3,172 research outputs found

    Consumption of submerged aquatic macrophytes by rudd (scardinius erythrophthalmus L.) in New Zealand

    Get PDF
    In experiments in New Zealand, rudd (Scardinius erythrophthalmus L.) of 108–277mm fork length (FL) ate a wide range of native and introduced submerged aquatic macrophytes in captivity and in the field. Rudd consumed the native charophytes Chara globularis Thuill., Chara fibrosa Ag. ex Bruz., and Nitella spp., the native macrophytes Potamogeton ochreatus Raoul. and Myriophyllum propinquum A. Cunn., and the introduced macrophytes Elodea canadensis Michx., Egeria densa Planch., Lagarosiphon major L., and Ceratophyllum demersum L. Rudd consistently consumed the Nitella spp. and Potamogeton ochreatus before Ceratophyllum demersum. From the results of experiments in tanks and in the field, we found the order of highest to lowest palatability was: Nitella spp. > Potamogeton ochreatus > Elodea canadensis> Chara globularis = Chara fibrosa> Egeria densa = Lagarosiphon major > Myriophyllum propinquum > Ceratophyllum demersum. The order of consumption was subject to some variation with season, especially for Egeria densa, Lagarosiphon major, and Myriophyllum propinquum. Rudd consumed up to 20% of their body weight per day of Egeria densa in spring, and 22% of their body weight per day of Nitella spp. in summer. Consumption rates were considerably lower in winter than in summer. The results of our field trial suggested that the order of consumption also applies in the field and that rudd are having a profound impact on vulnerable native aquatic plant communities in New Zealand. Nitella spp. and Potamogeton ochreatus are likely to be selectively eaten, and herbivory by rudd might prevent the re-establishment of these species in restoration efforts

    Extent and biomass of the aquatic chariphytes and mosses in Lake Sevan [Translation from: Rasprostranenie i biomassa kharovykh vodoroslei i mkha v os. Sevan, 1951]

    Get PDF
    This study focusses on the plants in the open parts of the lake - mostly aquatic charophytes and mosses, in what are called in Lake Sevan (Armenia), the ”zones of chara and moss”. Distribution and other ecological conditions are reviewed. Quantity of chara in the littoral zone of lake Sevan is provide

    Valuing indigenous biodiversity in the freshwater environment

    Get PDF
    Biosecurity incursion response decisions require timely, high quality information involving science and economics. The value of the impact on indigenous biodiversity is a key aspect of the economics typically involving cost-benefit analysis. The hypothetical incursion of Biosecurity New Zealand’s top priority weed hydrilla (Hydrilla verticillata) in a typical New Zealand lake (Lake Rotoroa otherwise known as Hamilton Lake) elicits dollar values of impacts on indigenous biodiversity in a freshwater environment. Using the stated preference tool, Choice Modelling, the experimental design was maximised for efficiency of Willingness to Pay (WTP) estimation. The survey method of community meetings of four population samples at varying distances to the incursion site is a cross between a mail survey and an individual interview survey. Results show an efficient design with minimal sample size and biodiversity attributes that have values statistically different from zero but not statistically different between locations.Non-market valuation, biosecurity, biodiversity, Community/Rural/Urban Development, Crop Production/Industries, Environmental Economics and Policy, Land Economics/Use,

    An approach to the use of macrophytes for monitoring standing waters

    Get PDF
    Under the EC Water Framework Directive (WFD), each Member State is required to devise a comprehensive national monitoring programme for surface waters, incorporating hydromorphological, physico-chemical and biological elements. This paper describes one aspect of the biota - the macrophyte flora - to classify standing waters and to monitor their water quality. The evolution of this method is described and suggestions for its future development are made

    Temporal dynamics of aquatic communities and implications for pond conservation

    Get PDF
    Conservation through the protection of particular habitats is predicated on the assumption that the conservation value of those habitats is stable. We test this assumption for ponds by investigating temporal variation in macroinvertebrate and macrophyte communities over a 10-year period in northwest England. We surveyed 51 ponds in northern England in 1995/6 and again in 2006, identifying all macrophytes (167 species) and all macroinvertebrates (221 species, excluding Diptera) to species. The alpha-diversity, beta-diversity and conservation value of these ponds were compared between surveys. We find that invertebrate species richness increased from an average of 29. 5 species to 39. 8 species between surveys. Invertebrate gamma-diversity also increased between the two surveys from 181 species to 201 species. However, this increase in diversity was accompanied by a decrease in beta-diversity. Plant alpha-, beta and gamma-diversity remained approximately constant between the two periods. However, increased proportions of grass species and a complete loss of charophytes suggests that the communities are undergoing succession. Conservation value was not correlated between sampling periods in either plants or invertebrates. This was confirmed by comparing ponds that had been disturbed with those that had no history of disturbance to demonstrate that levels of correlation between surveys were approximately equal in each group of ponds. This study has three important conservation implications: (i) a pond with high diversity or high conservation value may not remain that way and so it is unwise to base pond conservation measures upon protecting currently-speciose habitats; (ii) maximising pond gamma-diversity requires a combination of late and early succession ponds, especially for invertebrates; and (iii) invertebrate and plant communities in ponds may require different management strategies if succession occurs at varying rates in the two groups

    Quantitative description of ion transport via plasma membrane of yeast and small cells

    Get PDF
    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporal resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.Comment: 22 pages, 6 figures, 1 tabl

    Montane lakes (lagoons) of the New England Tablelands Bioregion

    Get PDF
    The vegetation of montane lagoons of the New England Tablelands Bioregion, New South Wales is examined using flexible UPGMA analysis of frequency scores on all vascular plant taxa, charophytes and one liverworts. Seven communities are described: 1. Hydrocotyle tripartita – Isotoma fluviatilis – Ranunculus inundatus – Lilaeopsis polyantha herbfield; 2. Eleocharis sphacelata – Potamogeton tricarinatus sedgeland; 3. Eleocharis sphacelata – Utricularia australis – Isolepis fluitans, herbfield; 4. Utricularia australis – Nitella sonderi herbfield; 5. Eleocharis sphacelata – Utricularia australis – Ricciocarpus natans sedgeland; 6. Carex gaudichaudiana – Holcus lanatus – Stellaria angustifolia sedgeland; 7. Cyperus sphaeroides – Eleocharis gracilis – Schoenus apogon – Carex gaudichaudiana sedgeland. 58 lagoons were located and identified, only 28% of which are considered to be intact and in good condition. Two threatened species (Aldovandra vesiculosa and Arthaxon hispidus) and three RoTAP-listed taxa were encountered during the survey

    Palaeogene Charophytes of the Balearic Islands (Spain)

    Get PDF
    Fossil charophytes were recorded in two different stratigraphic units from the non- marine Palaeogene of the Balearic Islands. In the Peguera Limestone Fm. of Mallorca the charophyte flora is characterised by two assemblages. The first contains Raskyella peckii subsp. meridionale, Harrisichara caeciliana and Maedleriella mangenoti, from the Bartonian and Lutetian; whilst the second is characterised by Harrisichara vasiformistuberculata and Nitellopsis (Tectochara) aemula, Middle Priabonian in age. The Cala Blanca Detrital Fm. has yielded Lychnothamnus stockmansii and Sphaerochara inconspicua in Menorca whilst in Mallorca it contains Lychnothamnus praelangeri, L. langeri and Sphaerochara hirmeri. This flora is Late Priabonian and Oligocene in age. These results suggest that the beginning of Paleogene non-marine deposition was diachronic in Mallorca. In terms of biogeography, the Eocene charophytes of Mallorca show affinity with North-African floras. The presence of the Eocene African subspecies Raskyella peckii meridionale in Mallorca enables the biogeographic boundary between this form and the European subspecies R. peckii peckii to be drawn at about 32Âş N latitude in the Iberian Plate

    A Neoselachian shark from the non-marine Wessex Formation (Wealden Group: early Cretaceous, Barremian) of the Isle of Wight, southern England

    Get PDF
    Bulk screening of Early Cretaceous (Barremian) Wessex Formation strata exposed on the south-east coast of the Isle of Wight, southern England, has resulted in the recovery of neoselachian shark teeth referred to the scyliorhinid Palaeoscyllium. These are the first neoselachian remains from the British Wealden Group and represent the geologically oldest neoselachian yet recovered from a freshwater deposit. This is also the only known example of a non-marine occurrence of a member of the Scyliorhinidae
    • …
    corecore