250 research outputs found
Feynman path-integral treatment of the BEC-impurity polaron
The description of an impurity atom in a Bose-Einstein condensate can be cast
in the form of Frohlich's polaron Hamiltonian, where the Bogoliubov excitations
play the role of the phonons. An expression for the corresponding polaronic
coupling strength is derived, relating the coupling strength to the scattering
lengths, the trap size and the number of Bose condensed atoms. This allows to
identify several approaches to reach the strong-coupling limit for the quantum
gas polarons, whereas this limit was hitherto experimentally inaccessible in
solids. We apply Feynman's path-integral method to calculate for all coupling
strengths the polaronic shift in the free energy and the increase in the
effective mass. The effect of temperature on these quantities is included in
the description. We find similarities to the acoustic polaron results and
indications of a transition between free polarons and self-trapped polarons.
The prospects, based on the current theory, of investigating the polaron
physics with ultracold gases are discussed for lithium atoms in a sodium
condensate.Comment: 13 pages, 3 figure
Many-polaron description of impurities in a Bose-Einstein condensate in the weak coupling regime
The weak coupling many-polaron formalism is applied to the case of the
polaronic system consisting of impurities in a Bose-Einstein condensate. This
allows to investigate the groundstate properties and the response of the system
to Bragg spectroscopy. This theory is then applied to the system of
spin-polarized fermionic lithium-6 impurities in a sodium condensate. The Bragg
spectrum reveals a peak which corresponds to the emission of Bogoliubov
excitations. Both ground state properties and the response spectrum show that
the polaronic effect vanishes at large densities. We also look at two
possibilities to define the polaronic effective mass and observe that this
results in a different quantitative behavior if multiple impurities are
involved
Galaxy And Mass Assembly (GAMA) : refining the local galaxy merger rate using morphological information
KRVS acknowledges the Science and Technology Facilities Council (STFC) for providing funding for this project, as well as the Government of Catalonia for a research travel grant (ref. 2010 BE-00268) to begin this project at the University of Nottingham. PN acknowledges the support of the Royal Society through the award of a University Research Fellowship and the European Research Council, through receipt of a Starting Grant (DEGAS-259586).We use the Galaxy And Mass Assembly (GAMA) survey to measure the local Universe mass-dependent merger fraction and merger rate using galaxy pairs and the CAS (concentration, asymmetry, and smoothness) structural method, which identifies highly asymmetric merger candidate galaxies. Our goals are to determine which types of mergers produce highly asymmetrical galaxies and to provide a new measurement of the local galaxy major merger rate. We examine galaxy pairs at stellar mass limits down to M* = 108 M⊙ with mass ratios of 4:1) the lower mass companion becomes highly asymmetric, whereas the larger galaxy is much less affected. The fraction of highly asymmetric paired galaxies which have a major merger companion is highest for the most massive galaxies and drops progressively with decreasing mass. We calculate that the mass-dependent major merger fraction is fairly constant at ∼1.3–2 per cent within 109.5 < M* < 1011.5 M⊙, and increases to ∼4 per cent at lower masses. When the observability time-scales are taken into consideration, the major merger rate is found to approximately triple over the mass range we consider. The total comoving volume major merger rate over the range 108.0 < M* < 1011.5 M⊙ is (1.2 ± 0.5) × 10−3 h370 Mpc−3 Gyr−1.Publisher PDFPeer reviewe
Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?
We present a new study investigating whether active galactic nuclei (AGN)
beyond the local universe are preferentially fed via large-scale bars. Our
investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the
AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies
at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN
host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive
control galaxies matched in stellar mass, rest-frame colour, size, Sersic
index, and redshift. Using the GZH bar classifications of each sample, we
demonstrate that AGN hosts show no statistically significant enhancement in bar
fraction or average bar likelihood compared to closely-matched inactive
galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above
the control bar fraction by more than a factor of two, at 99.7% confidence. We
similarly find no significant difference in the AGN fraction among barred and
non-barred galaxies. Thus we find no compelling evidence that large-scale bars
directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at
z=0, implies that moderate-luminosity AGN have not been preferentially fed by
large-scale bars since z=1. Furthermore, given the low bar fractions at z>1,
our findings suggest that large-scale bars have likely never directly been a
dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA
Signatures of a dissipative phase transition in photon correlation measurements
This work was supported by the Swiss National Science Foundation (SNSF) through the National Centre of Competence in Research - Quantum Science and Technology (NCCR QSIT). A.S., C.S., and S.H. acknowledge support by the State of Bavaria and the DFG within the Project Schn1376/3-1.Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics[1-8]. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum [9], which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons [10,11], which can be described as a first-order dissipative phase transition [12-14]. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.PostprintPeer reviewe
Galaxy Zoo: CANDELS barred discs and bar fractions
The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ~ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 (fbar = 10.7+6.3 -3.5 per cent after correcting for incompleteness) does not significantly evolve.We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion yearsPeer reviewedFinal Accepted Versio
- …