8,930 research outputs found
Thermodynamic Studies of [H_(2)Rh(diphosphine)_2]^+ and [HRh(diphosphine)_(2)(CH_(3)CN)]^(2+) Complexes in Acetonitrile
Thermodynamic studies of a series of [H_(2)Rh(PP)_2]^+ and [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H_2 to [Rh(PP)_2]^+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pK_a values for [HRh(PP)_(2)(CH_(3)CN)]^(2+) complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H_(2)Rh(PP)_2]^+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents
A new xantphos-type ligand and its gold(I) complexes: Synthesis, structure, luminescence
A novel xantphos analog diphosphine ligand, 9,9-dimethyl-4,5-bis(diphenylphosphinomethyl)-9H-xanthene (X(CP)2), with methylene groups inserted between the xanthene skeleton and the two diphenylphosphine units, has been synthesized. A two-coordinate and a three-coordinate gold(I) complex of the ligand, [Au2Cl2(X(CP)2)] and [AuCl(X(CP)2)], have been prepared and studied by X-ray diffraction, NMR and optical spectroscopy. In the solid state, [AuCl(X(CP)2)] adopts a highly ordered structure with a planar xanthene skeleton that faces another plane composed of two phenyl rings and the AuCl moiety. The structure of [Au2Cl2(X(CP)2)] is much less regular, the two P–Au–Cl vectors point to the opposite sides of the folded xanthene backbone. The exchange-broadened resonances in the NMR spectra of [AuCl(X(CP)2))] indicate that this complex exists as a mixture of various chemical species and/or conformers in solution. In contrast, the NMR spectra of [Au2Cl2(X(CP)2)] exclude any medium-range exchange processes. Aurophilic interactions are absent in both X(CP)2 complexes. X(CP)2, as well as its two gold complexes, is phosphorescent in the solid state; the complexes emit at higher wavelengths and with longer lifetimes than the free ligand
Synthesis and C−C Coupling Reactivity of a Dinuclear Ni^I−Ni^I Complex Supported by a Terphenyl Diphosphine
Mono- and bimetallic complexes of nickel supported by a terphenyl diphosphine have been synthesized. The reported complexes show diverse metal−arene interactions in the solid state. Reactions of an o,o′-biphenyldiyl dinickel complex with CO and dichloroalkanes lead to fluorene derivatives, indicating the formation of carbon−carbon bonds at a bimetallic moiety
Spectral, crystallographic, theoretical and antibacterial studies of palladium(II)/platinum(II) complexes with unsymmetric diphosphine ylides
The reaction of alpha-keto-stabilized diphosphine ylides [Ph2P(CH2)(n)PPh2C(H)C(O)C6H4-p-CN] (n = 1 (Y-1); n = 2 (Y-2)) with dibromo(1,5-cyclooctadiene) palladium(II)/platinum(II) complexes, [Pd/PtBr2(cod)], in equimolar ratio gave the new cyclometalated Pd(II) and Pt(II) complexes [Br2Pd(kappa(2)-Y-1)] (1), [Br2Pt(kappa(2)-Y-1)] (2), [Br2Pd(kappa(2)-Y-2)] (3) and [Br2Pt(kappa(2)-Y-2)] (4). These compounds were screened in a search for novel antibacterial agents and characterized successfully using Fourier transfer infrared and NMR (H-1, C-13 and P-31) spectroscopic methods. Also, the structures of complexes 1 and 2 were characterized using X-ray crystallography. The results showed that the P,C-chelated complexes 1 and 2 have structures consisting of five-membered rings, while 3 and 4 have six-membered rings, formed by coordination of the ligand through the phosphine group and the ylidic carbon atom to the metal centre. Also, a theoretical study of the structures of complexes 1-4 was conducted at the BP86/def2-SVP level of theory. The nature of metal-ligand bonds in the complexes was investigated using energy decomposition analyses (EDA) and extended transition state combined with natural orbitals for chemical valence analyses. The results of EDA confirmed that the main portions of Delta E-int, about 57-58%, in the complexes are allocated to Delta E-elstat
Double Carbon−Hydrogen Activation of 2-Vinylpyridine: Synthesis of Tri- and Pentanuclear Clusters Containing the μ-NC\u3csub\u3e5\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3eCH═C Ligand
Reactions of 2-vinylpyridine with the triruthenium complexes [Ru3(CO)12] and [Ru3(CO)10(μ-dppm)] leads to a previously unknown double carbon−hydrogen bond activation of the β-carbon of the vinyl group to afford the pentaruthenium and triruthenium complexes [Ru5(CO)14(μ4-C5H4CH═C)(μ-H)2] (1) and [Ru3Cl(CO)5(μ-CO)(μ-dppm)(μ3-NC5H4CH═C)(μ-H)] (2), respectively. Crystal structures reveal two different forms of bridging of the dimetalated 2-vinylpyridyl ligand, capping a square face in 1 and a triangular face in 2
Atropisomeric [(diphosphine)Au2Cl2] complexes and their catalytic activity towards asymmetric cycloisomerisation of 1,6-enynes
Flame retardant polyphosphazenes
Six polyphosphazene compositions were prepared by reaction of three bis-tertiary phosphines with two phenyl-s-triazine derived diazides. All six polyphosphazenes produced were completely characterized, four of them were furthermore subjected to isothermal gravimetric analysis, smoke density measurements, flammability and oxidative thermal degradation testing. The results of the characterization studies indicate that only low molecular weight oligomers, possibly of a cyclic structure, were obtained in the polymerization reactions. Despite this, however, two of the materials showed no weight loss after 96 hr at 200 C, one did not autoignite at 500 C in air, and all four self extinguished when exposed to a flame as soon as contact between flame and resin was lost. The only toxic decomposition products to be concerned about were found to be hydrogen cyanide and benzene. Under the conditions employed it was proven, however, that the quantities of toxic products are greatly reduced if no ignition takes place, e.g., if thermal decomposition proceeds at a sufficiently low rate
P–C and C–H Bond Cleavages of dppm in the Thermal Reaction of [Ru\u3csub\u3e3\u3c/sub\u3e(CO)\u3csub\u3e10\u3c/sub\u3e(μ-dppm)] with Benzothiophene: X-ray structures of [Ru\u3csub\u3e6\u3c/sub\u3e(μ-CO)(CO)\u3csub\u3e13\u3c/sub\u3e{μ\u3csub\u3e4\u3c/sub\u3e-PhP(C\u3csub\u3e6\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)PPh}(μ\u3csub\u3e6\u3c/sub\u3e-C)] and [Ru\u3csub\u3e4\u3c/sub\u3e(CO)\u3csub\u3e9\u3c/sub\u3e(μ\u3csub\u3e3\u3c/sub\u3e-η\u3csup\u3e2\u3c/sup\u3e-PhPCH\u3csub\u3e2\u3c/sub\u3ePPh\u3csub\u3e2\u3c/sub\u3e)(μ\u3csub\u3e4\u3c/sub\u3e-η\u3csup\u3e6\u3c/sup\u3e:η\u3csup\u3e1\u3c/sup\u3e:η\u3csup\u3e1\u3c/sup\u3e-C\u3csub\u3e6\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3e)(μ-H)]
The thermal reaction of [Ru3(CO)10(μ-dppm)] (1) with benzothiophene in refluxing toluene gives a complex mixture of products. These include the known compounds [Ru2(CO)6{μ-CH2PPh(C6H4)PPh}] (2), [Ru2(CO)6{μ-C6H4PPh(CH2)PPh}] (3), [Ru3(CO)9{μ3-η3-(Ph)PCH2P(Ph)C6H4}] (4) and [Ru3(CO)10{μ-η2-PPh(CH2)(C6H4)PPh}] (6), as well as the new clusters [Ru6(μ-CO)(CO)13{μ3-η2-PhP(C6H4)PPh}(μ6-C)] (5) and [Ru4(CO)9(μ3-η2-PhPCH2PPh2)(μ4-η6:η1:η1-C6H4)(μ-H)] (7). The solid-state molecular structures of 5 and 7 were confirmed by single crystal X-ray analyses. Compound 5 consists of interesting example of a hexaruthenium interstitial carbido cluster having a tetradentate diphosphine ligand derived from the activation of P–C and C–H bonds of the dppm ligand in 1. The tetranuclear compound 7 consists of a unique example of a non-planar spiked triangular metal fragment of ruthenium [Ru(1), Ru(2) and Ru(3)] unit with Ru(4) being bonded to Ru(1). The μ4-η1:η6:η1-benzyne ligand in this compound represents a previously uncharacterized bonding mode for benzyne. Compounds 5 and 7 do not contain any benzothiophene-derived ligand. The reaction of 4 with benzothiophene gives 2, 3, 5 and 6. Thermolysis of 1 in refluxing toluene gives 2, 3 and 4; none of 5 and 7 is detected in reaction mixture
Transition metal clusters containing ferrocenyl diphosphine
ABSTRACT The ligating ability of 1,1-bis(diphenylphosphino)ferrocene (dppf) enables its extensive coordination chemistry to transition metals. To study the various ligating modes of dppf with chalcogenide transition metal clusters, three new compounds were synthesised and their mode of bonding has been studied. [Fe3Te2(CO)9{(PPh2)(C5H4)Fe(C5H4)(PPh2)}] (Te2Red3) was synthesised in room temperature , 31 P NMR spectra shows a singlet denoting dppf adopts a chelating mode of bonding, [Fe3Te2(CO)9{(PPh2)(C5H4)Fe(C5H4)(PPh2)}] (Te2Red1) was synthesised at 0o C and [Fe3Se2(CO)8(į1-dppf)] (Se2Black1) was synthesised at room temperature. From the 31 P NMR spectra it was found that one of the phosphorus was coordinated to the iron metal and the other phosphorus was hanging . The uncoordinated phosphorus was used for further cluster growth reactions with W(CO)5THF and the dppf ligand adopts inter-bridging mode of bonding in the compound [Fe3Se2(CO)8dppfW(CO)5]
Combustive approach for measuring total volatile phosphorus content in landfill gas
A technique was developed to measure the total gaseous phosphorus content in biogas. The amount of air needed for a neutral to oxidising flame was mixed with the biogas. The gas mixture was burnt in a closed quartz burner and the combustion gasses were bubbled through a nitric acid solution. The phosphate content in the bubbling liquid was determined with sector field ICP-MS. The technique was validated in the lab with phosphine. Afterwards the set-up was installed on a landfill. The total gaseous phosphorus content in the landfill gas, measured with the combustive technique, ranged from 1.65 to 4.44 mug P/m(3). At the same time the phosphine concentration in the landfill gas was determined gas chromatographically (GC). The phosphine (PH3) content measured with GC ranged from 7.6 to 16.7 mug PH3-P/m(3). Since the phosphine-P content (GC) was consistently higher than the total gaseous phosphorus content (burner/ICP-MS), the hypothesised presence of highly toxic gaseous phosphorus compounds other than phosphine could not be demonstrated
- …
