141 research outputs found

    Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray

    Get PDF
    BACKGROUND: The worldwide persistence of drug-resistant Plasmodium falciparum, the most lethal variety of human malaria, is a global health concern. The P. falciparum sequencing project has brought new opportunities for identifying molecular targets for antimalarial drug and vaccine development. RESULTS: We developed a software package, ArrayOligoSelector, to design an open reading frame (ORF)-specific DNA microarray using the publicly available P. falciparum genome sequence. Each gene was represented by one or more long 70 mer oligonucleotides selected on the basis of uniqueness within the genome, exclusion of low-complexity sequence, balanced base composition and proximity to the 3' end. A first-generation microarray representing approximately 6,000 ORFs of the P. falciparum genome was constructed. Array performance was evaluated through the use of control oligonucleotide sets with increasing levels of introduced mutations, as well as traditional northern blotting. Using this array, we extensively characterized the gene-expression profile of the intraerythrocytic trophozoite and schizont stages of P. falciparum. The results revealed extensive transcriptional regulation of genes specialized for processes specific to these two stages. CONCLUSIONS: DNA microarrays based on long oligonucleotides are powerful tools for the functional annotation and exploration of the P. falciparum genome. Expression profiling of trophozoites and schizonts revealed genes associated with stage-specific processes and may serve as the basis for future drug targets and vaccine development

    Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage

    Get PDF
    Taking advantage of the complete genome sequences of several mammals, we developed a novel method to detect losses of well-established genes in the human genome through syntenic mapping of gene structures between the human, mouse, and dog genomes. Unlike most previous genomic methods for pseudogene identification, this analysis is able to differentiate losses of well-established genes from pseudogenes formed shortly after segmental duplication or generated via retrotransposition. Therefore, it enables us to find genes that were inactivated long after their birth, which were likely to have evolved nonredundant biological functions before being inactivated. The method was used to look for gene losses along the human lineage during the approximately 75 million years (My) since the common ancestor of primates and rodents (the euarchontoglire crown group). We identified 26 losses of well-established genes in the human genome that were all lost at least 50 My after their birth. Many of them were previously characterized pseudogenes in the human genome, such as GULO and UOX. Our methodology is highly effective at identifying losses of single-copy genes of ancient origin, allowing us to find a few well-known pseudogenes in the human genome missed by previous high-throughput genome-wide studies. In addition to confirming previously known gene losses, we identified 16 previously uncharacterized human pseudogenes that are definitive losses of long-established genes. Among them is ACYL3, an ancient enzyme present in archaea, bacteria, and eukaryotes, but lost approximately 6 to 8 Mya in the ancestor of humans and chimps. Although losses of well-established genes do not equate to adaptive gene losses, they are a useful proxy to use when searching for such genetic changes. This is especially true for adaptive losses that occurred more than 250,000 years ago, since any genetic evidence of the selective sweep indicative of such an event has been erased

    Diagenetic–Porosity Evolution and Reservoir Evaluation in Multiprovenance Tight Sandstones: Insight from the Lower Shihezi Formation in Hangjinqi Area, Northern Ordos Basin

    Get PDF
    AbstractThe reservoir property of tight sandstones is closely related to the provenance and diagenesis, and multiprovenance system and complex diagenesis are developed in Hangjinqi area. However, the relationship between provenance, diagenesis, and physical characteristics of tight reservoirs in Hangjinqi area has not yet been reported. The Middle Permian Lower Shihezi Formation is one of the most important tight gas sandstone reservoirs in the Hangjinqi area of Ordos Basin. This research compared the diagenesis-porosity quantitative evolution mechanisms of Lower Shihezi Formation sandstones from various provenances in the Hangjinqi area using thin-section descriptions, cathodoluminescence imaging, X-ray diffraction (XRD), scanning electron microscopy (SEM), and homogenization temperature of fluid inclusions, along with general physical data and high-pressure mercury intrusion (HPMI) data. The sandstones mainly comprise quartzarenite, sublitharenite, and litharenite with low porosity and low permeability and display obvious zonation in the content of detrital components as a result of multiprovenance. Pore space of those sandstone mainly consists of primary pores, secondary pores, and microfractures, but their proportion varies in different provenances. According to HPMI, the order of the pore-throat radius from largest to smallest is central provenance, eastern provenance, and western provenance, which is consistent with the change tend of porosity (middle part>northern part>western part) in Hangjinqi region. The diagenetic evolution path of those sandstones is comparable, with compaction, cementation, dissolution, and fracture development. The central provenance has the best reservoir quality, followed by the eastern provenance and the western provenance, and this variation due to the diverse diagenesis (diagenetic stage and intensity) of different provenances. These findings reveal that the variations in detrital composition and structure caused by different provenances are the material basis of reservoir differentiation, and the main rationale for reservoir differentiation is varying degrees of diagenesis during burial process

    Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM

    Get PDF
    Motivation: High-throughput data is providing a comprehensive view of the molecular changes in cancer tissues. New technologies allow for the simultaneous genome-wide assay of the state of genome copy number variation, gene expression, DNA methylation and epigenetics of tumor samples and cancer cell lines

    A Bayesian Network Driven Approach to Model the Transcriptional Response to Nitric Oxide in Saccharomyces cerevisiae

    Get PDF
    The transcriptional response to exogenously supplied nitric oxide in Saccharomyces cerevisiae was modeled using an integrated framework of Bayesian network learning and experimental feedback. A Bayesian network learning algorithm was used to generate network models of transcriptional output, followed by model verification and revision through experimentation. Using this framework, we generated a network model of the yeast transcriptional response to nitric oxide and a panel of other environmental signals. We discovered two environmental triggers, the diauxic shift and glucose repression, that affected the observed transcriptional profile. The computational method predicted the transcriptional control of yeast flavohemoglobin YHB1 by glucose repression, which was subsequently experimentally verified. A freely available software application, ExpressionNet, was developed to derive Bayesian network models from a combination of gene expression profile clusters, genetic information and experimental conditions

    The UCSC cancer genomics browser: update 2011

    Get PDF
    The UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) comprises a suite of web-based tools to integrate, visualize and analyze cancer genomics and clinical data. The browser displays whole-genome views of genome-wide experimental measurements for multiple samples alongside their associated clinical information. Multiple data sets can be viewed simultaneously as coordinated ‘heatmap tracks’ to compare across studies or different data modalities. Users can order, filter, aggregate, classify and display data interactively based on any given feature set including clinical features, annotated biological pathways and user-contributed collections of genes. Integrated standard statistical tools provide dynamic quantitative analysis within all available data sets. The browser hosts a growing body of publicly available cancer genomics data from a variety of cancer types, including data generated from the Cancer Genome Atlas project. Multiple consortiums use the browser on confidential prepublication data enabled by private installations. Many new features have been added, including the hgMicroscope tumor image viewer, hgSignature for real-time genomic signature evaluation on any browser track, and ‘PARADIGM’ pathway tracks to display integrative pathway activities. The browser is integrated with the UCSC Genome Browser; thus inheriting and integrating the Genome Browser’s rich set of human biology and genetics data that enhances the interpretability of the cancer genomics data

    The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum

    Get PDF
    Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200–300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC) transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7) was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a “just-in-time” manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the intraerythrocytic development of P. falciparum and provide a resource for the identification of new chemotherapeutic and vaccine candidates

    A user guide for the online exploration and visualization of PCAWG data.

    Get PDF
    Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: Ontario Institute for Cancer Research (Institut Ontarien de Recherche sur le Cancer); doi: https://doi.org/10.13039/100012118Funder: EMBL Member States EU FP7 Programme projects EurocanPlatform (260791) CAGEKID (241669)Funder: European Union’s Framework Programme For Research and Innovation Horizon 2020 under the Marie Sklodowska-Curie grant agreement no. 703543Funder: Michael & Susan Dell Foundation; Mary K. Chapman Foundation; CCSG Grant P30 CA016672 (Bioinformatics Shared Resource); ITCR U24 CA199461; GDAN U24 CA210949; GDAN U24 CA210950Funder: European Commission's H2020 Programme, project SOUND, Grant Agreement no 633974Funder: Spanish Government (SEV 2015-0493) BSC-Lenovo Master Collaboration Agreement (2015)The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we provide a user's guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout. We detail use cases and analyses for each tool, show how they incorporate outside resources from the larger genomics ecosystem, and demonstrate how the tools can be used together to understand the biology of cancers more deeply. Together, the tools enable researchers to query the complex genomic PCAWG data dynamically and integrate external information, enabling and enhancing interpretation
    corecore