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Abstract

The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled
by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic
translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis.
Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a
result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of
cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of
pneumococci in vitro. Mice bearing a cathepsin D2/2 hematopoietic system demonstrated reduced macrophage apoptosis
in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection.
These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host
defense and underscore the importance of apoptosis-associated microbial killing to macrophage function.
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Introduction

Macrophages are essential for the maintenance of tissue

homeostasis, as they remove dying and dead cells [1]. Macro-

phages must also coordinate the innate response to microorgan-

isms that penetrate sterile environments such as the lower

respiratory tract [2,3]. To accommodate their opposing roles in

long-term tissue homeostasis and short-term immune responses,

tissue macrophages, such as alveolar macrophages, are long-lived

in the basal state [4,5], yet can activate a variety of death pathways

upon pathogen encounter [6].

Streptococcus pneumoniae, the pneumococcus, is the most prevalent

cause of community-acquired pneumonia [7]. During the initial

stages of pneumococcal infection, macrophages are largely

responsible for bacterial clearance and determine the initiation

as well as the later resolution of the inflammatory response [8,9].

Macrophage function is regulated by induction of apoptosis during

pneumococcal infection [8,10]. The shift from apoptosis resistance

is determined by the decline in abundance of the anti-apoptotic

protein Mcl-1 [11,12]. Mcl-1 expression is regulated by transcrip-

tion and translation [13]. Moreover, Mcl-1 has a short half-life, the

result of its proteasomal degradation after ubiquitination [14,15],

which is mediated by the ubiquitin E3 ligase Mule (Mcl-1

ubiquitin ligase E3 (Mule)/ARF-BP1) [16]. Mcl-1 can also be

degraded by caspases [17] and potentially by other proteases [16].

During pneumococcal infection Mcl-1 downregulation is regulated

post-transcriptionally with evidence of enhanced ubiquitination

[12].

Induction of macrophage apoptosis by pneumococcal infection

requires internalization and killing of bacteria, an event localized

to the phagolysosome [10,18,19]. Lysosomal membrane permea-

bilization (LMP) can trigger either apoptosis (through activation of

lysosomal proteases of the cathepsin family) [20] or non-apoptotic

cell death with features of necrosis [21], especially when LMP is

extensive [22]. Cathepsins can cleave Bcl-2 family members to

trigger the mitochondrial pathway of apoptosis [23,24,25,26] or

may directly activate caspases [27]. Despite the importance of

lysosomes in antibacterial host defense, LMP has not yet been

investigated in the host-pathogen relationship or linked to innate

immune responses [22].

Here, we demonstrate that pneumococci trigger LMP and

activation of cathepsin D in macrophages. Activation of cathepsin

D enhances the interaction of Mcl-1 with its ubiquitin ligase,

resulting in its destruction. The induction of macrophage apoptosis

that results from cathepsin D activation provides a late increment

to bacterial killing. These results indicate that cathepsin D plays a
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major pathophysiological role in the inter-relationship between

intracellular pneumococci and macrophages that defines innate

immune competence.

Results

Pneumococcal infection triggers lysosomal membrane
permeabilization (LMP)

Since the apoptotic program can be initiated by several

organelles including lysosomes [20], we investigated whether

bacterial killing in phagolysosomes was associated with signs of

LMP, an early feature of some apoptotic pathways. We confirmed

internalization of pneumococci in the differentiated THP-1

macrophage-like cell line (Figure S1), which we have recently

shown has a similar susceptibility to apoptosis and produces

similar innate responses to monocyte-derived macrophages

(MDM) [28]. As early as 10 h after infection an increased

percentage of cells exposed to pneumococci exhibited reduced

incorporation of the acidophilic dye acridine orange, indicating

loss of lysosomal acidification (LLA) (Figure 1A,C). Simultaneous

staining of a separate aliquot of cells from the same cultures

demonstrated that LLA occurred prior to the dissipation of the

inner mitochondrial transmembrane potential (DYm)

(Figure 1B,D). We have previously demonstrated that macrophage

apoptosis during pneumococcal infection is caspase-dependent

[18] and caspase activation has been reported to trigger LMP [29].

Nonetheless, addition of the broad-spectrum caspase inhibitor

zVADfmk failed to prevent LLA, indicating that LLA is not a late

consequence of apoptosis (Figure 1E). An alternative marker of

lysosomal integrity, pepstatin A-BODIPY FL, whose binding to

the lysosomal protease cathepsin D is pH-dependent [30], failed to

stain the lysosomes from the infected macrophage-like cell line,

while control cells exhibited a punctate lysosomal staining pattern

under the same experimental conditions (Figure 1F). The

lysosomal nature of staining was confirmed since organelle

purification using discontinuous sucrose gradients confirmed initial

cathepsin D localization in fractions stained with lysosomal

markers 6 h after exposure to pneumococci (Figure S2). These

results indicate that pneumococcal infections cause impairment of

lysosomal acidification and/or LMP. Subcellular fractionation

followed by immunoblotting revealed cytosolic translocation of

cathepsins D and B in the infected macrophage-like cell line, while

the amount of cathepsin D and B contained in the lysosomal

fraction declined at the later time point of 16 h after exposure to

pneumococci (Figure 1G). Imaging of individual cells, as shown in

Figure 1F, confirmed that loss of LLA/LMP was occurring in

single cells, not just at the level of the total cell population, and that

LLA/LMP preceded DYm and nuclear fragmentation (data not

shown). The pneumococcal toxin pneumolysin was required for

LLA since a pneumolysin deficient pneumococcal strain, PLY-

STOP, did not induce LLA (Figure 1H), despite being internalized

to a similar extent to the wild-type strain (Figure S1). Moreover

complementation of this mutant with pneumolysin restored LLA,

DYm and cytolytic activity (Figure S3A–C). Altogether, these

results indicate that pneumococci trigger LMP.

Pneumococcal infection is associated with activation of
cathepsin D

Cathepsin D, a lysosomal protease, can induce apoptosis when

it is activated and released into the cytosol [22]. As shown in

Figure 2A, cathepsin D, the most abundant cathepsin in

differentiated macrophages [31], underwent proteolytic matura-

tion in phagolysosomes following pneumococcal infection, as

evidenced by detection of the heavy chain form of active cathepsin

D. We also confirmed that the organelles isolated on a sucrose

gradient were phagolysosomes by identifying markers of phago-

lysosomes such as LAMP-1, rab-5 and -7 (Figure S2). A functional

assay, based on the proteolytic processing of a fluorogenic

cathepsin D substrate, confirmed that pneumococcal infection of

macrophages resulted in enhanced cathepsin D activity as early as

8 h post-infection (Figure 2B), provided that the pneumococci

expressed the toxin pneumolysin (Figure 2C). The pneumolysin

deficient pneumococcal strain, PLYSTOP, stimulated significantly

less cathepsin D activation than the isogenic wild-type strain from

which it was derived. Reintroduction of pneumolysin into the

PLYSTOP mutant restored activation of cathepsin D to a level

comparable to the wild-type strain (Figure S3D). The cathepsin D

activity was not significantly enhanced after phagocytosis of latex

beads or of another Gram-positive bacterium Staphylococcus aureus,

which is readily internalized [32]. Cathepsin D activity is optimal

at acidic pH, and bacterial phagocytosis can result in cytosolic

acidification [33,34]. We found the cytosolic pH was acidified

following pneumococcal infection (Figure 2D–E). The reduction in

cytosolic pH occurred with the same kinetics as LLA (Figure 1C),

and before dissipation of DYm (Figure 1D). A cathepsin D

inhibitor, pepstatin A, blocked cathepsin D activation (Figure S3D)

but failed to reverse the reduction in cytosolic pH of cells exposed

to pneumococci (Figure 2E), indicating that the cytosolic

acidification was not a consequence of cathepsin D activation.

Altogether our data suggest LMP allows release of active cathepsin

D into an acidified cytosol.

Cathepsin D activation is required for macrophage
apoptosis during pneumococcal infection

A range of inhibitors active against cathepsins B, D and L, the

most abundant cathepsins in differentiated macrophages [35],

were screened for their capacity to prevent loss of DYm, one of the

first signs of irreversible cell death. Only inhibitors with activity

Author Summary

Tissue macrophages frequently undergo a program of cell
death, termed apoptosis, following sustained ingestion
and killing of bacteria. In macrophages, induction of
apoptosis enhances bacterial killing when macrophages’
initial killing capacity is exhausted. We have investigated
the mechanism of apoptosis in macrophages exposed to
pneumococci, the commonest cause of bacterial pneumo-
nia. We show that the cell structure containing ingested
bacteria, the phagolysosome, becomes permeabilized
early in the death process. Pneumococcal exposure
activates a phagolysosomal enzyme, cathepsin D, which
induces apoptosis. Cathepsin D activation is required for
permeabilization of mitochondria, an organelle implicated
in apoptosis induction. Cathepsin D reduces levels of a
negative regulator of apoptosis in macrophages, Mcl-1, by
enhancing its association with an enzyme, which mediates
its degradation. The importance of these findings was
confirmed in a bone marrow transplant model in which
mice either received bone marrow from mice containing or
lacking the cathepsin D gene. This model showed that
reduced apoptosis of alveolar macrophages occurred
when cathepsin D was lacking, and that this impaired
clearance of pneumococci in the mouse lung. We conclude
that during bacterial challenge, lysosomal permeabiliza-
tion and cathepsin D activation triggers a novel death
pathway, in a timely fashion, linking bacterial killing to
apoptosis induction.

Macrophage Cathepsin D in Pneumococcal Infection
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Figure 1. Differentiated THP-1 cells infected with pneumococci exhibit loss of lysosomal acidification and cytosolic translocation of
cathepsin D. Differentiated THP-1 cells were infected with pneumococci (D39) and stained with (A, C) acridine orange (AO) and (B, D) JC-1 at the
designated times post infection. (A–B) Representative histograms from one infection and (C–D) graphs summarizing loss of lysosomal acidification
(LLA) and inner mitochondrial transmembrane potential (DYm) in three separate experiments are shown, * = p,0.05, ** = p,0.01, one way ANOVA

Macrophage Cathepsin D in Pneumococcal Infection
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against the aspartic protease cathepsin D (but not B or L) were

able to prevent the dissipation of DYm (Figure S4A). Pepstatin A

inhibited loss of DYm (Figure 3A) and prevented the mitochondrial

cytochrome c release induced by pneumococcal infection

(Figure 3B). Pepstatin A also inhibited other signs of apoptosis

including caspase 3/7 activation, chromatin condensation and

nuclear fragmentation (Figure 3C–D). The anti-apoptotic activity

of pepstatin was shared with other cathepsin D inhibitors, such as

MPC6 (Figure 3A and 3D) and DAME (Figure S4B). Pepstatin A

inhibited apoptosis in the macrophage-like cell line, and the

residual apoptosis was further blocked by an anti-oxidant and an

inhibitor of inducible nitric oxide synthase (Figure S5). The key

findings of cathepsin D activation, LLA and reduced apoptosis

(dissipation of DYm and nuclear fragmentation) with pepstatin A

treatment, following pneumococcal infection, were replicated in

monocyte-derived macrophages (MDM; Figure S6). These results

suggest cathepsin D plays a critical role in macrophage apoptosis

during pneumococcal infection, downstream of LMP but up-

stream of the mitochondrial phase of the cell death pathway.

Cathepsin D-deficient macrophages are resistant to
apoptosis during pneumococcal infection

To exclude off-target effects of pharmacological inhibitors and

since cathepsin D is the major aspartic protease inhibited by

pepstatin A, but other aspartic proteases could also be inhibited

[36], bone marrow-derived macrophages (BMDM) were generat-

ed from mice from which the gene encoding cathepsin D was

deleted or from wild-type (WT) littermates. WT and cathepsin

D2/2 BMDM exhibit comparable lysosomal density and

internalize similar numbers of opsonized pneumococci (Figure

S7A–B). Following pneumococcal infection, cathepsin D2/2

BMDM failed to demonstrate similar levels of apoptosis under

conditions that caused WT BMDM to undergo dissipation of DYm

(Figure 4A), chromatin condensation and nuclear fragmentation

(Figure 4B). Addition of pepstatin A to WT BMDM infected with

pneumococci phenocopied the cathepsin D2/2 genotype as far as

the protection of mitochondrial and nuclear integrity were

concerned (Figure 4A–B). However, there was no difference

between untreated WT BMDM, pepstatin-treated BMDM or

cathepsin D2/2 BMDM at the level of LLA induced by

pneumococcal infection (Figure 4C). These results support the

conclusion that cathepsin D operates downstream of LLA but

upstream of the mitochondrial cell death pathway.

Cathepsin D enhances Mcl-1 ubiquitination
WT BMDM showed a reduction in Mcl-1 protein levels after

pneumococcal infection, as previously described [12]. This effect

was reversed by treatment with pepstatin A or in cathepsin D2/2

BMDM (Figure 5A). Pepstatin A treatment also reduced the loss of

Mcl-1 following pneumococcal infection in MDMs (data not

shown). Although some proteins involved in apoptosis induction,

such as caspase 8, are direct cathepsin D substrates [27], we found

no evidence Mcl-1 was a cathepsin D substrate, either by in silico

analysis [37] or by searching for Mcl-1 cleavage products in

overexposed immunoblots (data not shown). In contrast, we

observed that pneumococcal infection enhanced the ubiquitina-

tion of Mcl-1 and that cathepsin D inhibition reversed this process

(Figure 5B). Mcl-1 ubiquitination is catalyzed by Mule/ARF-BP1,

an E3 ubiquitin ligase [16]. Heat shock protein Hsp70 reduces

Mule binding to Mcl-1 and Mcl-1 polyubiquitination [38]. Hsp70

expression was induced but there was no evidence of induction of

Mule expression following pneumococcal infection (Figure 5C).

Immunoprecipitation of Mcl-1 demonstrated the expected

downregulation of Mcl-1 with time but indicated there was a

sequential increase in Hsp70 binding (until 12 h) and in Mule

binding (from 12 h) (Figure 6A). The enhancement of the Mcl-1-

Mule interaction, which was triggered by pneumococcal infection,

was demonstrated by immunoprecipitation of either Mcl-1 or

Mule and was reversed by pepstatin A (Figure 6B–C). Conversely,

following pepstatin A treatment the interaction between Hsp70

and Mcl-1 was favored (Figure 6B–C).

Inhibition of cathepsin D decreases bacterial killing
The inhibition of macrophage apoptosis that results from

maintenance of high Mcl-1 levels prevents effective bacterial

killing [12]. We confirmed that caspase inhibition, which reduces

macrophage apoptosis, but does not alter cathepsin D activation

after pneumococcal infection, reduced bacterial killing in differ-

entiated THP-1 cells (Figure S8). Pepstatin A also reduced

bacterial killing. The combination of pepstatin A and caspase

inhibitors did not further suppress the level of apoptosis nor did it

further reduce bacterial killing, suggesting that the antimicrobial

effect of pepstatin A was mediated via inhibition of apoptosis.

Intracellular killing assays were also performed with BMDM from

WT or cathepsin D2/2 mice. While there was no difference in

bacterial colony counts early post-infection (0–10 h), we detected a

1–1.5 log increase in intracellular bacterial colony counts 16–20 h

after infection in the cathepsin D2/2 BMDM (Figure 7A). These

time points correspond to the time of induction of mitochondrial

(Figure 1D) and other downstream features of apoptosis in this

model [12], thus confirming a critical role for cathepsin D in the

late increment to bacterial killing provided by macrophage

apoptosis.

A further series of experiments were performed in irradiated

mice that were reconstituted with either cathepsin D+/+ or

cathepsin D2/2 bone marrow cells. These mice have normal

numbers of myeloid cells including macrophages and neutrophils

[39] and we also confirmed no baseline differences in numbers of

apoptotic cells in the lung (data not shown). Cathepsin D2/2

alveolar macrophages from reconstituted mice were normal in

number (Figure S9), yet exhibited absent cathepsin D expression

and reduced apoptosis following pulmonary infection with

pneumococci, as compared to cathepsin D+/+ controls

(Figure 7B–C). Mice that had undergone bone marrow transplan-

tation with cathepsin D2/2 bone marrow were significantly

impaired in their capacity to clear low inocula of bacteria from the

lungs (Figure 7D–E), in a model of subclinical infection in which

with Dunnett’s post-test vs. 0 h. (E) AO staining 16 h post-infection of mock infected (Spn 2) or pneumococcal infected (Spn+) differentiated THP-1
cells in the presence (+) or absence (2) of zVADfmk (zVAD) or zFAfmk (zFA), n = 3. Spn+ without zVAD/zFA vs. Spn+ with zVAD, p = ns (not significant)
(F) Mock (Spn2) or D39 (Spn+) infected cells were stained with BODIPY FL-Pepstatin A 16 h post-infection and either visualized by microscopy or
analyzed by flow cytometry. The filled histogram is Spn2, black histogram is Spn+, grey is unstained (US). The images and flow histograms are
representative of three independent experiments. Scale bar equal to 5 mm. Quantified flow results are shown below the histogram, n = 3 (G) A
Western blot of cytosolic and membrane fractions from mock (Spn2) or D39 (Spn+) infected differentiated THP-1 cells at 16 h post-infection probed
with anti–cathepsin D (CatD) and cathepsin B (CatB). Actin and LAMP-1 were used as loading controls. The blots are representative of three
independent experiments. (H) AO staining of differentiated THP-1 cells 16 h after mock-infection (MI) or exposure to D39 or a pneumolysin-deficient
strain of D39 (PLYSTOP), n = 4, *** p,0.001, one-way ANOVA with Tukey’s post-test. In all cases, pooled data are expressed as mean +/2 SEM.
doi:10.1371/journal.ppat.1001262.g001
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Figure 2. Infection with pneumococci is associated with activation of cathepsin D in differentiated THP-1 cells. (A) A Western blot of
phagolysosomes prepared from differentiated THP-1 cells 14 h after mock infection (MI), or infection with S. pneumoniae strain D39 and isolated
using a discontinuous sucrose gradient was probed for cathepsin D. The blot is representative of three independent infections. (B) Cathepsin D

Macrophage Cathepsin D in Pneumococcal Infection
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alveolar macrophages ensure bacterial clearance and mouse

survival [8].

Lack of cathepsin D activation results in increased
recruitment of neutrophils

Both cathepsin D+/+ and cathepsin D2/2 reconstituted mice

recruited neutrophils following low dose pneumococcal challenge

(Figure 8A–B). This contrasts with mice which have not

undergone bone marrow transplantation, which can control these

levels of bacteria without neutrophil recruitment and in which

impairment of macrophage mediated bacterial clearance results in

enhanced neutrophil recruitment [8]. It is also consistent with the

known effect of bone marrow transplantation to reduce the

effectiveness of pulmonary anti-bacterial host defense [40].

However in two challenge models mice reconstituted with

cathepsin D2/2 macrophages demonstrated significantly greater

recruitment of neutrophils, a marker of reduced capacity to

control infection and of more extensive disease in these low dose

pneumococcal challenge models [41] than did mice reconstituted

with cathepsin D+/+ macrophages (Figure 8A–B).

activity was measured in whole cell lysates from mock (Spn2) or D39 (Spn+) infected differentiated THP-1 cells at the designated time points. D39
infected cells showed elevated cathepsin D activity compared to mock infected cells from 8 h, n = 4, *** = p,0.001, two-way ANOVA (C) Cathepsin D
activity measured in whole cell lysates at 14 h in mock-infected (MI) cells, or differentiated THP-1 cells infected with the designated Spn strains (D39
or the pneumolysin-deficient strain PLYSTOP), Staph. aureus or latex beads, n = 4, ns = not significant * = p,0.05. ** = p,0.01, *** = p,0.001 one-way
ANOVA with Tukey’s post-test. (D) Cytosolic pH was measured in mock (Spn2) or D39 (Spn+) infected cells at the designated time points using
SNARF-4F carboxylic acid, acetoxymethyl ester, acetate, n = 4, * = p,0.05. ** = p,0.01, two-way ANOVA. (E) Cytosolic pH was measured at 14 h in
differentiated THP-1 cells either mock-infected (Spn2) or exposed to D39 pneumococci (Spn+) in the presence (+) or absence (2) of pepstatin A (Pep
A), n = 4, * = p,0.05, one-way ANOVA with Dunnett’s post-test vs. MI. In all cases, pooled data are expressed as mean +/2 SEM.
doi:10.1371/journal.ppat.1001262.g002

Figure 3. Cathepsin D activity contributes to apoptosis in the differentiated THP-1 cell line. (A) Differentiated THP-1 cells were stained
with JC-1 16 h after mock-infection (Spn2) or exposure to D39 pneumococci (Spn+) in the presence (+) or absence (2) of pepstatin A or MPC6. Loss
of fluorescence indicates loss of DYm, n = 3–5, * = p,0.05, ** = p,0.01, two-way ANOVA. (B) A representative Western blot of the cytosolic fractions
of Spn2 or Spn+ cells, 16 h after infection, in cultures incubated with (+) or without (2) pepstatin A (PepA). The blot is representative of four
independent infections. (C) Spn- or Spn+ differentiated THP-1 cells, incubated in the presence (+) or absence (2) of pepstatin A (PepA), were assayed
for caspase activity by fluorimetry 16 h post-infection, n = 5, * = p,0.05. (D) Spn2 or Spn+ differentiated THP-1 cells, incubated in the presence (+) or
absence (2) of pepstatin A or MPC6, were fixed and analyzed for nuclear fragmentation after 20 h culture, n = 3–4, * = p,0.05, ** = p,0.01, two-way
ANOVA. In all cases, pooled data are expressed as mean +/2 SEM.
doi:10.1371/journal.ppat.1001262.g003
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Figure 4. Macrophages deficient in cathepsin D show reduced apoptosis. (A) BMDM’s from (WT) or cathepsin D knock-out (KO) mice were
stained with JC-1, 16 h after mock-infection (Spn2) or pneumococcal infection (Spn+) with D39 in the presence (+) or absence (2) of pepstatin A
(PepA), n = 7, * = p,0.05, two-way ANOVA. (B) Nuclear fragmentation was detected by DAPI staining, in WT and cathepsin D KO BMDMs, 20 h after

Macrophage Cathepsin D in Pneumococcal Infection
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The engagement of CXCR2 by CXC chemokines is critical

for neutrophil recruitment in murine models of pneumococcal

pneumonia [42,43,44]. Preliminary data showed cathepsin

D2/2 BMDM produced higher levels of KC and MIP-2 than

WT BMDM, 16 h after bacterial exposure, consistent with a role

for these chemokines in neutrophil recruitment in other models of

pneumococcal pneumonia (data not shown). To establish whether

the recruited neutrophils were contributing to bacterial clearance

we depleted these with an anti-Ly6G antibody [45]. Mice treated

with this antibody had reduced numbers of neutrophils and WT

mice approximately doubled the bacterial CFU in the lungs after

treatment with anti-Ly6G (Figure 8C), suggesting that at this low

level of infection neutrophils were helping to clear bacteria.

Nevertheless although mice reconstituted with cathepsin D2/2

bone marrow had significantly higher colony counts in the lung

than those reconstituted with WT marrow, there was no

significant difference in the bacterial colony counts in the lungs

of mice reconstituted with cathepsin D2/2 after neutrophil

depletion. This suggested that the role of neutrophils in host

defense was redundant and could be compensated for by other

factors, particularly for mice reconstituted with cathepsin D2/2

bone marrow, during low dose pneumococcal challenge.

In summary, cathepsin D was essential for apoptosis-associated

pneumococcal killing and in the absence of cathepsin D expression

by macrophages there was evidence of impaired bacterial

clearance and markers of more extensive pulmonary disease.

Discussion

During bacterial infection prolonged intracellular killing leads to

macrophage apoptosis, a process which contributes to the late

phase killing of pneumococci [8]. The onset of apoptosis is

determined by the level of the anti-apoptotic protein Mcl-1, a

protein whose short intracellular half-life and regulation by

ubiquitination make it well suited to transducing critical levels of

cell stress into a program of apoptosis [12]. In this study, we

demonstrate that LMP and cathepsin D activation trigger

macrophage apoptosis via Mcl-1 downregulation during pneumo-

coccal infection. Cathepsin D activation stimulates Mcl-1

ubiquitination, correlating with enhanced binding of Mcl-1 to its

ubiquitin ligase, Mule. Cathepsin D is required for host-mediated

macrophage apoptosis and the apoptosis-associated late phase

of bacterial killing. Moreover mice reconstituted with cathepsin

D2/2 bone marrow have significant impairment in their capacity

to clear pneumococci from the lung and recruit greater numbers

of neutrophils, the central pathologic feature of pneumococcal

pneumonia.

To our knowledge, activation of lysosomal death pathways

during phagolysosomal killing of microorganisms, has not been

previously linked to programs of apoptosis, despite the fact that

LMP and cathepsins have been implicated in multiple cell death

scenarios [20,21,23,25,46,47]. The delayed macrophage death

seen during pneumococcal infection is associated with DYm

dissipation, mitochondrial cytochrome c release, caspase activation

and nuclear fragmentation, which are all hallmarks of classical

apoptosis [12,18,48]. We previously observed that macrophage

apoptosis during pneumococcal killing requires the cholesterol-

dependent cytolysin pneumolysin [48,49]. Since cholesterol-

dependent cytolysins can bind host proteins including pattern

recognition receptors [50,51], and a diverse range of bacteria can

trigger an apoptotic response during bacterial clearance [6], it is

likely that recognition of pneumolysin is part of a more general

innate response which links detection of different bacterial proteins

to LMP, cathepsin D activation and subsequent apoptosis

induction. Cathepsin D may contribute to the recognition of

these bacterial factors by playing a role in their processing. The

cholesterol-dependent cytolysin, listerolysin, is cleaved by cathep-

sin D [52]. However using HIS-tagged pneumolysin, we have so

far been unable to confirm any direct interaction between

pneumolysin and cathepsin D (Bewley and Dockrell unpublished

observations).

Although the molecular mechanisms of LMP in apoptosis are

incompletely characterized, potential causes in our model include

generation of lysosomotropic factors such as ceramide, intracellu-

lar calcium flux or reactive oxygen species [53]. Moreover we

clearly demonstrate LLA and cathepsin D activation occur

upstream of the mitochondrial features of cell death and are not

the result of caspase activation [29]. We have previously shown

that the mitochondrial apoptosis pathway is only activated when

Mcl-1 expression in macrophages falls below maximal levels

during pneumococcal infection [12,48].

We evaluated several cathepsins but observed that cathepsin D

was the major mediator of macrophage apoptosis induced during

pneumococcal infection, though not the only factor as evidenced

by the fact that absence of cathepsin D activation did not

completely abolish apoptosis. Other minor factors are likely to

include other proteases and protease stress is likely to interact with

oxidative and, as we have previously shown, nitrosative stress [48].

In keeping with this, the combination of an antioxidant, inhibition

of inducible nitric oxide synthase and pepstatin A treatment was

particularly efficient in suppressing apoptosis. However, as the

bulk of the inhibition was achieved with each agent alone, we

surmise that all these inhibitors act on a common pathway that

converges at the level of the mitochondria. Cathepsin D is the

most abundant cathepsin in differentiated macrophages[31,54].

The delayed process of cell death we have observed following

pneumococcal infection is differentiation-dependent [10], com-

mensurate with the accumulation of lysosomes and of cathepsin D

in differentiated macrophages [31,55]. We found that pneumo-

coccal infection activated cathepsin D, while phagocytosis of Staph.

aureus failed to do so. The observation that Staph. aureus, which is

readily phagocytosed [32], fails to result in significant activation of

cathepsin D was noteworthy since Staph. aureus is known to survive

in macrophages and prevent macrophage apoptosis by upregulat-

ing Mcl-1 [56].

Cathepsin D was found to be activated within phagolysosomes

and may exert its pro-apoptotic effects either on substrates in the

phagolysosome or in the cytosol after translocation from

phagolysosomes. A fall in cytosolic pH has been identified as a

consequence of bacterial phagocytosis and killing in phagocytes

[33,34]. LLA allows dissociation of procathepsin D from the

phagolysosomal membrane, cathepsin D activation and substrate

cleavage in the phagolysosomal lumen [57]. It has been assumed

that cathepsin D has little activity above pH 6.2 and that its role in

the cytosol would be non-catalytic [58]. However, the pH

dependence of cathepsin D activity is substrate-dependent and

residual activity is detected for some substrates at pH above 6 [59].

Alternatively, as proposed by Conus, acidic pH dependent-activity

mock (Spn2) or D39 pneumococcal (Spn+) infection in the presence (+) or absence (2) of PepA, n = 5 per group. (C) Acridine orange staining of
BMDMs 16 h post-infection in the presence (+) or absence (2) of pepstatin A, n = 7 per group, * = p,0.05, two-way ANOVA. In all cases, pooled data
are expressed as mean +/2 SEM.
doi:10.1371/journal.ppat.1001262.g004
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Figure 5. Cathepsin D facilitates Mcl-1 downregulation. (A) A representative Western blot for Mcl-1 from wild-type (WT) and Cathepsin D
knock-out (KO) BMDMs 16 h after mock- (Spn2) or D39 pneumococcal-infection (Spn+), in the presence (+) or absence (2) of pepstatin A. The blot is
representative of four independent experiments. Densitometry was carried out and fold change of Mcl-1 relative to mock-infection was calculated,
n = 4 * = p,0.05, two-way ANOVA. (B) Spn2 or Spn+ differentiated THP-1 cells were cultured in the presence (+) or absence (2) of pepstatin A (PepA).
At 16 h cells were lysed, ubiquitinated proteins captured, and Western blots carried out probing for total ubiquitinated proteins and for Mcl-1.
Densitometry was carried out and the ratios of Mcl-1 relative to ubiquitin were calculated, n = 3, * = p,0.05, one-way ANOVA with Tukey’s post-test.
(C) Spn2 or Spn+ differentiated THP-1 cells were lysed and probed for Hsp70, Mule and actin at the designated times post-infection. The blots are
representative of three experiments and the results summarized by densitometry.
doi:10.1371/journal.ppat.1001262.g005
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may be retained in the vicinity of permeabilized phagolysosomes

[27]. Although, we cannot exclude the possibility that some

intermediary molecule was cleaved by cathepsin D, we found no

evidence that Mcl-1 itself was a substrate. Cathepsin D exerts some

of its functions such as mitogenic stimulation or modulation of

apoptosis by non-catalytic activity [22,58]. Nonetheless, the ability

Figure 6. Cathepsin D activation favors the interaction between Mcl-1 and Mule. (A) Mock-infected (Spn2) or D39 exposed (Spn+)
differentiated THP-1 cells were immunoprecipitated with an anti-Mcl-1 antibody at the designated time period. As controls a separate sample at each
time point was treated with a Mcl-1 peptide. The peptide used was identical to that used to produce the anti-Mcl-1 antibody. This excluded non-
specific binding by the anti-Mcl-1 antibody. Precipitated proteins were blotted for Hsp70, Mule and Mcl-1. Densitometry was carried out and the
ratios of Mule and Hsp70 to the amount of Mcl-1 precipitated was calculated, n = 3 * = p,0.05 for comparison of 4 h vs. 16 h, 1-way ANOVA with
Dunnett’s post test. Spn2 or Spn+ differentiated THP-1 cells were cultured in the presence (+) or absence (2) of pepstatin A (PepA) for 16 h and
lysates were immunoprecipitated with anti-Mcl-1 (B) or anti-Mule (C) antibody before being probed for Mule, Hsp70 and Mcl-1. C represents a control
in which mock-infected (MI) cells were immunoprecipitated in the presence of an excess of antigen-specific peptide (Mcl-1) or a non-specific antibody
for the immunoprecipitation of Mule. Densitometry was carried out and the ratios of the immunoblotted proteins to the immunoprecipitated Mcl-1
or Mule were calculated, n = 3 *** = p,0.001 for comparison of Spn+ with or without pepstatin A, one-way ANOVA with Tukey’s post-test.
doi:10.1371/journal.ppat.1001262.g006
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of cathepsin D inhibitors to prevent the downstream effects, as well

as the persistent cathepsin D activity in macrophages exposed to

pneumococci, argues for an important role for cathepsin D acting

as a protease in this model.

Cathepsin D had indirect effects on Mcl-1 regulation via

enhanced ubiquitination of Mcl-1, a major mechanism of Mcl-1

degradation [15], consequent upon increased association of Mcl-1

with its ubiquitin ligase, Mule [16]. The mechanism through

which the Mcl-1/Mule interaction is increased requires further

elucidation, but could include the cathepsin D-dependent

activation of BH3-only proteins, releasing Mcl-1 to interact with

Mule. We found no evidence that cathepsin D activation reduced

levels of Hsp70 protein, a further factor competing for Mcl-1

binding to Mule [38]. Hsp70 is likely to contribute to the

maintenance of macrophage cell viability during the first 12 h

after exposure to pneumococci as it prevents both LMP and Mcl-1

ubiquitination [38,60].

Our demonstration of activation of cathepsin D prior to

induction of a mitochondrial pathway of apoptosis has provided us

with a new tool with which to probe the function of macrophage

apoptosis in host defense against pneumococci. Cathepsin D did

not contribute to bacterial killing prior to apoptosis induction and

pepstatin A did not reduce bacterial killing beyond the level

observed with a caspase inhibitor. Moreover, by using a murine

model in which alveolar macrophages were the only resident cells

that had resistance to apoptosis, we are able to clarify the role of

macrophage apoptosis in a fashion not previously possible with

approaches using caspase inhibition or Mcl-1 over-expression, in

which apoptosis resistance is not selective [8,12]. Using this

approach we now clearly show that macrophage apoptosis is

required for late phase bacterial killing. Resident components of

host defense in the lung control small numbers of bacteria that

penetrate the distal airway. When macrophage function is

subverted by the pathogen [61] or by the sheer size of the

bacterial inoculum [10], activation of apoptosis facilitates bacterial

killing. We cannot at present state the exact basis of this

observation. It could reflect release of factors during the apoptotic

process, such as mitochondrial ROS, that have antimicrobial

effects, a dual role for an effector of apoptosis induction in also

contributing to antimicrobial killing or the possibility that

Figure 7. Cathepsin D in alveolar macrophages contributes to bacterial killing in vitro and in vivo. (A) BMDMs from (WT) or cathepsin D
knock-out (KO) mice were exposed to D39 pneumococci for the indicated time periods. Cells were lysed and intracellular bacteria plated out at the
designated times, n = 5 per group, * = p,0.05, two-way ANOVA. (B) A representative Western blot of alveolar macrophages obtained from bronchial
alveolar (BAL) fluid from irradiated mice transplanted with bone marrow from cathepsin D WT or KO mice. (C) The percentage of apoptotic alveolar
macrophages in BAL in mice after adoptive transfer of marrow from WT or KO mice, 24 h after infection with 104 type 1 pneumococci, as assessed by
nuclear morphology, n = 6–10. The number of surviving bacteria in BAL 14 h (D) and 24 h (E) after infection with 104 type 1 pneumococci, n = 5–9
** = p,0.01, *** = p,0.001, students t-test. In all cases, pooled data are expressed as mean +/2 SEM.
doi:10.1371/journal.ppat.1001262.g007
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apoptotic bodies contain bacteria that are then killed by other

macrophages when these bodies are efferocytosed. This study

confirms that cathepsin D contributes to the antimicrobial effect of

macrophage apoptosis during host defense against pneumococci.

We speculate that the induction of apoptosis allows containment of

bacteria when the phagolysosomal antimicrobial capacity is

‘exhausted’ and prevents bacterial persistence within subcellular

compartments that lack antimicrobial capacity. When the

bactericidal contribution of macrophage apoptosis is over-

whelmed, additional effectors including neutrophils are activated,

and when the inoculum is low, most bacteria are cleared through

redundant mechanisms. Increasing the inoculum overwhelms

these overlapping but redundant elements of host defense and

allows transition to established pneumonia [8]. Macrophage

apoptosis therefore benefits the host at the critical transition

between sub-clinical infection and establishment of pneumonia,

yet has a finite capacity to control infection and can be

overwhelmed by a large bacterial challenge.

In conclusion, we provide evidence that pneumococci stimulate

macrophage LMP. We have found that cathepsin D is a central

effector of apoptosis and that its activation and lysosomal release

functions as a ‘danger signal’ which alerts macrophages to LMP

and the potential translocation of bacteria into the cytosol.

Enhanced ubiquitination of Mcl-1 results in its depletion, thus

initiating the mitochondrial pathway of apoptosis (Figure S10).

Cathepsin D is not only the trigger for apoptotic death of infected

macrophages but is required for the optimal clearance of

pneumococci, at the critical transition between sub-clinical

infection and establishment of pneumonia, supporting an intimate

functional relationship between apoptosis of macrophages and

their bactericidal activity.

Materials and Methods

Bacteria
Type 2 (D39 strain, NCTC 7466) and mutant strain (PLY-

STOP) of S. pneumoniae (Spn) or type 1 (SSISP1/1) for murine

experiments (at the indicated inocula) were grown as described [8].

Staphylococcus aureus (strain SH1000) was grown up in Brain Heart

Infusion (BHI) supplemented with 20% v/v FCS until an

OD610 nm of 0.6 was reached. Prior to infection with S. pneumoniae

strains, thawed aliquots were opsonized in RPMI (Sigma-Aldrich)

containing 10% v/v anti-pneumococcal immune serum [18].

Bacterial numbers were assessed by the surface viable count

method after inoculation on blood agar.

Construction of PLYSTOP
A version of D39, in which toxin production was interrupted by

introduction of a translational stop codon at the 59 end of the gene,

was made by first inserting an extra T base after base 6 in the

pneumolysin gene by site-directed mutagenesis. The altered gene

was then introduced into the chromosome using Janus mutagen-

Figure 8. Absence of functional cathepsin D in macrophages results in increased neutrophil recruitment. Mice were transplanted with
bone marrow from cathepsin D deficient (KO) mice or with bone marrow from wild-type littermates (WT). Mice were instilled with (A) 103 colony
forming units of type 1 pneumococci for 24 h or (B) with 104 type 1 pneumococci for 14 h and the number of neutrophils in BAL was calculated by
analysis of cytospins. In all experiments, n = 3–9 * = p,0.05, students t-test. (C) Mice received bone marrow transplantation as above and WT or KO
mice were instilled with 104 type 1 pneumococci in the presence (+) of anti-Ly6G antibody or control antibody (2) to deplete neutrophils, n = 6 per
group. In all cases, pooled data are expressed as mean +/2 SEM.
doi:10.1371/journal.ppat.1001262.g008
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esis [62]. The resultant strain was shown not to produce any toxin

as judged by Western blotting and lack of haemolytic activity and

findings were confirmed using a complementation mutant (Figure

S3). The complementation mutation was constructed by transfor-

mation with the shuttle vector pALYI [63] containing the

appropriate DNA insert.

Cells and infection
THP-1 cells were cultured in RPMI plus 10% v/v FCS

(complete media). THP-1 cells were differentiated to a macro-

phage phenotype by treating 0.46106 cell/ml with 200 nM PMA

for 3 d, after which the PMA was removed, and the cells left to rest

for a further 5 d after which cell concentration was determined.

These cells have a phenotype similar to monocyte-derived

macrophages (MDM), as evidenced by nuclear to cytoplasmic

ratio, concentration of mitochondria and lysosomes, cell surface

markers, phagocytic capacity, cytokine generation to Toll-like

receptor agonists and susceptibility to apoptosis [28]. Key findings

were also repeated in MDM prepared as described [18]. Murine

BMDMs were obtained by culturing marrow from mice deficient

in either cathepsin D [39], or from the corresponding wild-type

littermates. BMDMs were plated at 0.56106 cells/ml for 14 d in

DMEM containing 10% FCS and 10% conditioned L929 media

[8]. After 14 d, representative wells were scraped to determine cell

concentration. All cell types were infected with opsonized

pneumococci or Staph. aureus at a multiplicity of infection of 10,

or mock-infected as described [18]. All pneumococcal strains

where shown to be internalized at similar rates (Figure S1). In

some experiments, cells were incubated with either 100 mM of the

aspartic protease inhibitor pepstatin A, 10 mM of mannose-

pepstatin conjugate (MPC) 6 [64], 2 mM of the cathepsin D

inhibitor diazoacetyl-DL-2-aminohexanoic acid-methyl ester

(DAME) (Bachem), 25 mM of the cathepsin B inhibitor CA-

074Me (Sigma), 50 mM of the cathepsin B and L inhibitor E-64d

(Sigma), 50 mM N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluor-

omethyl ketone zVADfmk (Enzymes Systems Products) as a pan-

caspase inhibitor previously demonstrated to inhibit caspase-

dependent macrophage apoptosis or 50 mM N-benzyloxycarbo-

nyl–Phe-Ala fluoromethyl ketone, (zFAfmk) (Enzyme Systems

Products) as a control for zVADfmk [18], 50 mM trolox

(Calbiochem) as an anti-oxidant and 50 mM 1400 W (Calbio-

chem) as a specific iNOS inhibitor [48]. Cells were treated for 1 h

before infection, and again from 4 h (after washing). Chemokines

were measured in BMDM supernatants using a cytokine ELISA as

previously described [65]

Isolation and identification phagolysosomes
Phagolysosomes were isolated using discontinuous sucrose

gradients [66]. At the designated time-point infected cells were

washed three times in PBS, before being scraped and pelleted.

Cells were then washed and re-suspended in homogenization

buffer (250 mM sucrose, 0.5 mM EGTA, 20 mM Hepes), and

homogenized on ice in a Dounce homogenizer, confirming lysis by

light microscopy. The resulting lysate was cleared of unlysed cells

and nuclei by centrifugation at 4uC at 450 g for 5 min. The

phagolysosomes were then isolated by flotation on a sucrose

gradient (all sucrose solutions w/v in 0.5 mM EGTA, 20 mM

Hepes); the phagolysosome containing supernatant was first

adjusted to 39% sucrose by addition of 65% sucrose solution.

This 39% sucrose supernatant was pipetted into an ultracentrifuge

tube containing 1 ml 65% sucrose overlaid with 2 ml 55%

sucrose. On top of the sample 2 ml steps of 32.5% and 10%

sucrose were added. The resulting five step gradient was spun for

1 h at 4uC at 100,000 g (SW40Ti rotor in a Beckman centrifuge).

Latex bead (Sigma-Aldrich) containing phagolysosomes were

collected from the interface of the 10% and 32.5% solutions.

Bacteria containing phagolysosomes were isolated from the 55%/

65% interface. Latex bead containing phagolysosomes were then

added to PBS and pelleted by spinning for 15 min at 40,000 g.

Bacteria containing phagolysosomes were equilibrated to 11%

sucrose (using homogenization buffer without sucrose), and

overlaid on a 15% Ficoll cushion (in 5% sucrose, 0.5 mM EGTA,

20 mM Hepes) and spun for 20 min at 18,000 g. The resulting

pellet was then re-suspended in homogenization buffer and spun

for 10 min at 18,000 g. For positive identification of phagolyso-

somes on the initial gradient, after the first centrifugation step the

sucrose gradient was aliquoted into fractions and the protein in

each aliquot TCA precipitated. Each fraction was probed for

proteins known to be associated with phagolysosomes and

visualised by Western blot. Each fraction was probed with anti-

pneumolysin (1:1000, provided by T. Mitchell), cathepsin D

(1:1000, R&D systems), rab5 (mouse monoclonal, 1:1000, BD

Bioscience), rab7 (mouse monoclonal, 1:1000, Abcam), or LAMP-

1 (mouse monoclonal, 1:1000, BD Bioscience). Each fraction was

also probed for the Golgi protein GM130 (mouse monoclonal

1:1000, BD bioscience).

SDS-PAGE and Western immunoblotting
Whole cell extracts and cytosolic fractions were isolated as

previously described [48]. Blots were incubated overnight at 4uC
with antibodies against either human Mcl-1 (rabbit polyclonal SC-

19, 1:1000; Santa Cruz Biotechnology Inc, recognizing full length

Mcl-1, 40 kDa and ubiquitinated Mcl-1, .40 kDa), murine Mcl-1

(1:1000; Rockland), cytochrome c (mouse monoclonal, 1:1000; BD

Biosciences), cathepsin D (goat polyclonal, 1:1000; R&D Systems,

recognizing pro-cathepsin D (52 kDa), an active intermediate

(48 kDa) and the heavy chain of active cathepsin D (34 kDa)),

cathepsin B (mouse monoclonal, 1:1000, Abcam), actin (rabbit

polyclonal 1:5000; Sigma-Aldrich), Mule/ARF-BP1 (1:500, Ab-

cam), Hsp70 (rabbit polyclonal, 1:1000; Abcam), LAMP-1 (mouse

monoclonal, 1:1000; BD Bioscience) or ubiquitin (Pierce Scientific

1:500). Protein detection was with horseradish peroxidase

conjugated secondary antibodies (1:2000; Dako) and ECL

(Amersham Pharmacia). Bands were quantified using Image J

1.32 software (NIH). In Western blot experiments fold change

from mock-infected or earliest time-point was calculated and

normalized to the fold change in actin [12]. In co-immunopre-

cipitation experiments the ratio of the blotted proteins to the

precipitated protein was calculated.

Immunoprecipitations
For IPs, cells were lysed in 2% 3-[(3-cholamidopropyl)

dimethylammonio]-1-propane sulfonate hydrate (CHAPS) lysis

buffer (20 mM Tris-HCl (pH 7.4), 137 mM NaCl, 2 mM EDTA,

2% CHAPS) containing phosphatase and protease inhibitors

(2 mg/ml each of pepstatin, leupeptin and aprotinin) and

phosphatase inhibitors (50 mM sodium fluoride and 1 mM

sodium vanadate) for 30 min on ice. The lysates were incubated

overnight at 4uC on a rotator with 2 mg of anti-Mcl-1 (sc-819:

Santa Cruz) antibody or anti-Mule (Abcam). Immunoprecipitates

were collected by the addition of 10 ml of washed protein A

agarose beads (EZview Affinity Gel; Sigma-Aldrich) and incuba-

tion for 1 h at 4uC on a rotator. The beads were collected by

centrifugation and washed three times with lysis buffer. Finally, the

pelleted beads were resuspended in sodium dodecyl sulfate (SDS)

sample buffer and heated at 95uC for analysis by SDS-

polyacrylamide gel electrophoresis, loading equal concentrations

of protein from the original lysate, and Western blotting with the
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stated antibodies. The specificity of the co-IP results was tested by

performing Mcl-1 IPs in the presence of an excess of the Mcl-1

peptide, which had been used to generate the antibody (sc-819P:

Santa Cruz Biotechnology) and the mule IPs with a non-specific

antibody (rabbit IgG, Sigma).

Lysosomal immunocytochemistry
BMDM were fixed for 15 min in 2% paraformaldehyde,

permeabilized with 0.2% Triton-X for 5 min, before being stained

using standard protocols for indirect immunofluorescence. LAMP-

1 was visualized with anti-LAMP-1 antibody (1:100, BD

Bioscience) and rabbit anti-mouse FITC (DAKO). Slides were

counterstained with DAPI (blue) to show nuclear localization.

Analysis of loss of lysosomal acidification
To detect loss of lysosomal acidification, cells were stained with

the azurophilic dye acridine orange (Sigma-Aldrich). At designated

time-points, cells were washed three times with PBS before being

incubated at 37uC in RPMI containing 5 mM acridine orange for

15 min. The cells were then washed and re-suspended in ice cold

PBS and analyzed by flow cytometry.

Cathepsin D localization and activation
To visualize cathepsin D, macrophages were loaded with 1 mM

pepstatin A-BODIPY FL conjugate (Invitrogen) in complete

media, for 30 min at 37uC. Pepstatin A-BODIPY FL binds

cathepsin D at acidic pH [30]. After staining, cells were washed in

PBS and incubated at 37uC for a further 1 h in complete media.

Live cells were imaged on a Leica AF6000LX inverted microscope

with a DFC 350FX RZ camera and LAS AF Lite software version

1.8, at 37uC, using a 636 lens, numerical aperture 0.7. Cathepsin

D activity was measured using a fluorometric cathepsin D activity

assay kit (Abcam) in accordance with the manufacturer’s

instructions. Fluorescence was measured on a Packard Bioscience

Fusion microplate analyzer. Cathepsin D activity in each sample

was expressed as percentage of a comparative sample that had

been treated with 500 mM pepstatin A to act as a negative control.

Ubiquitin pull-down assay
Ubiquitinated proteins were isolated using an enrichment kit for

ubiquitin (Pierce Scientific) according to the manufacturer’s

instructions. Levels of ubiquitin were analyzed by Western blot,

probing for ubiquitin and other proteins of interest.

Caspase activity assay
Cellular caspase activity was measured using the Caspase-Glo

3/7 Assay (Promega) according to the manufacturer’s instructions.

Luminescence was measured on a Packard Bioscience Fusion

microplate analyzer.

Measurement of cytosolic pH
Intracellular pH was measured using the dye SNARF-4F

carboxylic acid, acetoxymethyl ester acetate (Carboxy-SNARF-

4F-AM) (Molecular Probes). 0.56106 cells per sample were pelleted

and re-suspended in HEPES-buffered medium containing 10 mM

carboxy-SNARF-4F-AM, and incubated at 37uC for 30 min. After

incubation, cells were washed and re-suspended in fresh medium.

The cells were then analyzed by flow cytometry, with the

intracellular pH values being determined by measuring the ratio

of fluorescent emissions at 575 nm and 635 nm. A standard curve

was generated by calibration of the fluorescence ratio in buffers of

different ionic strength, containing the proton ionophore nigericin,

to convert this fluorescence ratio to intracellular pH.

Detection of apoptosis
To detect loss of Dym, at the required time-points, cells were

stained with 10 mM 5,59, 6,69-tetrachloro-1, 19, 3,39 tetraethyl-

benzimidazolocarbocyanine iodide (JC-1; Sigma-Aldrich) and

analyzed by flow cytometry. Loss of Dym was demonstrated by

a loss of fluorescence on the FL-2 channel as previously described

[12]. Nuclear fragmentation was detected by 4969-diamidino-2-

phenylindole (DAPI, Molecular Probes) staining as described

previously. Briefly, three hundred cells per coverslip, from at least

two fields of view from the edge were counted in duplicate samples

by blinded reviewers [8].

In-vitro killing assay
Assessment of intracellular killing was carried out at designated

times as before [48]. For assessment of bacterial killing, cells were

infected and at 4 h washed three times in PBS before being

incubated for 30 min at 37uC in RPMI containing 40 Mu

penicillin and 20 mg/ml gentamicin, washed and incubated with

0.75 mg/ml vancomycin (Sigma) to kill extracellular bacteria. At

the designated time cells were then washed three times in PBS

before being lysed in 250 ml 2% saponin for 12 min. The lysate

was made to 1 ml in PBS, and a viable count performed. Wells

were lysed in triplicate for each time point.

Hemolytic assay
Strains of bacteria were diluted to give equivalent OD600

before being pelleted, resuspended in PBS, and lysed by

sonication. Red blood cells were isolated by centrifugation from

defribrinated sheep blood (TCS Biosciences), washed three times

in PBS and resuspended, to give a 2% solution. 50 ml of this

solution was added to 50 ml PBS and placed in a round-bottomed

plate. 50 ml of bacterial lysate was added per well, and the plate

incubated at 37uC for 1 h. Another 50 ml PBS was added, and the

plate centrifuged at 10006g. Supernatants were analysed for the

release of hemaglobin by measuring the OD at 490 nm.

Bone marrow transfer and in vivo infection
Recipient mice were 6 week old C57BL/6J female mice

(Charles River), maintained on acidified water in individual

ventilated cages and irradiated with 2 doses of 550 rads separated

by 4 h. Donor bone marrow, was obtained from cathepsin D

deficient mice, or wild-type littermates, that had been backcrossed

for 10 generations onto a C57BL/6J background. Bone marrow

was isolated as described previously [39] and resuspended in

HBSS at approximately 16107 cells/ml. 4 h after the second dose

of radiation, 200 ml of the bone marrow cell suspension was

injected into each recipient mouse via the tail vein. Bone marrow

transplantation was confirmed by reconstitution of neutrophil

numbers in the peripheral blood and by demonstrating alveolar

macrophage expression, or absence of expression, of cathepsin D,

as appropriate depending on the donor’s genotype. The mice were

maintained in individual ventilated cages with free access to

autoclaved food and acidified water for 3 months before

intratracheal instillation with 16103 or 16104 colony forming

units of murine passaged type 1 S. pneumoniae as described

previously [8]. Mice were killed 14–24 h after infection, and

bronchoalveolar lavage and lungs collected. Bacterial numbers in

the lung and alveolar macrophage apoptosis were assessed as

previously described [8]. Neutrophil recruitment was assessed by

hemocytometer counts and analysis of cytospin preparations [8].

To deplete neutrophils mice were injected ip with 100 mg anti-Ly-

6G antibody (clone RB6-8C5, eBioscience) or 100 mg rat IgG

(eBioscience) 24 hours prior to infection with S. pneumoniae [45].
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This resulted in a mean reduction in neutrophil numbers in BAL

of 71.4%. All experiments were performed in accordance with the

UK Animals Act, authorised under a UK Home Office Licence,

and approved by the animal project review committee of the

University of Sheffield.

Statistical analysis
Pooled data are expressed as mean and SEM. The indicated

statistical tests were performed using Prism 4.0 software (Graph-

pad Inc). Significance was defined as P,0.05.

Supporting Information

Figure S1 The number of bacteria internalized is equivalent in

differentiated THP-1 cells, when exposed to pneumolysin

sufficient or deficient strains of pneumococci. Differentiated

THP-1 cells were infected with the designated strain of Spn

(D39 or a D39 mutant which lacks pneumolysin PLYSTOP). At

4 h post-infection internalized bacteria were stained and counted,

(n = 3). Internalization of D39 was also measured in cells that had

been treated with pepstatin A (+PepA) as in materials and

methods.

Found at: doi:10.1371/journal.ppat.1001262.s001 (0.26 MB TIF)

Figure S2 Phagolysosome isolation. Differentiated THP-1 cells

were infected with D39. Six hours post-infection the phagolyso-

somes were purified on a discontinuous sucrose gradient by

ultracentrifugation. Fractions from throughout the gradient were

taken and separated by SDS-PAGE before being probed for

pneumolysin and for the lysosomal markers pneumolysin,

cathepsin D, rab5, rab7 or LAMP1. The Golgi protein GM130

was also probed for as a control for organelle contamination.

Found at: doi:10.1371/journal.ppat.1001262.s002 (2.28 MB TIF)

Figure S3 Validation that a pneumolysin complementation

mutant restores the phenotype of the parental strain. Acridine

orange (A) and JC-1 (B) staining of differentiated THP-1 cells 16 h

post-infection. Cells were mock-infected (MI) or infected with D39

pneumococci, a strain overexpressing pneumolysin (SH3), a strain

deficient in pneumolysin (PLYSTOP) or a complemented strain

(SH3PLYSTOP). Representative histograms from one infection

and graphs summarizing loss of lysosomal acidification (LLA) and

inner mitochondrial transmembrane potential (Dym) from four

independent infections are shown, n = 4. (C) A hemolytic assay

measuring optical density (OD) at 490 nm performed on bacterial

lysates of the designated strain of pneumococci, n = 3. (D)

Cathepsin D activity measured in differentiated THP-1 cell lysates

14 h post-infection. Cells were mock-infected (MI), or infected

with the designated strain of pneumococci in the presence (+PepA)

or absence of pepstatin A, n = 3. In all graphs * = p,0.05,

** = p,0.01, one-way ANOVA with Tukey’s post-test.

Found at: doi:10.1371/journal.ppat.1001262.s003 (1.16 MB TIF)

Figure S4 Cathepsin D, but not other cathepsins, plays a role in

apoptosis induction. (A) Differentiated THP-1 cells were mock-

infected (Spn-) or infected with D39 pneumococci (Spn+) infected

in the presence (+) or absence (2) of inhibitors to cathepsin D

(Pepstatin A; PepA), cathepsin B (CA-074Me) or cathepsins B and

L (E-64d), and stained with JC-1 at 16 h post-infection, n = 3. (B)

Spn2 or Spn+ differentiated THP-1 cells were infected in the

presence (+) or absence (2) of diazoacetyl-DL-2-aminohexanoic

acid-methyl ester (DAME), and assayed for nuclear fragmentation

20 h after infection, n = 4. For both graphs * = p,0.05, two-way

ANOVA. In all cases, pooled data are expressed as mean +/2

SEM.

Found at: doi:10.1371/journal.ppat.1001262.s004 (0.50 MB TIF)

Figure S5 Reactive oxygen and nitrogen species contribute to

macrophage apoptosis. Mock-infected (Spn2) or D39 infected

(Spn+) differentiated THP-1 cells were incubated in the presence

of (+) or absence of (2) pepstatin A, the specific iNOS inhibitor

1400W, or the antioxidant trolox, either individually, or in

combination. Cells were fixed and analyzed for nuclear fragmen-

tation 20 h post-infection, n = 4, * = p,0.05, ** = p,0.01,

*** = p,0.001, one-way ANOVA with Tukey’s post-test.

Found at: doi:10.1371/journal.ppat.1001262.s005 (0.22 MB TIF)

Figure S6 Results in monocyte-derived macrophages (MDM)

replicate those seen in differentiated THP-1 cells. (A) A Western

blot for the active (mature heavy chain) form of cathepsin D (Cat

D) performed with whole cell lysates from mock-infected (Spn2)

or D39 infected (Spn+) 16 h post-infection. The blot is

representative of three independent infections in three separate

donors. Acridine orange (B) and JC-1 staining (C) measuring loss

of lysosomal acidification (LLA) and inner mitochondrial trans-

membrane potential (Dym) respectively, at 16 h post-infection, in

cells mock-infected (Spn2) or infected with D39 (Spn +) in the

presence (+) or absence (2) of pepstatin A (PepA), n = 4. (D)

Nuclear fragmentation analysed 20 h post-infection, in Spn2 or

Spn+ MDM in the presence (+) or absence (2) of pepstatin A

(PepA), n = 3. In all graphs * = p,0.05, one-way ANOVA with

Tukey’s post-test.

Found at: doi:10.1371/journal.ppat.1001262.s006 (0.56 MB TIF)

Figure S7 Cathepsin D deficient BMDMs exhibit similar

lysosomal density and phagocytic function to wild-type (WT)

BMDMs. (A) Immunohistochemistry was performed on WT and

cathepsin D knockout BMDMs stained with the lysosomal marker

LAMP1 (green). Slides were counterstained with DAPI (blue) to

show nuclear localization. (B) WT and cathepsin D knock-out

(KO) BMDMs were infected with FITC-labelled opsonized

pneumococci. At 4 h post-infection the number of internalized

bacteria was determined, (n = 3).

Found at: doi:10.1371/journal.ppat.1001262.s007 (2.11 MB TIF)

Figure S8 Cathepsin D contributes to bacterial killing through

the initiation of apoptosis. (A) Differentiated THP-1 cells were

mock-infected (Spn2) or exposed to D39 pneumococci (Spn+), in

the presence (+) or absence (2) of zVADfmk (zVAD), zFAfmk

(zFA) or pepstatin A (PepA). (A) Nuclear fragmentation in Spn2

or Spn+ differentiated THP-1 cells 20 h post-infection, n = 3. (B)

Cathepsin D activity measured in Spn2 or Spn+ differentiated

THP-1 cell lysates 14 h post-infection, n = 3. (C) Intracellular

colony forming units (CFU) in Spn+ differentiated THP-1 cell

lysates 16 h post-infection, in the presence or absence of the

indicated inhibitors, n = 3. In all graphs ns = not significant,

* = p,0.05, one-way ANOVA with Tukey’s post-test.

Found at: doi:10.1371/journal.ppat.1001262.s008 (0.36 MB TIF)

Figure S9 Mice reconstituted with cathepsin D deficient bone

marrow have similar numbers of alveolar macrophages to those

reconstituted with wild-type bone marrow. Irradiated mice were

reconstituted with either wild type (WT) or cathepsin D knock-out

(CatD KO) bone marrow. The number of macrophages present in

the bronchial alveolar fluid was determined by cytospin counts

three months after transplantation, n = 6. There were no

significant differences between groups. In all cases, pooled data

are expressed as mean +/2 SEM.

Found at: doi:10.1371/journal.ppat.1001262.s009 (0.18 MB TIF)

Figure S10 A model for the role of cathepsin D in macrophage

apoptosis. After internalization of S. pneumoniae into the

phagolysosome, pneumolysin (PLY) activates cathepsin D (Cat

D). Lysosomal membrane permeabilization results in translocation
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of Cat D into an acidified cytosol. Cat D activity facilitates the

binding of Mule to Mcl-1 and thus an increase in proteasomal

degradation of Mcl-1 via ubiquitination. This leads to an increase

in the turn-over of Mcl-1, which allows Bax and Bak activation,

mitochondria outer membrane permeabilization and the initiation

of downstream apoptotic features.

Found at: doi:10.1371/journal.ppat.1001262.s010 (1.64 MB TIF)
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