11 research outputs found
Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification
The photoreceptor UV RESISTANCE LOCUS 8 (UVR8) specifically mediates photomorphogenic responses to UV-B wavelengths. UVR8 acts by regulating transcription of a set of genes, but the underlying mechanisms are unknown. Previous research indicated that UVR8 can associate with chromatin, but the specificity and functional significance of this interaction are not clear. Here we show, by chromatin immunoprecipitation, that UV-B exposure of Arabidopsis increases acetylation of lysines K9 and/or K14 of histone H3 at UVR8-regulated gene loci in a UVR8-dependent manner. The transcription factors HY5 and/or HYH, which mediate UVR8-regulated transcription, are also required for this chromatin modification, at least for the ELIP1 gene. Furthermore, sequencing of the immunoprecipitated DNA revealed that all UV-B-induced enrichments in H3K9,14diacetylation across the genome are UVR8-dependent, and approximately 40 % of the enriched loci contain known UVR8-regulated genes. In addition, inhibition of histone acetylation by anacardic acid reduces the UV-B induced, UVR8 mediated expression of ELIP1 and CHS. No evidence was obtained in yeast 2-hybrid assays for a direct interaction between either UVR8 or HY5 and several proteins involved in light-regulated histone modification, nor for the involvement of these proteins in UVR8-mediated responses in plants, although functional redundancy between proteins could influence the results. In summary, this study shows that UVR8 regulates a specific chromatin modification associated with transcriptional regulation of a set of UVR8-target genes
Regulation of transcription by Ultraviolet-B radiation in Arabidopsis thaliana
Plants are sessile photo-autotrophic organisms and need to adapt constantly to a dynamic environment. Light is of utmost importance for plants to be able to monitor their surroundings. Ultraviolet-B radiation (UV-B; 280-315 nm) is an intrinsic part of sunlight and, depending on the wavelength and the fluence rate, it may be a stressful signal or an “informational” one. The so called photomorphogenic responses of plants to UV-B are largely mediated by the UV-B specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8), which “senses” UV-B via a tryptophan based mechanism.
UVR8 is localised in the cytoplasm and the nucleus mainly as a homodimer. Upon UV-B irradiation it splits to its monomers and accumulates in the nucleus where it has been found to interact with the E3 Ubiquitin ligase COP1. In the nucleus UVR8 has been shown to associate with chromatin on loci of UV-B responsive genes, including that encoding for the bZIP transcription factor (TF) ELONGATED HYPOCOTYL 5 (HY5), a key effector of UVR8-dependent signalling pathways. The binding of UVR8 to chromatin appears to take place via interaction with histones (H2B in particular) rather than DNA itself. However, this association with chromatin seems not to be UV-B specific.
The above data suggest a mechanistic basis for an assumed function of UVR8 in the regulation transcription. It seems likely that UVR8 interacts with other proteins associated with chromatin to promote remodelling and/or recruits/activates TFs which in turn stimulate transcription of its target genes. The main objective of this study was to address the above working hypothesis
Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation
Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation.</p
Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation
Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation
Resolving the Role of Plant Glutamate Dehydrogenase. I. in vivo Real Time Nuclear Magnetic Resonance Spectroscopy Experiments
In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time 15N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [15N]Glu or 15NH4+ respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants
Dimer/monomer status and in vivo function of salt-bridge mutants of the plant UV-B photoreceptor UVR8
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet-B (UV-B) light that initiates photomorphogenic responses in plants. UV-B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt-bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt-bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt-bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV-B responses in vivo with a similar dose-response relationship to wild-type. The UV-B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV-B photoreception, initiating signal transduction and responses in plants
Progress and challenges of engineering a biophysical carbon dioxide-concentrating mechanism into higher plants
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.BM, BDR, NDN, and GDP are supported by the
Australian Research Council, Centre of Excellence grant for ‘Translational
Photosynthesis’ (CE140100015