847 research outputs found

    Identification of MOS9 as an interaction partner for chalcone synthase in the nucleus

    Get PDF
    Plant flavonoid metabolism has served as a platform for understanding a range of fundamental biological phenomena, including providing some of the early insights into the subcellular organization of metabolism. Evidence assembled over the past three decades points to the organization of the component enzymes as a membrane-associated complex centered on the entry-point enzyme, chalcone synthase (CHS), with flux into branch pathways controlled by competitive protein interactions. Flavonoid enzymes have also been found in the nucleus in a variety of plant species, raising the possibility of alternative, or moonlighting functions for these proteins in this compartment. Here, we present evidence that CHS interacts with MOS9, a nuclear-localized protein that has been linked to epigenetic control of R genes that mediate effector-triggered immunity. Overexpression of MOS9 results in a reduction of CHS transcript levels and a metabolite profile that substantially intersects with the effects of a null mutation in CHS. These results suggest that the MOS9–CHS interaction may point to a previously-unknown mechanism for controlling the expression of the highly dynamic flavonoid pathway

    Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene

    Get PDF
    Plants can survive a limiting nitrogen (N) supply by developing a set of N limitation adaptive responses. However, the Arabidopsis nla (nitrogen limitation adaptation) mutant fails to produce such responses, and cannot adapt to N limitation. In this study, the nla mutant was utilized to understand further the effect of NLA on Arabidopsis adaptation to N limitation. Grown with limiting N, the nla mutant could not accumulate anthocyanins and instead produced an N limitation-induced early senescence phenotype. In contrast, when supplied with limiting N and limiting phosphorus (Pi), the nla mutants accumulated abundant anthocyanins and did not show the N limitation-induced early senescence phenotype. These results support the hypothesis that Arabidopsis has a specific pathway to control N limitation-induced anthocyanin synthesis, and the nla mutation disrupts this pathway. However, the nla mutation does not affect the Pi limitation-induced anthocyanin synthesis pathway. Therefore, Pi limitation induced the nla mutant to accumulate anthocyanins under N limitation and allowed this mutant to adapt to N limitation. Under N limitation, the nla mutant had a significantly down-regulated expression of many genes functioning in anthocyanin synthesis, and an enhanced expression of genes involved in lignin production. Correspondingly, the nla mutant grown with limiting N showed a significantly lower production of anthocyanins (particularly cyanidins) and an increase in lignin contents compared with wild-type plants. These data suggest that NLA controls Arabidopsis adaptability to N limitation by channelling the phenylpropanoid metabolic flux to the induced anthocyanin synthesis, which is important for Arabidopsis to adapt to N limitation

    The Formation of Anthocyanic Vacuolar Inclusions in Arabidopsis thaliana and Implications for the Sequestration of Anthocyanin Pigments

    Get PDF
    Anthocyanins are flavonoid pigments that accumulate in the large central vacuole of most plants. Inside the vacuole, anthocyanins can be found uniformly distributed or as part of sub-vacuolar pigment bodies, the Anthocyanic Vacuolar Inclusions (AVIs). Using Arabidopsis seedlings grown under anthocyanin-inductive conditions as a model to understand how AVIs are formed, we show here that the accumulation of AVIs strongly correlates with the formation of cyanidin 3-glucoside (C3G) and derivatives. Arabidopsis mutants that fail to glycosylate anthocyanidins at the 5-O position (5gt mutant) accumulate AVIs in almost every epidermal cell of the cotyledons, as compared to wild-type seedlings, where only a small fraction of the cells show AVIs. A similar phenomenon is observed when seedlings are treated with vanadate. Highlighting a role for autophagy in the formation of the AVIs, we show that various mutants that interfere with the autophagic process (atg mutants) display lower numbers of AVIs, in addition to a reduced accumulation of anthocyanins. Interestingly, vanadate increases the numbers of AVIs in the atg mutants, suggesting that several pathways might participate in AVI formation. Taken together, our results suggest novel mechanisms for the formation of sub-vacuolar compartments capable of accumulating anthocyanin pigments

    LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes

    Get PDF
    Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression

    Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation

    Get PDF
    Flavonols, phenylalanine-derived secondary metabolites, have protective and regulatory functions in plants. In Arabidopsis thaliana, they are consecutively glycosylated at their 3-OH and 7-OH groups. UGT78D1 and UGT78D2 are the major flavonol 3-O-glycosyltransferases in Arabidopsis leaves. The ugt78d1 ugt78d2 double mutant, which was strongly compromised in the initial 3-O-glycosylation, showed a severe and specific repression of flavonol biosynthesis, retaining only one-third of the wild-type level. This metabolic phenotype was associated with a repressed transcription of several flavonol biosynthetic genes including the committed step chalcone synthase [(CHS) or TRANSPARENT TESTA 4 (TT4)]. Furthermore, the committed step of the upstream, general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL), was down-regulated in its enzyme activity and in the transcription of the flavonol-related PAL1 and PAL2. However, a complete blocking of flavonoid biosynthesis at CHS released PAL inhibition in a tt4 ugt78d1 ugt78d2 line. PAL activity was even enhanced in the flavonol synthase 1 mutant, which compromises the final formation of flavonol aglycones. The dependence of the PAL feedback inhibition on flavonols was confirmed by chemical complementation of tt4 ugt78d1 ugt78d2 using naringenin, a downstream flavonoid intermediate, which restored the PAL repression. Although aglycones were not analytically detectable, this study provides genetic evidence for a novel, flavonol-dependent feedback inhibition of the flavonol biosynthetic pathway and PAL. It was conditioned by the compromised flavonol-3-O-conjugation and a decrease in flavonol content, yet dependent on a residual, flavonol synthase 1 (FLS1)-related capacity to form flavonol aglycones. Thus, this regulation would not react to a reduced metabolic flux into flavonol biosynthesis, but it might prevent the accumulation of non-glycosylated, toxic flavonols

    Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis

    Get PDF
    Grape proanthocyanidins (PAs) play a major role in the organoleptic properties of wine. They are accumulated mainly in grape skin and seeds during the early stages of berry development. Despite the recent progress in the identification of genes involved in PA biosynthesis, the mechanisms involved in subunit condensation, galloylation, or fine regulation of the spatio-temporal composition of grape berries in PAs are still not elucidated. Two Myb transcription factors, VvMybPA1 and VvMybPA2, controlling the PA pathway have recently been identified and ectopically over-expressed in an homologous system. In addition to already known PA genes, three genes coding for glucosyltransferases were significantly differentially expressed between hairy roots over-expressing VvMybPA1 or VvMybPA2 and control lines. The involvement of these genes in PA biosynthesis metabolism is unclear. The three glucosyltransferases display high sequence similarities with other plant glucosyltransferases able to catalyse the formation of glucose esters, which are important intermediate actors for the synthesis of different phenolic compounds. Studies of the in vitro properties of these three enzymes (Km, Vmax, substrate specificity, pH sensitivity) were performed through production of recombinant proteins in E. coli and demonstrated that they are able to catalyse the formation of 1-O-acyl-Glc esters of phenolic acids but are not active on flavonoids and stilbenes. The transcripts are expressed in the early stages of grape berry development, mainly in the berry skins and seeds. The results presented here suggest that these enzymes could be involved in vivo in PA galloylation or in the synthesis of hydroxycinnamic esters

    Convergence, Constraint and the Role of Gene Expression During Adaptive Radiation: Floral Anthocyanins in Aquilegia

    Get PDF
    Convergent phenotypes are testament to the role of natural selection in evolution. However, little is known about whether convergence in phenotype extends to convergence at the molecular level. We use the independent losses of floral anthocyanins in columbines (Aquilegia) to determine the degree of molecular convergence in gene expression across the anthocyanin biosynthetic pathway (ABP). Using a phylogeny of the North American Aquilegia clade, we inferred six independent losses of floral anthocyanins. Via semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we monitored developmental and tissue-specific variation in expression of the six major structural ABP loci in three Aquilegia species, two that produce anthocyanins (A+) and one that does not (A-). We then compared ABP expression in petals of old-bud and pre-anthesis flowers of 13 Aquilegia species, eight wild species and two horticultural lines representing seven independent A- lineages as well as three wild A+ species. We only found evidence of down-regulation of ABP loci in A- lineages and losses of expression were significantly more prevalent for genes late in the pathway. Independent contrast analysis indicates that changes in expression of dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) are strongly phylogenetically correlated consistent with the multilocus targets of trans-regulatory elements in the ABP of other systems. Our findings strongly suggest that pleiotropy constrains the evolution of loss of floral anthocyanins to mutations affecting genes late in the ABP mostly through convergent changes in regulatory genes. These patterns support the hypothesis that rapid evolutionary change occurs largely through regulatory rather than structural mutations

    Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants

    Get PDF
    The flavonoid-derived proanthocyanidins (PAs) are one class of the major defence phenolics in poplar leaves. Transcriptional activation of PA biosynthetic genes, resulting in PA accumulation in leaves, was detected following infection by the fungal Marssonina brunnea f.sp. multigermtubi using digital gene expression analysis. In order to study PA biosynthesis and its induction by fungi, a putative leucoanthocyanidin reductase gene, PtrLAR3, was isolated from Populus trichocarpa. Sequence comparison of PtrLAR3 with other known leucoanthocyanidin reductase proteins revealed high amino acid sequence similarity. Semi-quantitative reverse-transcription (RT) PCR and quantitative real-time PCR analysis demonstrated that PtrLAR3 was expressed in various tissues and the highest level of expression was observed in roots. Overexpression of PtrLAR3 in Chinese white poplar (Populus tomentosa Carr.) led to a significant plant-wide increase in PA levels. In vitro assays showed that crude leaf extracts from 35S:PtrLAR3 transformants were able to inhibit significantly the hyphal growth of M. brunnea f.sp. multigermtubi compared to the extracts from control plants. The transgenic 35S:PtrLAR3 poplar plants displayed a significant (P < 0.05) reduction in their disease symptoms compared with the control. RT-PCR analysis showed that PtrLAR3 expression was up-regulated in all transformants. These results suggested that constitutive expression of endogenous PtrLAR3 could be exploited to improve resistance to fungal pathogens in poplar

    Blocking the Metabolism of Starch Breakdown Products in Arabidopsis Leaves Triggers Chloroplast Degradation

    Get PDF
    In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation
    corecore