843 research outputs found

    Complexity of transcriptional regulation within the Rag locus: identification of a second Nwc promoter region within the Rag2 intron

    Get PDF
    Nwc represents a mysterious third evolutionarily conserved gene within the Rag locus. Here, we analyzed the phenotype of Nwctmpro1 mice, in which the Rag2 intragenic region containing the previously identified promoter responsible for initiating transcription of Nwc in all cells except lymphocytes was deleted by homologous recombination. Despite strong nonlymphocyte-specific inhibition of Nwc transcription which runs through the regulatory region of Rag genes, their expression remained suppressed, and no developmental, morphological, anatomical, functional, physiological, or cellular defects in Nwctmpro1 mice could be observed. However, careful analysis of the Rag2 intergenic region uncovered a second evolutionarily conserved Nwc promoter region from which a previously unknown Nwc transcript can be generated in nonlymphocytes of Nwctmpro1 and normal mice. The above results reveal an unexpected additional complexity of transcriptional regulation within the Rag/Nwc locus and show that strong inhibition of Nwc transcription in nonlymphoid cells is well tolerated. Complete inactivation of Nwc is necessary to get insight into its function at transcriptional and posttranscriptional levels

    Early Deletion and Late Positive Selection of T-Cells Expressing a Male-Specific Receptor in T-Cell Receptor Transgenic Mice

    Get PDF
    The ontogeny of T cells in T-cell receptor (TCR) transgenic mice, which express a transgenic Ξ±Ξ² heterodimer, specific for the male (H-Y) antigen in association with H-2Db, was determined. The transgenic Ξ± chain was expressed on about 10% of the fetal thymocytes on day 14 of gestation. About 50% of day-15 fetal thymocytes expressed both Ξ± and Ξ² transchains and virtually all fetal thymocytes expressed the transgenicΞ±Ξ² heterodimer by day 17. The early expression of the transgenic TCR on CD4-8- thymocytes prevented the development of Ξ³Ξ΄ cells, and led to accelerated growth of thymocytes and an earlier expression of CD4 and CD8 molecules. Up to day 17, no significant differences in T-cell development could be detected between female and male thymuses. By day 18 of gestation, the male transgenic thymus contained more CD4-8- thymocytes than the female transgenic thymus. The preponderance of CD4-8- thymocytes in the male transgenic thymus increased until birth and was a consequence of the deletion of the CD4+8+ thymocytes and their CD4-8+ precursors. By the time of birth, the male transgenic thymus contained half the number of cells as the female transgenic thymus. The deletion of autospecific precursor cells in the male transgenic mouse began only at day 18 of gestation, despite the fact that the ligand could already be detected by day 16

    Nuclear RNA purification by flow cytometry to study nuclear processes in plants

    Get PDF
    The nature of plant tissues has continuously hampered understanding of the spatio-temporal and subcellular distribution of RNA-guided processes. Here, we describe a universal protocol based on Arabidopsis to investigate subcellular RNA distribution from virtually any plant species using flow cytometry sorting. This protocol includes all necessary control steps to assess the quality of the nuclear RNA purification. Moreover, it can be easily applied to different plant developmental stages, tissues, cell cycle phases, experimental growth conditions, and specific cell type(s). For complete information on the use and execution of this protocol, please refer to and . The nature of plant tissues has continuously hampered understanding of the spatio-temporal and subcellular distribution of RNA-guided processes. Here, we describe a universal protocol based on Arabidopsis to investigate subcellular RNA distribution from virtually any plant species using flow cytometry sorting. This protocol includes all necessary control steps to assess the quality of the nuclear RNA purification. Moreover, it can be easily applied to different plant developmental stages, tissues, cell cycle phases, experimental growth conditions, and specific cell type(s)

    Role of Hedgehog signalling at the transition from double-positive to single-positive thymocyte

    Get PDF
    In the thymus, developing T cells receive signals that determine lineage choice, specificity, MHC restriction and tolerance to self-antigen. One way in which thymocytes receive instruction is by secretion of Sonic hedgehog (Shh) from thymic epithelial cells. We have previously shown that Hedgehog (Hh) signalling in the thymus decreases the CD4:CD8 single-positive (SP) thymocyte ratio. Here, we present data indicating that double-positive (DP) thymocytes are Hh-responsive and that thymocyte-intrinsic Hh signalling plays a role in modulating the production of CD4+ (SP4), CD8+ (SP8) and unconventional T-cell subsets. Repression of physiological Hh signalling in thymocytes altered the proportions of DP and SP4 cells. Thymocyte-intrinsic Hh-dependent transcription also attenuated both the production of mature SP4 and SP8 cells, and the establishment of peripheral T-cell compartments in TCR-transgenic mice. Additionally, stimulation or withdrawal of Hh signals in the WT foetal thymus impaired or enhanced upregulation of the CD4 lineage-specific transcription factor Gata3 respectively. These data together suggest that Hh signalling may play a role in influencing the later stages of thymocyte development

    The Action of Bax and Bcl-2 on T Cell Selection

    Get PDF
    T cell development and selection in the thymus are shaped by the induction of apoptosis. However, a direct role in T cell development and selection for any of the molecules known to regulate apoptosis has remained controversial. We have studied the effect of bax and bcl-2 transgenes in recombination activation gene 1–deficient (RAG-1βˆ’/βˆ’) mice transgenic for the major histocompatibility complex class I–restricted F5 T cell receptor. Overexpression of a bax transgene in the thymus seriously impairs the production of mature T cells, whereas bcl-2 overexpression greatly promotes it. The effect of bax and bcl-2 overexpression on antigen-induced negative selection was studied using fetal thymic organ cultures. This analysis showed that Bcl-2 strongly inhibits negative selection, whereas Bax does not affect it. Our data directly show that Bcl-2 family members have specific roles in T cell selection and also lend support to the hypothesis that Bax and Bcl-2 can antagonize each other's action in a certain apoptosis pathway while in another they can be functionally nonreciprocal

    T Cell Development and T Cell Responses in Mice with Mutations Affecting Tyrosines 292 or 315 of the Zap-70 Protein Tyrosine Kinase

    Get PDF
    After stimulation of the T cell receptor (TCR), the tyrosine residues 292 and 315 in interdomain B of the protein tyrosine kinase ZAP-70 become phosphorylated and plausibly function as docking sites for Cbl and Vav1, respectively. The two latter proteins have been suggested to serve as substrates for ZAP-70 and to fine-tune its function. To address the role of these residues in T cell development and in the function of primary T cells, we have generated mice that express ZAP-70 molecules with Tyr to Phe substitution at position 292 (Y292F) or 315 (Y315F). When analyzed in a sensitized TCR transgenic background, the ZAP-70 Y315F mutation reduced the rate of positive selection and delayed the occurrence of negative selection. Furthermore, this mutation unexpectedly affected the constitutive levels of the CD3-ΞΆ p21 phosphoisoform. Conversely, the ZAP-70 Y292F mutation upregulated proximal events in TCR signaling and allowed more T cells to produce interleukin 2 and interferon Ξ³ in response to a given dose of antigen. The observation that ZAP-70 Y292F T cells have a slower rate of ligand-induced TCR downmodulation suggests that Y292 is likely involved in regulating the duration activated TCR reside at the cell surface. Furthermore, we showed that Y292 and Y315 are dispensable for the TCR-induced tyrosine phosphorylation of Cbl and Vav1, respectively. Therefore, other molecules present in the TCR signaling cassette act as additional adaptors for Cbl and Vav1. The present in vivo analyses extend previous data based on transformed T cell lines and suggest that residue Y292 plays a role in attenuation of TCR signaling, whereas residue Y315 enhances ZAP-70 function
    • …
    corecore