95 research outputs found

    Approach of Characterization of the Grinding Wheel Topography as a Contribution to the Energy Modelling of Grinding Processes

    Get PDF
    AbstractA major percentage of the kinematic energy during the grinding process is converted into heat. The energy conversion is significantly influenced by the grinding wheel topography. Therefore the distribution and the shape of the cutting edges have to be considered in order to give a general model of energy conversion in grinding. This paper introduces an approach to describe and characterize the cutting edges of a grinding wheel topography, taking the elasto-plastic material behavior of the workpiece into account. Finally, based on experimental results the influence of the grinding wheel topography on energy conversion is shown using the presented model

    Global distribution of grid connected electrical energy storage systems

    Get PDF
    This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES), compressed air energy storage (CAES), sodium-sulfur batteries (NaS), lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd) and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location.In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America

    Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of <it>Hoxa2</it>, the only <it>Hox </it>gene expressed up to r2, and of <it>Krox20</it>, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of <it>Hoxa2 </it>by Krox20 in r3.</p> <p>Results</p> <p>We found that <it>Hoxa2 </it>mutants displayed an impaired oro-buccal reflex, similarly to <it>Krox20 </it>mutants. In contrast, while <it>Krox20 </it>is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency,<it> Hoxa2 </it>inactivation did not affect neonatal breathing frequency. Instead, we found that <it>Hoxa2</it><sup>-/- </sup>but not <it>Krox20</it><sup>-/- </sup>mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of <it>Hoxa2 </it>expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory.</p> <p>Conclusion</p> <p>Thus, inspiratory shaping and respiratory frequency are under the control of distinct <it>Hox</it>-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.</p

    Use of CCD to Detect Terrestrial Cosmic Rays at Ground Level: Altitude vs. Underground Experiments, Modeling and Numerical Monte Carlo Simulation

    No full text
    International audienceIn this work, we used a commercial charge-coupled device (CCD) camera to detect and monitor terrestrial cosmic rays at ground level. Multi-site characterization has been performed at sea level (Marseille), underground (Modane Underground Laboratory) and at mountain altitude (Aiguille du Midi-Chamonix Mont-Blanc at +3,780 m of altitude) to separate the atmospheric and alpha particle emitter's contributions in the CCD response. An additional experiment at avionics altitude during a long-haul flight has been also conducted. Experiment results demonstrate the importance of the alpha contamination in the CCD response at ground level and its sensitivity to charged particles. Experimental data as a function of CCD orientation also suggests an anisotropy of the particle flux for which the device is sensitive. A complete computational modeling of the CCD imager has been conducted, based on a simplified 3D CCD architecture deduced from a reverse engineering study using electron microscopy and physico-chemical analysis. Monte Carlo simulations evidence the major contribution of low energy (below a few MeV) protons and muons in the CCD response. Comparison between experiments and simulation shows a good agreement at ground level, fully validated at avionics altitudes with a much higher particle flux and a different particle cocktail composition

    Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles

    Get PDF
    Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms

    Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles

    Get PDF
    Signaling molecules derived from attachment of diverse metabolic building blocks to ascarosides play a central role in the life history of C. elegans and other nematodes; however, many aspects of their biogenesis remain unclear. Using comparative metabolomics, we show that a pathway mediating formation of intestinal lysosome-related organelles (LROs) is required for biosynthesis of most modular ascarosides as well as previously undescribed modular glucosides. Similar to modular ascarosides, the modular glucosides are derived from highly selective assembly of moieties from nucleoside, amino acid, neurotransmitter, and lipid metabolism, suggesting that modular glucosides, like the ascarosides, may serve signaling functions. We further show that carboxylesterases that localize to intestinal organelles are required for the assembly of both modular ascarosides and glucosides via ester and amide linkages. Further exploration of LRO function and carboxylesterase homologs in C. elegans and other animals may reveal additional new compound families and signaling paradigms

    AMiBA Wideband Analog Correlator

    Get PDF
    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.Comment: 28 pages, 23 figures, ApJ in press

    Horizontal Transmission of Candida albicans and Evidence of a Vaccine Response in Mice Colonized with the Fungus

    Get PDF
    Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis

    Super-massive binary black holes and emission lines in active galactic nuclei

    Full text link
    The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emits very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate a supermassive binary black hole (SMB) system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O\,III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow Line Region (NLR), but may also indicate the presence of a kilo-parsec scale mergers. A few objects indicated as double-peaked narrow line emitters are confirmed as kpc-scale margers, but double-peaked narrow line profiles are mostly caused by the complex NLR geometry. We briefly discuss the expected line profile of broad Fe Kα\alpha that probably originated in the accretion disk(s) around SMBs. Finally we consider rare configurations where a SMB system might be gravitationally lensed by a foreground galaxy, and discuss the expected line profiles in these systems.Comment: The work was presented as an invited talk at special workshop "Spectral lines and super-massive black holes" held on June 10, 2011 as a part of activity within the frame of COST action 0905 "Black holes in a violent universe" and as a part of the 8th Serbian Conference on Spectral Line Shapes in Astrophysics.Sent to New Astronomy Review as a review pape
    • …
    corecore