812 research outputs found

    A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe

    Get PDF
    We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project ‘Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European regio

    Is it cheating or learning the craft of writing? Using Turnitin to help students avoid plagiarism

    Get PDF
    Plagiarism is a growing problem for universities, many of which are turning to software detection for help in detecting and dealing with it. This paper explores issues around plagiarism and reports on a study of the use of Turnitin in a new university. The purpose of the study was to inform the senior management team about the plagiarism policy and the use of Turnitin. The study found that staff and students largely understood the university’s policy and Turnitin’s place within it, and were very supportive of the use of Turnitin in originality checking. Students who had not used Turnitin were generally keen to do so. The recommendation to the senior management team, which was implemented, was that the use of Turnitin for originality checking should be made compulsory where possible - at the time of the study the use of Turnitin was at the discretion of programme directors. A further aim of the study was to contribute to the sector’s body of knowledge. Prevention of plagiarism through education is a theme identified by Badge and Scott (2009) who conclude an area lacking in research is "investigation of the impact of these tools on staff teaching practices". Although a number of recent studies have considered educational use of Turnitin they focus on individual programmes or subject areas rather than institutions as a whole and the relationship with policy

    Femtojoule electro-optic modulation using a silicon-organic hybrid device

    Get PDF
    Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects, and silicon photonics is considered the leading technology for realizing such devices. However, the performance of all-silicon devices is limited by intrinsic material properties. In particular, the absence of linear electro-optic effects in silicon renders the integration of energy-efficient photonic-electronic interfaces challenging. Silicon-organic hybrid (SOH) integration can overcome these limitations by combining nanophotonic silicon waveguides with organic cladding materials, thereby offering the prospect of designing optical properties by molecular engineering. In this paper, we demonstrate an SOH Mach-Zehnder modulator with unprecedented efficiency: the 1-mm-long device consumes only 0.7 fJ bit(-1) to generate a 12.5 Gbit s(-1) data stream with a bit-error ratio below the threshold for hard-decision forward-error correction. This power consumption represents the lowest value demonstrated for a non-resonant Mach-Zehnder modulator in any material system. It is enabled by a novel class of organic electro-optic materials that are designed for high chromophore density and enhanced molecular orientation. The device features an electro-optic coefficient of r(33) approximate to 180 pm V-1 and can be operated at data rates of up to 40 Gbit s(-1)

    Femtojoule electro-optic modulation using a silicon-organic hybrid device

    Get PDF
    Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects, and silicon photonics is considered the leading technology for realizing such devices. However, the performance of all-silicon devices is limited by intrinsic material properties. In particular, the absence of linear electro-optic effects in silicon renders the integration of energy-efficient photonic-electronic interfaces challenging. Silicon-organic hybrid (SOH) integration can overcome these limitations by combining nanophotonic silicon waveguides with organic cladding materials, thereby offering the prospect of designing optical properties by molecular engineering. In this paper, we demonstrate an SOH Mach-Zehnder modulator with unprecedented efficiency: the 1-mm-long device consumes only 0.7 fJ bit-1 to generate a 12.5 Gbit s-1 data stream with a bit-error ratio below the threshold for hard-decision forward-error correction. This power consumption represents the lowest value demonstrated for a non-resonant Mach-Zehnder modulator in any material system. It is enabled by a novel class of organic electro-optic materials that are designed for high chromophore density and enhanced molecular orientation. The device features an electro-optic coefficient of r33~180 pm V-1 and can be operated at data rates of up to 40 Gbit s-1

    The 2013 European Seismic Hazard Model: key components and results

    Get PDF
    The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It might serve as a reference model for various applications, from earthquake preparedness to earthquake risk mitigation strategies, including the update of the European seismic regulations for building design (Eurocode 8), and thus it is useful for future safety assessment and improvement of private and public buildings. Although its results constitute a reference for Europe, they do not replace the existing national design regulations that are in place for seismic design and construction of buildings. The ESHM13 represents a significant improvement compared to previous efforts as it is based on (1) the compilation of updated and harmonised versions of the databases required for probabilistic seismic hazard assessment, (2) the adoption of standard procedures and robust methods, especially for expert elicitation and consensus building among hundreds of European experts, (3) the multi-disciplinary input from all branches of earthquake science and engineering, (4) the direct involvement of the CEN/TC250/SC8 committee in defining output specifications relevant for Eurocode 8 and (5) the accounting for epistemic uncertainties of model components and hazard results. Furthermore, enormous effort was devoted to transparently document and ensure open availability of all data, results and methods through the European Facility for Earthquake Hazard and Risk (www.​efehr.​org)

    NMRDyn: A Program for NMR Relaxation Studies of Protein Association

    Get PDF
    Self-association is an important biological phenomenon that is associated with many cellular processes. NMR relaxation measurements provide data about protein molecular dynamics at the atomic level and are sensitive to changes induced by self-association. Thus, measurements and analysis of NMR relaxation data can provide structurally resolved information on self-association that would not be accessible otherwise. Here, we present a computer program, NMRdyn, which analyses relaxation data to provide parameters defining protein self-association. Unlike existing relaxation analysis software, NMRdyn can explicitly model the monomer-oligomer equilibrium while fitting measured relaxation data. Additionally, the program is packaged with a user-friendly interface, which is important because relaxation data can often be large and complex. NMRdyn is available from http://research1t.imb.uq.edu.au/nmr/NMRdyn

    A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci

    Get PDF
    The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function

    Aftershock Sequences Modeled with 3-D Stress Heterogeneity and Rate-State Seismicity Equations: Implications for Crustal Stress Estimation

    Get PDF
    In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (≤10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress

    Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells

    Get PDF
    The tumour extracellular matrix acts as a barrier to the delivery of therapeutic agents. To test the hypothesis that extracellular matrix composition governs the penetration rate of macromolecules in tumour tissue, we measured the diffusion coefficient of nonspecific IgG in three rhabdomyosarcoma subclones growing as multicellular spheroids in vitro or as subcutaneous tumours in dorsal windows in vivo. In subcutaneous tumours, the diffusion coefficient decreased with increasing content of collagen and sulphated glycosaminoglycans. When grown as multicellular spheroids, no differences in either extracellular matrix composition or diffusion coefficient were found. Comparison of in vitro vs in vivo results suggests an over-riding role of host stromal cells in extracellular matrix production subjected to modulation by tumour cells. Penetration of therapeutic macromolecules through tumour extracellular matrix might thus be largely determined by the host organ. Hence, caution must be exercised in extrapolating drug penetrability from spheroids and multilayer cellular sandwiches consisting of only tumour cells to tumours in vivo

    Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces

    Get PDF
    The key to obtaining the model-free description of the dynamics of a macromolecule is the optimisation of the model-free and Brownian rotational diffusion parameters using the collected R1, R2 and steady-state NOE relaxation data. The problem of optimising the chi-squared value is often assumed to be trivial, however, the long chain of dependencies required for its calculation complicates the model-free chi-squared space. Convolutions are induced by the Lorentzian form of the spectral density functions, the linear recombinations of certain spectral density values to obtain the relaxation rates, the calculation of the NOE using the ratio of two of these rates, and finally the quadratic form of the chi-squared equation itself. Two major topological features of the model-free space complicate optimisation. The first is a long, shallow valley which commences at infinite correlation times and gradually approaches the minimum. The most severe convolution occurs for motions on two timescales in which the minimum is often located at the end of a long, deep, curved tunnel or multidimensional valley through the space. A large number of optimisation algorithms will be investigated and their performance compared to determine which techniques are suitable for use in model-free analysis. Local optimisation algorithms will be shown to be sufficient for minimisation not only within the model-free space but also for the minimisation of the Brownian rotational diffusion tensor. In addition the performance of the programs Modelfree and Dasha are investigated. A number of model-free optimisation failures were identified: the inability to slide along the limits, the singular matrix failure of the Levenberg–Marquardt minimisation algorithm, the low precision of both programs, and a bug in Modelfree. Significantly, the singular matrix failure of the Levenberg–Marquardt algorithm occurs when internal correlation times are undefined and is greatly amplified in model-free analysis by both the grid search and constraint algorithms. The program relax (http://www.nmr-relax.com) is also presented as a new software package designed for the analysis of macromolecular dynamics through the use of NMR relaxation data and which alleviates all of the problems inherent within model-free analysis
    corecore