140 research outputs found

    Aerosol dynamics simulations of the anatomical variability of e-cigarette particle and vapor deposition in a stochastic lung

    Get PDF
    Electronic cigarette (EC) aerosols are typically composed of a mixture of nicotine, glycerine (VG), propylene glycol (PG), water, acidic stabilizers and a variety of flavors. Inhalation of e-cigarette aerosols is characterized by a continuous modification of particle diameters, concentrations, composition and phase changes, and smoker-specific inhalation conditions, i.e. puffing, mouthhold and bolus inhalation. The dynamic changes of inhaled e-cigarette droplets in the lungs due to coagulation, conductive heat and diffusive heat/convective vapor transport and particle phase chemistry are described by the Aerosol Dynamics in Containment (ADiC) model. For the simulation of the variability of inhaled particle and vapor deposition, the ADiC model is coupled with the IDEAL Monte Carlo code, which is based on a stochastic, asymmetric airway model of the human lung. We refer to the coupled model as "IDEAL/ADIC_v1.0". In this study, two different ecigarettes were compared, one without any acid ("no acid") and the other one with an acidic regulator (benzoic acid) to establish an initial pH level of about 7 ("lower pH"). Corresponding deposition patterns among human airways comprise total and compound-specific number and mass deposition fractions, distinguishing between inhalation and exhalation phases and condensed and vapor phases. Note that the inhaled EC aerosol is significantly modified in the oral cavity prior to inhalation into the lungs. Computed deposition fractions demonstrate that total particle mass is preferentially deposited in the alveolar region of the lung during inhalation. While nicotine deposits prevalently in the condensed phase for the "lower pH" case, vapor phase deposition is dominating the "no acid" case. The significant statistical fluctuations of the particle and vapor deposition patterns illustrate the inherent anatomical variability of the human lung structure.Peer reviewe

    Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase

    Get PDF
    The radical SAM enzyme, spore photoproduct lyase, requires an H-atom transfer (HAT) pathway to catalyze DNA repair. By rational engineering, we demonstrate that it is possible to rewire its HAT pathway, a first step toward the development of novel catalysts based on the radical SAM enzyme scaffold

    Measuring Cosmic Elements with Gamma-Ray Telescopes

    Full text link
    Gamma-ray telescopes are capable of measuring radioactive trace isotopes from cosmic nucleosynthesis events. Such measurements address new isotope production rather directly for a few key isotopes such as 44Ti, 26Al, 60Fe, and 56Ni, as well as positrons from the beta^+-decay variety. Experiments of the past decades have now established an astronomy with gamma-ray lines, which is an important part of the study of nucleosynthesis environments in cosmic sources. For massive stars and supernovae, important constraints have been set: Co isotope decays in SN1987A directly demonstrated the synthesis of new isotopes in core-collapse supernovae, 44Ti from the 340-year old Cas A supernova supports the concept of alpha-rich freeze-out, but results in interesting puzzles pursued by theoretical studies and future experiments. 26Al and 60Fe has been measured from superimposed nucleosynthesis within our Galaxy, and sets constraints on massive-star interior structure through its intensity ratio of ~15%. The 26Al gamma-ray line is now seen to trace current star formation and even the kinematics of interstellar medium throughout the Galaxy. Positron annihilation emission from nucleosynthesis throughout the plane of our Galaxy appears to be mainly from 26Al and other supernova radioactivity, but the striking brightness of the Galaxy's bulge region in positron annihilation gamma-rays presents a puzzle involving several astrophysics issues beyond nuclear astrophysics. This paper focuses mainly on a discussion of 26Al and 60Fe from massive star nucleosynthesis.Comment: 6 pages, 3 figures. Accepted for publication in special PASA issue on the "The Origin of the Elements heavier than Iron" in honor of the 70th birthday of Roberto Gallin

    Journal of Physics: Conference Series / Regional lung deposition of aged and diluted sidestream tobacco smoke

    Get PDF
    Since aged and diluted smoke particles are in general smaller and more stable than mainstream tobacco smoke, it should be possible to model their deposition on the basis of their measured particle diameters. However in practice, measured deposition values are consistently greater than those predicted by deposition models. Thus the primary objective of this study was to compare theoretical predictions obtained by the Monte Carlo code IDEAL with two human deposition studies to attempt to reconcile these differences. In the first study, male and female volunteers inhaled aged and diluted sidestream tobacco smoke at two steady-state concentrations under normal tidal breathing conditions. In the second study, male volunteers inhaled aged and diluted sidestream smoke labelled with 212Pb to fixed inhalation patterns. Median particle diameters in the two studies were 125 nm (CMD) and 210 nm (AMD), respectively. Experimental data on total deposition were consistently higher than the corresponding theoretical predictions, exhibiting significant inter-subject variations. However, measured and calculated regional deposition data are quite similar to each other, except for the extra-thoracic region. This discrepancy suggests that either the initial particle diameter decreases upon inspiration and/or additional deposition mechanisms are operating in the case of tobacco smoke particles.(VLID)220918

    The degree of inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human respiratory tract

    Get PDF
    Inhalation of short-lived radon progeny is an important cause of lung cancer. To characterize the absorbed doses in the bronchial region of the airways due to inhaled radon progeny, mostly regional lung deposition models, like the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection, are used. However, in this model the site specificity of radiation burden in the airways due to deposition and fast airway clearance of radon progeny is not described. Therefore, in the present study, the Radact version of the stochastic lung model was used to quantify the cellular radiation dose distribution at airway generation level and to simulate the kinetics of the deposited radon progeny resulting from the moving mucus layer. All simulations were performed assuming an isotope ratio typical for an average dwelling, and breathing mode characteristic of a healthy adult sitting man. The study demonstrates that the cell nuclei receiving high doses are non-uniformly distributed within the bronchial airway generations. The results revealed that the maximum of the radiation burden is at the first few bronchial airway generations of the respiratory tract, where most of the lung carcinomas of former uranium miners were found. Based on the results of the present simulations, it can be stated that regional lung models may not be fully adequate to describe the radiation burden due to radon progeny. A more realistic and precise calculation of the absorbed doses from the decay of radon progeny to the lung requires deposition and clearance to be simulated by realistic models of airway generations.(VLID)469743

    Coulomb excitation of exotic nuclei at the R3B-LAND setup

    Full text link
    Exotic Ni isotopes have been measured at the R3B-LAND setup at GSI in Darmstadt, using Coulomb excitation in inverse kinematics at beam energies around 500 MeV/u. As the experimental setup allows kinematically complete measurements, the excitation energy was reconstructed using the invariant mass method. The GDR and additional low-lying strength have been observed in 68Ni, the latter exhausting 4.1(1.9)% of the E1 energy-weighted sum rule. Also, the branching ratio for the non-statistical decay of the excited 68Ni nuclei was measured and amounts to 24(4)%.Comment: 11 pages, 7 figures. Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Schottky mass measurements of heavy neutron-rich nuclides in the element range 70\leZ \le79 at the ESR

    Get PDF
    Storage-ring mass spectrometry was applied to neutron-rich 197^{197}Au projectile fragments. Masses of 181,183^{181,183}Lu, 185,186^{185,186}Hf, 187,188^{187,188}Ta, 191^{191}W, and 192,193^{192,193}Re nuclei were measured for the first time. The uncertainty of previously known masses of 189,190^{189,190}W and 195^{195}Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.Comment: 10 pages, 9 figures, 2 table

    Discovery and Cross-Section Measurement of Neutron-Rich Isotopes in the Element Range from Neodymium to Platinum at the FRS

    Get PDF
    With a new detector setup and the high-resolution performance of the fragment separator FRS at GSI we discovered 57 new isotopes in the atomic number range of 60Z78\leq Z \leq 78: \nuc{159-161}{Nb}, \nuc{160-163}{Pm}, \nuc{163-166}Sm, \nuc{167-168}{Eu}, \nuc{167-171}{Gd}, \nuc{169-171}{Tb}, \nuc{171-174}{Dy}, \nuc{173-176}{Ho}, \nuc{176-178}{Er}, \nuc{178-181}{Tm}, \nuc{183-185}{Yb}, \nuc{187-188}{Lu}, \nuc{191}{Hf}, \nuc{193-194}{Ta}, \nuc{196-197}{W}, \nuc{199-200}{Re}, \nuc{201-203}{Os}, \nuc{204-205}{Ir} and \nuc{206-209}{Pt}. The new isotopes have been unambiguously identified in reactions with a 238^{238}U beam impinging on a Be target at 1 GeV/u. The isotopic production cross-section for the new isotopes have been measured and compared with predictions of different model calculations. In general, the ABRABLA and COFRA models agree better than a factor of two with the new data, whereas the semiempirical EPAX model deviates much more. Projectile fragmentation is the dominant reaction creating the new isotopes, whereas fission contributes significantly only up to about the element holmium.Comment: 9 pages, 4 figure
    corecore