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Abstract

Background: Defective tumor suppressor genes (TSGs) and hyperactive oncogenes (OCGs) heavily contribute to
cell proliferation and apoptosis during cancer development through genetic variations such as somatic mutations
and deletions. Moreover, they usually do not perform their cellular functions individually but rather execute jointly.
Therefore, a comprehensive comparison of their mutation patterns and network properties may provide a deeper
understanding of their roles in the cancer development and provide some clues for identification of novel targets.

Results: In this study, we performed a comprehensive survey of TSGs and OCGs from the perspectives of somatic
mutations and network properties. For comparative purposes, we choose five gene sets: TSGs, OCGs, cancer drug
target genes, essential genes, and other genes. Based on the data from Pan-Cancer project, we found that TSGs
had the highest mutation frequency in most tumor types and the OCGs second. The essential genes had the
lowest mutation frequency in all tumor types. For the network properties in the human protein-protein interaction
(PPI) network, we found that, relative to target proteins, essential proteins, and other proteins, the TSG proteins and
OCG proteins both tended to have higher degrees, higher betweenness, lower clustering coefficients, and shorter
shortest-path distances. Moreover, the TSG proteins and OCG proteins tended to have direct interactions with
cancer drug target proteins. To further explore their relationship, we generated a TSG-OCG network and found that
TSGs and OCGs connected strongly with each other. The integration of the mutation frequency with the TSG-OCG
network offered a network view of TSGs, OCGs, and their interactions, which may provide new insights into how
the TSGs and OCGs jointly contribute to the cancer development.

Conclusions: Our study first discovered that the OCGs and TSGs had different mutation patterns, but had similar
and stronger protein-protein characteristics relative to the essential proteins or control proteins in the whole
human interactome. We also found that the TSGs and OCGs had the most direct interactions with cancer drug
targets. The results will be helpful for cancer drug target identification, and ultimately, understanding the etiology
of cancer and treatment at the network level.

Background
Cancer is the second disease leading to death worldwide
[1]. It consists of more than 100 different diseases with
diverse risk factors. Among these risk factors, genetic alter-
nations play critical roles in the pathogenesis of the disease
and provide fundamental clues for the identification of
drug targets and the development of novel drugs [2-6].

Recently, several large-scale cancer genome projects pro-
duced multi-dimensional genome-wide big data such as
The Cancer Genome Atlas (TCGA) [7], the Wellcome
Trust Sanger Institute’s Cancer Genome Project [8], and
the International Cancer Genome Consortium (ICGC) [9].
These genome-wide data have dramatically advanced
cancer research, especially in terms of its genetics and
genomics [10], which enhances the accuracy and coverage
of the identification of cancer-related genes that could
drive or protect cancer development. However, though
these large-scale sequencing data discovered thousands of
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mutations, they have not so far identified novel drug tar-
gets besides these previously identified [11]. Therefore,
developing novel approaches to revealing the signal buried
under the big data to discover the novel drug targets is
necessary and critical for the development of effective
treatment for cancer.
Among these cancer-related genes identified by high-

throughput sequencing and small-scale traditional
approaches, two classes of genes - tumor suppressor genes
(TSGs) and oncogenes (OCGs) - have been attracted much
attention. Numerous studies demonstrated these genetic
alternations involve the gain-of-function of OCGs together
with the loss-of-function of TSGs determine the cell cycle
processes that control the tumor formation and develop-
ment [12,13]. Recently, protein-protein interaction (PPI)
network based on computational methods have been used
to identify disease-specific genes, modules, and cancer-
subtype subnetworks [14-16]. Therefore, we hypothesized
that comparative investigations of TSG and OCG mutation
patterns and network properties would provide a number
of novel insights into their functions in the tumorigenesis,
which further offers valuable information for identification
of novel drug targets for drug development.
As numerous genetic and genomic data in cancer

become available, the list of OCGs and TSGs has been
expanded through molecular, cellular, genomic, and com-
putational studies including non-coding RNA genes
[17,18]. Considering the gain-of-function of OCG muta-
tions and loss-of-function of TSG mutations, TSGs and
OCGs may be involved in the regulation of cellular func-
tions in a yin-yang fashion [19]. For example, our previous
study has shown that they have distinct and competitive
regulatory patterns in ovarian cancer [20]. Furthermore,
OCG mutations are usually dominant so that one mutant
copy is enough to start switching on a cellular activity.
TSG mutations tend to be recessive, so that they should
follow the famous Knudson’s ‘two-hit hypothesis’: that
both copies of tumor suppressor genes need mutate to
cause loss of function. However, more and more evidence
shows that even partial inactivation of TSGs could criti-
cally contribute to tumorigenesis [21]. Additionally, some
genes’ function could be switched between OCGs and
TSGs, depending on the situation. Current therapeutic
applications have shown that targeting OCGs and their
related pathways is promising for developing novel drugs,
including antibodies and small synthetic molecules [22].
Therefore, further understanding of OCGs and TSGs in
the terms of networks will provide novel insights into the
their functions in the tumorigenesis. However, to our
knowledge, there is no report that systematically investi-
gates their relationships.
Thus, in this study, we compared five sets of proteins

encoded by five sets of genes (TSGs, OCGs, drug tar-
get genes, essential genes, and other genes) with the

perspectives of genomics and protein networks. We
compared them using the somatic mutations from
TCGA Pan-Cancer project [23] and network properties
in human PPI networks [24]. Based on the genetic data
from Pan-Cancer project, we found that TSGs had the
highest mutation frequency in most tumor types and
the OCGs second. For the network properties, relative
to target proteins, essential proteins, and other pro-
teins, both TSG and OCG proteins tended to have
higher degrees, higher betweenness, lower clustering
coefficients, and shorter shortest-path distances. In
addition, both TSG and OCG proteins tended to have
direct interactions with cancer drug target proteins.
We further generated a TSG-OCG network and found
that TSGs and OCGs connected strongly with each
other. Our study first revealed that the OCGs and
TSGs had different mutation patterns, but had similar
and stronger protein-protein characteristics relative to
the essential proteins or control proteins in the whole
human interactome.

Materials and methods
Somatic mutations of the Cancer Genome
To explore the somatic mutation patterns, we obtained
the somatic mutations from Supplementary Table 2
published by one Pan-Cancer analysis of TCGA project
[23]. The study presents the data and analytical results
for point mutations and small insertions/deletions from
3,281 tumours across 12 tumour types. The 12 tumours
included bladder urothelial carcinoma (BLCA), breast
adenocarcinoma (BRCA), colon and rectal adenocarci-
noma (COAD/READ), glioblastoma (GBM), head and
neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), acute myeloid leukemia
(LAML), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian cancer (OV), and uterine
corpus endometrioid carcinoma (UCEC).

Human PPIs
To study the network properties of gene sets, we uti-
lized the most recent version of the human PPI data
from the Protein Interaction Network Analysis platform
(PINA v2.0) [24]. After mapping the human protein IDs
to their official gene symbols, we culled out the redun-
dant connections and the self-interactions. The interac-
tion network contains 12,978 nodes corresponding to
human 12,978 genes and 101,219 edges.

Gene sets
In this study, we choose TSGs and OCGs with high con-
fidence from Davioli et al. [17]. Each set of TSGs and
OCGs contains 50 genes that were selected from the
Cancer Gene Census and have been implicated in tumor-
igenesis by experimental evidence in the literature [25].
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To get cancer-related drugs, we utilized the Anatomi-
cal Therapeutic Chemical (ATC) Classification codes
L01 (Antineoplastic Agents) to obtain the cancer drugs
from DrugBank [26]. We first downloaded the data
from the DrugBank database (version 4.0, June 2014)
and extracted the drug-related information, such as the
“Name,” “Drug Targets,” and “ATC Codes.” Conse-
quently, we obtained a total of 115 cancer drugs with
their drug targets. These drug targets could map to 171
gene official symbols. We regarded them as cancer drug
target genes.
For comparative purposes, besides TSGs, OCGs, and

drug target genes, we included essential genes and other
genes as controls. For the essential genes, we utilized
the gene list that were predicted at the cellular level
[17]. The other genes contained genes encoding proteins
in the PINA PPI data set after excluding the OCGs,
TSGs, targets, and essential genes. Overall, we investi-
gated five gene sets in this study: TSGs, OCGs, target
genes, essential genes, and others.

Network properties
To explore network properties of these five sets of genes,
we calculated four basic and important network proper-
ties: degree, betweenness, clustering coefficient, and
shortest-path distance [27,28]. The degree (connectivity)
of a node A is the number of other nodes that are directly
connected to A by an edge. These nodes are neighbors of
node A. A node with a higher degree will have a higher
number of neighbors. The betweenness of a node A
describes how many shortest paths between any two
pairs in the network will pass through A. The clustering
coefficient represents the ratio of the number of connec-
tions that occur between the immediate neighbors of A
compared to the maximum number of connections that
could occur among them. The shortest-path distance
between two pair of nodes A and B is the smallest num-
ber nodes that must be passed through to get from A to
B. This means that if A and B are neighbors, the short-
est-path distance between them would be one. Given sets
of nodes, we calculated the shortest-paths from a set of
interest nodes to all other nodes in the network. More-
over, we calculated the shortest-path distances between
target proteins to other interest gene set to measure their
interrelationship. At the each distance, we calculated the
proportion of interest proteins.

Subnetwork generation
To better understand the interactions between OCGs
and TSGs, we generated a subnetwork that contains
OCGs and TSGs using the GenRev program [29] (ver-
sion 1.0.1). Given a network and a set of interest nodes,
GenRev enables calculate a subnetwork containing the
interest nodes and non-interest nodes. The interest

nodes are terminal nodes while the non-interest nodes
are linker nodes that become part of the subnetwork
based on the algorithm’s criteria. GenRev offers three
algorithms for generating subnetworks: the Klein-Ravi
algorithm, the limited k-walk algorithm, and a heuristic
local search algorithm. In this study, we utilized the
Klein-Ravi algorithm to generate a node-weighted
Steiner tree subnetwork. The algorithm enables to inter-
twine as many terminal nodes as possible through non-
interest nodes (linkers) by calculating the shortest-path
distance [30].

Results
TSGs have the highest frequency of mutations
In this study, we choose the 50 TSGs, 50 OCGs, and 145
essential genes, 171 target genes, and 12,315 other genes
for investigation of mutation patterns. To compare the
mutation frequencies of the tumor samples among the
five gene sets, we performed the Kolmogorov-Smirnov
(K-S) tests [31].
Figure 1A shows a comparison of a general mutation

percentage of all samples in each gene set, and Figure 1B
contains the average values and P-values of five gene sets.
The TSGs had the highest average mutation frequency
(4.34%), which was significantly higher than that of OCGs
(2.36%, P = 0.002), target genes (1.32%, P = 1.04 × 10-10),
essential genes (0.59%, P = 2.08 ×10-20), and other genes
(0.98%, P = 7.29 × 10-17). The OCGs had the second high-
est average mutation frequency (2.36%), which was signifi-
cantly higher than that of target genes (P = 0.007),
essential genes (P = 8.46 ×10-13), and other genes (P =
4.53 × 10-17), respectively. The target genes had the third
highest average mutation frequency (1.32%), which was
significantly higher than that of essential genes (P = 2.79 ×
10-13) and other genes (P = 4.15 × 10-6). Interestingly, the
essential gene had the lowest mutation frequency among
the five gene sets.
We further examined the mutation frequency in the five

gene sets across the 12 cancer types (Figure 1C and Figure
1D). The mutation frequency in the TSGs was significantly
higher than that of all other tumor types except for GBM,
LAML, LUSC, and OV (p <0.05). LAML had the lowest
average mutation frequency (1.33%) and UCEC the highest
(8.23%). The mutation frequency in the OCGs was signifi-
cantly higher than that of essential genes and that of other
genes (p <0.05), respectively. Only in BRCA and LAML,
the mutation frequency of the OCGs was significantly
higher than that of the target genes. For the OCGs, OV
had the lowest average mutation frequency (0.40%), and
UCEC had the highest (6.20%).
In summary, these results indicated that TSGs had the

highest mutation frequency in most tumour types, and
the OCGs were the second. The essential genes had the
lowest mutation frequency in all tumor types.
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Network properties
To explore the network properties, we mapped the five
gene sets onto human PPI networks and obtained the 48
TSG proteins, 49 OCG proteins, 161 target proteins, 141
essential proteins, and 12,315 other proteins. Then, we
calculated four properties for each node in the network,
including the degree, betweenness, clustering coefficient
and shortest-path distance. To compare the network
properties among the five sets of genes, we performed
the K-S tests.

TSGs and OCGs tended to have higher degree and
betweenness
Figure 2A shows the degree distributions for the five pro-
tein sets while Figure 2B contains their average degrees
and K-S test P-values. The average degree of the TSG

proteins was 87.48, which was significantly higher than
that of the target proteins (48.34, p = 5.60 × 10-5), essen-
tial proteins (41.81, P = 3.58 × 10-6), and other proteins
(14.47, p = 5.92 × 10-22). Similarly, the average degree of
the OCGs was 79.31, which was also significantly higher
than that of the target proteins (p = 9.81 × 10-5), essential
proteins (p = 9.05 × 10-5), and other proteins (P = 2.87 ×
10-19). However, we did not observe any significant dif-
ference between TSG proteins and OCG protein (p =
0.417). The average degrees of the TSGs and OCGs were
approximately 2.0 times that of the target proteins and
essential proteins and about 6.0 times that of the other
proteins. The latter ratio is higher than that (3.1 times)
found in cancer proteins in a previous study [27].
Figure 2C shows the betweenness distributions and

Figure 2D contains the average value and K-S test

Figure 1 Percentage comparison of Pan-Cancer samples mutated in five gene sets (A and B) and across 12 tumor types (C and D).
In Figure D, one star indicates a P-value less than 0.05 based on the Kolmogorov-Smirnov (K-S) test between the two gene sets. The star color
indicates the corresponding gene sets. For example, in BLCA, the top of the TSG bar has four stars, which indicates that the percentage of
samples with mutations in the TSG gene set was significantly higher than that of OCG genes (blue star), target genes (red star), essential genes
(green star), and other genes (gray star). ‘TSG’ represents the tumor suppressor genes, ‘OCG’ represents the oncogenes, ‘Target’ represents the
genes encoding cancer drug targets, ‘Essential’ represents the essential genes, and ‘Other’ represents the other genes with mutation data that
are part of the PPI data.
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P-values for the five protein sets. The results for the
betweenness were consistent with those for the degree.
These observations indicated that TSG proteins and
OCG proteins had the highest degree and betweenness
in the human PPI network compared to other proteins.

TSGs and OCGs tended to have a lower clustering
coefficient
For each node, the clustering coefficient reflects the con-
nectivity among its interactors. The higher the clustering
coefficient, the higher the connectivity of its neighbors
has. Figure 3 shows the distribution of the clustering
coefficient values, the average value of each protein set,
and the K-S test p-values among the five protein sets.
The average clustering coefficient of the TSG proteins
was 0.095, which was significantly lower than that of the
essential proteins (0.131, p = 1.32 × 10-5) and the other
proteins (0.155, p = 0.020). Similarly, we found that the
average clustering coefficient of the OCG proteins was
0.118, which was significantly lower than that of the
essential proteins (p = 0.001), though only slightly lower
than that of the other proteins (p = 0.087). We also
found that the clustering coefficient of the essential pro-
teins was significantly lower that of the other proteins

(p = 0.004). To obtain the detailed distribution of cluster-
ing coefficients, we separated the clustering coefficients
into different bins with an interval of 0.1 and calculated
the proportion of the proteins in each bin. We found
that, the proportion of the TSG proteins (68.8%) was
higher than that of the OCG proteins (55.1%) at bin
(0-0.1]. In contrast, at bin (0-0.2], the proportion of the
TSG proteins (18.8%) was lower than that of the OCG
proteins (32.7%).

TSGs and OCGs tended to have shorter shortest-path
distance
For each node, the shortest-path distance (SPD) was cal-
culated from the node to all other nodes in the human
PPI network. To summarize the measure, we utilized the
average value of all shortest path distances to represent
its shortest-path distance to others. Figure 4 shows the
distribution of the SPD values, the average value of each
protein set, and K-S test p-values among the five protein
sets. The average shortest-path distance of the TSG pro-
teins was 2.93, which was significantly shorter than that
of the target proteins (3.18, p = 1.0 × 10-4), or the other
proteins (3.47, p = 5.03 × 10-18). Interestingly, the average
shortest-path distance of TSG proteins (2.93) was slightly

Figure 2 Comparison of degree and betweenness of five protein sets. A) Degree distribution. B) Summary of the average degree and the
corresponding P-values of the Kolmogorov-Smirnov (K-S) tests for any two protein sets. C) Betweenness distribution. D) Summary of the average
betweenness (1.0 × 103) and the corresponding P-values of the K-S tests for any two protein sets.
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lower than that of OCG proteins (2.98, p = 0.040). The
average shortest-path distance of target proteins (3.18)
was significantly longer than that of the essential proteins
(3.00, p = 5.80 × 10-7) but significantly shorter than that
of the other proteins (3.47, p = 6.29 × 10-17). While the
proportion of shortest-path distances at each distance
varied between the different sets, there were still a few
similarities. In detail, from the shortest-path distance dis-
tribution at each distance, the proportion of proteins of
different sets had much difference. For example, most

proteins in each protein set have a shortest-path distance
of 3.

From targets to TSGs or OCGs in the human PPI network
Most drugs exert their therapeutic actions through inter-
actions with specific protein targets. Moreover, the TSGs
and OCGs play important roles in the cancer develop-
ment. Then, we compared the shortest-path distances
from targets to TSG proteins or OCG proteins with the
shortest-path distances from targets to essential proteins

Figure 3 Distribution of clustering coefficient of five protein sets. The inserted table summarizes the average value of clustering coefficient
for each protein set and the corresponding P-values based on the Kolmogorov-Smirnov (K-S) tests for any two protein sets.

Figure 4 Distribution of shortest-path distance from five protein sets to the other nodes in human protein-protein interaction
network. The inserted table summarizes the average value of shortest-path distance from each protein set to the rest nodes in human protein-
protein interaction network and the corresponding P-values based on the Kolmogorov-Smirnov (K-S) tests for any two protein sets.
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and other proteins. Figure 5A shows the fraction of each
protein set in the drug target neighborhood with a mea-
sure of shortest-path distance from zero to eight. Among
the 161 drug target proteins, 13 also belong to the OCGs
and 8 belong to essential proteins. The rest of the OCG
proteins (73%) and all TSG proteins (100%) were
enriched at the shortest-path distances 1 and 2 from tar-
get proteins, which is consistent with the previous results
of drug targets to cancer genes [31]. Additionally, most
of the TSG proteins (75%), OCG proteins (61%), and tar-
get proteins (75%) had direct interactions with protein
targets while other proteins (22%) had less direct interac-
tions with protein targets (Figure 5B).
In summary, compared to the target proteins, essential

proteins, and other proteins, both TSG and OCG pro-
teins tended to have higher degrees, higher betweenness,
lower clustering coefficients, and shorter shortest-path
distances. Moreover, the TSG and OCG proteins did
not have a significant difference with perspective of net-
work topological properties. Both TSG proteins and

OCG proteins tended to have more direct interactions
with target proteins.

TSGs and OCGs are highly connected
To further understand the relationship between TSG and
OCG proteins in the local network organization and envir-
onment, we hypothesized that exploring TSG and OCG
network would provide some novel insights. Then we gen-
erated one TSG-OCG network starting from the human
PPI networks, 50 TSG proteins, and 50 OCG proteins.
The TSG-OCG network consisted of the 106 nodes

and 303 edges (Figure 6). Among the 106 nodes, 48
belonged to the TSG proteins, which accounted for 96%
of all the TSG proteins; 49 belonged to the OCG pro-
teins, which accounted for 98% of all the OCG proteins;
and 9 were linkers. The composition of the network
indicated that the TSG-OCG network mainly consisted
of the TSG and OCG proteins. Among the 303 edges,
89 links occurred among 42 TSG proteins, 51 among 36
OCGs, 117 among the 71 proteins (38 TSGs and 33

Figure 5 Network-based relationship between target proteins to other four protein sets. A) Distribution of shortest-path distance of five
gene sets. B) Protein proportion at the shortest-path distance 1 and 2 from target proteins to TSG proteins or OCG proteins.
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OCGs), and 46 between 9 linkers and 15 TSGs or 26
OCGs. Thus, 257 edges (84.8%) existed among TSGs
and OCGs, suggesting that the TSG proteins and the
OCG proteins were highly connected to each other in
the context of protein-protein interaction networks.
Moreover, the proportion of these links between the 38
TSGs and 33 OCGs (38.7%) were higher than that of
interactions among the TSGs (29.5%) and that of inter-
actions among OCGs (16.9%), respectively. Most of the
TSGs (38, 79%) had at least one edge with OCGs. Simi-
larly, most of the OCGs (67%) had at least one edge
with TSGs.
To further explore the joint contribution of mutations

in TSGs and OCGs, we integrated the mutation fre-
quency of Pan-Cancer samples in each gene with the
TSG-OCG network (Figure 6). The bigger node size
represents the higher percentage of samples with muta-
tions in Pan-Cancer project. The mutation frequency of
the 106 genes encoding the 106 nodes in the TSG-OCG
network ranged from 0.33% to 46.15% with the average
value of 3.14%. We further examined the correlation

between the mutation frequency and degree of proteins
using Pearson’s correlation. We found that the mutation
frequency and degree of proteins had a significant corre-
lation (r = 0.30, P-value = 0.002). The observation indi-
cated that the higher direct associations among these
genes with higher mutation frequencies might contri-
bute to the cancer development jointly. For example,
TP53 had the highest mutation frequency in all samples
and had 26 interactors. Among them, 21 were TSGs
and four OCGs. Among the 21 TSGs, gene PTEN is
another TSG gene with higher mutation frequency
(11.27%), which might indicate that they might contri-
bute to the cancer development together. In fact, several
studies have demonstrated that that the PTEN and T53
genes jointly participate in the carcinogenesis o may
malignancies [32]. Similarly, another example is the
gene ARID1A that has an association with TP53 and
had a higher mutation frequency (11.27%). One previous
study has shown that one mutation in the gene asso-
ciated with mismatch repair efficiency and normal p53
expression [33].

Figure 6 TSG-OCG network. Node color indicates the different protein sets: red for TSG proteins, blue for OCG proteins, and green for linkers
that could link TSG proteins and OCG proteins. Edge color indicates protein-protein interaction among different protein sets: red for the
interactions among TSG proteins, blue for the interactions among OCG proteins, dark green for the interactions between TSG proteins and OCG
proteins, and gray for the interactions between linkers and OCG proteins or TSG proteins. Node size is corresponds to the mutation frequency in
Pan-Cancer samples. The larger the node, the higher the frequency was.
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Discussion
Cancer is a genetically complex disease, which involves the
combined functions of tumor suppressor genes (TSGs)
and oncogenes (OCGs). TSGs and OCGs jointly play
important roles in the cancer development through loss of
function or gain of function. Most of them cannot trigger
the cancer development by themselves. Numerous studies
about genetic alterations of TSGs and OCGs, especially
OCGs, have led to the identification of drug targets for
cancer treatment. However, the identification of novel
drug targets has become more challenging even though
genome-wide sequencing data provide thousands of muta-
tions. Therefore, development of novel approaches for
identification of novel drug target is mandatory. To facili-
tate the development of novel approaches, in this study,
we comprehensively compared TSGs and OCGs from the
perspectives of somatic mutation and network properties.
These broad comparative results allow us to address sev-
eral questions that might be useful for the development of
new methods: 1) Do TSGs and OCGs have similar or dif-
ferent mutation frequency patterns? 2) How do they relate
to each other? 3) How do they relate to cancer drug tar-
get? 4) Do the TSGs and OCGs tend to link closely to
each other? The results indicated that while the TSGs and
OCGs had different mutation patterns, they had similar
network characteristics. They were also not only related to
each other closely, but also to cancer drug targets.
In this study, we mainly focused on the examination of

the mutation patterns of TSGs and OCGs from the
whole-genome wide data in the Pan-Cancer project [23].
It was different from the purpose of the Pan-Cancer ana-
lysis project. The study of Pan-Cancer analysis presents
the data and analytical results for point mutations and
small insertions/deletions from 3,281 tumours across 12
tumour types as part of the TCGA Pan-Cancer effort.
They illustrated the distributions of mutation frequen-
cies, types and contexts across tumour types, and estab-
lish their links to tissues of origin, environmental/
carcinogen influences, and DNA repair defects. However,
they did not go further to examine the mutation patterns
of TSGs and OCGs. In this study, we separated the muta-
tion data of TSGs and OCGs from the rest genes and
performed a comparison of five gene sets. We found that
the TSGs had the highest mutation frequency in most
tumour types and the OCGs second. The results might
be interpreted by the theory that the gain-of-function
mutations that convert proto-oncogenes to oncogenes
acts dominantly while the loss-of-function mutation in
tumor suppressor genes acts recessively. In addition, we
observed that the essential genes had the lowest mutation
frequency in all tumor types, which might reflect the fun-
damental roles in the survival of the essential genes.
However, we did not dive further to study the conse-

quence of or causal relation to mutations for the function

roles of TSGs and OCGs. As we known that TSGs and
OCGs have different roles during the cancer develop-
ment. However, it is not very clear how they work
together. It will be very interesting and useful to further
study the association between the mutation frequency
and the roles of TSGs and OCGs. For example, we
observed that the mutation frequency of TSGs was about
two times of that of OCGs. It is not clear whether or not
this mutation frequency difference influence or linked to
their functional roles in the pathogenesis of cancer.
Moreover, it is very challenging to assess the association
between the mutation frequency difference and func-
tional roles of TSGs and OCGs by both computational
and experimental examination.
In this study, we compared the drug target genes with

TSGs and OCGs in the view of mutation frequencies and
network properties. We found drug target genes generally
tend to have less mutations compared to TSGs and OCGs
and also have lower degrees. These results suggested that
the genetic contribution of drug target genes is not strong
as TSGs and OCGs. Besides, we found both TSG and
OCG proteins tended to have direct interactions with can-
cer drug target proteins. However, we did not further
examine if the drug targets either suppress actions on
oncogene activity or restore TSG functions through direct
interaction or indirectly interactions. It might be very
interesting to further examine if the mutations in OCGs
or TSGs are necessary for both the establishment and
maintenance of protein-protein interactions, which might
lead to the identification of logical drug targets. However,
to map the mutation to proteins for detecting the muta-
tion-specific perturbations at the network level need much
efforts including the development of protein structure-
guided pipeline for extracting interacting protein sets spe-
cific to a particular mutation, which is beyond of the scape
of this study. In the future, we will integrate the protein
structure information with mutation information in the
context of PPI network to further understand the connec-
tion of TSG and OCG proteins in the cancer development.
The study was mainly based on the data coming from

both public data and predicted results. As most of the
computational biology studies, it is very challenging to
obtain the error-free or complete data. Therefore, in the
analysis process, there still have several steps we could
improve in the future, including the selection of gene sets,
specification of protein function association data, and
mutation data of cancer with less bias. For gene sets, we
chose the genes with high confidence for analysis. The
data set used here are far from complete and error-free.
For the protein associations, we utilized the PPI data from
PINA database, which includes the physical association,
genetic association, and enzymatic reaction curated from
six other databases. It is not clear about how these muta-
tions alter the interaction relationship with their partners.
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For mutation data from cancer patients, we mainly utilized
the data from TCGA, which might be biased by sequen-
cing depth, platform, and sample size. However, our analy-
sis still provided statistically significant characteristics of
somatic mutations and networks of TSGs and OCGs. The
list of TSGs and OCGs is updated frequently based on dif-
ferent methods. Therefore, the characteristics of TSGs and
OCGs under investigation will not be exactly the same as
those we concluded here. However, the tendencies we
obtained in this study might provide some clues for
further investigation of functional roles of TSGs and
OCGs in carcinogenesis and identification of novel drug
targets.

Conclusion
In this study, we explored the somatic mutation and net-
work characteristics of TSGs and OCGs. Based on the
mutation data from Pan-Cancer project, we found that
the TSGs had the highest mutation frequency. Based on
the human protein-protein interaction network, we found
that TSG proteins and OCG proteins had similar global
network topological characteristics and that the TSGs,
OCGs, and drug targets had a tendency to interact with
each other. Integration of mutation frequency with TSG-
OCG network provided insights that TSGs and OCGs
might jointly contribute to the cancer development. In
summary, this study first comprehensively investigated
TSGs and OCGs from the perspective of genetics and net-
works, which provides novel insight into the roles of TSGs
and OCGs in cancer development and treatment.
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