26 research outputs found
Top-of-Atmosphere Albedo Estimation from Angular Distribution Models Using Scene Identification from Satellite Cloud Property Retrievals
International audienceThe next generation of earth radiation budget satellite instruments will routinely merge estimates of global top-of-atmosphere radiative fluxes with cloud properties. This information will offer many new opportunities for validating radiative transfer models and cloud parameterizations in climate models. In this study, five months of Polarization and Directionality of the Earth's Reflectances 670-nm radiance measurements are considered in order to examine how satellite cloud property retrievals can be used to define empirical angular distribution models (ADMs) for estimating top-of-atmosphere albedo. ADMs are defined for 19 scene types defined by satellite retrievals of cloud fraction and cloud optical depth. Two approaches are used to define the ADM scene types. The first assumes there are no biases in the retrieved cloud properties and defines ADMs for fixed discrete intervals of cloud fraction and cloud optical depth (fixed-Ï„ approach). The second approach involves the same cloud fraction intervals, but uses percentile intervals of cloud optical depth instead (percentile-Ï„ approach). Albedos generated using these methods are compared with albedos inferred directly from the mean observed reflectance field
Recommended from our members
Improved information about the vertical location and extent of monolayer clouds from POLDER3 measurements in the oxygen A-band
This paper describes new advances in the exploitation of oxygen A-band measurements from POLDER3 sensor onboard PARASOL, satellite platform within the A-Train. These developments result from not only an account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions but also, and more importantly, from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train: CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained, which are estimates of actual cloud top and middle pressures (CTP and CMP). Performances of CTOP and CMOP are presented by class of clouds following the ISCCP classification. In 2008, the coefficient of the correlation between CMOP and CMP is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and CTP is 0.75, 0.73, and 0.79 for the same cloud types. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of inferred value and for a given error, is higher than the one of MODIS CTP estimate. Scores of CTOP are the highest for bin value of CTP superior in numbers. For liquid (ice) clouds and an error of 30 hPa (50 hPa), the score of CTOP reaches 50% (70%). From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent h is possible. A second estimate of h comes from the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent. This correlation is studied in detail in the case of liquid clouds. It is shown to be spatially and temporally robust, except for clouds above land during winter months. The analysis of the correlation's dependence on the scene's characteristics leads to a parameterization providing h from σPO2. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. POLDER estimates of the cloud geometrical thickness obtain a global score of 50% confidence for a relative error of 20% (40%) of the estimate for ice (liquid) clouds over ocean. These results need to be validated outside of the CALIPSO/CloudSat track
Horizontally oriented plates in clouds
Horizontally oriented plates in clouds generate a sharp specular reflectance
signal in the glint direction, often referred to as "subsun". This signal
(amplitude and width) may be used to analyze the relative area fraction of
oriented plates in the cloud top layer and their characteristic tilt angle to
the horizontal. We make use of spaceborne measurements from the POLDER
instrument to provide a statistical analysis of these parameters. More than
half of the clouds show a detectable maximum reflectance in the glint
direction, although this maximum may be rather faint. The typical effective
fraction (area weighted) of oriented plates in clouds lies between 10-3 and
10-2. For those oriented plates, the characteristic tilt angle is less than 1
degree in most cases. These low fractions imply that the impact of oriented
plates on the cloud albedo is insignificant. The largest proportion of clouds
with horizontally oriented plates is found in the range 500-700 hPa, in
agreement with typical in situ observation of plates in clouds. We propose a
simple aerodynamic model that accounts for the orienting torque of the flow as
the plate falls under its own gravity and the disorienting effects of Brownian
motion and atmospheric turbulence. The model indicates that the horizontal
plate diameters are in the range 0.1 to a few millimeters. For such sizes,
Brownian forces have a negligible impact on the plate orientation. On the other
hand, typical levels of atmospheric turbulence lead to tilt angles that are
similar to those estimated from the glint observation
Recommended from our members
The OCO-2 oxygen A-band response to liquid marine cloud properties from CALIPSO and MODIS
Spectra of reflected sunlight in the oxygen A-band contain information about cloud properties such as cloud top pressure, optical depth, and pressure thickness. Here we show, for the first time, that high-spectral-resolution A-band Orbiting Carbon Observatory-2 (OCO-2) spectra respond largely as simulated to the optical properties of water clouds over ocean during November 2015 (N = 184,318) using input cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and the Cloud-Aerosol Lidar with Orthogonal Polarization on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). In A-band continuum channels the standard deviation of simulated minus observed radiance is ±37%. Selecting horizontally homogeneous clouds to mitigate three-dimensional cloud effects and collocation error with the other satellites, the standard deviation of the residuals is reduced to ±18%. Using a look-up table developed from simulations, OCO-2's estimated cloud top pressure for low clouds (Ptop > 680 hPa) has a standard deviation of ±61 hPa relative to CALIPSO retrievals, and bias is dependent on assumed cloud pressure thickness, with our smallest value being −5 hPa. Versus MODIS optical depth, the standard deviation is ±9.0 and the bias is −2.0, although these shrink for clouds of τ < 30. These values include collocation error between the different satellites, meaning that they place an upper bound on the OCO-2 retrieval uncertainty. The theoretical precision limit from OCO-2's instrumental uncertainty is shown to be ±2.4 hPa in above-cloud path and ±0.2% in optical depth for a two-channel retrieval. Options for retrieving cloud optical depth, cloud top pressure, and pressure thickness are discussed in the context of a formal OCO-2 cloud property retrieval
Recommended from our members
Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season
Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in 5 AeroCom (Aerosol Comparisons between Observations and Models) models (GOCART, HadGEM3, ECHAM5-HAM2, OsloCTM2 and SPRINTARS). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations
Comparison of POLDER apparent and corrected oxygen pressure to ARM/MMCR cloud boundary pressures
International audiencePOLDER (POLarization and Directionality of the Earth's Reflectances) cloud oxygen pressures are compared to cloud boundary pressures obtained from the combination of Lidar and Millimeter Wave Cloud Radar ground measurements located at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. Without ground reflection correction, the apparent pressures are found to be closer to the mean cloud pressure than to the cloud top pressure. Nevertheless, for almost a quarter of our comparison cases the apparent pressure level is found to be below the cloud base level. This problem practically disappears applying a simple correction for the surface reflection effect. The corrected oxygen pressures are then found to be very close (12 hPa on average) to the mean cloud pressure
Recommended from our members
Inferences about pressures and vertical extension of cloud layers from POLDER3/PARASOL measurements in the oxygen A-band
We present new inferences about cloud vertical structures from multidirectionnal measurements in the oxygen A-band. The analysis of collocated data provided by instruments onboard satellite platforms within the A-Train, as well as simulations have shown that for monolayered clouds, the cloud oxygen pressure PO2PO2 derived from the POLDER3 instrument was sensitive to the cloud vertical structure in two ways: First, PO2PO2 is actually close to the pressure of the geometrical middle of cloud and we propose a method to correct it to get the cloud top pressure (CTP), and then to obtain the cloud geometrical extent. Second, for the liquid water clouds, the angular standard deviation σPO2σPO2 of PO2PO2 is correlated with the geometrical extent of cloud layers, which makes possible a second estimation of the cloud geometrical thickness. The determination of the vertical location of cloud layers from passive measurements, eventually completed from other observations, would be useful in many applications for which cloud macrophysical properties are neede
Cloud cover observed simultaneously from POLDER and METEOSAT
International audienceThe POLDER instrument that was aboard the Japanese ADEOS platform between August 1996 and June 1997. is designed to the global observations of the polarisation and directionality of the sun-light reflected by the Earth-atmosphere system. The cloud detection from POLDER takes advantage of the original capabilities of the instrument (spectral polarisation and directionality). This cloud detection scheme uses 5 threshold tests based on pressure, reflectance, polarised reflectance and spectral variability. The results of the POLDER cloud detection scheme are compared to those of the LMD dynamical clustering method applied to visible and infrared METEOSAT data and local spatial variability of these two parameters. Special focus is given to the detection capabilities of the two kind of measurements for cloud situations such as small cumulus, thin cirrus and multilayered cloud cover. Results of this comparison would give some insight on the behaviour of the International Satellite Cloud Climatology Project (ISCCP) cloud detection scheme built mainly from visible and infrared measurements
Peut-on diminuer les comportements sexuels des porcs mâles non-castrés par l’ajout de poudre de fruits du gattilier (Vitex agnus castus) dans l’aliment ?
texte issu des actes à venir + doi dans animal sciences proceedings pour le résumé anglaisInternational audienceContexte de l'étude Les comportements sexuels des porcs mâles non castrés peuvent blesser les congénères et diminuer leur bien-être. La mise à disposition de grandes surfaces, comme en élevage biologique, semble permettre une expression accrue de ces comportements. Le gattilier (Vitex agnus castus), une plante connue sous le nom de Poivre des moines, aurait des propriétés anaphrodisiaques. Il n'existe pas de preuve scientifique, mais il a été montré que cette plante permet de moduler la fonction de reproduction des mammifères femelles. Le gattilier pourrait donc permettre de réduire les comportements sexuels des porcs mâles non castrés d'une façon naturelle qui pourrait convenir à tout type d'élevage dont l'élevage biologique. Objectifs Déterminer si l'ajout de poudre de fruits du gattilier (Vitex agnus castus) sur l'aliment permet de diminuer les comportements de monte des porcs mâles non castrés élevés en système biologiqu