38 research outputs found

    Historical Patterns of Anthropogenic Impacts on Freshwaters in the Berlin-Brandenburg Region

    Get PDF
    Since humans are preferentially settling in flood plains they often influence freshwater systems intensely. The first signs of anthropogenic impacts on surface waters in the Berlin-Brandenburg region are approximately 3000 years old. Considering the multiple and intense human uses of surface waters in this region, we analysed when, how and to which extent regional rivers and streams became impacted by dams, water mills and fish weirs resulting in changes in morphology, hydrology and ecological functioning. We hypothesise that the development and growth of cities in this region necessitated (1) efficient navigability of rivers linking them, (2) efficient use of hydropower resources for mills, and (3) significant pollution of surface waters especially with the beginning of industrial development. We analyse these hypotheses by means of three regional examples and delineate the effects of human uses on selected surface water bodies. Understanding the effects of these historic modifications of surface water supports the identification of options for a sustainable use of surface waters that are currently still subjected to multiple uses but face a significant decrease in discharge due to climate change

    Evaluating riparian solutions to multiple stressor problems in river ecosystems - A conceptual study

    Get PDF
    Rivers are among the most sensitive of all ecosystems to the effects of global change, but options to prevent, mitigate or restore ecosystem damage are still inadequately understood. Riparian buffers are widely advocated as a cost-effective option to manage impacts, but empirical evidence is yet to identify ideal riparian features (e.g. width, length and density) which enhance ecological integrity and protect ecosystem services in the face of catchment-scale stressors. Here, we use an extensive literature review to synthesise evidence on riparian buffer and catchment management effects on instream environmental conditions (e.g. nutrients, fine sediments, organic matter), river organisms and ecosystem functions. We offer a conceptual model of the mechanisms through which catchment or riparian management might impact streams either positively or negatively. The model distinguishes scale-independent benefits (shade, thermal damping, organic matter and large wood inputs) that arise from riparian buffer management at any scale from scale-dependent benefits (nutrient or fine sediment retention) that reflect stressor conditions at broader (sub-catchment to catchment) scales. The latter require concerted management efforts over equally large domains of scale (e.g. riparian buffers combined with nutrient restrictions). The evidence of the relationships between riparian configuration (width, length, zonation, density) and scale-independent benefits is consistent, suggesting a high certainty of the effects. In contrast, scale-dependent effects as well as the biological responses to riparian management are more uncertain, suggesting that ongoing diffuse pollution (nutrients, sediments), but also sources of variability (e.g. hydrology, climate) at broader scales may interfere with the effects of local riparian management. Without concerted management across relevant scales, full biological recovery of damaged lotic ecosystems is unlikely. There is, nevertheless, sufficient evidence that the benefits of riparian buffers outweigh potential adverse effects, in particular if located in the upstream part of the stream network. This supports the use of riparian restoration as a no-regrets management option to improve and sustain lotic ecosystem functioning and biodiversity

    The future depends on what we do today – projecting Europe’s surface water quality into three different future scenarios

    Get PDF
    There are infinite possible future scenarios reflecting the impacts of anthropogenic multiple stress on our planet. These impacts include changes in climate and land cover, to which aquatic ecosystems are especially vulnerable. To assess plausible developments of the future state of European surface waters, we considered two climate scenarios and three storylines describing land use, management and anthropogenic development (‘Consensus’, ‘Techno’ and ‘Fragmented’, which in terms of environmental protection represent best-, intermediate- and worst-case, respectively). Three lake and four river basins were selected, representing a spectrum of European conditions through a range of different human impacts and climatic, geographical and biological characteristics. Using process-based and empirical models, freshwater total nitrogen, total phosphorus and chlorophyll-a concentrations were projected for 2030 and 2060. Under current conditions, the water bodies mostly fail good ecological status. In future predictions for the Techno and Fragmented World, concentrations further increased, while concentrations generally declined for the Consensus World. Furthermore, impacts were more severe for rivers than for lakes. Main pressures identified were nutrient inputs from agriculture, land use change, inadequately managed water abstractions and climate change effects. While the basins in the Continental and Atlantic regions were primarily affected by land use changes, in the Mediterranean/Anatolian the main driver was climate change. The Boreal basins showed combined impacts of land use and climate change and clearly reflected the climate-induced future trend of agricultural activities shifting northward. The storylines showed positive effects on ecological status by classical mitigation measures in the Consensus World (e.g. riparian shading), technical improvements in the Techno World (e.g. increasing wastewater treatment efficiency) and agricultural extensification in the Fragmented World. Results emphasize the need for implementing targeted measures to reduce anthropogenic impacts and the importance of having differing levels of ambition for improving the future status of water bodies depending on the societal future to be expected

    Protecting and restoring Europe's waters:an analysis of the future development needs of the Water Framework Directive

    Get PDF
    The Water Framework Directive (WFD) is a pioneering piece of legislation that aims to protect and enhance aquatic ecosystems and promote sustainable water use across Europe. There is growing concern that the objective of good status, or higher, in all EU waters by 2027 is a long way from being achieved in many countries. Through questionnaire analysis of almost 100 experts, we provide recommendations to enhance WFD monitoring and assessment systems, improve programmes of measures and further integrate with other sectoral policies. Our analysis highlights that there is great potential to enhance assessment schemes through strategic design of monitoring networks and innovation, such as earth observation. New diagnostic tools that use existing WFD monitoring data, but incorporate novel statistical and trait-based approaches could be used more widely to diagnose the cause of deterioration under conditions of multiple pressures and deliver a hierarchy of solutions for more evidence-driven decisions in river basin management. There is also a growing recognition that measures undertaken in river basin management should deliver multiple benefits across sectors, such as reduced flood risk, and there needs to be robust demonstration studies that evaluate these. Continued efforts in ‘mainstreaming’ water policy into other policy sectors is clearly needed to deliver wider success with WFD goals, particularly with agricultural policy. Other key policy areas where a need for stronger integration with water policy was recognised included urban planning (waste water treatment), flooding, climate and energy (hydropower). Having a deadline for attaining the policy objective of good status is important, but even more essential is to have a permanent framework for river basin management that addresses the delays in implementation of measures. This requires a long-term perspective, far beyond the current deadline of 2027

    Assessing land use and flood management impacts on ecosystem services in a river landscape (Upper Danube, Germany)

    Get PDF
    Rivers and floodplains provide many regulating, provisioning and cultural ecosystem services (ES) such as flood risk regulation, crop production or recreation. Intensive use of resources such as hydropower production, construction of detention basins and intensive agriculture substantially change ecosystems and may affect their capacity to provide ES. Legal frameworks such as the European Water Framework Directive, Bird and Habitats Directive and Floods Directive already address various uses and interests. However, management is still sectoral and often potential synergies or trade‐offs between sectors are not considered. The ES concept could support a joint and holistic evaluation of impacts and proactively suggest advantageous options. The river ecosystem service index (RESI) method evaluates the capacity of floodplains to provide ES by using a standardized five‐point scale for 1 km‐floodplain segments based on available spatial data. This scaling allows consistent scoring of all ES and their integration into a single index. The aim of this article is to assess ES impacts of different flood prevention scenarios on a 75 km section of the Danube river corridor in Germany. The RESI method was applied to evaluate scenario effects on 13 ES with the standardized five‐point scale. Synergies and trade‐offs were identified as well as ES bundles and dependencies on land use and connectivity. The ratio of actual and former floodplain has the strongest influence on the total ES provision: the higher the percentage and area of an active floodplain, the higher the sum of ES. The RESI method proved useful to support decision‐making in regional planning.BMBF, 033W024A, ReWaM - Verbundprojekt RESI: River Ecosystem Service Index, Teilprojekt

    Harmonized assessment of nutrient pollution from urban systems including losses from sewer exfiltration: a case study in Germany

    No full text
    A growing literature indicates that untreated wastewater from leaky sewers stands among major sources of pollution to water resources of urban systems. Despite that, the quantification and allocation of sewer exfiltration are often restricted to major pipe areas where inspection data are available. In large-scale urban models, the emission from sewer exfiltration is either neglected (particularly from private sewers) or represented by simplified fixed values, and as such its contribution to the overall urban emission remains questionable. This study proposes an extended model framework which incorporates sewer exfiltration pathway in the catchment model for a better justified pollution control and management of urban systems at a nationwide scale. Nutrient emission from urban areas is quantified by means of the Modelling of Nutrient Emissions in River Systems (MONERIS) model. Exfiltration is estimated for public and private sewers of different age groups in Germany using the verified methods at local to city scales, upscaling techniques, and expert knowledge. Results of this study suggest that the average exfiltration rate is likely to be less than 0.01 L/s per km, corresponding to approximately 1 mm/m/year of wastewater discharge to groundwater. Considering the source and age factors, the highest rate of exfiltration is defined in regions with significant proportions of public sewers older than 40 years. In regions where public sewers are mostly built after 1981, the leakage from private sewers can be up two times higher than such from public sewers. Overall, sewer exfiltration accounts for 9.8% and 17.2% of nitrate and phosphate loads from urban systems emitted to the environment, which increases to 11.2% and 19.5% in the case of no remediation scenario of projected defective sewer increases due to ageing effects. Our results provide a first harmonized quantification of potential leakage losses in urban wastewater systems at the nationwide scale and reveal the importance of rehabilitation planning of ageing sewer pipes in public and private sewer systems. The proposed model framework, which incorporates important factors for urban sewer managers, will allow further targeting the important data need for validating the approach at the regional and local scales in order to support better strategies for the long-term nutrient pollution control of large urban wastewater systems

    Derived catchments of German Surface Water Bodies

    No full text
    A network of 26.570 water-body catchments in Germany was derived from the hydrologically-defined drainage basins of the German federal states. To these drainage basins, we assigned the longest intersecting or the next downstream water-body code. Spurious intersections were removed. As the official water bodies may be ecologically but not hydrologically well defined, we split them at confluences and intersections to create extended water bodies. The final WB network contains 11.005 out of the 11.586 original water bodies longer than 1 m. The assigned catchment areas range from <<0.0001 to 446 kmÂČ, with a median of 10 kmÂČ. The dataset combines the requirements of hydrological and ecological modelling applications at basin or national scales with the needs of the EU reporting

    Recent and Future Changes in Rainfall Erosivity and Implications for the Soil Erosion Risk in Brandenburg, NE Germany

    No full text
    The universal soil loss equation (USLE) is widely used to identify areas of erosion risk at regional scales. In Brandenburg, USLE R factors are usually estimated from summer rainfall, based on a relationship from the 1990s. We compared estimated and calculated factors of 22 stations with 10-min rainfall data. To obtain more realistic estimations, we regressed the latter to three rainfall indices (total and heavy-rainfall sums). These models were applied to estimate future R factors of 188 climate stations. To assess uncertainties, we derived eight scenarios from 15 climate models and two representative concentration pathways (RCP), and compared the effects of index choice to the choices of climate model, RCP, and bias correction. The existing regression model underestimated the calculated R factors by 40%. Moreover, using heavy-rainfall sums instead of total sums explained the variability of current R factors better, increased their future changes, and reduced the model uncertainty. The impact of index choice on future R factors was similar to the other choices. Despite all uncertainties, the results indicate that average R factors will remain above past values. Instead, the extent of arable land experiencing excessive soil loss might double until the mid-century with RCP 8.5 and unchanged land management
    corecore