233 research outputs found
Striped plateau lizards (Sceloporus virgatus) do not adjust foraging position or boldness in response to the plant odorant 2-E-hexenal
Striped plateau lizards (Sceloporus virgatus) have been shown to respond in captivity to the green leaf volatile 2-E-hexenal, which is released by plants in response to insect herbivory. While in some other systems green leaf volatiles serve as a prey-detection mechanism for insectivores, we found that S. virgatus did not alter its position or boldness in response to 2-E-hexenal in the field
Wildfire as a natural stressor and its effect on female phenotype and ornament development
Controlled low-intensity fires are commonly used in ecosystem management for both habitat restoration and wildfire management. Animals in those ecosystems may respond to fire by shifting energy allocation away from reproduction and growth, and toward maintenance. Stress-induced shifts in energy allocation may affect the expression of condition-dependent sexual signals, which are sensitive to energetic and physiological trade-offs mediated by glucocorticoids. Here, we examine the effect of fire on ornament expression, corticosterone, and other phenotypic traits in a population of striped plateau lizards, Sceloporus virgatus, affected by the Horseshoe 2 Fire in the Chiricahua Mountains, Arizona, USA. The condition-dependent female ornament was significantly smaller the month following the fire than 2 years prior and was both smaller and less orange on the burned site relative to a nearby unburned site. These patterns are similar to those found in a previous experimental study examining the response of the ornament to corticosterone manipulations. Yet, in the current study, corticosterone levels were not different in lizards on the burned and unburned sites. Perhaps glucocorticoid levels already returned to baseline, or do not adequately track environmental change. Females tended to be smaller and lighter on the burned site than the unburned site; however, the year after the fire, body condition was higher for females on the burned site, indicating a rapid recovery and potential long-term benefits in response to low-intensity fires in this fire-adapted ecosystem. We found that the lizards adjusted energy allocation away from sexual signaling and growth in response to low-intensity fires. As fires and fire management are likely to increase in response to changing fire regimes across the globe, it will be important to consider behavioral and physiological responses of impacted species, as well as population-, community-, and ecosystem-level responses
The interface between morphology and action planning: a comparison of two species of New World monkeys
Recent research with several species of nonhuman primates suggests sophisticated motor-planning abilities observed in human adults may be ubiquitous among primates. However, there is considerable variability in the extent to which these abilities are expressed across primate species. In the present experiment, we explore whether the variability in the expression of anticipatory motor-planning abilities may be attributed to cognitive differences (such as tool use abilities) or whether they may be due to the consequences of morphological differences (such as being able to deploy a precision grasp). We compared two species of New World monkeys that differ in their tool use abilities and manual dexterity: squirrel monkeys, Saimiri sciureus (less dexterous with little evidence for tool use) and tufted capuchins, Sapajus apella (more dexterous and known tool users). The monkeys were presented with baited cups in an untrained food extraction task. Consistent with the morphological constraint hypothesis, squirrel monkeys frequently showed second-order motor planning by inverting their grasp when picking up an inverted cup, while capuchins frequently deployed canonical upright grasping postures. Findings suggest that the lack of ability for precision grasping may elicit more consistent second-order motor planning, as the squirrel monkeys (and other species that have shown a high rate of second-order planning) have fewer means of compensating for inefficient initial postures. Thus, the interface between morphology and motor planning likely represents an important factor for understanding both the ontogenetic and phylogenetic origins of sophisticated motor-planning abilities
Predatory lizards perceive plant-derived volatile odorants
Many lizards are olfactory foragers and prey upon herbivorous arthropods, yet their responses to common herbivore-associated plant volatiles remain unknown. As such, their role in mediating plant indirect defenses also remains largely obscured. In this paper, we use a cotton-swab odor presentation assay to ask whether lizards respond to two arthropod-associated plant-derived volatile compounds: 2-(E)-hexenal and hexanoic acid. We studied the response of two lizard species, Sceloporus virgatusand Aspidoscelis exsanguis, because they differ substantially in their foraging behavior. We found that the actively foraging A. exsanguisresponded strongly to hexanoic acid, whereas the ambush foraging S. virgatus responded to 2-(E)-hexenal—an herbivore-associated plant volatile involved in indirect defense against herbivores. These findings indicate that S. virgatus may contribute to plant indirect defense and that a species\u27 response to specific odorants is linked with foraging mode. Future studies can elucidate how lizards use various compounds to locate prey and how these responses impact plant-herbivore interactions
Complex, but not quite complex enough : The turn to the complexity sciences in evaluation scholarship
This document is the Accepted Manuscript version of the following article: Chris Mowles, ‘Complex, but not quite complex enough: The turn to the complexity sciences in evaluation scholarship’. The final, definitive version of this paper has been published in Evaluation, Vol. 20 (2): 160-175, April 2014, doi: https://doi.org/10.1177/1356389014527885 , published by SAGE Publishing. All rights reserved.This article offers a critical review of the way in which some scholars have taken up the complexity sciences in evaluation scholarship. I argue that there is a tendency either to over-claim or under-claim their importance because scholars are not always careful about which of the manifestations of the complexity sciences they are appealing to, nor do they demonstrate how they understand them in social terms. The effect is to render ‘complexity’ just another volitional tool in the evaluator’s toolbox subsumed under the dominant understanding of evaluation, as a logical, rational activity based on systems thinking and design. As an alternative I argue for a radical interpretation of the complexity sciences, which understands human interaction as always complex and emergent. The interweaving of intentions in human activity will always bring about outcomes that no one has intended including in the activity of evaluation itself.Peer reviewe
The Second-generation z (Redshift) and Early Universe Spectrometer. I. First-light Observation of a Highly Lensed Local-ulirg Analog at High-z
We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ~ 1.8 from H-ATLAS J091043.1–000322 with a line flux of (6.44 ± 0.42) × 10^(–18) W m^(–2). Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ~ 2 × 10^4 G_0, gas density, n ~ 1 × 10^3 cm^(–3) and size between ~0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1–000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models
Smaller classes promote equitable student participation in STEM
Under embargo until: 2020-07-24As science, technology, engineering, and mathematics (STEM) classrooms in higher education transition from lecturing to active learning, the frequency of student interactions in class increases. Previous research documents a gender bias in participation, with women participating less than would be expected on the basis of their numeric proportions. In the present study, we asked which attributes of the learning environment contribute to decreased female participation: the abundance of in-class interactions, the diversity of interactions, the proportion of women in class, the instructor's gender, the class size, and whether the course targeted lower division (first and second year) or upper division (third or fourth year) students. We calculated likelihood ratios of female participation from over 5300 student–instructor interactions observed across multiple institutions. We falsified several alternative hypotheses and demonstrate that increasing class size has the largest negative effect. We also found that when the instructors used a diverse range of teaching strategies, the women were more likely to participate after small-group discussions.acceptedVersio
Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 > 550 μatm) and undersaturated in aragonite (Ωaragonite < 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.Funding for this work was provided by the National Science
Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694-
LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021-
RHB) and the West Coast & Polar Regions Undersea Research Center
(POFP00983 – CLM and JM).2012-10-1
A systems approach to policy evaluation
There is growing interest in evaluating policy implementation in ways that grapple with the complexity of the process. This article offers an example of using systems methodology to explore how the child protection policy in child contact centres has functioned in practice. Rather than just asking the traditional evaluation question “is it working?” this study sought to understand how the policy was working and how it was interpreted as it interacted with other systems, producing conflicts, local variation and emergent effects. It illustrates how the systems concepts of ‘emergence’, ‘local rationality’, ‘socio-technical systems’ and ‘feedback for learning’ can contribute new knowledge and understanding to a complex policy evaluation problem
Size matters: just how big is BIG?: Quantifying realistic sample size requirements for human genome epidemiology
Background Despite earlier doubts, a string of recent successes indicates that if sample sizes are large enough, it is possible—both in theory and in practice—to identify and replicate genetic associations with common complex diseases. But human genome epidemiology is expensive and, from a strategic perspective, it is still unclear what ‘large enough’ really means. This question has critical implications for governments, funding agencies, bioscientists and the tax-paying public. Difficult strategic decisions with imposing price tags and important opportunity costs must be taken
- …