345 research outputs found

    Immunomodulatory mechanisms of lactobacilli

    Get PDF
    <p>Abstract</p> <p>Over the past decade it has become clear that lactobacilli and other probiotic and commensal organisms can interact with mucosal immune cells or epithelial cells lining the mucosa to modulate specific functions of the mucosal immune system. The most well understood signalling mechanisms involve the innate pattern recognition receptors such as Toll-like receptors, nucleotide oligomerization domain-like receptors and C-type lectin receptors. Binding of microbe-associated molecular patterns with these receptors can activate antigen presenting cells and modulate their function through the expression of surface receptors, secreted cytokines and chemokines. <it>In vitro</it> the cytokine response of human peripheral blood mononuclear cells and dendritic cells to lactobacilli can be strikingly different depending on both the bacterial species and the strain. Several factors have been identified in lactobacilli that influence the immune response <it>in vitro</it> and <it>in vivo</it> including cell surface carbohydrates, enzymes modifying the structure of lipoteichoic acids and metabolites. In mice mechanistic studies point to a role for the homeostatic control of inducible T regulatory cells in the mucosal tissues as one possible immunomodulatory mechanism. Increasing evidence also suggests that induction of epithelial signalling by intestinal lactobacilli can modulate barrier functions, defensin production and regulate inflammatory signalling. Other probiotic mechanisms include modulation of the T cell effector subsets, enhancement of humoral immunity and interactions with the epithelial-associated dendritic cells and macrophages. A major challenge for the future will be to gain more knowledge about the interactions occurring between lactobacilli and the host <it>in vivo</it> and to understand the molecular basis of innate signalling in response to whole bacteria which trigger multiple signalling pathways.</p

    Concordance Among Bioelectrical Impedance Analysis Measures Of Percent Body Fat In Athletic Young Adults

    Get PDF
    International Journal of Exercise Science 12(4): 324-331, 2019. The purpose of this investigation was to determine the agreement among three bioelectrical impedance analysis devices (BIA) in athletic young adults. Fifty-one participants (26 men and 25 women) were assessed for percent body fat (PBF) using an arm-to-arm bipolar single-frequency device (ABIA), a leg-to-leg single-frequency device (LBIA), and an octopolar multi-frequency BIA device (MFBIA). PBF was measured with the three devices in a randomized, counterbalanced order. Repeated measures ANOVA revealed significant (p \u3c 0.001) differences in PBF estimates among all devices (ABIA = 19.1 ± 7.2%, LBIA = 21.6 ±7.5%, and MFBIA = 22.9 ± 8.8%). Pearson’s Correlations revealed a strong relationship between ABIA and MFBIA in both men (r = 0.948) and women (r = 0.947) and a moderately-strong relationship between LBIA and MFBIA (r = 0.870 and 0.679, respectively). Lin’s concordance coefficient revealed moderately-strong concordance between ABIA and MFBIA in men (ρc= 0.800) and women (ρc= 0.681) and between LBIA and MFBIA (ρc = 0.846 and ρc= 0.651, respectively). These data indicate a strong agreement among all three devices, suggesting that any of them could be used to track changes in PBF over time. However, the significant differences in PBF values among devices imply that best practice for monitoring body composition should be to use one device consistently over time for a reliable assessment

    AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Campylobacter jejuni </it>contains a homologue of the <it>luxS </it>gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) in <it>Vibrio harveyi </it>and <it>Vibrio cholerae</it>. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling <it>C. jejuni </it>gene expression when it is produced at high levels during mid exponential growth phase.</p> <p>Results</p> <p>AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB) as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-α). Consistent with previous studies, the <it>luxS </it>mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-α and MHB. Microarray analysis of genes differentially expressed in wild type and <it>luxS </it>mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the <it>luxS </it>mutant, growing exponentially in either MHB or MEM-α did not induce any transcriptional changes as analysed by microarray.</p> <p>Conclusion</p> <p>Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in <it>C. jejuni </it>strain NCTC 11168 under the growth conditions used, and that the effects of the <it>luxS </it>mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.</p

    The Response Regulator YycF Inhibits Expression of the Fatty Acid Biosynthesis Repressor FabT in Streptococcus pneumoniae

    Get PDF
    The YycFG (also known as WalRK, VicRK, MicAB, or TCS02) two-component system (TCS) is highly conserved among Gram-positive bacteria with a low G+C content. In Streptococcus pneumoniae the YycF response regulator has been reported to be essential due to its control of pcsB gene expression. Previously we showed that overexpression of yycF in S. pneumoniae TIGR4 altered the transcription of genes involved in cell wall metabolism and fatty acid biosynthesis, giving rise to anomalous cell division and increased chain length of membrane fatty acids. Here, we have overexpressed the yycFG system in TIGR4 wild-type strain and yycF in a TIGR4 mutant depleted of YycG, and analyzed their effects on expression of proteins involved in fatty acid biosynthesis during activation of the TCS. We demonstrate that transcription of the fab genes and levels of their products were only altered in the YycF overexpressing strain, indicating that the unphosphorylated form of YycF is involved in the regulation of fatty acid biosynthesis. In addition, DNA-binding assays and in vitro transcription experiments with purified YycF and the promoter region of the FabTH-acp operon support a direct inhibition of transcription of the FabT repressor by YycF, thus confirming the role of the unphosphorylated form in transcriptional regulation.This work was supported by the Spanish Ministry of Industry and Laboratorios SALVAT within the European project Eureka Σ! 3554-DEADBUGS by the Spanish Ministry of Economics and Competitiveness grants AGL2012-40084C03-01 and AGL2015-65010-C3-1-R, and by the European Union grant FP7-PEOPLE-ITN-2008-238490. The work at the CIB was performed under the auspices of the Consejo Superior de Investigaciones Científicas.S

    Transcriptomics in serum and culture medium reveal shared and differential gene regulation in pathogenic and commensal Streptococcus suis

    Get PDF
    Streptococcus suis colonizes the upper respiratory tract of healthy pigs at high abundance but can also cause opportunistic respiratory and systemic disease. Disease-associated S. suis reference strains are well studied, but less is known about commensal lineages. It is not known what mechanisms enable some S. suis lineages to cause disease while others persist as commensal colonizers, or to what extent gene expression in disease-associated and commensal lineages diverge. In this study we compared the transcriptomes of 21S. suis strains grown in active porcine serum and Todd–Hewitt yeast broth. These strains included both commensal and pathogenic strains, including several strains of sequence type (ST) 1, which is responsible for most cases of human disease and is considered to be the most pathogenic S. suis lineage. We sampled the strains during their exponential growth phase and mapped RNA sequencing reads to the corresponding strain genomes. We found that the transcriptomes of pathogenic and commensal strains with large genomic divergence were unexpectedly conserved when grown in active porcine serum, but that regulation and expression of key pathways varied. Notably, we observed strong variation of expression across media of genes involved in capsule production in pathogens, and of the agmatine deiminase system in commensals. ST1 strains displayed large differences in gene expression between the two media compared to strains from other clades. Their capacity to regulate gene expression across different environmental conditions may be key to their success as zoonotic pathogens

    Organoids: a promising new in vitro platform in livestock and veterinary research.

    Get PDF
    Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool

    Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modulation of the immune system is one of the most plausible mechanisms underlying the beneficial effects of probiotic bacteria on human health. Presently, the specific probiotic cell products responsible for immunomodulation are largely unknown. In this study, the genetic and phenotypic diversity of strains of the <it>Lactobacillus plantarum </it>species were investigated to identify genes of <it>L. plantarum </it>with the potential to influence the amounts of cytokines interleukin 10 (IL-10) and IL-12 and the ratio of IL-10/IL-12 produced by peripheral blood mononuclear cells (PBMCs).</p> <p>Results</p> <p>A total of 42 <it>Lactobacillus plantarum </it>strains isolated from diverse environmental and human sources were evaluated for their capacity to stimulate cytokine production in PBMCs. The <it>L. plantarum </it>strains induced the secretion of the anti-inflammatory cytokine IL-10 over an average 14-fold range and secretion of the pro-inflammatory cytokine IL-12 over an average 16-fold range. Comparisons of the strain-specific cytokine responses of PBMCs to comparative genome hybridization profiles obtained with <it>L. plantarum </it>WCFS1 DNA microarrays (also termed gene-trait matching) resulted in the identification of 6 candidate genetic loci with immunomodulatory capacities. These loci included genes encoding an <it>N</it>-acetyl-glucosamine/galactosamine phosphotransferase system, the LamBDCA quorum sensing system, and components of the plantaricin (bacteriocin) biosynthesis and transport pathway. Deletion of these genes in <it>L. plantarum </it>WCFS1 resulted in growth phase-dependent changes in the PBMC IL-10 and IL-12 cytokine profiles compared with wild-type cells.</p> <p>Conclusions</p> <p>The altered PBMC cytokine profiles obtained with the <it>L. plantarum </it>WCFS1 mutants were in good agreement with the predictions made by gene-trait matching for the 42 <it>L. plantarum </it>strains. This study therefore resulted in the identification of genes present in certain strains of <it>L. plantarum </it>which might be responsible for the stimulation of anti- or pro-inflammatory immune responses in the gut.</p

    Secretion of alpha-hemolysin by<i> Escherichia coil</i> disrupts tight junctions in ulcerative colitis patients

    Get PDF
    OBJECTIVES: The potential of Escherichia coli (E. coli) isolated from inflammatory bowel disease (IBD) patients to damage the integrity of the intestinal epithelium was investigated. METHODS: E. coli strains isolated from patients with ulcerative colitis (UC) and healthy controls were tested for virulence capacity by molecular techniques and cytotoxic assays and transepithelial electric resistance (TER). E. coliisolate p19A was selected, and deletion mutants were created for alpha-hemolysin (α-hemolysin) (hly) clusters and cytotoxic necrotizing factor type 1 (cnf1). ProbioticE. coliNissle and pathogenicE. coliLF82 were used as controls. RESULTS: E. colistrains from patients with active UC completely disrupted epithelial cell tight junctions shortly after inoculation. These strains belong to phylogenetic group B2 and are all α-hemolysin positive. In contrast, probioticE. coliNissle, pathogenicE. coliLF82, fourE. colifrom patients with inactive UC and threeE. colistrains from healthy controls did not disrupt tight junctions.E. colip19A WT as well ascnf1, and single loci ofhlymutants from cluster I and II were all able to damage Caco-2 (Heterogeneous human epithelial colorectal adenocarcinoma) cell tight junctions. However, this phenotype was lost in a mutant with knockout (Δ) of bothhlyloci (P<0.001). CONCLUSIONS: UC-associated E. coliproducing α-hemolysin can cause rapid loss of tight junction integrity in differentiated Caco-2 cell monolayers. This effect was abolished in a mutant unable to express α-hemolysin. These results suggest that high Hly expression may be a mechanism by which specific strains of E. colipathobionts can contribute to epithelial barrier dysfunction and pathophysiology of disease in IBD
    corecore