise Z
statistics are created that offer classical tests of the null hypothe-
sis Ho : βg = 0; only voxels with Z statistics close to the
desired significance threshold continue on to the next stage. The
second stage employs a slower, more accurate MCMC method
of estimation [18], which accounts for uncertainty in σg by esti-
mating the effective degrees of freedom νg of the posterior. This
stage produces more accurate test statistics for the voxels that
were near the threshold in the first stage, and these are used to
locate voxels where the group-level parameters are significant. 

fMRIstat
Worsley et al. [14] developed a summary statistics approach
that is implemented in the fMRIstat package. As with FSL’s
method, GLS is used to estimate the parameters of the first
level, and only a single contrast per subject is taken from the
first to the second level. One important aspect of the method
is that the random-effects variance σ 2

g is estimated using
restricted maximum likelihood (ReML), the standard classi-
cal variance estimation method (see “Maximum Likelihood
and Restricted Maximum Likelihood”). Another unique
aspect is the regularization σ̂ 2

g , which is used to increase the
effective degrees of freedom of the variance estimate.

At the first level, an AR autocorrelation model is fit to a sam-
ple covariance matrix of the OLS residuals. The OLS residuals
have covariance RkVkRT

k �= Vk, and so the AR coefficients are
biased. After applying a bias correction, the AR coefficients are
spatially smoothed and then used to create V̂(−1/2)

k (see [20]
and [21] for recent work on this smoothing step). GLS estimates
for βk and its variance are as before [(4) and (5)].

The second term of Cov(εg̃), the between-subject variance, is
estimated with ReML, σ̂ 2 ReML

g . Since group size N is often
small, this variance estimate is itself very variable; equivalently,

it has very low degrees of freedom. In contrast, the pooled
fixed-effects variance

σ̂ 2
F =

∑

k

νk∑
k νk

σ̂ 2
k c

(
X∗T

k X∗
k

)−1
cT (15)

has very high degrees of freedom, 
∑

k νk . To borrow
strength from this high-precision variance estimate, Worsley
et al. [14] considered the following manipulation of the
mixed-effect variance

σ̂ 2
F + σ̂ 2

g = σ̂ 2
F + σ̂ 2

g

σ̂ 2
F

σ̂ 2
F ≈ smooth

(
σ̂ 2

F + σ̂ 2
g

σ̂ 2
F

)

σ̂ 2
F . (16)

That is, since the ratio of mixed- to fixed-effect variance
appeared to have little structure, they smooth that ratio. By
solving for random-effect variance, they obtain an estimate
consisting of a smooth image multiplied by a high-degree-of-
freedom variance estimate:

σ̂ 2fmristat
g = smooth

(
σ̂ 2

g

σ̂ 2
F

)

σ̂ 2
F . (17)

Whereas FSL used MCMC to find accurate degrees-of-
freedom, fMRIstat selects the full width at half maximum
(FWHM) of variance-ratio smoothing to obtain effective
degrees of freedom of at least 100. Of course, this decrease in
variability of the variance estimate comes at the cost of an
increase in the bias of the variance estimate.

Finally, the T statistics are formed by the ratio of β̂g and its
standard error (using σ̂ 2fmristat

g ) and are used to make infer-
ences on the activation within each voxel.

SPM2
The SPM2 package employs the theory developed by Friston
et al. in [22] and [23]. SPM2 also uses GLS with an estimate
of V̂k to estimate the first level. It differs from the previous two
methods by only requiring the estimates of the mean parame-
ters βk, not both the mean and covariance parameters, to be
taken from the first level into the second level. Such a simpli-
fication, though, requires an additional assumption, that of
homogeneous intrasubject variance (over subjects). The bene-
fit is that this allows more than a single contrast from each
subject to be estimated at the second level. The second-level
model is then estimated using ReML. 

First, we review SPM2’s first-level modeling. The intrasub-
ject autocorrelation Vk is modeled with a two-term Taylor series
approximation to an AR(1) model, ρ = 0.2. The autocorrela-
tion estimates are based on the sample covariance of the raw
data Yk; this avoids the bias due to the covariance of residuals
but can introduce bias if a strong signal is present. While FSL

Due to the massive size of fMRI datasets,

standard statistical software is not useful,

and custom software is required.
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and fMRIstat both estimate Vk separately for each voxel, SPM2
assumes the autocorrelation is the same for all voxels. To bias
the global estimate towards the most important voxels, only
those voxels surviving an overall F test at level 0.001 contribute
to the sample covariance matrix. Note that while Vk is global,
σ 2

k is estimated separately at each voxel. The resulting V̂k is
used to find GLS estimates for βk and its variance, as above.

At the second level, SPM2 is capable of obtaining group-
level estimates of all parameters in βk or subsets of parame-
ters from the first level simultaneously, instead of only one
contrast at a time as in FSL and fMRIstat (actually, FSL can
compute the F test under the assumption of independence
between multiple contrasts). This allows for both group-level
t-tests that test the significance of one contrast at a time and
F tests that allow testing of multiple contrasts simultaneous-
ly. F tests are not possible in FSL or fMRIstat, since more
than one contrast is simultaneously required.

To omit the first-level covariances at the second level,
SPM2 must assume that the intrasubject variances are the
same for every subject, σ 2

k (X∗T
k X∗

k )
−1 = σ 2

k′(X∗T
k′ X∗

k′)
−1 for

k �= k′. In this case, the summary statistics covariance Vg̃ takes
the form of a block diagonal matrix with identical blocks,
Vg̃k = σ 2

k (X∗T
k X∗

k )
−1 + σ 2

g Vgk , where Vg̃k and Vgk are the kth
block of their respective matricies. SPM2 uses ReML to esti-
mate the common covariance in each block, Vg̃k, without ever
separately estimating within- and between-subject variance.
As with the first-level, this ReML estimation only takes place
on subset voxels, those with significant overall F statistics.

An important special case is when only one contrast is of
interest, βcont, as in the previous two sections. In that setting,
σ 2

g Vg̃ will be the identity multiplied by a scalar, and the sec-
ond-level estimate (13) reduces to the OLS estimate.

Generalized Estimating Equations
Another summary statistics approach that has been studied
involves using generalized estimating equations (GEE) to esti-
mate the second level [23]. Similarly, to the second level of
SPM2, this method only requires the mean parameter estimates
from the first level, and all parameters or subsets of parameters
from the first level may be analyzed at the second level. Previous
GEE analysis used first-level results that were estimated with
SPM2 [23]. A benefit of the GEE approach is that it does not
assume the covariance of β̂g is heterogeneous across space as
SPM2 does but estimates covariance separately for each voxel.

Just as with SPM2, the first-level covariance estimates are
not needed due to the assumption that intrasubject variance is
the same across all subjects, and so Vg̃ is a block diagonal
matrix with identical blocks. For our description, we assume
all first-level parameters continue to the second level, and so
Xg is an Np × pg matrix. To estimate the second level, the
GEE method uses two variance estimates, the first being the

working correlation VW, which is an approximate estimate of
σ 2

g Vg̃ [24] and need not have the structure of the true correla-
tion. If we use VW to estimate βg, we have 

β̂g = (
XT

g V−1
W Xg

)−1
XT

g V−1
W β̂.

Although VW can be used to find an unbiased estimate of β̂g,
an additional, more accurate estimate of Vg̃ is incorporated into
the estimate of the variance of the parameter estimates, known
as the sandwich estimator:

Ĉov
(
β̂g

) = (
XT

g V−1
W Xg

)−1
XT

g V−1
W V̂g̃V−1

W Xg

(
XT

g V−1
W Xg

)−1
.

The estimate, V̂g̃, has a block-diagonal structure given by

V̂g̃ = diag(V̂m, . . . , V̂m). (18)

The blocks on the diagonal are the p × p mixed-effects covari-
ance matrix estimates

V̂m =
N∑

k=1

(β̂k − Xgkβ̂g)(β̂k − Xgkβ̂g)
T/(N − 1),

where Xgk is the portion of Xg that corresponds to subject k (in
this case, rows p(k − 1) + 1 through pk of the design matrix
Xg). Since V̂m is not fitted to a covariance structure such as an
AR or ARMA model, this is referred to as an unstructured
covariance. The benefit of using both VW and V̂g̃ is that the
estimate of Cov(β̂g) is robust and tends, asymptotically, to the
true value of Cov(β̂g), even if the working correlation is mis-
specified. Also, the estimate of βg is unbiased, regardless of
the choice of the working correlation; therefore, VW does not
need to be very complicated, and even the identity matrix
could be used. The benefit of this method is that it does not
assume that the covariance is spatially homogeneous, and so
the variance of the parameter estimates is calculated separately
for each voxel, which reduces bias of the variance estimate.

Discussion
When making group-level inference on fMRI data, it is
important to use a mixed models approach so that both the
within-subject variation and the between-subject variation are
accounted for. The summary statistics approach is a popular
approach for group-level modeling of fMRI data. All four of
the methods presented here are summary statistics methods,
with one of the differences between the methods being how
the variance of the group-level error εg̃ is estimated.

FSL and fMRIstat take similar approaches to estimate Vg̃.
Both methods use the estimate of the covariance from the first
level to determine the within-subject variation, (XTV−1X)−1.
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When making group-level inference

on fMRI data, it is important to use

a mixed models approach.
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By allowing only contrasts of parameter estimates from the
first level into the second level, the second component of the
covariance is simplified from σ 2

g Vg to σ 2
g I. From this point, the

two methods differ in how they estimate σ 2
g , where FSL uses a

two-stage estimating approach including MCMC, and
fMRIstat uses the EM algorithm.

SPM2 and the GEE method differ from both FSL and
fMRIstat in that they do not use the first-level covariance esti-
mates at the second level due to the assumption that Vg̃ has
identical blocks along the diagonal. GEE estimates the covari-
ance of the group-level parameters by use of the sandwich
estimator, which leads to a consistent estimate of the variance
of β̂g, and SPM2 uses a spatially homogeneous covariance
estimate that is pooled over a subset of voxels.

With both SPM2 and GEE, there is no constraint on the
dimension of Xg, multiple parameters can be estimated at
the group level, and, therefore, it is possible to carry out
multiple t-tests and F tests. F tests allow multiple contrasts
to be tested at once. For example, if your group-level model
had three parameters, βg = [βg1, βg2, βg3]T , an F test could
be used to simultaneously test if any of these parameters
were zero.

Conclusions
We have reviewed four commonly used approaches to group
modeling in fMRI. The methods differ in their computational
intensity (FSL with its two-level estimation including MCMC
being the most intense) and assumptions (SPM2 with its
assumption of spatially homogeneous covariance Vg being the
most restrictive).
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