46 research outputs found

    Ba2NiOsO6: A Dirac-Mott insulator with ferromagnetism near 100 K

    Full text link
    The ferromagnetic semiconductor Ba2NiOsO6 (Tmag ~100 K) was synthesized at 6 GPa and 1500 {\deg}C. It crystallizes into a double perovskite structure [Fm-3m; a = 8.0428(1) {\AA}], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-site. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag < 180 K), the spin-gapless semiconductor Mn2CoAl (Tmag ~720 K), and the ferromagnetic insulators EuO (Tmag ~70 K) and Bi3Cr3O11 (Tmag ~220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba2NiOsO6 should increase interest in the platinum group oxides, because this new class of materials should be useful in the development of spintronic, quantum magnetic, and related devices

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Ferrimagnetic Ordering and Spin-Glass State in Diluted GdFeO<sub>3</sub>-Type Perovskites (Lu<sub>0.5</sub>Mn<sub>0.5</sub>)(Mn<sub>1−<i>x</i></sub>Ti<i><sub>x</sub></i>)O<sub>3</sub> with <i>x</i> = 0.25, 0.50, and 0.75

    No full text
    ABO3 perovskite materials with small cations at the A site, especially those with ordered cation arrangements, have attracted a great deal of interest because they show unusual physical properties and deviations from the general characteristics of perovskites. In this work, perovskite solid solutions (Lu0.5Mn0.5)(Mn1−xTix)O3 with x = 0.25, 0.50, and 0.75 were synthesized by means of a high-pressure, high-temperature method at approximately 6 GPa and approximately 1550 K. All the samples crystallize in the GdFeO3-type perovskite structure (space group Pnma) and have random distributions of the small Lu3+ and Mn2+ cations at the A site and Mn4+/3+/2+ and Ti4+ cations at the B site, as determined by Rietveld analysis of high-quality synchrotron X-ray powder diffraction data. Lattice parameters are a = 5.4431 Å, b = 7.4358 Å, c = 5.1872 Å (for x = 0.25); a = 5.4872 Å, b = 7.4863 Å, c = 5.2027 Å (for x = 0.50); and a = 5.4772 Å, b = 7.6027 Å, c = 5.2340 Å (for x = 0.75). Despite a significant dilution of the A and B sublattices by non-magnetic Ti4+ cations, the x = 0.25 and 0.50 samples show long-range ferrimagnetic order below TC = 89 K and 36 K, respectively. Mn cations at both A and B sublattices are involved in the long-range magnetic order. The x = 0.75 sample shows a spin-glass transition at TSG = 6 K and a large frustration index of approximately 22. A temperature-independent dielectric constant was observed for x = 0.50 (approximately 32 between 5 and 150 K) and for x = 0.75 (approximately 50 between 5 and 250 K)

    Synthesis, structure, and magnetic and dielectric properties of magnetoelectric BaDyFeO4 ferrite

    Get PDF
    BaDyFeO4 was prepared by a conventional solid-state method in air at 1573 K. It crystallizes in space group Pnma (No. 62) with a = 13.16861(1) angstrom, b = 5.70950(1) angstrom, and c = 10.26783(1) angstrom, and it is isostructural with BaYFe0 4 . Three magnetic transitions were found in BaDyFeO4 at T-N3 = 9 K, T-N2 = 23 K, and T-N1 =47 K in zero magnetic field in comparison with two magnetic transitions observed in BaYFeO4. Magnetic-field-induced transitions were also detected in BaDyFeO4 at 18 and 28 kOe (at T= 1.8 K). Frequency-dependent broad dielectric peaks were observed in BaDyFeO4 spanning between T-N2 and T-N and centred at 35 K - this temperature does not coincide with any T-N. No dielectric anomalies were found at T-N1 and T-N3, while very weak frequency-independent dielectric anomalies were detected at T-N2. Positive and negative magnetodielectric effects were measured in BaDyFeO4 (within a range of -0.8 and + 0.4% up to 90 kOe) reflecting magnetic-field dependence of dielectric constant. Pyroelectric current measurements did not detect any ferroelectricity in BaDyFeO4 under measurement conditions used. No dielectric anomalies and no magnetodielectric effects were found in BaYFeO4. (C) 2019 Elsevier B.V. All rights reserved
    corecore