4,169 research outputs found
Large area growth and electrical properties of p-type WSe2 atomic layers.
Transition metal dichacogenides represent a unique class of two-dimensional layered materials that can be exfoliated into single or few atomic layers. Tungsten diselenide (WSe(2)) is one typical example with p-type semiconductor characteristics. Bulk WSe(2) has an indirect band gap (⌠1.2 eV), which transits into a direct band gap (⌠1.65 eV) in monolayers. Monolayer WSe(2), therefore, is of considerable interest as a new electronic material for functional electronics and optoelectronics. However, the controllable synthesis of large-area WSe(2) atomic layers remains a challenge. The studies on WSe(2) are largely limited by relatively small lateral size of exfoliated flakes and poor yield, which has significantly restricted the large-scale applications of the WSe(2) atomic layers. Here, we report a systematic study of chemical vapor deposition approach for large area growth of atomically thin WSe(2) film with the lateral dimensions up to ⌠1 cm(2). Microphotoluminescence mapping indicates distinct layer dependent efficiency. The monolayer area exhibits much stronger light emission than bilayer or multilayers, consistent with the expected transition to direct band gap in the monolayer limit. The transmission electron microscopy studies demonstrate excellent crystalline quality of the atomically thin WSe(2). Electrical transport studies further show that the p-type WSe(2) field-effect transistors exhibit excellent electronic characteristics with effective hole carrier mobility up to 100 cm(2) V(-1) s(-1) for monolayer and up to 350 cm(2) V(-1) s(-1) for few-layer materials at room temperature, comparable or well above that of previously reported mobility values for the synthetic WSe(2) and comparable to the best exfoliated materials
A Study on Aluminum Pad Large Deformation during Copper Wirebonding for High Power IC Package
In this paper, a 3-D finite element prediction on aluminum pad squeeze during copper wirebonding process for high power IC package is presented. ANSYS Parametric Design Language (APDL) has been implemented on modelling, mesh density, boundary condition (BC), impact stage and contact mode for first bond process. The ANSYS/LS-DYNA solver is applied to solve dynamics and LS-PREPOST is used to observe the predicted large plastic deformation on bond pad and stress on microstructure under pad. In view of high power IC package, larger diameter of copper wire is required for electric loading for its low cost. In this research, a large diameter of 2 mil (50 um) uncoated pure copper (4N) wire is applied to simulate first bond impact-contact process. As the scale double enlarged, the problems encountered in simulation are usually evident. Preliminary results on impact stage demonstrate that negative volume/hourglass on large distortion can be solved by tune-up inertial contact settings and mesh density. However, sever hourglass defect would occur on ultrasonic stage and remain a pending problem. A series of prediction has been conducted on first bond process during impact stage and the results can then be applied to the dynamic wirebonding assembly process
Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen subdivided into lineages termed sequence types (STs). Since the 1950s, successive waves of STs have appeared and replaced previously dominant lineages. One such event has been occurring in China since 2013, with community-associated (CA-MRSA) strains including ST59 largely replacing the previously dominant healthcare-associated (HA-MRSA) ST239. We previously showed that ST59 isolates tend to have a competitive advantage in growth experiments against ST239. However, the underlying genomic and phenotypic drivers of this replacement event are unclear. METHODS: Here, we investigated the replacement of ST239 using whole-genome sequencing data from 204 ST239 and ST59 isolates collected in Chinese hospitals between 1994 and 2016. We reconstructed the evolutionary history of each ST and considered two non-mutually exclusive hypotheses for ST59 replacing ST239: antimicrobial resistance (AMR) profile and/or ability to colonise and persist in the environment through biofilm formation. We also investigated the differences in cytolytic activity, linked to higher virulence, between STs. We performed an association study using the presence and absence of accessory virulence genes. RESULTS: ST59 isolates carried fewer AMR genes than ST239 and showed no evidence of evolving towards higher AMR. Biofilm production was marginally higher in ST59 overall, though this effect was not consistent across sub-lineages so is unlikely to be a sole driver of replacement. Consistent with previous observations of higher virulence in CA-MRSA STs, we observed that ST59 isolates exhibit significantly higher cytolytic activity than ST239 isolates, despite carrying on average fewer putative virulence genes. Our association study identified the chemotaxis inhibitory protein (chp) as a strong candidate for involvement in the increased virulence potential of ST59. We experimentally validated the role of chp in increasing the virulence potential of ST59 by creating Îchp knockout mutants, confirming that ST59 can carry chp without a measurable impact on fitness. CONCLUSIONS: Our results suggest that the ongoing replacement of ST239 by ST59 in China is not associated to higher AMR carriage or biofilm production. However, the increase in ST59 prevalence is concerning since it is linked to a higher potential for virulence, aided by the carriage of the chp gene
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants
Original article can be found at: http://www.rsc.org/publishing/journals/EM/Index.asp Copyright Royal Society of Chemistry. DOI: 10.1039/b805157gMass, major ionic components (MICs) of PM2.5, and related gaseous pollutants (SO2, NOx, NH3, HNO2, and HNO3) were monitored over six locations of different anthropogenic influence (industrial, urban, suburban, and rural) in Belgium. SO42-, NO3- NH4+, and Na+ were the primary ions of PM2.5 with averages diurnal concentrations ranging from 0.4-4.5, 0.3-7.6, 0.9-4.9, and 0.4-1.2 g/m3, respectively. MICs formed 39% of PM2.5 on an average, but it could reach up to 80-98 %. The SO2, NO, NO2, HNO2, and HNO3 levels showed high seasonal and site-specific fluctuations. The NH3 levels were similar over all the sites (2-6 g/m3), indicating its relation to the evenly distributed animal husbandry activities. The sulfur and nitrogen oxidation ratios for PM2.5 point towards a low-to-moderate formation of secondary sulfate and nitrate aerosols over five cities/towns, but their fairly intensive formation at the rural Wingene. Cluster analysis revealed the association of three groups of compounds in PM2.5; (i) NH4NO3, KNO3; (ii) Na2SO4; and (iii) MgCl2, CaCl2, MgF2, CaF2, corresponding to anthropogenic, sea-salt, and mixed (sea-salt + anthropogenic) aerosols, respectively. The neutralization and cation-to-anion ratios indicate that MICs of PM2.5 appeared mostly as (NH4)2SO4 and NH4NO3 salts. Sea-salt input was maximal during winter reaching up to 12 % of PM2.5. The overall average Cl-loss for sea-salt particles of PM2.5 at the six sites varied between 69 and 96 % with an average of 87 %. Principal component analysis revealed vehicular emission, coal/wood burning and animal farming as the dominating sources for the ionic components of PM2.5.Peer reviewe
The ROSAT Bright Source 1RXS J201607.0+251645: An Active Algol-type Binary
1RXS J201607.0251645 is identified to be an eclipsing binary for the first
time. We present the preliminary observations in V band with the 0.6-m
telescope for three years and the extensive observations in V and R band with
the 0.8-m telescope for six nights respectively. The light curve of the system
is EB type. Five light minimum times were obtained and the orbital period of
0.388058d(0.00044d) is determined. The photometric solution given by the
2003-version Wilson-Devinney program suggests the binary is a semi-detached
system with the photometric mass ratio 0.895(0.006), which probably comprise a
G5 primary and an oversize K5 secondary. The less massive component has
completely filled up its Roche lobe, while the other almost fills its Roche
lobe with the filling factor of 93.4%. The system shows a varying O'Connell
effect in its phase folded diagrams from 2005 to 2007, and is X-ray luminous
with log(LXLbol)3.27. Possible mechanisms to account for these two phenomena
are discussed. Finally, we infer the binary may be in thermal oscillation
predicted by thermal relaxation oscillation (TRO) theory or may evolve into a
contact binary.Comment: 16 pages, 7 figures, published by RA
A Novel Bradykinin-Related Peptide, RVA-Thr6-BK, from the Skin Secretion of the Hejiang Frog; Ordorrana hejiangensis: Effects of Mammalian Isolated Smooth Muscle
A novel naturally-occurring bradykinin-related peptide (BRP) with an N-terminal extension, named RVA-Thr6-Bradykinin (RVA-Thr6-BK), was here isolated and identified from the cutaneous secretion of Odorrana hejiangensis (O. hejiangensis). Thereafter, in order to evaluate the difference in myotropic actions, a leucine site-substitution variant from Amolops wuyiensis skin secretion, RVA-Leu1, Thr6-BK, was chemically synthesized. Myotropic studies indicated that single-site arginine (R) replacement by leucine (L) at position-4 from the N-terminus, altered the action of RVA-Thr6-BK from an agonist to an antagonist of BK actions on rat ileum smooth muscle. Additionally, both BK N-terminal extended derivatives (RVA-Thr6-BK and RVA-Leu1, Thr6-BK) exerted identical myotropic actions to BK, such as increasing the frequency of contraction, contracting and relaxing the rat uterus, bladder and artery preparations, respectively
Deepwater overflow through Luzon Strait
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C01002, doi:10.1029/2005JC003139.This study examines water property distributions in the deep South China Sea and
adjoining Pacific Ocean using all available hydrographic data. Our analysis reveals that
below about 1500 m there is a persistent baroclinic pressure gradient driving flow from the
Pacific into the South China Sea through Luzon Strait. Applying hydraulic theory with
assumptions of zero potential vorticity and flat bottom to the Luzon Strait yields a transport
estimate of 2.5 Sv (1 Sv=106 m3 s-1). Some implications of this result include: (i) a
residence time of less than 30 years in the deep South China Sea, (ii) a mean diapycnal
diffusivity as large as 10-3 m2 s-1, and (iii) an abyssal upwelling rate of about 3Ă10-6 m s-1.
These quantities are consistent with residence times based on oxygen consumption rates.
The fact that all of the inflowing water must warm up before leaving the basin implies that
this marginal sea contributes to the water mass transformations that drive the meridional
overturning circulation in the North Pacific. Density distributions within the South China
Sea basin suggest a cyclonic deep boundary current system, as might be expected for an
overflow-driven abyssal circulation.This study was supported by National Science Foundation (NSF)
through Grant OCE00-95906 and by Japan Marine Science and Technology Center through
its sponsorship of the International Pacific Research center (IPRRC). Support is also from
NSF grant OCE-0325102
CHADS 2
Vascular events are one of the major causes of death in case of Cushingâs syndrome (CS). However, due to the relative low frequency of CS, it is hard to perform a risk assessment for these events. As represented congestive heart failure (C), hypertension (H), age (A), diabetes (D), and stroke (S), the CHADS2 score is now accepted to classify the risk of major adverse cardiovascular events (MACEs) in patients with atrial fibrillation. In this study, participants were enrolled from the National Health Research Institute Database (NHIRD) of Taiwan, and we reviewed 551 patients with their sequential clinically diagnosed CS data between 2002 and 2009 in relation to MACEs risk using CHADS2 score. Good correlation could be identified between the CS and CHADS2 score (AUC=0.795). Our results show that patients with CS show significantly higher risk of vascular events and the CHADS2 score could be applied for MACEs evaluation. Adequate lifestyle modifications and aggressive cardiovascular risks treatment are suggested for CS patients with higher CHADS2 score
- âŠ