228 research outputs found

    Direct fluorescent labelling of clones by DOP PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Array Comparative Genomic Hybridisation (array CGH) is a powerful technique for the analysis of constitutional chromosomal anomalies. Chromosomal duplications or deletions detected by array CGH need subsequently to be validated by other methods. One method of validation is Fluorescence <it>in situ </it>Hybridisation (FISH). Traditionally, fluorophores or hapten labelling is performed by nick translation or random prime labelling of purified Bacterial Artificial Chromosome (BAC) products. However, since the array targets have been generated from Degenerate Oligonucleotide Primed (DOP) amplified BAC clones, we aimed to use these DOP amplified BAC clones as the basis of an automated FISH labelling protocol. Unfortunately, labelling of DOP amplified BAC clones by traditional labelling methods resulted in high levels of background.</p> <p>Results</p> <p>We designed an improved labelling method, by means of degenerate oligonucleotides that resulted in optimal FISH probes with low background.</p> <p>Conclusion</p> <p>We generated an improved labelling method for FISH which enables the rapid generation of FISH probes without the need for isolating BAC DNA. We labelled about 900 clones with this method with a success rate of 97%.</p

    Maine Campus October 03 1978

    Get PDF
    X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis.Methods & objectives: Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause.status: publishe

    A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function

    Get PDF
    Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes

    Mutation screening of ASMT, the last enzyme of the melatonin pathway, in a large sample of patients with intellectual disability.

    Get PDF
    International audienceBACKGROUND: Intellectual disability (ID) is frequently associated with sleep disorders. Treatment with melatonin demonstrated efficacy, suggesting that, at least in a subgroup of patients, the endogenous melatonin level may not be sufficient to adequately set the sleep-wake cycles. Mutations in ASMT gene, coding the last enzyme of the melatonin pathway have been reported as a risk factor for autism spectrum disorders (ASD), which are often comorbid with ID. Thus the aim of the study was to ascertain the genetic variability of ASMT in a large cohort of patients with ID and controls. METHODS: Here, we sequenced all exons of ASMT in a sample of 361 patients with ID and 440 controls. We then measured the ASMT activity in B lymphoblastoid cell lines (BLCL) of patients with ID carrying an ASMT variant and compared it to controls. RESULTS: We could identify eleven variations modifying the protein sequence of ASMT (ID only: N13H, N17K, V171M, E288D; controls only: E61Q, D210G, K219R, P243L, C273S, R291Q; ID and controls: L298F) and two deleterious splice site mutations (IVS5+2T>C and IVS7+1G>T) only observed in patients with ID. We then ascertained ASMT activity in B lymphoblastoid cell lines from patients carrying the mutations and showed significantly lower enzyme activity in patients carrying mutations compared to controls (p = 0.004). CONCLUSIONS: We could identify patients with deleterious ASMT mutations as well as decreased ASMT activity. However, this study does not support ASMT as a causative gene for ID since we observed no significant enrichment in the frequency of ASMT variants in ID compared to controls. Nevertheless, given the impact of sleep difficulties in patients with ID, melatonin supplementation might be of great benefit for a subgroup of patients with low melatonin synthesis

    Towards a 21st-century roadmap for biomedical research and drug discovery:consensus report and recommendations

    Get PDF
    Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and nongovernmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathway-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this

    ERBB4 exonic deletions on chromosome 2q34 in patients with intellectual disability or epilepsy

    Get PDF
    ERBB4 encodes the tyrosine kinase receptor HER4, a critical regulator of normal cell function and neurodevelopmental processes in the brain. One of the key ligands of HER4 is neureglin-1 (NRG1), and the HER4-NRG1 signalling pathway is essential in neural crest cell migration, and neuronal differentiation. Pharmacological inactivation of HER4 has been shown to hasten the progression of epileptogenesis in rodent models, and heterozygous ERBB4 null mice are shown to have cognitive deficits and delayed motor development. Thus far there is only a single case report in the literature of a heterozygous ERBB4 deletion in a patient with intellectual disability (ID). We identified nine subjects from five unrelated families with chromosome 2q34 deletions, resulting in heterozygous intragenic loss of multiple exons of ERBB4, associated with either non-syndromic ID or generalised epilepsy. In one family, the deletion segregated with ID in five affected relatives. Overall, this case series further supports that haploinsufficiency of ERBB4 leads to non-syndromic intellectual disability or epilepsy
    • …
    corecore