10 research outputs found

    Extent and Severity of Caliciopsis Canker in New England, USA: An Emerging Disease of Eastern White Pine (Pinus strobus L.)

    Get PDF
    Caliciopsis canker is an emerging problem in Pinus growing regions of Eastern North America. The fungal disease caused by Caliciopsis pinea is associated with overstocked stands and poor sites, but few quantitative data are available. The objective of this study, therefore, was to assess the extent and severity of Caliciopsis canker and to explore environmental variables associated with disease to identify areas at risk of damage. During 2014, 58 sites across New England with \u3e75% P. strobus basal area in public lands were surveyed. Most sites (72%) had Caliciopsis canker signs or symptoms. Caliciopsis pinea was successfully identified with molecular techniques. In sites with Caliciopsis canker, 36% of the mature pines were symptomatic. Pole sized and suppressed trees were more likely to be damaged than larger trees with dominant crown positions (p \u3c 0.05). Pinus strobus density for sites with Caliciopsis canker was 311 trees/ha (mean P. strobus stand diameter = 40 cm) compared to 220 trees/ha (mean white pine stand diameter = 43 cm) for sites without Caliciopsis canker (p = 0.1). Caliciopsis canker symptoms tended to appear more frequently in stands with excessively drained, coarse textured soils derived from glacial outwash (86%) or stands with poorly drained soils and low fertility (78%) than in stands with well drained, more fertile soils (59%) (p = 0.1). The severity of symptoms varied among soil groups and was greater for excessively drained, nutrient poor soils than for well-drained, more fertile soils (p = 0.027)

    Comparison of Diplodia Tip Blight Pathogens in Spanish and North American Pine Ecosystems

    Get PDF
    [EN] Diplodia tip blight is the most ubiquitous and abundant disease in Spanish Pinus radiata plantations. The economic losses in forest stands can be very severe because of its abundance in cones and seeds together with the low genetic diversity of the host. Pinus resinosa is not genetically diverse in North America either, and Diplodia shoot blight is a common disease. Disease control may require management designs to be adapted for each region. The genetic diversity of the pathogen could be an indicator of its virulence and spreading capacity. Our objective was to understand the diversity of Diplodia spp. in Spanish plantations and to compare it with the structure of American populations to collaborate in future management guidelines. Genotypic diversity was investigated using microsatellite markers. Eight loci (SS9-SS16) were polymorphic for the 322 isolates genotyped. The results indicate that Diplodia sapinea is the most frequent Diplodia species present in plantations of the north of Spain and has high genetic diversity. The higher genetic diversity recorded in Spain in comparison to previous studies could be influenced by the intensity of the sampling and the evidence about the remarkable influence of the sample type.This research was funded by INIA, grant number: RTA 2017-00063-C04-03, LIFE programme, grant number: LIFE14 ENV/ES/000179 and by the Basque Government, grant number FUNGITRAP 19-00031. Red pine cone collection in New England and pathogen isolation was funded by USDA Forest Service.Aragonés, A.; Manzanos, T.; Stanosz, G.; Munck, IA.; Raposo, R.; Elvira-Recuenco, M.; Berbegal Martinez, M.... (2021). Comparison of Diplodia Tip Blight Pathogens in Spanish and North American Pine Ecosystems. Microorganisms. 9(12):1-17. https://doi.org/10.3390/microorganisms9122565S11791

    Soil and Stocking Effects on Caliciopsis Canker of Pinus strobus L.

    No full text
    Soil and stand density were found to be promising predictive variables associated with damage by the emerging disease of eastern white pine, Caliciopsis canker, in a 2014 survey with randomly selected eastern white pine (Pinus strobus L.) stands. The objective of this study was to further investigate the relationship between soil and stocking in eastern white pine forests of New England by stratifying sampling across soils and measuring stand density more systematically. A total of 62 eastern white pine stands were sampled during 2015–2016. Stands were stratified across soil groups and several prism plots were established at each site to measure stand density and determine stocking. Caliciopsis canker incidence in mature trees was greater in sites with drier or shallow soils compared to sites with loamy soils and in adequately stocked stands compared to understocked stands (p < 0.0001). Caliciopsis canker signs and symptoms were observed in all size classes. Live crown ratio, a measure of forest health, decreased with increasing Caliciopsis canker symptom severity. The fungal pathogen, Caliciopsis pinea Peck, was successfully isolated from cankers on trees growing in each soil group. Forest managers will need to consider damage caused by Caliciopsis canker related to stand factors such as soil and stocking when regenerating white pine stands

    Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model

    No full text
    Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea

    Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 <i>Claviceps</i> Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model

    No full text
    Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea
    corecore