199 research outputs found

    Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation, and epidermal organelles.

    Get PDF
    Injury to the skin, and the subsequent release of noncoding double-stranded RNA (dsRNA) from necrotic keratinocytes, has been identified as an endogenous activator of Toll-like receptor 3 (TLR3). As changes in keratinocyte growth and differentiation follow injury, we hypothesized that TLR3 might trigger some elements of the barrier repair program in keratinocytes. dsRNA was observed to induce TLR3-dependent increases in human keratinocyte mRNA abundance for ABCA12 (ATP-binding cassette, sub-family A, member 12), glucocerebrosidase, acid sphingomyelinase, and transglutaminase 1. Additionally, treatment with dsRNA resulted in increases in sphingomyelin and morphologic changes including increased epidermal lipid staining by Oil Red O and TLR3-dependent increases in lamellar bodies and keratohyalin granules. These observations show that dsRNA can stimulate some events in keratinocytes that are important for skin barrier repair and maintenance

    Observation of nonvolatile magneto-thermal switching in superconductors

    Full text link
    Applying a magnetic field to a solid changes its thermal-transport properties. Although such magneto-thermal-transport phenomena are usually small effects, giant magneto-thermal resistance has recently been observed in spintronic materials1,2 and superconductors3,4, opening up new possibilities in thermal management technologies. However, the thermal conductivity conventionally changes only when a magnetic field is applied due to the absence of nonvolatility, which limits potential applications of thermal switching devices5,6. Here, we report the observation of nonvolatile thermal switching that changes the thermal conductivity when a magnetic field is applied and retains the value even when the field is turned off. This unconventional magneto-thermal switching, surprisingly, arises in commercial Sn-Pb solders and is realized by phase-separated superconducting states and resultant nonuniform magnetic flux distributions. This result confirms the versatility of the observed phenomenon and aids the development of active solid-state thermal management devices.Comment: 33 pages, 5 figures & 9 extended data figure

    Serine Protease Signaling of Epidermal Permeability Barrier Homeostasis

    Get PDF
    Evidence is growing that protease-activated receptor-2 (PAR-2) plays a key role in epithelial inflammation. We hypothesized here that PAR-2 plays a central role in epidermal permeability barrier homeostasis by mediating signaling from serine proteases (SP) in the stratum corneum (SC). Since the SC contains tryptic- and chymotryptic-like activity, we assessed the influence of SP activation/inhibition on barrier function. Acute barrier disruption increases SP activity and blockade by topical SP inhibitors (SPI) accelerates barrier recovery after acute abrogation. This improvement in barrier function is due to accelerated lamellar body (LB) secretion. Since tryptic SP signal certain downstream responses through PAR-2, we assessed its potential role in mediating the negative effects of SP on permeability barrier. Firstly, PAR-2 is expressed in the outer nucleated layers of the epidermis and most specifically under basal condition to the lipid raft (LR) domains. Secondly, tape stripping-induced barrier abrogation provokes PAR-2 activation, as shown by receptor internalization (i.e. receptor movement from LR to cytolpasmic domains). Thirdly, topical applications of PAR-2 agonist peptide, SLIGRL, delay permeability barrier recovery and inhibit LB secretion, while, conversely, PAR-2 knockout mice display accelerated barrier recovery kinetics and enhanced LB secretion, paralleled by increased LR formation and caveolin-1 expression. These results demonstrate first, the importance of SP/SPI balance for normal permeability barrier homeostasis, and second, they identify PAR-2 as a novel signaling mechanism of permeability barrier, that is, of response linked to LB secretion

    Retinol Supplements Antiviral Action of Interferon in Patients with Chronic Hepatitis C: A Prospective Pilot Study

    Get PDF
    Sustained virologic response with peg-interferon and ribavirin combination therapy for 48 weeks is still inadequate. Our study examined whether short-term administration of retinol clinically influences the anti-viral activity of interferon early during interferon and ribavirin combination therapy. The control group received 6 MIU of interferon α-2b every day for two weeks and then 3 times a week for 22 weeks intramuscularly plus 600 mg or 800 mg per day of ribavirin orally for 24 weeks. The retinol group, in addition to above treatment, received retinol 30,000 units per day orally for 3 weeks from one week before the start of interferon α-2b plus ribavirin combination therapy. The hepatitis C virus (HCV) RNA negativity rate at 1 week after the end of interferon α-2b and ribavirin combination therapy was 46.7% (28/60) for the retinol group and 31.7% (19/60) for the control group, which was significantly higher for the retinol group. The level of serum HCV RNA in the retinol group was significantly lower at 1 week after beginning treatment as compared to the control group (p<0.01). Furthermore, serum 2,5'AS protein at 1 week after beginning treatment was significantly higher in the retinol group (p = 0.0002). The results suggest that retinol supplement increases the antiviral effect of interferon α-2b plus ribavirin only during the administration of IFN α-2b, ribavirin and retinol in patients with chronic hepatitis C

    Cdk1-mediated DIAPH1 phosphorylation maintains metaphase cortical tension and inactivates the spindle assembly checkpoint at anaphase

    Get PDF
    Animal cells undergo rapid rounding during mitosis, ensuring proper chromosome segregation, during which an outward rounding force abruptly increases upon prometaphase entry and is maintained at a constant level during metaphase. Initial cortical tension is generated by the actomyosin system to which both myosin motors and actin network architecture contribute. However, how cortical tension is maintained and its physiological significance remain unknown. We demonstrate here that Cdk1-mediated phosphorylation of DIAPH1 stably maintains cortical tension after rounding and inactivates the spindle assembly checkpoint (SAC). Cdk1 phosphorylates DIAPH1, preventing profilin1 binding to maintain cortical tension. Mutation of DIAPH1 phosphorylation sites promotes cortical F-actin accumulation, increases cortical tension, and delays anaphase onset due to SAC activation. Measurement of the intra-kinetochore length suggests that Cdk1-mediated cortex relaxation is indispensable for kinetochore stretching. We thus uncovered a previously unknown mechanism by which Cdk1 coordinates cortical tension maintenance and SAC inactivation at anaphase onset

    Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    Get PDF
    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets

    Clinical Characteristics of Subependymal Giant Cell Astrocytoma in Tuberous Sclerosis Complex.

    Get PDF
    Background: This study evaluated the characteristics of subependymal giant cell astrocytoma (SEGA) in patients with tuberous sclerosis complex (TSC) entered into the TuberOus SClerosis registry to increase disease Awareness (TOSCA). Methods: The study was conducted at 170 sites across 31 countries. Data from patients of any age with a documented clinical visit for TSC in the 12 months preceding enrollment or those newly diagnosed with TSC were entered. Results: SEGA were reported in 554 of 2,216 patients (25%). Median age at diagnosis of SEGA was 8 years (range, 18 years. SEGA were symptomatic in 42.1% of patients. Symptoms included increased seizure frequency (15.8%), behavioural disturbance (11.9%), and regression/loss of cognitive skills (9.9%), in addition to those typically associated with increased intracranial pressure. SEGA were significantly more frequent in patients with TSC2 compared to TSC1 variants (33.7 vs. 13.2 %, p < 0.0001). Main treatment modalities included surgery (59.6%) and mammalian target of rapamycin (mTOR) inhibitors (49%). Conclusions: Although SEGA diagnosis and growth typically occurs during childhood, SEGA can occur and grow in both infants and adults
    corecore