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Abstract 10 
Hyper-resolution datasets for urban flooding are rare. This problem prevents detailed flooding 11 
risk analysis, urban flooding control, and the validation of hyper-resolution numerical models. 12 
We employed social media and crowdsourcing data to address this issue. Natural Language 13 
Processing and Computer Vision techniques are applied to the data collected from Twitter and 14 
MyCoast (a crowdsourcing app). We found these big data based flood monitoring approaches can 15 
complement the existing means of flood data collection. The extracted information is validated 16 
against precipitation data and road closure reports to examine the data quality. The two data 17 
collection approaches are compared and the two data mining methods are discussed. A series of 18 
suggestions is given to improve the data collection strategy. 19 

1. Introduction20 
Urban flooding is a global problem that costs lives and money. In 2010 alone, 178 million people 21 
suffered from floods. The total economic losses in 1998 and 2010 both exceeded $40 billion (Jha 22 
et al., 2012). Urban floods can be caused by a variety of reasons, including natural hazards of 23 
river overflow, coastal storm surge, sea-level rise, flash floods, groundwater seepage, sewer 24 
overflow, lack of permeability, and lack of city management. As urbanization proceeds and 25 
climate change intensifies, urban planners and city managers are facing the challenge of preparing 26 
for and mitigating flood damage. They need tools to monitor and predict the event for emergency 27 
response and development planning. 28 

Monitoring and predicting urban floods needs high-resolution data with good coverage. High-29 
resolution data can capture the variation of flood flows among streets or parcels, so that the 30 
heterogeneity of flood flows caused by heterogenous urban landscape can be captured. In this 31 
study, we define data that can reflect the variation on the parcel and street scale as “hyper-32 
resolution” data. In addition to resolution, it is important to have a good coverage of flood data to 33 
obtain complete information. 34 

The traditional method of obtaining flood related data lack both resolution and coverage. Remote 35 
sensing is a commonly used data source. Aerial photography, for instance, is being conducted by 36 
many research teams, engineering companies, emergency response services as well as 37 
governmental departments, and has demonstrated its value (Marcus and Fonstad, 2008). 38 
However, the systematic application of aerial photography is limited by vegetation canopies and 39 
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cloud cover during floods (Hess et al. 1995, 2003). The limitation also exists in radar and satellite 40 
imagery that is based on optical sensors (Wilson et al., 2007). The most realistic and feasible 41 
approach is considered to be microwave remote sensing, which penetrates cloud cover. However, 42 
because of the corner reflection principle (Rees, 2001) along with coarse ground resolution, this 43 
technology is currently unable to extract flood data from urban areas. Another commonly used 44 
data source is distributed sensors. In the U.S., sensors have been installed in coastal areas by 45 
National Oceanic and Atmospheric Administration (NOAA) and in rivers and canals by United 46 
States Geological Survey (USGS), but almost no sensors are distributed on streets that are 47 
dedicated for urban flood monitoring purpose. 48 

There are very few existing urban flooding datasets that can be used for detailed model validation 49 
and urban planning. A dataset about a flood event on January 10, 2005, in the City of Newport 50 
Beach, California, was built by a collection of 85 digital photographs and eyewitness reports from 51 
city employees who were dispatched to manage and photo-document the flood. The data 52 
collection involved interviews and email communications (Gallien et al., 2011). Another example 53 
in UK showed that contemporary newspaper reports can enrich the evidence of the witness 54 
reports and photos taken on the day following the storm (Smith et al, 2012). In addition, 55 
insurance reports can provide some additional information of flooding events such as damage 56 
evaluation. However, recording of such information is not a priority for civil defense agencies 57 
during a major coastal disaster, and data collected using this method could be expensive to access, 58 
incomplete in coverage, and substantially delayed. 59 

Since urban area usually has a dense population, a big data approach, which relies on volunteered 60 
data reports from citizens, could be a potential solution to provide primary or complementary 61 
urban flooding data. The history of using social media data to study natural hazards can be traced 62 
back to Muralidharan et al. (2011), who compared the difference between non-profit 63 
organizations and media in the use of Twitter and Facebook during the Haiti earthquake in 2010. 64 
Since then, a series of studies based on social media data have emerged with a focus on floods. 65 
Sun et al. (2013) mentioned their effort to use Flickr images to support remote sensing based 66 
flood maps. Jongman et al. (2015) explored the potential to use Twitter data for early detection of 67 
flood events in Philippines and Pakistan. Fohringer et al. (2015) was the first to use flooding 68 
water depth information, which was manually extracted from the photos posted in Twitter. 69 
Eilander et al. (2016) studied the floods of Jarkata in Indonesia with Twitter data. They 70 
introduced a probability map to quantify the data uncertainty and found the general accuracy of 71 
location is around 69% but rises to over 90% if the specific location was mentioned in the content 72 
of the posts. 73 

These studies clearly showed the value of data mining in flooding research, but their application 74 
is still limited due to the poor resolution of data collected. For example, the resolution of 75 
Jongman et al. (2015) is at city level. To achieve sub-city resolution, researchers heavily relied on 76 
manual reading as used in Sun et al. (2013) and Fohringer et al. (2015). The best resolution based 77 
on automatic algorithms was probably obtained by Eilander et al. (2016). Based on a group of 78 
independent tweets reporting flood depth, they constructed a probability map on the scale of 79 
urban community with an average size of a few square kilometers. To obtain the location 80 
information, the authors used manually defined location names and gazetteers to match location 81 



mentions in tweets. To support disaster monitoring, relief responses, model validation, and 82 
decision making, we still need higher data quality and accuracy to fully understand the details of 83 
flooding events. 84 

The present paper is aimed at demonstrating a new approach to collect and process data for urban 85 
flooding research using Natural Language Processing and Computer Vision (CV) techniques. 86 
These techniques are shown promising to extract hyper-resolution data with a wide coverage to 87 
support urban flooding issues.  88 

2. Data Source 89 
2.1 Twitter 90 

Twitter data was streamed using Twitter API during the period from September 29 to October 28 91 
2015 and with the filtering keywords of “flood”, “inundation”, “dam”, “dike”, and “levee”. 92 
Retweeted posts labeled by Twitter were excluded. There are 7,602 tweets obtained.  93 

2.2 Crowd-sourcing photos 94 

We employed the crowd-sourcing platform MyCoast to collect photos about urban flooding. 95 
MyCoast is a system that, since 2013, has been used by a number of US environmental agencies 96 
to collect “citizen science” data about various coastal hazards or incidents. The app is built using 97 
Ionic, a user interface framework based on the Cordova cross-platform app framework. The web 98 
and data storage component is based upon WordPress and the app communicates with the server 99 
via a custom REST API. Data is stored in a MySQL back end. The app interface has been 100 
designed to be intuitive to those unfamiliar with phone apps, as the citizen scientist users often 101 
skew towards the youth or elderly end of the age spectrum. 102 

There are two ways to contribute to the database, i.e. via the web and a mobile app. The user 103 
interface of the app is shown in Figure 2. The system currently contains over 5,000 flood 104 
photographs, and most of the photos were collected through the mobile app.  105 

 106 



Figure 1 User interface design of MyCoast. 107 

The app uses the phone’s sensors to establish location and date/time information. Users are 108 
prompted to take a photograph and then may optionally add written comments (Figure 2). Users 109 
are also shown a chart with tide timing so that they can try to optimize the timing of photographs 110 
with peak tides.  111 

2.3 Authorized Data 112 

In the scale of the United States, a reliable data related to floods is precipitation statistics. The 113 
monthly precipitation data of October 2015 was downloaded from Advanced Hydrologic 114 
Prediction Service (AHPS), a database developed by National Weather Service (NWS) 115 
(https://water.weather.gov/precip/download.php). The precipitation departure of this month was 116 
the difference of the observation from the monthly normal precipitation obtained by Parameter-117 
elevation Regressions on Independent Slopes Model (PRISM) using the record from 1981 to 118 
2010. More details can be found in the NWS website. 119 

Road closure information was collected using local media reports of September 29, 2015. We 120 
identified two major data sources, including the reports from WCBD online news at  121 
http://counton2.com/2015/09/29/coastal-flooding-closes-streets-downtown-second-day-in-a-row/ 122 
and the Twitter posts by Ashley Rae Yost, a reporter for WCBD television station in Charleston, 123 
SC. Integrating the data points, we can list the flooded roads on the day in Table 1. 124 

Table 1 Collection of road closure data from media reports. 125 

Name of the road Starting point End Point 
Lockwood Drive Gadsden St N/A 
Wentworth Street Lockwood Blvd. Gadsden St. 
I-26 N/A N/A 
Lockwood Blvd Beaufain Street N/A 
Broad St. Barre St. N/A 
Barre St. Beaufain Montague 
Lockwood St N/A N/A 
Calhoun St. Fourth St.  Halsey Blvd. 
Market St. Church St. East Bay Drive 
Long Point Road Marsh Area Marsh Area 
 126 

3. Methods 127 
3.1 Natural Language Processing methods 128 

Location information is crucial for mapping floods. However, geotagged tweets are only about 129 
1% of all the twitter data (Middleton, 2014), which poses a challenge for mapping. Even though 130 
the tweets are geotagged, the geotag coordinates may not be the same as the location of 131 
mentioned floods. For accurate location mapping, we aim to extract location mentions within the 132 
tweets’ text. In addition, we extract the quantifier information, e.g. the depth of floods, which can 133 
help us understand the damage level of flooding. Table 2 shows several examples of tweets 134 
containing flooding location and depth information.  135 



Table 2 Sample flooding tweets that are processed by NLP (location names in bold and depth numbers are 136 
underlined). 137 

Tweet_ID Posted_time Tweet 
648973656161394688 2015-09-29 14:32 Roanoke River over 12 feet at Walnut St bridge in Roanoke now 

expected to top 13. Flood stage is 10. #swvawx", 

649935518038405120 2015-10-02 06:14 Flood currently on 3 NE Wrightsboro . in New Haven , NC . 1-2 
ft . of water on Tandem CT . #ncwx #flood #flooded #flooding 
#rain #HurricaneJoaquin 

650019989353852928 2015-10-02 11:50 Chicod creek at flood stage in PItt County , Likely to 11 ft by 
tonight . If it hits 12, it's running over the road. 

650393844115243008 2015-10-03 12:35 Helped nearby drivers by reporting a flood on PR-1, Ponce on 
@username - Drive Social . 

650403125698891776 2015-10-03 13:12 The Market Street portion of Water Street in Downtown 
Wilmington is under 9 inches of water 

 138 
 139 
In order to extract location names from tweets, we use the named entity recognition methods. 140 
Named Entity Recognition (NER) is a fundamental task in NLP, which aims to classify words 141 
into different types of names such as person, organization, location. Stanford's NER 142 
(https://nlp.stanford.edu/software/CRF-NER.shtml) is one of the cutting-edge named entity 143 
recognition tool available that uses Conditional Random Field (CRF) based classifier (Finkel et 144 
al., 2005). CRF is a conditional sequence model: given observations, it aims to find the highest 145 
possible sequence of states. In NER, the observations refer to words, and states refer to named 146 
entity tags. The entity tag for each word in a sentence is not predicted independently, but by 147 
considering the tags of neighboring words.   148 
 149 
The original Stanford NER tool is trained on formal texts such as news data, which is remarkably 150 
different from short, informal, and noisy twitter data. So, applying the pre-trained NER model can 151 
generate poor performance in analyzing tweets. Lingad et al. (2013) have shown that NER tool 152 
retrained on Twitter data can significantly boost the performance on location detection from 153 
tweets. Therefore, we retrained the Stanford NER model using annotated tweets. 154 

Data preprocessing: We pre-processed the data as follows. First, we remove non-english tweets 155 
(the python library “guess_language” is used to identify if a given tweet is English or not.) After 156 
filtering, 6,593 English tweets remain. Second, url links and mentioned usernames in tweets are 157 
replaced with unique words, “<URL>” and “@username”, respectively. Third, each tweet is 158 
tokenized into as a list of words, which is fed into NER tool for location recognition.  159 

NER model training and testing:  160 

The training and testing data is provided by the ALTA 2014 Twitter Location Detection shared 161 
task. The original training and testing sets include 2,000 and 1,000 tweet ids, respectively. Since 162 
some tweets have been deleted or become invalid, we have obtained 1,851 in training and 930 163 
tweets in testing. The training data is randomly split into 1,600 for training and 251 for validation. 164 
The annotated locations include place names and point-of-interests (POIs), in either main text 165 
strings or hashtags.  166 
 167 



We have compared the performance of the original Stanford NER model and the re-trained model 168 
based on Twitter data. Results are evaluated in three metrics: precision, recall, and F-score, which 169 
are defined as:  170 

Precision = TruePositive / (TruePositive + FalsePositive) 171 

Recall = TruePositive / (TruePositive + FalseNegative) 172 

F-Score = 2 × Precision × Recall / (Precision + Recall) 173 

So, precision is the number of positive (or correct) results divided by the total number of all 174 
returned results (i.e. results that are predicted as relevant, which include both true positive and 175 
false positive samples), while recall is the number of positive (or correct) results divided by the 176 
total number of the actual relevant results. F-score combines precision and recall.  177 

As it can be seen in Table 3, F-score is significantly improved after retraining. Even though 178 
original Stanford NER has a high precision rate, the recall is low (32.07%). In other words, a 179 
large number of location names are missed by this method. We have found that since the original 180 
NER model is trained based on the formal news data, it cannot capture many location information 181 
expressed in tweets, which are considered as informal language (e.g. abbreviations, misspellings, 182 
hashtags). Therefore, we use the re-trained Stanford NER model to detect locations from our 183 
flooding tweets.  184 

Table 3 Results of location detection in ALTA 14 datasets. 185 

Models Precision Recall F-score 
Stanford NER 94.51% 32.07% 47.88% 
Stanford NER 
retrained 

86.68% 69.72% 77.28% 

 186 

Geocoding: From above, we have obtained a list of location names extracted from tweets. At this 187 
step, we need to geocode location names into geographical coordinates. Bing Maps Location API 188 
is used via Python’s geocoding library (geopy), which accepts a location string as the input, and 189 
generates address name and latitude/longitude coordinates. For example, “Battleship Rd” 190 
identified from a tweet is converted to a standard address as (Battleship Rd, Camden, SC 29020, 191 
United States, (34.26021, -80.62693)). If more than one result are found by Bing Maps, the one 192 
with the highest probability is selected.  193 

Flood depth information extraction: in order to capture the water depth mentions, we define 194 
regular expression patterns to capture numbers followed by “ft”, “feet”, “inch”, “in” and their 195 
plural forms. 196 

3.2 Computer Vision 197 

The present study employs the technique of Convolutional Neural Networks (CNN) to 198 
automatically classify the crowdsourcing photos (Zeiler and Fergus, 2014). Originally inspired by 199 
animal visual perceptron, CNN is often used to detect and recognize objects. A good example of 200 



CNN algorithm is Clarifai, which has won the competition of ImageNet Large Scale Visual 201 
Recognition Competition in 2013 (ILSVRC-2013). We applied this code through Clarifai API, 202 
which can be accessed as a remote web service. This service receives feedings of individual 203 
photos and feedbacks a list of tags that describe the objects present too busy to clean in the 204 
photo. For each tag, a probability is assigned to quantify its confidence of the recognition. Three 205 
examples of the recognition can be found in Figure 2 and the corresponding processed results are 206 
shown in Table 4.  207 

 208 

Figure 2 Sample photos of the crowdsourcing data. Each photo is labeled by coordinates and time information 209 
as shown below the corresponding photo. The first photo shows a flooded street with trapped cars, bus, and 210 
trucks. The second photo has a water paddle at a port, but no spreading flood was observed. The third photo 211 
shows a river filled by water, but no flood can be recognized. 212 

Table 4 Sample results of the computer vision applied to the sample photos shown in Figure 2. 213 

Photo 1 Photo 2 Photo 3 
Tag Probability 

(P) 
Tag Probability 

(P) 
Tag Probability 

(P) 
flood 0.9964 no person 0.9678 flood 0.9961 
 rain  0.9963 wood 0.9656 water 0.9958 

 water  0.9940 furniture 0.9493 calamity 0.9904 
 tree  0.9834 chair 0.9381 storm 0.9816 
 river  0.9804 seat 0.9314 house 0.9796 

 reflection  0.9787 room 0.8956 building 0.9645 
 storm  0.9745 luxury 0.8942 river 0.9572 
 road  0.9696 industry 0.8807 architecture 0.9561 
 canal  0.9686 house 0.8705 no person 0.9530 

 no person  0.9652 water 0.8282 seashore 0.9426 
 214 

Flood detection: 215 

Flood is considered to happen if the flood tag was labeled. Applying this criterion to the photos in 216 
Figure 1, we found that flood was detected correctly in the first photo and no flood was correctly 217 
detected in the second, but a flood tag was incorrectly labeled to the third, which is a river in its 218 



normal condition. A manual check of 80 photos found that the accuracy is 65%, which is 219 
comparable to a text-image correlation study of social media (Chen et al., 2013) and an 220 
application study in earthquake damage estimation (Nguyen et al., 2017). 221 

Visualization: The crowd-sourced data can be shown in Google map using the GPS coordinates 222 
contained in the labels of each photo. The road closure data were manually relocated, being 223 
visualized by a line connecting the starting and end points of the road closure section. Because 224 
the end points are missing in some road closure records, we only marked the starting points in 225 
these cases. 226 

 227 
4. Results 228 

4.1 Case study 1: the flooding map of the United States 229 

The daily volume of flood related Tweets of the United States is shown in Figure 3. The daily 230 
volume increases quickly from October 1st to October 4th. This trend is consistent with the history 231 
of the Hurricane Joaquin, which reached the Category 4 major hurricane on October 1st and 232 
gained its greatest strength on October 3rd. Interestingly, the daily volume reached its top on 233 
October 4th, a day later than the greatest strength of the hurricane. This phenomenon might be 234 
attributed to the reason that the flood event needed time to develop before flushing into the 235 
residential areas. Note that this one-day delay is also reported in the Philippine floods (Jongman 236 
et al., 2015). Immediately after the peak, we observe a downturn, which may be partially due to 237 
the incomplete data streamed from the Twitter API. Despite the incompleteness, this downturn 238 
was also observed by Jongman et al. (2015) in two of the Philippine floods, but missing in other 239 
reports, such as Eilander et al. (2016). We suspect that people were too busy cleaning up the 240 
disaster and the hurricane became of less value in news reports after diminishing.  241 

The daily volume and the percentage of the hyper-resolution tweets that contained specific 242 
location are shown in Figure 3. The hyper-resolution tweets generally follow the trend of the total 243 
flooding related Tweets, and the average percentage is around 51%. This percentage is higher 244 
than expected and might indicate that most of the hyper-resolution tweets were posted by 245 
authorized agencies. Note that another hurricane developed on October 24, so the Tweeting 246 
volume had a second peak. 247 



 248 

Figure 3 The daily volume of flooding related tweets and flooding tweets with hyper-resolution location 249 
information in the United States. The cross marks are the percentage of the hyper-resolution information among 250 
all the flooding Tweets. 251 

Table 5 shows the number of identified flooded roads in the top 5 states. The top 3 numbers are 252 
consistent with the states that were impacted by Hurricane Joaquin. California (CA) and Texas 253 
(TX) are listed next to these states, because they are large and populate with high volume of 254 
tweets.  255 

Table 5 Number of flooded roads by states: top 5 states. 256 

State code Number of roads 
SC 57 
NC 41 
FL 21 
CA 21 
TX 17 
 257 
The geo-spatial distribution of the hyper-resolution flooding tweets are shown in Figure 4. The 258 
identified tweets concentrated at the east coast capturing the extensive floods caused by the two 259 
hurricanes. The density of the tweets decreases toward Midwest but increases at the west coast 260 
and Gulf of Mexico. 261 

To examine the reliability of the Twitter based flooding monitoring, we compute the correlation 262 
between the precipitation pattern and tweet volume. Using a grid of 50×50 cells, Figure 5 263 
compares the geospatial patterns of precipitation observation, the precipitation departure, the 264 
percentage of precipitation departure, and the tweet volume. The precipitation data was obtained 265 
by averaging the data within the cell. The tweet volume was calculated by counting the tweets in 266 
each cell. A common feature among all the patterns is the high concentration around South 267 
Carolina, which captures the hurricane caused flooding. The tweet volume pattern has a high 268 
value in the stripe of Washington DC – New York – Boston, which is missing in all the other 269 
patterns. This mismatch indicates that urban areas that have dense population reported floods 270 
relatively more than remote places. This mismatch may bias the Twitter based flooding 271 



monitoring. Another mismatch is in Florida, where a high volume of flooding tweets is found 272 
there without heavy precipitation or precipitation departure. This finding may be attributed to the 273 
fact that the Florida floods were caused by tidal and storm surge. A high volume of flooding 274 
tweets is spotted in California, overlapping the precipitation-departure-percentage pattern. So we 275 
infer that the Californian floods during that period were caused by departure percentage of 276 
precipitation and California is more sensitive to the precipitation departure percentage than the 277 
absolute departure. 278 

The Pearson correlation coefficient is used to examine the correlation between precipitation 279 
departure and tweet volume. We use different grids with the sizes of 100×100, 50×50, 25×25 and 280 
12×12 to cover the contiguous United States. The Pearson correlation coefficient is calculated at 281 
different grid resolution in Table 6. The correlation coefficient is in the range of 0.17-0.41, so the 282 
tweet volume pattern has a weak linear correlation with the precipitation departure. Table 6 also 283 
shows that the correlation coefficient increases with coarse mesh, which suggests that Twitter 284 
based flooding monitoring is more reliable with high tweet volume. 285 

 286 



 287 

Figure 4 The spatial distribution of identified Tweets that have hyper-resolution geo-location information. Text 288 
content of sample posts is shown in the right panel. 289 

 290 

  (a)       (b) 291 

 292 

  (c)      (d) 293 



Figure 5 Spatial patterns of precipitation and Tweets in October, 2015. (a) The observed precipitation. (b) The 294 
precipitation departure. (c) The percentage of precipitation departure. (d) The statistics of the Tweet volume. 295 

 296 

Table 6 The Pearson correlation coefficients at different resolution of grids. 297 

Grid size Pearson correlation coefficient 
100×100  0.1693 
50×50  0.3156 
25×25 0.3759 
12×12 0.4095 
 298 

The Ripley’s K function is used to estimate the spatial pattern of the hyper-resolution flooding 299 
tweets. The Ripley’s K function is a spatial analysis method to describe how point patterns cluster 300 
or disperse comparing to randomly distributed points over a given area of interest. The K function 301 
is defined (Dixon, 2002), 302 

K t( ) = A It i, j( )
j=1

n

∑ / n2
i=1

n

∑ ,        (1) 303 

where A is the area covered by the points, i and j are the indices of the points, n is the sample size, 304 
It is the impact function, which is one if the distance between points i and j is less than distance t 305 
and zero otherwise. A more commonly used quantity is the L function defined by 306 

L = K t( ) /π − t .         (2) 307 

The positive value of the L function means the data points are more clustered than a random 308 
process and the negative value means more dispersed. The L function is plotted against the 309 
distance t in Figure 6. The L maximum of around 190 km indicates that the data points are 310 
clustered the most at this length scale. It is consistent with the length scale of urban areas in the 311 
United States, e.g. the length scale of New York metropolitan area is around 185 km (Wikipedia, 312 
2017, https://en.wikipedia.org/wiki/New_York_metropolitan_area). This indicates that the twitter 313 
pattern follows the population distribution in the US as expected. The L function drops to zero 314 
after the length scale of 100 km. So at this length scale the twitter posts distribute close to random 315 
pattern. 316 



 317 

Figure 6 The Ripley’s L function against the length scale t. 318 

4.2 Case Study 2: Tidal flood at Charleston, SC 319 

The most data collected through MyCoast is on September 29, 2015 in Charleston, SC, so 320 
we used this dataset as a demonstration of our flood monitoring technique. The processed 321 
crowdsourcing data as well as the road closure data are shown in Figure 7. 322 
Crowdsourcing data concentrated along the coastline of Charleston and most of the 323 
places were identified as “no flood” by the CV algorithm. The road closure data are 324 
distributed relatively inland. 325 

 326 
Figure 7 Comparison between crowdsourcing results and road closure data 327 

The processed crowdsourcing data can be validated against the road closure data at four spots, 328 
because the two datasets roughly overlap in these locations, which are marked in Figure 7. The 329 
figure shows that crowdsourcing data correctly recognized the flood events at Spot 1 and 2, but 330 
made mistakes in Spot 3 and 4. The photos collected at Spot 3 are shown in Figure 8. The first 331 
and third photos show road floods, but the CV algorithm misclassified them. These mistakes 332 



could be explained by the strong reflection in the first photo and the semi-submerged plants in the 333 
third photo. These features resemble the natural water bodies and pose difficulties to process. The 334 
second photo shows no road flooding, but the flood water has reached a bench which should not 335 
be threatened by tidal floods. Again, the semi-submerged plants might confuse the CV. The last 336 
photo shows an overflowing drainage inlet. This photo indicates an overwhelmed drainage 337 
system and a nearby flood, but no road flooding was shown. So the CV code should not be 338 
blamed. The crowdsourcing photo collected at Spot 4 is shown in Figure 9. The floodwater has a 339 
regular edge, so the computer vision considered it as a normal water canal in the city. CV 340 
algorithm is proved useful to extract information, but the comparison shows there is a room to 341 
improve. 342 

 

   
Figure 8 Photos near Road closure #3. From left to right, the photos are corresponding to the four points of Spot 343 
3 in Figure 7 from South to North. 344 

 345 

Figure 9 Photo near Spot 4. 346 

5. Discussion 347 
Comparing the two big-data approaches, we found they have different characteristics that 348 
potential users have to be cautious before direct use. Both methods can provide hyper-resolution 349 
monitoring with the resolution of street and parcel scale. Crowd-sourcing data is more 350 
advantageous because the GPS location can be up to the accuracy of meters, while the Twitter 351 
based data is in the scale of street names. In terms of geolocation coverage, Twitter based 352 
approach might be more favorable, because a much wider space and a worldwide monitoring 353 
could be feasible with little cost. However, we failed to locate any tweet at Charleston SC on 354 
September 29, 2015 to be compared with our road closure data. This mismatch indicates that 355 



Twitter might be more suitable for large-scale monitoring. Crowdsourcing is restricted to the 356 
number of volunteers and distribution of app users, so its coverage can be specified in particular 357 
locations, but it might be still inappropriate to conduct large-scale monitoring. Regarding to the 358 
data volume and data collection speed, Twitter shows its advantage, so it may be more 359 
appropriate for real-time monitoring and higher volume of data benefits the accuracy of Twitter 360 
based monitoring. 361 

An important issue that limits the big-data platform in practical use is data reliability. 362 
Crowdsourcing provides rich and customized information through its photos and user interface 363 
and the mobile phone app has high accuracy GPS sensors, so the collected data may have less 364 
uncertainty. In comparison, Twitter based approach has significant noise, which needs data 365 
cleaning before processing. However, the processing reliability might be opposite, for NLP is 366 
more accurate than CV at present. We expect higher reliability in the information extracting 367 
process from Twitter and other social media. Considering both of data collection and information 368 
extraction, in the case of a large quantity of data and automatic processing algorithm has to be 369 
involved, the general data reliability will be case by case, depending on the quality of data and 370 
training techniques of the practitioner. If a small amount of data needs to be processed, manual 371 
reading of crowdsourcing photos could be conducted, then crowdsourcing approach might be 372 
better. This might be the reason that some previous studies used photo data as the ground truth to 373 
validate numerical models. 374 

On the subject of big data quality improvement, we outline some available measures and point to 375 
a series of ongoing research that has a hope to generate promising data quality control tools. For 376 
the crowdsourcing based approach, a photo shooting guidance should be provided so that a more 377 
complete scene can be captured and more reference objects can be included. A CV code should 378 
be retrained using the labeled crowdsourcing data to achieve high reliability. An emerging 379 
research trend is to determine water depth from the crowdsourcing photos by comparing to 380 
Google Street View. By detecting the difference between normal street view and the flooded 381 
streets, water depth can be inferred by calculating how much reference objects are blocked by 382 
floodwater. For Twitter based approach, in addition to the development of high accuracy NLP 383 
algorithm, a recent trend is to include “citizen science” in a feedback loop, so that a data 384 
elicitation can be sent to the original data contributor to request more information about the 385 
original report to pinpoint the location and follow the new development of the flood events. 386 
Water depth determined from the tweets are shown feasible in the present study, but its value has 387 
not been fully explored. In the future, water depth data should be compared against remote 388 
sensing data to cross-check the data quality. The photo contained in tweets can also be used to 389 
provide information about the flood. Fully exploiting such information can enrich the text-based 390 
monitoring effectiveness. A final note is that a good data fusion scheme, an approach to integrate 391 
of multiple data and knowledge and resolving data conflicts representing the same real-world 392 
object into a consistent, accurate, and useful representation, should be applied before using data 393 
to validate numerical models and support city planning and emergency response preparation 394 
(Liggins et al., 2017). This method has potential to greatly improve the data quality in general. 395 

6. Conclusion 396 



Urban flooding is difficult to monitor due to various complexities in data collection and 397 
processing. The present study shows that social media and crowdsourcing can be used to 398 
complement the datasets developed based on traditional remote sensing and witness reports. 399 
Applying these methods in two case studies, we found these methods are generally informative in 400 
flood monitoring. Twitter data is found weakly correlated to precipitation departure. We 401 
determined a length scale of tweet volume pattern, at which the data points are most clustered. 402 
The computer vision processed crowdsourcing data is compared against the road closure data. 403 
The results show that computer vision still has a room to improve, especially in coastal areas. 404 
These two methods are compared and a series of recommendation is given to improve the big 405 
data based flood monitoring in the future. 406 

 407 

Acknowledgement 408 
The first author thanks for the great support from Profs. Mark Stacey and Alexei Pozdnoukhov, 409 
and contributions from Wei Bai, Diyi Liu, Eason Ruan, Ruonan Ou, Renjie Wu, and Wenjun 410 
Zhong. The lead author also gratefully acknowledges the support of NSF, grant CBET-1541181. 411 
Huina Mao would like to thank the financial support for this research from the US government 412 
for Oak Ridge National Laboratory’s Laboratory Directed Research and Development (project 413 
number LDRD 7677). 414 

References 415 
Eilander, D., Trambauer, P., Wagemaker, J. and van Loenen, A., 2016. Harvesting social media 416 
for generation of near real-time flood maps. Procedia Engineering, 154, pp.176-183. 417 

Finkel, J.R., Grenager, T. and Manning, C., 2005, June. Incorporating non-local information into 418 
information extraction systems by gibbs sampling. In Proceedings of the 43rd annual meeting on 419 
association for computational linguistics (pp. 363-370). Association for Computational Linguistics. 420 

Fohringer, J., Dransch, D., Kreibich, H. and Schröter, K., 2015. Social media as an information 421 
source for rapid flood inundation mapping. Natural Hazards and Earth System Sciences, 15(12), 422 
pp.2725-2738. 423 

Gallien, T.W., Schubert, J.E. and Sanders, B.F., 2011. Predicting tidal flooding of urbanized 424 
embayments: A modeling framework and data requirements. Coastal Engineering, 58(6), pp.567-425 
577. 426 

Guan, X. and Chen, C., 2014. Using social media data to understand and assess 427 
disasters. Natural hazards, 74(2), pp.837-850. 428 

Hess, L.L., Melack, J.M., Filoso, S. and Wang, Y., 1995. Delineation of inundated area and 429 
vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE 430 
Transactions on Geoscience and Remote Sensing, 33(4), pp.896-904. 431 

Hess, L.L., Melack, J.M., Novo, E.M., Barbosa, C.C. and Gastil, M., 2003. Dual-season mapping 432 
of wetland inundation and vegetation for the central Amazon basin. Remote sensing of 433 
environment, 87(4), pp.404-428. 434 



Jha, A.K., Bloch, R. and Lamond, J., 2012. Cities and flooding: a guide to integrated urban flood 435 
risk management for the 21st century. World Bank Publications. 436 

Jongman, B., Wagemaker, J., Romero, B.R. and de Perez, E.C., 2015. Early flood detection for 437 
rapid humanitarian response: harnessing near real-time satellite and Twitter signals. ISPRS 438 
International Journal of Geo-Information, 4(4), pp.2246-2266. 439 

Lingad, J., Karimi, S. and Yin, J., 2013, May. Location extraction from disaster-related 440 
microblogs. In Proceedings of the 22nd International Conference on World Wide Web (pp. 1017-441 
1020). ACM. 442 

Liggins II, M., Hall, D. and Llinas, J. eds., 2017. Handbook of multisensor data fusion: theory and 443 
practice. CRC press. 444 

Marcus, W.A. and Fonstad, M.A., 2008. Optical remote mapping of rivers at sub!meter 445 
resolutions and watershed extents. Earth Surface Processes and Landforms, 33(1), pp.4-24. 446 

Middleton, S.E., Middleton, L. and Modafferi, S., 2014. Real-time crisis mapping of natural 447 
disasters using social media. IEEE Intelligent Systems, 29(2), pp.9-17. 448 

Muralidharan, S., Rasmussen, L., Patterson, D. and Shin, J.H., 2011. Hope for Haiti: An analysis 449 
of Facebook and Twitter usage during the earthquake relief efforts. Public Relations 450 
Review, 37(2), pp.175-177. 451 

Nguyen, D.T., Alam, F., Ofli, F. and Imran, M., 2017. Automatic Image Filtering on Social 452 
Networks Using Deep Learning and Perceptual Hashing During Crises. arXiv preprint 453 
arXiv:1704.02602. 454 

Rees, W. G. (2001). Physical principles of remote sensing. Cambridge, UK: Cambridge University 455 
Press. 456 

Smith, R.A., Bates, P.D. and Hayes, C., 2012. Evaluation of a coastal flood inundation model 457 
using hard and soft data. Environmental Modelling & Software, 30, pp.35-46. 458 

Sun, D., Li, S., Zheng, W., Croitoru, A., Stefanidis, A. and Goldberg, M., 2016. Mapping floods 459 
due to Hurricane Sandy using NPP VIIRS and ATMS data and geotagged Flickr 460 
imagery. International Journal of Digital Earth, 9(5), pp.427-441. 461 

Wilson, J.N., Gader, P., Lee, W.H., Frigui, H. and Ho, K.C., 2007. A large-scale systematic 462 
evaluation of algorithms using ground-penetrating radar for landmine detection and 463 
discrimination. IEEE Transactions on Geoscience and Remote Sensing, 45(8), pp.2560-2572. 464 

Zeiler, M.D. and Fergus, R., 2014, September. Visualizing and understanding convolutional 465 
networks. In European conference on computer vision (pp. 818-833). Springer International 466 
Publishing. 467 

 468 


