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ABSTRACT 

Conservation through the protection of particular habitats is predicated on the assumption that the 

conservation value of those habitats is stable.  We test this assumption for ponds by investigating 

temporal variation in macroinvertebrate and macrophyte communities over a 10-year period in 

northwest England.  We surveyed 51 ponds in northern England in 1995/6 and again in 2006, 

identifying all macrophytes (167 species) and all macroinvertebrates (221 species, excluding Diptera) 

to species.  The alpha-diversity, beta-diversity and conservation value of these ponds were 

compared between surveys.  We find that invertebrate species richness increased from an average 

of 29.5 species to 39.8 species between surveys.  Invertebrate gamma-diversity also increased 

between the two surveys from 181 species to 201 species.  However, this increase in diversity was 

accompanied by a decrease in beta-diversity.  Plant alpha-, beta- and gamma-diversity remained 

approximately constant between the two periods.  However, increased proportions of grass species 

and a complete loss of charophytes suggests that the communities are undergoing succession.  

Conservation value was not correlated between sampling periods in either plants or invertebrates.  

This was confirmed by comparing ponds that had been disturbed with those that had no history of 

disturbance to demonstrate that levels of correlation between surveys were approximately equal in 

each group of ponds.  This study has three important conservation implications: (i) a pond with high 

diversity or high conservation value may not remain that way and so it is unwise to base pond 

conservation measures upon protecting currently-speciose habitats; (ii) maximising pond gamma-

diversity requires a combination of late and early succession ponds, especially for invertebrates; and 

(iii) invertebrate and plant communities in ponds may require different management strategies if 

succession occurs at varying rates in the two groups. 

 

Keywords: biodiversity, conservation, invertebrates, plants, pond, succession, temporal
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INTRODUCTION 

Moss (1998, pp 473-4) gives five root causes for the vulnerability of freshwaters to damage by 

humankind: (i) negative associations on the part of the public, (ii) the use of freshwaters as receptors 

or transporters of waste, (iii) replacement of natural wetlands by artificial reservoirs to store 

valuable water, (iv) the value to be gained in terms of additional fertile land by draining, and (v) 

mismanagement.  While progress has been made in communicating the value of natural wetlands, 

ponds suffer from the additional problem of perceived insignificance based on the small physical 

dimensions and apparently limited biodiversity.  Research over the past 20 years has sought to 

overturn this perception by highlighting the high biodiversity, landscape ecological role and 

ecosystem services that ponds provide. 

 

Ponds have been shown to contain a greater proportion of the regional biodiversity than other types 

of wetlands including lakes, ditches, rivers and streams (Biggs et al. 2005; Williams et al. 2004) and 

this pattern has been shown to hold for agricultural landscapes across Europe (Davies et al. 2008).  

As well as having a greater diversity of flora and fauna, ponds also contain a greater proportion of 

rare species (Williams et al. 2004) and a greater proportion of unique species (Davies et al. 2008) 

than other freshwater bodies.  Ponds in the landscape cannot truly be considered independent of 

ŽŶĞ ĂŶŽƚŚĞƌ͕ ĂƐ ƚŚĞǇ ĨƵŶĐƚŝŽŶ ĂƐ Ă ŶĞƚǁŽƌŬ ŽĨ ŚĂďŝƚĂƚƐ͘  TŚĞ ƚĞƌŵ ͞ƉŽŶĚƐĐĂƉĞ͟ ŚĂƐ ďĞĞŶ ĐŽŝŶĞĚ ƚŽ 
describe this meta-habitat (Boothby 1997).  This degree of connectivity in the pondscape acts in 

three complementary ways to facilitate metapopulation persistĞŶĐĞ͘  FŝƌƐƚ͕ ƉŽŶĚƐ ĂĐƚ ĂƐ ͞ƐƚĞƉƉŝŶŐ 
ƐƚŽŶĞ͟ ŚĂďŝƚĂƚƐ (Fortuna et al. 2006), and are explicitly recognised as such in Article 10 of the EU 

Habitats Directive.  Such stepping stone habitats help to improve the permeability of the landscape 

for aquatic and semi-aquatic organisms.  Second, the semi-independent nature of individual ponds 

means that environmental perturbations such as pollution and disease are restricted in effect 

compared to freshwaters with larger catchments such as rivers (Biggs et al. 2005).  Third, ponds act 

as refugia for biodiversity such that, should a population of a given species in one pond become 

extinct, there are more populations close at hand to recolonise that habitat (Sherratt et al. 1999).  

This network of ponds contributes substantially to ecosystems services, including the retention of 

floodwater (Wanielista and Yousef 1993), the deposition of organic pollutants (Hawkins and 

Schofield 2003) and the sequestration of carbon (Downing et al. 2008). 

 

Attempts at conserving ponds have focused on rare types of ponds covered under Annex I of the EU 

Habitats Directive, on specific components of the aquatic flora ĂŶĚ ĨĂƵŶĂ͕ Žƌ ŽŶ ͞ĞĐŽůŽŐŝĐĂů ƋƵĂůŝƚǇ͘͟  
This last category has received a great deal of attention and has spawned a number of metrics (for 

an overview, see Indermuehle et al. 2004) including the Predictive System of Multimetrics (PSYM, 

Biggs et al. 2005), the Community Conservation Index (CCI, Chadd and Extence 2004), invertebrate 

and amphibian richness metrics to assess trophic state (Menetrey et al. 2005), an assessment of 

species richness designed to be compatible with the Water Framework Directive (PLOCH, Oertli et al. 

2005), and the Pond Biodiversity Index (IBEM, Angélibert et al. 2010; Indermuehle et al. 2010), a 

modification of PLOCH which reduces costs and taxonomic skills required to carry out the surveys.  In 

addition, ponds are known to be dynamic habitats, prone to rapid and uneven rates of successional 

change and vulnerable to mismanagement (Boothby and Hull 1997).  However, there has been little 

investigation of the ways in which the communities inhabiting ponds change over time.    
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Previous studies of turnover in ponds have tended to focus on a relatively small number of taxa.  

Briers and Warren (2000) studied two Notonecta sp. (Hemiptera) at 68 ponds over 3 consecutive 

years and found variability in habitat quality affected patch occupancy.  Moore (1991) studied the 

pattern of community assembly by observing breeding behaviour by adult Odonata (which may not 

be an accurate method of predicting the aquatic residents (Raebel et al. 2010)) at 20 newly-created 

woodland ponds over 27 years, describing a transition between pioneer and climax odonate 

communities.  Cottenie and De Meester (2003) investigated zooplankton communities in a very 

highly connected cluster of 34 ponds over 3 consecutive years, and found that environmental 

variables, particularly turbidity, varied between years and influenced diversity.  The same link 

between biotic diversity and environmental variables was seen in a survey of seasonal variation in 

three French ponds (Angélibert et al. 2004).  The composition of beetle communities at 18 ponds 

was shown to vary between years, with the age of the pond exerting the largest influence on 

community variability (Fairchild et al. 2000).  Where the full invertebrate community has been 

studied, this has sometimes been only within a limited number of habitats, such as Macan's (1977) 

study of the invertebrate fauna of a single pond over 20 years.   

 

However, a small number of recent studies have considered entire communities across a number of 

habitats.  Jeffries (1994) studied the effects of drought on a system of 29 temporary ponds, each 

with an area of 1m
2
, by comparing invertebrate community data before the drought with data from 

after the drought.  Jeffries found that patch extinction rates were high in all species, but that 

temporary pond species colonised faster than permanent pond species.  These studies suggest that 

inter-annual variations in the environment can cause substantial variations in community structure.  

In a later study, Jeffries surveyed annually the invertebrate (Jeffries 2011) and plant (Jeffries 2008) 

communities in a series of 30 small (1m
2
), newly-created, temporary ponds over a very small area 

(<500m
2
) for 10 years.  Both invertebrate and plant metacommunities were influenced 

deterministically by patterns of inundation, leading to large variations between ponds even over 

such a small spatial scale.  Chase (2007) created 20 mesocosms varying in volume between 20 litres 

and 1,140 litres.  These showed considerable variation in amphibian, macroinvertebrate and plant 

communities, even across a small spatial scale.  When a drought treatment was applied to half of the 

mesocosms, community structure showed convergence which Chase attributed to the filtering out of 

those species that could not tolerate drought conditions. 

  

Previous studies, therefore, have focused either on a narrow range of taxa, a small number of 

habitats or a specific type of habitat (temporary ponds or mesocosms).  Few studies of changing 

pond communities have considered side-by-side the plant and invertebrate communities of 

permanent ponds.  The relative abundances of taxa within these communities have a strong bearing 

on the potential application of conservation measures which are largely based on the presence of 

rare species or diverse communities.  Thus the temporal dynamics of pond communities may alter 

the conservation value of a habitat.  We surveyed 51 ponds 10 years apart and identified all plants 

and macroinvertebrates (excluding Diptera) to species.  Thirty-six of these ponds are thought to be 

18th Century marl pits.  We provide a comparison of alpha-, beta- and gamma-diversity between 

periods as well as quantifying changes in "conservation value" defined using existing metrics.  More 

importantly, however, we provide a comparison of spatial and temporal beta-diversity.  These data 

are used to examine the  implications of this temporal variation in beta-diversity for pond 
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conservation strategies at pond and pondscape levels.  We discuss our findings in light of attempts 

to conserve ponds and their communities. 

 

METHODS 

Field surveys 

The faunal and floral communities of 51 ponds in northern England were characterised (Figure 1, see 

Table 1 for a summary of pond characteristics for 44 of those ponds for which physical parameters 

were measured).  We provide further details of the pondscape elsewhere (Hassall et al. 2011).  This 

region is low-lying and used extensively for agriculture with relatively low levels of human 

habitation.  Cheshire (2,343 Km
2
) contains 20,546 mapped lentic water bodies of less than 2ha, 

though in some areas, up to 30% of ponds present may be unmapped (Hollinshead, unpublished 

data). The number of ponds holding standing water is estimated to be well in excess of 17,500 

(Boothby 1997). The county overlies a glacial outwash plain of boulder clays, separating the hills of 

North Wales to the west from the Peak District of Derbyshire to the east, and is predominantly rural. 

Pastoral agriculture dominates, resulting in a mosaic of mainly small fields, hedgerows and patchy 

woodland.  Pond density aside, the area may be considered representative of North West European 

pastoral lowlands. The vast majority of ponds in the Cheshire landscape are anthropogenic in origin, 

with the most numerous being marl pit ponds. Marl pits persisted in the landscape in the period 

before the advent of piped water in fields as watering holes for stock. This was a secondary benefit, 

their primary purpose being the extraction of marl, a base rich glacial clay deposit. The practice in 

Cheshire dates back to the medieval period occurring with varying intensity, but particularly during 

the 1790s under the spur of increases in food crop prices. By the 1840s the practice was in rapid 

decline due to cheaper alternatives and increasing labour costs. The marl pit ponds included in the 

2006 re-survey can be identified with confidence in the early editions of the Ordnance Survey 

County Series 1:10560 map (available as GeoTIFF image files, Landmark Information Group Limited, 

2010).   

 

Each of the 51 ponds was surveyed in 1995 or 1996 and again in 2006 for both invertebrates and 

plants.  Twenty-eight ponds were surveyed between 25 May and 22 July 1995, with 23 more ponds 

surveyed between 26 May and 19 July 1996.  All ponds were then resurveyed between 15 May and 

24 June 2006.  Benthic substrate was either clay (n=23) or silt/soil (n=28).  All ponds were within 

500m of neighbouring ponds or wetlands.  Fourteen ponds were confirmed to contain fish and six 

were known to have dried up at least once in the past.  Water chemistry measurements, including 

pH, conductivity and nitrogen concentrations, were taken for all ponds during the second survey. 

 

Recent pond histories were sought from land managers/owners. Seven of the 51 ponds were 

recently created in 1995/6 (within the previous 5-6 years), including 4 as mitigation against Triturus 

cristatus breeding pond loss due to road construction in 1993. The remaining 44 ponds originated as 

marl pit ponds and were created in the late 18th Century. Six of the 44 marl pit ponds had been 

substantially dredged, and 3 others had undergone less extensive dredging or bank re-grading prior 

to survey (see Table 2a for ponds that were modified between surveys and Table 2b for details of 

pond history and modification prior to the surveys). During the period between the initial survey and 

re-survey in 2006 two were drained and in-filled to a substantial degree, and one in-filled 

completely, all three being marl pits in origin. Four were subject to dredging, two with re-grading of 
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banks. According to consultations with land owners, no other management of the ponds themselves 

took place, though management of the immediately surrounding terrestrial landscape has changed 

considerably in some cases. 

 

The presence and absence of invertebrate species was recorded using standardised sampling 

methods.  Pond nets with 1mm mesh were used to collect invertebrates using travelling kick-sweeps 

within the main water body.  Kick sweeps were carried out in all identified microhabitats, usually 

over bare substrate, within the leaf litter and in submerged vegetation.  Only larger 

macroinvertebrates that can be caught by a 1mm mesh net were included in the study (a species list 

of plants and invertebrates can be found in Appendices A and B).  In addition, animals were collected 

through the scraping of rocks and logs that were either submerged or were found within the 

perimeter set by the maximum winter water level.  Damp poolside areas were surveyed by creating 

a depression and netting the resulting puddles.  The rationale behind the sampling was to continue 

surveying until no further species were found (Eyre et al. 1986).  All plants present in the pond up to 

the winter high water level were recorded to species.  The data used in this study were the presence 

or absence of each species during the surveys.  The same methods were employed by the same 

surveyor in all surveys to account as far as possible for variations in recording.   

 

Data analysis 

Alpha-diversity (species richness) was calculated separately for invertebrates and plants for each of 

the ponds.  Beta-diversity was calculated for each of the ponds in the initial survey using the betasim 

method as recommended by Koleff et al. (2003; see that paper for a review of beta-diversity 

metrics).  This value was the mean betasim for each pond compared with each other pond.  Beta-

diversity was also calculated between time periods for the same ponds.  Gamma-diversity was 

calculated for the invertebrates and plants separately.  The Community Conservation Index (CCI, 

Chadd and Extence 2004), was used to assess the conservation value of the invertebrate 

communities, and Species Rarity Index (SRI, based on methods in Williams et al. 2004) was 

calculated as an equivalent measure for plants.  The CCI involves the assignment of a Conservation 

Score to a range of species based on their relative rarity (see Appendix 2 in Chadd and Extence 

2004).  These scores are averaged for each site and then multiplied by a Community Score which is 

based either on the greatest CS (the method used in this analysis) or Biological Monitoring Working 

Party (BMWP) scores for that site.  SRI uses a similar method to allocate Species Rarity Scores to 

each species which are then averaged for each site to give the SRI. 

 

Due to issues with non-normality of the data, non-parametric statistics were used.  Alpha-diversity, 

beta-diversity, and conservation value (CCI or SRI) were compared between surveys using paired 

Wilcoxon signed-rank tests.  The spatial and temporal beta-diversity were also compared using 

paired Wilcoxon signed-rank tests.  Spearman's rank correlations were employed to test for 

consistency in alpha-diversity, beta-diversity and conservation value (CCI or SRI) between surveys.  

To evaluate the contributions of disturbances between surveys (see Table 2a) compared to the 

natural evolution of the ponds communities in the absence of disturbance, these analyses were 

carried out on both the total pond dataset (n=51) and the subset of ponds for which there was no 

evidence of disturbance (n=36).  To evaluate the contributions made by different taxa to the 

observed variations in community structure, the losses and gains of species across the entire surveys 
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within each order of plants and invertebrates were tallied.  All analyses were carried out using R (R 

Development Core Team 2006) ĂŶĚ ƚŚĞ R ƉĂĐŬĂŐĞ ͞ǀĞŐĂŶ͟ (Oskanen et al. 2007).  The statistical 

significance of the results should be interpreted in light of the number of tests performed.  We 

performed 22 statistical tests and a conservative correction for this would involve multiplying the p-

values by 22.  Significance is therefore unequivocal when p<0.0023.  We also present test statistics 

for all tests so that effect sizes are clear in all cases. 

 

RESULTS 

General results 

The two surveys recorded 167 species of plants and 221 species of invertebrates.  Plant gamma-

diversity was 149 in 1995/6 and 142 in 2006, while invertebrate gamma-diversity was 181 in 1995/6 

and 201 in 2006 (Figure 2C).  The distribution of these species across taxonomic groups can be seen 

in Figure 3.  The results of Wilcoxon signed-ranks tests and Spearman's rank correlations did not 

differ qualitatively between the full dataset and the subset of undisturbed ponds (Table 3) so only 

the full dataset is discussed. 

 

Plant communities 

Alpha-diversity in plant communities was strongly correlated between the two sampling periods 

(Figure 4A), although there is only a weak correlation between the two surveys in beta-diversity 

(Figure 4C, statistics are in Table 3).  The species rarity index (SRI) for the first survey was not 

significantly correlated with that of the second (Figure 4E).  Paired Wilcoxon signed-ranks tests 

showed that there was no significant difference between ponds in alpha-diversity, beta-diversity or 

SRI between the two surveys.  Mean species richness was 23.5 (±1.3 SE) in 1995/6 and 22.3 (±1.3) in 

2006.  However, these measures of overall species richness disguise the fact that there were 

community changes between surveys (Figure 3A).  Most notably, all three charophytes (Chara 

vulgaris var. papillata, Chara vulgaris var. vulgaris and Nitella flexilis), plants of conservation 

importance in the UK, were lost from the four ponds in which they were found in the first survey.  

This loss was accompanied by a net loss in Asteridae, including three of four Callitriche sp. and both 

Bidens sp.  This decline was balanced in terms of species numbers by an increase in the number of 

grass (Poales) species.  The beta-diversity between surveys of the same ponds was significantly 

lower than the spatial beta-diversity within either of the two surveys (first survey: V=1325, p<0.001, 

second survey: V=1316, p<0.001; Figure 2B).  Nine species of plants that are considered alien to the 

region were identified (Table 4).  There was no general trend in the occupancy of these species, 

although Epilobium ciliatum and Lemna minuta colonised 12 and 9 ponds, respectively, in between 

surveys. 

 

Invertebrate communities 

Invertebrate communities showed a contrasting pattern to that seen in plants.  There were no 

significant correlations between alpha-diversity, beta-diversity or CCI between the two surveys 

(Table 3, Figure 4B, D, F).  Alpha-diversity increased significantly between surveys from an average of 

29.5 (±1.5 SE) in 1995/6 to 39.8 (±1.7) in 2006, and beta-diversity decreased significantly (Figure 

2A,B).  Both patterns were significant even after conservative control for multiple tests.  CCI showed 

no significant difference between surveys, but a small number of ponds changed CCI value markedly, 

as can be seen from the outliers in Figure 4F.   When the communities were analysed in greater 

detail, two patterns were evident: 7 out of 22 orders which were identified from the surveys 
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increased in diversity without losing any species (Figure 3B).  In addition, there was a high degree of 

turnover with a net increase in species richness in insect orders, particularly the Coleoptera, 

Hemiptera, Odonata and Trichoptera.  As with the botanical data, the beta-diversity between 

surveys of the same ponds was significantly lower than the spatial beta-diversity within either of the 

two surveys (first survey: V=1254, p<0.001, second survey: V=1076, p<0.001; Figure 2B).  Temporal 

beta-diversity was significantly higher in invertebrates than in plants (V=208, p<0.001). 

 

DISCUSSION 

We provide a detailed comparison of invertebrate and plant communities sampled 10 years apart 

which sheds light on the temporal dynamics of a pond landscape.  In particular we highlight 

contrasting patterns between the invertebrate and botanical communities of the ponds that were 

studied (summarised in Figure 4).  Botanical communities appear to be relatively stable, with ponds 

that were recorded as more diverse in the first survey tending to remain more diverse in the second.  

Plant gamma-diversity shows a marginal decrease between the two periods.  Alpha-diversity of 

invertebrates, on the other hand, is weakly correlated between time periods and shows a marked 

rise between surveys.  This corresponds to a higher temporal beta-diversity than in plants and an 

increase in gamma-diversity.  However, accompanying this rise in diversity is a decline in beta-

diversity suggesting that the ponds are becoming more similar across the landscape.  These patterns 

hold both for older marl pit ponds that have existed since the late 18th Century and that might be 

expected to have stable communities, as well as for ponds created since 1990. 

 

The lack of clear variation between plant communities in the two surveys may be due to either (i) a 

slower pattern of succession towards a climax community, or (ii) the presence of a stable, climax 

community prior to the first survey.  Rates of initial colonisation can be very quick (Barnes 1983) so 

we may already have observed a climax community in the first survey, although few studies have 

followed large numbers of ponds for any length of time.  However, one piece of evidence against 

this is the presence (and subsequent loss) of charophytes, of which Nitella flexilis is rated as 

Nationally Scarce, from four survey ponds.  These species readily colonise early successional ponds 

but may be excluded by competition as succession continues (Wade 1990).  The increase in grasses 

(Poales) suggests succession towards terrestrial habitats in these wetlands is still underway.  

 

The majority of the increase in gamma-diversity in invertebrates was due to the immigration of 

active dispersers such as beetles, damselflies, dragonflies and true bugs (Figure 3B).  This pattern 

suggests that the species pool contained within the network of ponds that were the focus of this 

study (our gamma diversity) is more susceptible to colonisation by winged, mobile species from the 

regional species pool.  Diptera, which were not included in this analysis due to issues with 

identification of larvae, often also feature as early colonisers (Barnes 1983).  Relatively few of the 

species that colonised between surveys were passive dispersers, although freshwater snails 

comprise 20 out of 45 non-insect species that were found across the two surveys.  The most notable 

invertebrate species found during the surveys was Hydrocara caraboides, the lesser silver water 

beetle, which is protected in the UK under Schedule 5 of the Wildlife and Countryside Act 1981.  The 

presence of such a species immediately qualifies a site for consideration as a "site of special scientific 

interest" (SSSI) in the UK.  However, it is worth pointing out that while this beetle increased its 

presence from two ponds in 1995/6 to three ponds in 2006, it was not found at the two original sites 

in 2006 and the three sites from the second survey represent new records.  Thus SSSI designation on 
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the basis of the presence of H. caraboides could, in this case at least, result in wasted conservation 

resources. 

 

Variability between pond communities tends to be higher than for other water body types (Davies et 

al. 2008; Williams et al. 2004).  We provide the first quantification of variation in both plant and 

invertebrate communities within individual ponds over time, which provides an additional 

dimension to pond diversity.  The issue of succession is of particular importance in dynamic habitats 

of limited area such as ponds, where natural succession  may be rapid and conspicuous.  Succession 

rate is determined by the rate of autochthonous production and the rate of input and deposition of 

allochthonous material.  Ponds are among the most productive habitat on earth, as demonstrated by 

their high rates of carbon sequestration (Downing et al. 2008).  This makes them particularly 

vulnerable to loss through succession, which results from what has been termed "benign neglect" on 

the part of landowners and managers (Boothby and Hull 1997).  The turnover that we observed 

suggests that some groups of species (e.g. grasses) become more prevalent at later stages of 

succession but that this comes at the cost of other species (e.g. charophytes).  The replacement of 

one group by another leads to a stable diversity with higher species turnover.  Late-succession ponds 

likely contain species that are not present in mid- or early-succession ponds, as demonstrated by the 

turnover in species.  As a result, the maintenance of ponds through dredging of sediment, cropping 

of vegetation or fencing of banks may not benefit landscape-level biodiversity.  Instead, to manage 

for maximal gamma-diversity ponds should be permitted to undergo succession to grassland, but 

new ponds must be created to maintain the continuum of successional states.  Recent successes 

with pond creation schemes are beginning to inform this practice (Williams et al. 2008), where 

earlier efforts were largely without a rigorous scientific basis (Williams et al. 1999).   

 

While individual ponds interact strongly at a local level with surrounding terrestrial habitat, the 

catchments of these water bodies tend to be relatively small.  This has two implications for the 

physicochemical characteristics of the water body.  First, a disturbance (e.g. pollution, invasive 

species) event of a given size occurring within the catchment will have a greater effect within smaller 

catchments as there will be less additional input to buffer against the change.  Second, the 

probability of such an event falling within a smaller catchment is lower than within a larger 

catchment.  Therefore, when a pond is damaged it is badly damaged, but damage is localised and 

ponds which have suffered little if any negative anthropogenic impacts are also relatively common 

(Biggs et al. 2005).  It is likely that this contributes to the wide range in alpha-diversity that is seen in 

surveys of ponds within regions (Williams et al. 2004).  As well as this susceptibility of ponds to 

environmental perturbation, the stochasticity of occupancy of particular species makes conservation 

difficult.  Conservation of ponds tends to rely on the presence of high biodiversity or rare species 

(e.g. in the UK to designate a site as a "Site of Special Scientific Interest", SSSI).  However, we note 

that conservation value of plant and invertebrate communities and the presence of particular 

species (e.g. Hydrochara caraboides, as mentioned above) which would guarantee legislative 

protection are highly variable in time.  The dynamic nature of the pond community therefore 

reduces the applicability of the only current legislative protection for this habitat.  Our results lend 

yet more support to a shift in focus from statutory designation of individual ponds for conservation, 

to pond clusters and the pondscape at wider landscape scales. 
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Pond conservation is a major issue across Europe due to the lack of legislative protection afforded to 

this neglected habitat (Céréghino et al. 2008).  We highlight the value of a well-studied pondscape in 

northern England which may be considered representative of much of pastoral lowland Europe.  

Previous studies have highlighted the contribution that ponds make to landscape biodiversity but 

have largely neglected temporal variation (Jeffries 2005).  We provide a comprehensive description 

of invertebrate and plant communities sampled 10 years apart and demonstrate that biodiversity 

and conservation value are not consistent over time, whether or not there is disturbance.  It is 

intended that the recurrent re-survey of the 51 ponds continue forming the basis of an on-going 

longitudinal study of temporal and spatial variation in of biodiversity.  Furthermore, the extent of 

this temporal variation in communities varies between plants and invertebrates.  If the goal in pond 

conservation is to maximise gamma-diversity, this can only be achieved by taking into account the 

constantly changing nature of the pondscape. 
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TABLES 

Table 1 ʹ Summary statistics for 44 ponds. 

 Mean Median SE Range 

Altitude (m) 49.3 50 4.9 10-125 

Area (m
2
) 2154 1508 338 101-9425 

% shaded by tree 10.7 5 2.6 80 

pH 7.62 7.80 0.09 6.50-8.60 

Conductivity (mS) 0.72 0.68 0.04 0.38-1.69 

Total ammonia nitrogen (mg.l
-1

) 0.81 0.14 0.22 0.00-6.45 

Depth classes (n): 1m (n=5), 2m (n=10), 3m (n=11), 4m (n=12), 5m (n=6) 
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Table 2a ʹ Details of ponds modified between surveys 

Pond ID code Notes 

CH95/014 Created 1990, fish introduced since 1995 

CH95/021 Some in-filled 

CH95/026 Recent signs of dredging, similar successional stage to 1995 when kept 

open as watering point 

CH95/039 Dredged and enlarged slightly 

CH95/043 New lobe dredged in 2000 to create habitat for Hydrochara caraboides, 

now deteriorated 

CH95/072 Drain installed to regulate size 

CH95/099 Land drains directed into pond increased depth substantially 

CH96/018 Partly in-filled 

CH96/035 Bank re-grade, possibly dredged since 1996 

CH96/044 Was subject to pollution incident some years before 2006 survey, banks 

may have been re-graded. 

CH96/049 Marginal scrub clearance and bank re-grade 2005/6. 

CH96/058 Drained and partly in-filled 

CH96/059 Partly dredged 1996, since extensively modified and dredged 

CH96/077 Dredged completely in 1994, fish being introduced shortly after 

CH95/073 Created 1989, by amalgamation of two marl pits, partially drained 

 

Table 2b ʹ Details of ponds unmodified between surveys 

Pond ID code Notes 

CH95/032 Recently dredged in 1995, apparently not since 

CH95/044 Shallow dredge before 1995 survey, none since 

CH95/045 Shallow dredge before 1995 survey, none since 

CH95/076 Cleared in 1992, nothing since 

CH95/091 Dredged 2-5 years ago 

CH95/094 Dredged 2-5 years ago 

CH95/113 Believed to have been dredged some years prior to 1995 survey, nothing 

since 

CH96/028 New mitigation pond created 1993, no management, angling a problem 

CH96/031 New mitigation pond created 1993, no management, angling a problem 

CH96/032 New mitigation pond created 1993, no management, angling a problem 

CH96/033 New mitigation pond created 1993, no management 

CH96/043 Newly restored rubble filled marl pit in 1996, no management since 

CH96/061 Dredged and landscaped shortly before the survey in 1996 
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Table 3 ʹ Results of statistical analysis (Spearman rank correlations and paired Wilcoxon signed rank 

tests) investigating variation in diversity between 51 ponds across two sampling periods (1995/6 and 

2006).  
NS

 indicates non-significant statistical test results at a ƌĞĚƵĐĞĚ ɲ-level to account for multiple 

ƚĞƐƚƐ ;ɲсϬ͘ϬϬϮϯͿ͘  Values for the subset of undisturbed ponds (n=36) are given in square brackets. 

  Invertebrates Plants 

Correlations Alpha-diversity ʌ=0.355, p=0.011 
NS 

΀ʌ=0.280, p=0.098 
NS

] 

ʌ=0.639, p<0.001 

΀ʌ=0.691, p<0.001] 

 Beta-diversity ʌсϬ͘Ϯϵϳ, p=0.030 
NS 

΀ʌ=0.276, p=0.104 
NS

]
 

ʌсϬ͘ϰϮϴ, p=0.002 

΀ʌ=0.503, p=0.002] 

 CCI/SRI ʌс-0.100, p=0.486 
NS 

΀ʌ=-0.219, p=0.199 
NS

] 

ʌсϬ͘Ϯϱϵ, p=0.066
 NS 

΀ʌ=0.250, p=0.142 
NS

] 

    

Differences Alpha-diversity V=133.5, p<0.001 

[V=363.5, p=0.001] 

V=731, p=0.369
 NS 

[V=656, p=0.933 
NS

] 

 Beta-diversity V=1192, p<0.001 

[V=1007, p<0.001] 

V=497, p=0.121
 NS 

[V=512, p=0.128 
NS

] 

 CCI/SRI V=554, p=0.309
 NS 

[V=601.5, p=0.604 
NS

] 

V=618, p=0.677
 NS 

[V=574.5, p=0.411 
NS

] 
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Table 4 ʹ Change in occurrence between surveys in nine alien plant species. 

Species 

Survey 1 

occupancy 

Survey 2 

occupancy Extinctions Colonisations 

Acorus calamus 1 1 0 0 

Crassula helmsii 1 2 1 2 

Elodea canadensis  5 2 3 0 

Elodea nuttallii  4 5 2 3 

Epilobium ciliatum 10 17 5 12 

Iris pseudacorus  17 19 2 4 

Lagarosiphon major 0 1 0 1 

Lemna minuta 1 9 1 9 

Nymphaea alba  1 1 1 1 
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Figures 

 

Figure 1 ʹ Map of northwest England showing the locations of surveyed ponds. 
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Figure 2 ʹ Variation in (A) alpha-, (B) beta- and (C) gamma-diversity of invertebrates (black bars) and 

plants (grey bars) between two surveys carried out on the same 51 ponds in 1995/ϲ ;͞“ƵƌǀĞǇ ϭ͟Ϳ ĂŶĚ 
ϮϬϬϲ ;͞“ƵƌǀĞǇ Ϯ͟Ϳ͘  BĞƚĂ-diversity marked "change" is the sample of pairwise comparisons between 

the same 51 ponds at the two sampling periods.  Error bars are 1SE. 
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Figure 3 ʹ Patterns of species gain (grey bars) and loss (black bars) in (A) plant and (B) invertebrate 

taxa between two surveys carried out on the same 51 ponds in 1995/6 and 2006.  Species loss 

corresponds to species that were recorded in the first survey but not in the second, while gains are 

species that were not recorded in the first survey but were recorded in the second.  Numbers in 

brackets represent the number of species in each taxon found across the two surveys. 
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Figure 4 ʹ Variation in (A,B) alpha-diversity, (C,D) beta-diversity and (E,F) conservation value (species 

rarity index (SRI) for plants, or community conservation index (CCI) for invertebrates) between two 

surveys carried out on the same 51 ponds in 1995/6 (x-axis, denoted "1") and 2006 (y-axis, denoted 

"2").  Dashed lines denote 1:1 relationships and solid lines are linear regressions.  Open symbols are 

undisturbed ponds and closed symbols are disturbed (dredged, in-filled or fish introduced) ponds. 

 


