309 research outputs found

    Low Pressure Greenhouse Concepts for Mars

    Get PDF
    A project was initiated to begin testing some environmental limits for managing plant growth systems. These limits will help determine some of the concepts for building plant enclosures for use on Mars. In particular, this study focuses on the effects of reduced atmospheric pressures. Structural design is considered as it relates to the biological processes that would occur within that structure. The design must be closely tied to the functionality of the biological system and has a few primary concerns that need to be tested to resolve the question as to the path of the design. Early tests indicate that plants can survive and grow at low (greater than 76 mb) pressure

    Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    Get PDF
    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers

    Developing a Culturally Proficient Intervention for Young African American Men in Drug Court: Examining Feasibility and Estimating an Effect Size for Habilitation Empowerment Accountability Therapy (HEAT)

    Get PDF
    African American males between 18 and 29 years of age are substantially less likely than many other participants to graduate successfully from drug court. Unsuccessful termination from drug court can have serious repercussions for these young men, including possible incarceration and negative collateral consequences associated with having a criminal record. This article reports preliminary results from two pilot studies that examined the feasibility of implementing a culturally proficient intervention for young African American men in drug court, and estimated an effect size for the intervention in improving treatment retention and reducing termination rates. Results confirmed that participants with serious criminal and substance use histories were willing and able to complete the lengthy 9-month curriculum, were satisfied with the intervention, and graduated from drug court at substantially higher rates than are commonly observed in this at-risk population. A sufficient basis has been established to justify the effort and expense of examining this intervention — Habilitation Empowerment Accountability Therapy (HEAT) — in fully powered randomized controlled trials

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    A Decade of SN1993J: Discovery of Wavelength Effects in the Expansion Rate

    Get PDF
    We have studied the growth of the shell-like radio structure of supernova SN1993J in M81 from September 1993 through October 2003 with very-long-baseline interferometry (VLBI) observations at the wavelengths of 3.6, 6, and 18cm. For this purpose, we have developed a method to accurately determine the outer radius (R) of any circularly symmetric compact radio structure like SN1993J. The source structure of SN1993J remains circularly symmetric (with deviations from circularity under 2%) over almost 4000 days. We characterize the decelerated expansion of SN 1993J through approximately day 1500 after explosion with an expansion parameter m=0.845±0.005m= 0.845\pm0.005 (RtmR \propto t^{m}). However, from that day onwards the expansion is different when observed at 6 and 18cm. Indeed, at 18cm, the expansion can be well characterized by the same mm as before day 1500, while at 6cm the expansion appears more decelerated, and is characterized by another expansion parameter, m6=0.788±0.015m_{6}= 0.788\pm0.015. Therefore, since about day 1500 on, the radio source size has been progressively smaller at 6cm than at 18cm. These findings are in stark contrast to previous reports by other authors on the details of the expansion. In our interpretation the supernova expands with a single expansion parameter, m=0.845±0.005m= 0.845\pm0.005, and the 6cm results beyond day 1500 are due to physical effects, perhaps also coupled to instrumental limitations. Two physical effects may be involved: (a) a changing opacity of the ejecta to the 6cm radiation, and (b) a radial decrease of the magnetic field in the emitting region. (Long abstract cut. Please, read full abstract in manuscript).Comment: 21 pages, 19 figures, accepted in A&

    U.S. Army Small Space Update

    Get PDF
    In December 2010, the U.S. Army flew its first satellite in 50 years, the SMDC-ONE CubeSat. Placed in a very low orbit, the first SMDC-ONE mission lasted only 35 days but enjoyed great success in demonstrating the viability of CubeSats to perform exfiltration of unattended ground sensors data and serve as a communications relay between ground stations over 1000 land miles apart. The success of SMDC-ONE helped shape the U.S. Army’s Space and Missile Defense Command’s (SMDC) programmatic goals for finding new and innovative ways to implement space applications and technologies that aid the warfighter. Since 2010, SMDC has flown ten additional CubeSats including the three SMDC Nanosatellite Program-3 (SNaP) CubeSats currently on orbit (launched October 2015). This paper addresses several SMDC satellite-related development efforts including SNaP, Army Resilient Global On-the-move SATCOM (ARGOS) Ka-band communications microsatellites, Kestrel Eye (an imaging microsatellite), Kestrel Eye Ground Station (KEGS), Common Ground Station (CGS) for all future Army small satellites, supporting technologies including Small Business Innovative Research (SBIR) efforts, the Concepts Analysis Laboratory, SMDC Space Laboratory, the ACES RED effort and earlier responsive launch vehicle activities. Several of the lessons learned from previous as well as ongoing satellite activities are also covered

    Characterization of a Large Group of Individuals with Huntington Disease and Their Relatives Enrolled in the COHORT Study

    Get PDF
    Careful characterization of the phenotype and genotype of Huntington disease (HD) can foster better understanding of the condition.We conducted a cohort study in the United States, Canada, and Australia of members of families affected by HD. We collected demographic and clinical data, conducted the Unified Huntington's Disease Rating Scale and Mini-Mental State Examination, and determined Huntingtin trinucleotide CAG repeat length. We report primarily on cross-sectional baseline data from this recently completed prospective, longitudinal, observational study.As of December 31, 2009, 2,318 individuals enrolled; of these, 1,985 (85.6%) were classified into six analysis groups. Three groups had expanded CAG alleles (36 repeats or more): individuals with clinically diagnosed HD [n = 930], and clinically unaffected first-degree relatives who had previously pursued [n = 248] or not pursued [n = 112] predictive DNA testing. Three groups lacked expanded alleles: first-degree relatives who had previously pursued [n = 41] or not pursued [n = 224] genetic testing, and spouses and caregivers [n = 430]. Baseline mean performance differed across groups in all motor, behavioral, cognitive, and functional measures (p<0.001). Clinically unaffected individuals with expanded alleles weighed less (76.0 vs. 79.6 kg; p = 0.01) and had lower cognitive scores (28.5 vs. 29.1 on the Mini Mental State Examination; p = 0.008) than individuals without expanded alleles. The frequency of "high normal" repeat lengths (27 to 35) was 2.5% and repeat lengths associated with reduced penetrance (36 to 39) was 2.7%.Baseline analysis of COHORT study participants revealed differences that emerge prior to clinical diagnosis. Longitudinal investigation of this cohort will further characterize the natural history of HD and genetic and biological modifiers.Clinicaltrials.gov NCT00313495

    Adenosine deamination in human transcripts generates novel microRNA binding sites

    Get PDF
    Animals regulate gene expression at multiple levels, contributing to the complexity of the proteome. Among these regulatory events are post-transcriptional gene silencing, mediated by small non-coding RNAs (e.g. microRNAs), and adenosine-to-inosine (A-to-I) editing, generated by adenosine deaminases that act on double-stranded RNA (ADAR). Recent data suggest that these regulatory processes are connected at a fundamental level. A-to-I editing can affect Drosha processing or directly alter the microRNA (miRNA) sequences responsible for mRNA targeting. Here, we analyzed the previously reported adenosine deaminations occurring in human cDNAs, and asked if there was a relationship between A-to-I editing events in the mRNA 3′ untranslated regions (UTRs) and mRNA:miRNA binding. We find significant correlations between A-to-I editing and changes in miRNA complementarities. In all, over 3000 of the 12 723 distinct adenosine deaminations assessed were found to form 7-mer complementarities (known as seed matches) to a subset of human miRNAs. In 200 of the ESTs, we also noted editing within a specific 13 nucleotide motif. Strikingly, deamination of this motif simultaneously creates seed matches to three (otherwise unrelated) miRNAs. Our results suggest the creation of miRNA regulatory sites as a novel function for ADAR activity. Consequently, many miRNA target sites may only be identifiable through examining expressed sequences

    Angular Momentum and the Formation of Stars and Black Holes

    Full text link
    The formation of compact objects like stars and black holes is strongly constrained by the requirement that nearly all of the initial angular momentum of the diffuse material from which they form must be removed or redistributed during the formation process. The mechanisms that may be involved and their implications are discussed for (1) low-mass stars, most of which probably form in binary or multiple systems; (2) massive stars, which typically form in clusters; and (3) supermassive black holes that form in galactic nuclei. It is suggested that in all cases, gravitational interactions with other stars or mass concentrations in a forming system play an important role in redistributing angular momentum and thereby enabling the formation of a compact object. If this is true, the formation of stars and black holes must be a more complex, dynamic, and chaotic process than in standard models. The gravitational interactions that redistribute angular momentum tend to couple the mass of a forming object to the mass of the system, and this may have important implications for mass ratios in binaries, the upper stellar IMF in clusters, and the masses of supermassive black holes in galaxies.Comment: Accepted by Reports on Progress in Physic

    Timescales of transformational climate change adaptation in sub-Saharan African agriculture

    Get PDF
    Climate change is projected to constitute a significant threat to food security if no adaptation actions are taken. Transformation of agricultural systems, for example switching crop types or moving out of agriculture, is projected to be necessary in some cases. However, little attention has been paid to the timing of these transformations. Here, we develop a temporal uncertainty framework using the CMIP5 ensemble to assess when and where cultivation of key crops in sub-Saharan Africa becomes unviable. We report potential transformational changes for all major crops during the twenty-first century, as climates shift and areas become unsuitable. For most crops, however, transformation is limited to small pockets (<15% of area), and only for beans, maize and banana is transformation more widespread (â 1/430% area for maize and banana, 60% for beans). We envisage three overlapping adaptation phases to enable projected transformational changes: an incremental adaptation phase focused on improvements to crops and management, a preparatory phase that establishes appropriate policies and enabling environments, and a transformational adaptation phase in which farmers substitute crops, explore alternative livelihoods strategies, or relocate. To best align policies with production triggers for no-regret actions, monitoring capacities to track farming systems as well as climate are needed
    corecore