390 research outputs found

    Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway

    Get PDF
    <p><b>Abstract</b></p> <p><b>Background</b></p> <p>It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that cytokines, which are normally released by activated microglia, may have a dual role in response to brain injury. This led us to study the toxic effect of METH on microglial cells by looking to cell death and alterations of tumor necrosis factor-alpha (TNF-α) and interleukine-6 (IL-6) systems, as well as the role played by these cytokines.</p> <p><b>Methods</b></p> <p>We used the N9 microglial cell line, and cell death and proliferation were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and incorporation of bromodeoxyuridine, respectively. The TNF-α and IL-6 content was quantified by enzyme-linked immunosorbent assay, and changes in TNF receptor 1, IL-6 receptor-alpha, Bax and Bcl-2 protein levels by western blotting. Immunocytochemistry analysis was also performed to evaluate alterations in microglial morphology and in the protein expression of phospho-signal transducer and activator of transcription 3 (pSTAT3).</p> <p><b>Results</b></p> <p>METH induced microglial cell death in a concentration-dependent manner (EC<sub>50</sub> = 1 mM), and also led to significant morphological changes and decreased cell proliferation. Additionally, this drug increased TNF-α extracellular and intracellular levels, as well as its receptor protein levels at 1 h, whereas IL-6 and its receptor levels were increased at 24 h post-exposure. However, the endogenous proinflammatory cytokines did not contribute to METH-induced microglial cell death. On the other hand, exogenous low concentrations of TNF-α or IL-6 had a protective effect. Interestingly, we also verified that the anti-apoptotic role of TNF-α was mediated by activation of IL-6 signaling, specifically the janus kinase (JAK)-STAT3 pathway, which in turn induced down-regulation of the Bax/Bcl-2 ratio.</p> <p><b>Conclusions</b></p> <p>These findings show that TNF-α and IL-6 have a protective role against METH-induced microglial cell death via the IL-6 receptor, specifically through activation of the JAK-STAT3 pathway, with consequent changes in pro- and anti-apoptotic proteins.</p

    Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila

    Get PDF
    During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP

    Measurement of the tt¯tt¯ production cross section in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Measurements of W+W−+ ≥ 1 jet production cross-sections in pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    Fiducial and differential cross-section measurements of W+W− production in association with at least one hadronic jet are presented. These measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton-proton collision data collected at p s = 13TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139 fb−1. Events are selected with exactly one oppositely charged electron-muon pair and at least one hadronic jet with a transverse momentum of pT > 30 GeV and a pseudorapidity of |�| < 4.5. After subtracting the background contributions and correcting for detector effects, the jet-inclusive W+W−+ � 1 jet fiducial cross-section and W+W−+ jets differential cross-sections with respect to several kinematic variables are measured. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the W+W− system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

    Get PDF
    Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010–2012) and Run 2 (2015–2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.publishedVersio
    corecore