
 Eindhoven University of Technology

MASTER

Informative Path Planning for the Monitoring of Pathogens and Weeds

van Esch, Hilde

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4d363179-3ba8-48cf-b99e-08058b205f01

Master Thesis Report

Informative Path Planning for the Monitoring of
Pathogens and Weeds

University supervisor:
a

University supervisor:
a

External supervisor:

Dr. D. J. G. T. Antunes
a

Ir. R.M. Beumer
a

Ir. N.L.M. Jeurgens

H. van Esch - 1306219

MSc Systems & Control
45 ECTS

Control Systems Technology
Department of Mechanical Engineering

Eindhoven, August 16, 2023

This report was made in accordance with the TU/e Code of Scientific Conduct for the Master thesis

Abstract

The increasing global population coupled with the climate crisis necessitates innovative agricultural
approaches to ensure food security. To address resource-intensive farming practices and make agriculture
more ecologically sustainable, the Synergia project aims to enhance efficiency and inclusivity while
promoting ecological balance. The project partners, Eindhoven University of Technology and Avular,
collaborate to tackle challenges through technology-driven precision farming.

Precision farming is a key strategy in addressing these challenges, enabling enhanced production yield
with limited resources. Autonomous robots form part of this solution, offering lightweight alternatives
that prevent soil compression and reduce farmer workload. Precision monitoring through informative path
planning forms an essential part of precision farming, facilitating accurate world modelling necessary for
precision control, while minimizing costs by being applicable to a single autonomous mobile robot with
limited battery capacity.

This thesis focuses on a path planning algorithm informed by a spreading model for monitoring
pathogens and weeds in agricultural fields. The research presents a modular software architecture that
enables adaptable and interdisciplinary development. The spreading module leverages spread models and
predictive entropy maps to guide the robot’s trajectory. The core path planning module incorporates
informed path generation to optimize monitoring efficiency while adhering to budget constraints. The
monitoring module utilizes the observed data to refresh the world model.

Simulations evaluate the algorithm’s performance, comparing it to an uninformed planner. The
results demonstrate the informed planner’s substantial improvement in monitoring efficiency, confirming
its effectiveness in reducing entropy and enhancing accuracy. Moreover, the research addresses additional
aspects, including budget levels, kinematic constraints of varying robot types and non-greedy horizon
planning, which are addressed through development of new approaches and analysis providing insights
into their effects on monitoring performance.

Future research directions include exploring alternative planners for structured fields and real-life
testing on actual agricultural fields. The thesis underscores the importance of bridging the gap between
agricultural and technical domains and suggests further advancements in spreading models to enhance
disease monitoring accuracy. This work establishes a foundation for path planning in pathogen and weed
monitoring, contributing to precision farming and sustainable agriculture practices.

Contents

1 Introduction 1

2 Background 3
2.1 Context of the Project . 3
2.2 Literature Review . 4

2.2.1 Spread of Pathogens and Weeds . 4
2.2.2 Path Planning . 5

3 Architecture 7

4 Spreading Module 8

5 Path Planning Module 10
5.1 Rapidly Exploring Information Gathering Algorithm . 10
5.2 Goal Location . 12
5.3 Information Metric . 13
5.4 Rewiring . 13
5.5 Pruning . 15
5.6 Field Shapes and Obstacles . 16
5.7 Discrete Sampling . 16
5.8 Stopping Criteria . 17
5.9 Kinematic Constraints . 18
5.10 Structured Fields . 21
5.11 Horizon Planning . 22
5.12 Specified Variables . 24

6 Monitoring Module 25

7 Updating the World Model 26

8 Results 27
8.1 Simulation Experiments . 27
8.2 Findings . 29

8.2.1 Informed Path Planner . 29
8.2.2 Budget . 30
8.2.3 Rewiring Function . 30
8.2.4 Step Length and Search Radius . 31
8.2.5 Stopping Criteria and Number of Iterations . 31
8.2.6 Horizon Planning . 31
8.2.7 Structured and unstructured fields . 32

9 Conclusion and Discussion 33

References 36

A Appendix A: Variable Overview 38

B Appendix B: Spreading Models 39

i

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

B.1 EPIMUL: Pathogen Spreading Model . 40
B.2 INVADE: Weed Spreading Model . 42

C Appendix C: Rewiring Design Process 44
C.1 Path-Based Rewiring . 44
C.2 Location-Based Rewiring . 46
C.3 Hindsight rewiring . 47

D Appendix D: Structured Steering Design Process 48

E Appendix E: Computed Paths of Multi-Cycle Simulations 49
E.1 Informed planning . 49
E.2 Horizon planning . 51

ii

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

1 Introduction
The growing world population combined with the climate crisis requires innovation in agriculture

to be able to feed all people. Current resource-intensive farming methods are required to change such
that crop yield increases while minimizing the use of resources such as water, herbicides and pesticides
(Cobbenhagen et al., 2021). The goal of the Synergia project is to make agriculture more ecological
and sustainable, such that it is efficient and nature-inclusive (Wageningen University & Research, 2019).
Currently, most Dutch agriculture consists of monocrop fields, which are prone to diseases and pests.
Additionally, mono-cropping leads to soil depletion and thus lower crop yield. A solution to this problem
is intercropping, where different types of crops grow on the same field, creating a more sustainable and
resilient system with higher crop yield through natural symbiosis (Cobbenhagen et al., 2021). However,
this scenario requires more knowledge and more physical work for employees in agriculture. Moreover,
arable cropping often still employs heavy machinery that compacts the soil, leading to reduced fertility,
increased risk of erosion and complex recovery (Hameed, 2018). Replacing the heavy machinery such
as tractors with smaller machines leads to longer operating times to cover the same area, increasing
labor costs. The Synergia project includes Eindhoven University of Technology and Avular as partners
to address both of these problems. Using technological innovations to apply precision-farming, physical
work can be reduced while agriculture becomes more resilient and sustainable.

One specific topic in this challenge is the ability to monitor and treat undesired activity on the field
that forms a hazard for the crops, including pathogens and weeds (including fungi, bacteria, viruses
and pests). For readability and conciseness, in the rest of the thesis all of these hazards are referred
to as pathogens. Generally, it requires much attention, knowledge and physical work to keep these
pathogens under control. Instead, employing robotics and intelligent systems can provide a solution.
To enable precision treatment, a precise mapping of the pathogens must be created through monitoring
processes. Planning an effective path for monitoring by autonomous robots is a complicated task, due
to the changing information and stochastic processes, combined with limited path length budget.

This thesis is focused on creating an informed path planning algorithm based on a spreading model
for monitoring pathogens. Around the path planning algorithm itself, a software architecture was created.
This architecture enables usage of a modular system where each module can be adapted by experts based
on the applicable knowledge, without requiring knowledge of all modules of the system. First of all, this
architecture supports development and testing of the path planner in a constructive way throughout the
project. Secondly, this architecture allows experts from different disciplines to complement each other
and stimulates state-of-the-art developments and use-case specific adaptations. Aside from the planning
module, this architecture includes a spreading module and a monitoring module. The architecture enables
realistic design, simulation and verification of the planner.

The path planning applies to a mobile robot in a field that can be either unstructured or structured
(with predefined rows). In unstructured fields, the robot is allowed to drive in any direction and location,
as long as it does not cross obstacles or the field borders. In structured fields, the robot is only allowed
to move in the direction of the rows. The goal of the planning algorithm is to find an efficient path
to monitor the field for pathogen spread. To enable informed path planning, the growth and spread of
pathogens and weeds are modelled based on approaches proposed in the literature and taken into account
to predict the current state of the pathogens. A spatial map describing the entropy is derived from the
stochastic spreading model, which characterizes the uncertainty or variation there may be in the spread.
The models for spread are applied in the spreading module. The planned path maximizes the information
function based on the monitoring goal while remaining within a budget of a maximum path length, which
can be based on battery capacity or maximum available time. The monitoring goal is to reduce the
entropy of the world model, thus yielding an accurate map of the pathogens, which could be used for
precision treatment. The planning algorithm will be tested in a simulation environment. The planner is

1

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

compared to an informed planner in terms of performance, which shows the positive effect of informed
planning. The uninformed planner has no input from the current state of the spread of the pathogen and
the corresponding entropy.

The larger outlook is to apply this algorithm to different kinds of fields, both structured with rows
or completely unstructured. It can then be applied both to strip cropping, the form of intercropping
where the division in rows still exists, and full intercropping. Additionally, the algorithm can be applied
to fields of any shape and form, i.e. including obstacles, and fields which either a convex or concave
shape. Furthermore, the kinematic constraints of different types of robots are taken into account for the
path planning, such as the driving platform.

Moreover, from a high-level perspective, the main goal the thesis takes a step towards is: “Designing
a planning agent that takes into account information from spreading models such that it can monitor the
spread of pathogens and weeds in crop fields while minimizing entropy”. Additionally, as a consequence
of applying an informed planner in a modular fashion, the following goal is pursued: “Creating a modular
software architecture for autonomously monitoring the spread of pathogens and weeds in crop fields”.
However, this goal serves mainly as a means to an end, in order to properly construct, simulate and test
the planning agent.

The report is divided into the following chapters: background, architecture, spreading module, path
planning module, monitoring module, results and conclusion. The background (Chapter 2) describes
the context of the project and the state-of-the-art literature. The broad structure of the project and
the corresponding modules are introduced in the architecture chapter (Chapter 3). The chapter of the
spreading module (Chapter 4) describes the implemented spreading models and their relevance for the
informed planner. The chapter of the path planning module (Chapter 5) describes the basis of the path
planner and the contributions made to make the planner efficient and applicable to the researched topic.
The functions within the planning module are described in most detail, since this forms the core of the
project and contains the most significant work related to the research question. The work on the planner
forms a contribution to the current literature, as it improves upon the current algorithms available and
solve the unique challenges of this project. The effect of the planned path on the world model is explained
in the monitoring chapter (Chapter 6). The chapter on updating the world model (Chapter 7) describes
how the modules together form a full cycle which can be repeated to form a multi-day simulation. The
results (Chapter 8) describe the testing cases and outcomes of the simulation tests on the planner. Lastly,
the conclusion (Chapter 9) forms an answer to the research questions and lists suggestions for future
research.

2

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

2 Background
In this chapter, the context of the project and the relevant literature is presented. The context

consists of the Synergia project and the project partners. The literature review dives into state-of-the-art
research on several aspects of the research topic.

2.1 Context of the Project

The thesis takes place within the Synergia project. The Synergia project is an interdisciplinary
project that includes five Dutch universities, including Wageningen University & Research and Eindhoven
University of Technology. Additionally, it includes several partners in research and business. It was funded
by NWO subsidy in 2019 (NWO, 2019a).

Synergia stands for ’SYstem change for New Ecology-based and Resource efficient Growth with high
tech In Agriculture’. The project is aimed to develop production systems in agriculture that form a
solution to the ecological and social challenges that are faced NWO, 2019b). As the name indicates, the
project is based on the concept of ’technology-for-ecology (T4E) based farming’ (NWO, 2019a).

In total, the project contains three use cases: horticulture, dairy farming and arable crops. This
project takes part in the latter. The arable crops use case entails open field farming, where robotics is
supposed to play a role in the form of precision operations (spatial and temporal) (van Mourik, 2019).

Avular plays an important role as a partner of Synergia in this use case. Avular is an innovative mobile
robotics company with a focus on custom mobile robots, robotic platforms and robotic software (Avular,
2023). In collaboration with Eindhoven University of Technology they develop new technologies in the
form of software and hardware that can be applied to the challenge. Previously, research on localization
and driving through field rows was executed through this collaboration.

Furthermore, Avular has had developments independent of Synergia that are applicable to the project.
This includes the design of their ground robot, the Origin One, which has a use case to detect and treat
diseases in potato fields (see Figure 1a). The Origin One is a driving platform, specifically designed for
autonomous ground operations. The robot is built in a modular fashion, making it easily adaptable for
specific purposes (Avular, 2023). One of the specific purposes led to the Potato Origin One, where the
Origin One has been put on a high frame with outdoor wheels such that it can drive through potato
fields (see Figure 1b). Additionally, it is by standard applicable to outdoor purposes due to the four
motor-driven wheels with all-terrain tires.

(a) Origin One (b) Origin One for potato
treatment

Figure 1: Avular robots (Avular, 2023)

3

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

2.2 Literature Review

There are different aspects within the research topic that require insights from previous literature.
Literature on growth and spread of pathogens and weeds enables establishment of a model that serves
both as information to the planner and as a basis for testing the planner in simulation experiments.
The established model is not meant to be necessarily the most precise model possible for each species
of pathogens or weeds in itself, but should represent a broad range of species where the model can be
adapted according to specific species characteristics. The relevant literature on topics related to the
spread of pathogens and weeds are discussed in Subsection 2.2.1. In Subsection 2.2.2, the literature
review delves into the path planning algorithm, examining the specific type of problem being addressed
and exploring the applications of various related algorithms in previous studies.

2.2.1 Spread of Pathogens and Weeds

A model that predicts and simulates the spread of pathogens and weeds should be generalizable to many
species to enable wide applicability. Additionally, it should be structured in a way that facilitates its
utilization by a path planner for informative purposes, encompassing both spatial and temporal aspects.
The spatial simulation determines the distance and direction of spread, and allows for generation of a map
which is employable by the path planner. The temporal simulation determines the speed of reproduction,
and allows for prediction of spread over time.

It is vital to differentiate between pathogens and weeds within the context of this study, due to the
primal differences in the spread characteristics. Pathogens, such as bacteria, viruses, fungi, and pests,
directly jeopardize plant health. In contrast, weeds are unwanted plants competing for crop resources.
While there are more distinctions within the domains of pathogens and weeds, within the scope of the
project only two distinct models are implemented. These two models cover a wide range of diseases to
be monitored and form a show-case for the modular structure of the architecture.

The growth of weeds is characterized by several influential factors. Most weed species generate
populations that are unevenly spatially distributed over a field; weeds tend to grow in patches (Somerville
et al., 2020). The weed often grows from one or more infested locations, from which it spreads non-
uniformly, influenced by environmental, spatial and random factors (Doyle, 1991). The distribution of
the weed can be modelled using the seed dispersal characteristics, which indicate the speed and range
in which the weed spreads. The extent to which the weed spreads is also influenced by competition
for resources, both with the species itself and with other plant species. As there are many factors that
contribute to the spread of the weed, a lot of variability occurs which can be modelled by stochastic
processes (Somerville et al., 2020).

To simulate the growth and spread of weeds in crop fields, the INVADE model offers a valuable
approach. INVADE is a model of plant spread, simulating weed growth both spatially and temporally
(Auld and Coote, 1990). The spatial model adopts a grid-based structure, with each cell measuring 1
square meter in size. Each grid point contains information on the state, which consists of the plant
population density. The model is an extended version of their earlier model (Auld and Coote, 1980),
which includes population growth rate (at a focus), proportion of the annual population increase dispersed
from a focus, distance over which the dispersed fraction could occur and susceptibility of invaded areas
to colonization. INVADE builds upon that by adding contributing factors such as the initial number of
infested cells, the maximum population per cell (saturation value) and dispersion characteristics of the
plant. The model employs stochastic processes to capture the variability observed in pathogen spread.

For pathogens, there are many factors influencing the spreading model. Most importantly, it depends
on the type of pathogen, being either a bacterium, virus, fungus, or pest. There are four general
influencing factors to consider for pathogens: life cycle of the pathogen, susceptibility of the host plant,
reproduction rate and the dispersal. The life cycle contains a latent period in which a pathogen is infecting

4

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

the plant but is not visible yet (Papaix et al., 2014), thus a so-called infection period. The susceptibility
of the host plant describes the extent to which the plant is able to resist the pathogen. The reproduction
rate indicates how many other plants are infected by a single infected plant. The dispersal indicates the
range of the spread. For fungi, the most prominent factor influencing the spread is whether the fungus is
of a shoot-infecting or root-infecting type. Root-infecting fungi spread below ground and therefore have
limited dispersal range. On the contrary, shoot-infecting fungi have airborne spores which spread more
easily over large areas (Van Agtmaal et al., 2017). Additionally, there are a number of less prominent
influencing factors on the spread of fungi, such as competition for resources, external influences on the
field, suitable host plants and the cropping history (Van Agtmaal et al., 2017).

The literature on the spread of pathogens provides valuable insights for establishing a model that
predicts and simulates pathogen growth and spread. To ensure broad applicability, it has to account
for many characteristics that are specific to each pathogen species. EPIMUL is a model that enables
pathogen spread simulation on the scale of fields, which includes configurable variables for many of
the influencing factors. EPIMUL offers a reasonable mathematical approximation, both temporally and
spatially, that can be incorporated in simulation experiments. Although EPIMUL simplifies reality to some
extent, it allows for the representation of diverse pathogen species by adapting the model according to
their specific characteristics (Kampmeijer and Zadoks, 1977). Other models for simulation of pathogen
growth are more limited, either lacking the temporal aspect, or are applied to bigger scales, such as entire
landscapes (Villette et al., 2021,Papaix et al., 2014).

2.2.2 Path Planning

This section delves into the three ways that were found in which the path planning problem for pathogen
and weed monitoring could be characterized: as (a variant of) the Traveling Salesman Problem (TSP),
as an informative path planning problem or as a coverage problem. When considering it a TSP, the field
is only partially covered by the path and the goal of the planner is to find the path with minimal cost
between the selected points, or nodes. When regarding it as an informative path planning problem, the
field is also only partially covered due to the limited budget, but the goal now is maximize an utility
function based on the state of the field, such as entropy or probability of weeds and pathogens. The
other option is to consider a coverage planner, which either covers the entire field or a predefined section
of the field.

Travelling Salesman Problem The TSP refers to a problem where the shortest path is planned between
the predetermined node locations, based on the challenge a salesman faces when going from town to town
to sell his products, while ensuring that all towns are visited. As such, the solution to such a problem
covers the selected node locations and parts of the field that are crossed by the paths between nodes.
Commonly, the Concorde TSP Solver and Genetic Algorithm are applied to find a solution to the TSP.
However, Xiong et al. (Xiong et al., 2017) proposed a less computationally expensive algorithm that is
based on segmentation of the points with respect to their location relative to the 2D axes defining the
field. This algorithm is not optimal, but still close to optimal and more suitable for real-time processing.
The orienteering problem, or selective TSP, is another approach to the problem, which entails that not
all nodes are visited but only the most profitable ones due to limitations of travel time (Vansteenwegen
et al., 2011), where the aim is to maximize profit by selectively visiting nodes. The orienteering problem
has been solved using different methods, which can be characterized into exact solutions and algorithms
with heuristics (Vansteenwegen et al., 2011). Another relevant variant of the TSP is the Tourist Trip
Design Problem (TTDP), which takes into account both the travel time and the time at the node. In
the scope of the project, the time at the node could represent the observation at the location of the
weed (Ruiz-Meza and Montoya-Torres, 2022). A variant of the TTDP is the Cruise Itinerary Problem

5

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

(CIP), which considers both the stops and the scenic route, where the speed along the route is considered
based on the value of the scene (Ruiz-Meza and Montoya-Torres, 2022). In the scope of this project, this
could be useful as it enables finding the most optimal route between points that needs to be monitored,
where the route entails as much exploration of the field as possible. In the literature, the TTDP and CIP
variants of the TSP are not considered for agricultural purposes, but mainly for the purpose of planning
the most optimal route along touristic travel points. They do, however, show relevant similarities in the
defined problem.

Informative Path Planning Informative path planning (IPP) entails “having a robot autonomously
decide what path to take while collecting measurements, based on a probabilistic model of the quantity
being studied” (Binney and Sukhatme, 2012). The objective is to maximize the observed sensor
information during the chosen path, with the purpose of accurate monitoring. A method for solving this
type of path planning is the branch and bound algorithm, previously designed based on feature subset
selection literature, which yields the optimal solution (Binney and Sukhatme, 2012). Alternatively, a
history-aware algorithm based on RRT has been applied to the problem (Witting et al., 2018), which
is more advanced but also more complicated to implement. A combination of these methods led to
development of the Rapidly-exploring Information Gathering (RIG) algorithm, which employs aspects of
RRT combined with branch and bound to maximize information gain while remaining within a given
path length budget. The RIG algorithm is sampling-based and created with a focus on scalability and
motion constraints. It was designed based on the research topic of autonomously gathering data with a
submarine in a lake. The algorithm computes a path offline, based on the currently known information
(Hollinger and Sukhatme, 2014).

Coverage Planning “Coverage Path Planning (CPP) is the task of determining a path that passes over
all points of an area or volume of interest while avoiding obstacles.” (Galceran and Carreras, 2013), where
approaches aim to fulfill this task in the most efficient way. Some common applications for coverage
planners are cleaning or sweeping robots, lawn mowing robots and monitoring tasks. Additionally,
coverage planners have also been applied in agricultural settings, such as in a multi-robot system aimed
to replace big tractors with multiple smaller robots (Hameed, 2018). An important challenge for coverage
planners is the complexity of the search space, which grows exponentially with an increase in area to be
covered. This increase in complexity often leads to problems due to the limited computational capacity
of mobile robots. The informative path planning problem can also be described as a budgeted coverage
problem, where the chosen path is limited to a certain cost, mostly indicated by the path length.

Selected Approach The second approach, informative path planning, is chosen as the framework for
defining the monitoring problem, since it was deemed the most applicable based on the relevant literature
and the objectives and constraints of the research topic. The advantage of the IPP approach is that it
is by definition focused on maximizing information gain and limited by a budget. Furthermore it does
not require predefined node positions (as is the case with the Traveling Salesman Problem) or predefined
feasible sections (as is the case with coverage problems). Furthermore, the RIG algorithm shows potential
for the research topic, as it reveals many similarities in constraints and problem definition, such as large
search space, spatial information, monitoring task and possible kinematic constraints. The RIG algorithm
has not been applied to other research problems yet.

6

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

3 Architecture
The architecture for this project consists of different modules, each with a specific purpose. These

modules are interconnected, but operate individually such that each module is adaptable without disrupting
the other modules. This structure was chosen for the purposes of practicality and interdisciplinarity.
The practical reason is that constructing and evaluating each module is more effective and simple.
Interdisciplinarity allows experts to make changes easily and implement knowledge into a relevant module
into the system without knowledge of every module, e.g. agronomists who can improve the spreading
model without any path planning knowledge. This enables the incorporation of expert knowledge from
both the agricultural and technical sectors, and the closing of the gap between these sectors.

The architecture consists of three different modules, each depending on the outputs of another module.
The planner takes the entropy grid map from the spreading module into account to create an informed
path through the discretized field map. This entropy map is generated based on the prior knowledge from
previous measurements and the spreading models of the pathogens and weeds. Throughout all modules,
the choice has been made to use a grid-based representation for the spatial distribution of pathogens and
weeds and the corresponding uncertainty. This allows for easy transmissions of information and transitions
between modules. In the basis, the entropy map can be interpreted as an intensity map describing the
uncertainty that follows from the prediction of spread of the weeds and pathogens. The uncertainty value
of a grid cell represents the possible deviation that the density value of the cell may have in the spreading
map. The planner is designed with the aim to be applicable to Avular’s Origin One robot, but is also
generalized such that it is applicable to multiple types of robots, with different kinematic constraints.
Additionally, it is applicable to multiple field types, both unstructured and structured by predefined rows.
The spreading models were created based on expert knowledge from previous work in the literature,
which contains the required knowledge to establish a realistic model. In these spreading models, variables
such as the dispersal range, the spreading speed and other variables defining context and type will be
adaptable such that it is applicable to different types of pathogens and weeds. The monitoring module
takes in the planned path and executes it, hereby gathering status information, allowing an update of
the world model. Based on the observed information, the spreading module can then predict the new
spread. A cycle can be created simulating long-term treatment over a period of time, where the robot
monitors the field periodically, updates the state of the field with the monitored information, plans the
most optimal path based on the current state, and then repeats the planning step.

The modules and the interplay between them are visualized in Figure 2 and will be further explained
in the following sections. A variable overview is given in Table 6 in Appendix A, which explains the most
common variables used throughout the modules. Figure 2 also shows the inputs and outputs of each
module, which are as follows:

1. The robot world model containing the states of the grid points and their uncertainty describing the
predicted state of the crop pathogen spread

2. The generated path in terms of a series of grid points

3. The status of the observed grid points

Figure 2: Flowchart of the modules

7

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

4 Spreading Module
Two models have been developed that allow simulation of the growth and spread of pathogens or

weeds, respectively. These two models are different, since pathogens and weeds show differences in
their dispersal, as discussed in Section 2.2.1. The models are based on expert knowledge from the
agricultural field instead of using a machine learning approach to learn a model. The motive for this is
the explainability of the outcomes of the model, which is lacking in machine learning approaches, though
deemed necessary to be able to apply it to practical implementations (Cobbenhagen et al., 2021). As
such, the spreading module bridges the gap between the agricultural and (agri)technical sectors. This
chapter dives into the models and highlights the contributions made in this thesis to the original models.
For details on the implementation of the models, the reader is referred to Appendix B, which provides
explanation of the models through pseudo-code and further descriptions.

The pattern of spread in both of these models is similar in spirit to the mechanism as proposed by
Antunes et al. (2022), though here the expected values do not follow from a Markov Chain model, but
from a given rule. The expected value of weeds or pathogens in a grid cell is dependent on the values of
surrounding grid points. The new grid cell value depends on its previous values and the incoming spread
from other grid cells. The incoming spread from surrounding grid cells consist of a weighted sum of each
current grid cell value mediated by a spreading factor and the distance between the cells:

E(xi,yi) = min(Emax, Vxi,yi
+

xi+r∑
x=xi−r

yi+r∑
y=yi−r

(f · Vx,y · e
−log(2)·d

r), (1)

where Vx,y is the current density value of a grid cell, Ex,y is the new density value of a grid cell, Emax is
the saturation level of the density, f is the spreading factor, d is the distance between (x, y) and (xi, yi)
and r is the spreading range.

The spreading factor differs for each type of pathogen and weed. Additionally, the range of spread
could be smaller or larger per type of pathogen or weed, such that not only the direct neighbours, but
also further neighbours have an influence on the expected value of a grid point. The distance has an
exponentially decreasing effect on the spread of pathogens and weeds.

The spreading model for weeds is based on the INVADE model (Auld and Coote, 1990). It takes
into account context variables and weed-defining variables. These context variables and type-defining
variables together determine the previously mentioned spreading factor and spreading range. The context
variables indicate the current state of the infection. The weed-defining variables allow to model different
types of weeds into a single model using the most impacting spreading features. An overview of the
context and weed-defining variables is given in Table 1. The reader is referred to Appendix B for deeper
explanation on the application of these variables.

Table 1: Context and Weed-Defining Variables (INVADE)

Variable type Variable Description

Context patchnr Number of patches the infection starts with
Context patchsize Maximum current size of patches
Weed-defining reproductionrate Speed of reproduction
Weed-defining spreadrange Range of dispersal (r)
Weed-defining plantattach Boolean for crop attachment

(i.e. parasitic relation with the crops or competing with
the crops for resources)

Weed-defining saturation Maximum density of weeds (plants per grid cell) (Emax)

8

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

The spreading model for pathogens is based on the EPIMUL model (Kampmeijer and Zadoks, 1977).
Similarly to weeds, it takes into account context variables and pathogen-defining variables, though the
exact variables are slightly different. An overview of the context and pathogen-defining variables is given
in Table 2.

Table 2: Context and Pathogen-Defining Variables (EPIMUL)

Variable type Variable Description

Context patchnr Number of patches the infection starts with
Context duration Current duration of the infection
Pathogen-defining reproductionrate Speed of reproduction
Pathogen-defining fraction The fraction of pathogens that reproduce within the

reproduction time
Pathogen-defining spreadrange Range of dispersal (r)
Pathogen-defining saturation Maximum density of pathogen (Emax)

Both of these expert-based models are grid-based and allow both spatial and temporal simulation.
Additionally, the models incorporate the context and type-defining variables which allow the model to be
realistic for many types of pathogens and weeds, thus enabling a generalizable and accurate simulation.
For detailed descriptions of the models, readers are referred to the corresponding papers on EPIMUL
(Kampmeijer and Zadoks, 1977) and INVADE (Auld and Coote, 1990).

One important feature of the spreading model is the stochasticity. EPIMUL is deterministic in nature
as it only outputs the expected pathogen density based on the given variables. INVADE is stochastic in
nature, since the reproduction rate is given by a normal distribution with a specified standard deviation.
The pathogen spreading model was adapted such that the reproduction rate was also represented by
a normal distribution. This was accomplished by introducing a standard deviation, such that the
reproduction rate is computed by taking a number from a normal distribution defined by the average
(deterministic reproduction rate) and standard deviation. As such, both of the models are stochastic in
nature, which allows to obtain a certain entropy from one moment in time to the next. This entropy
value is computed by applying the standard deviation to the current spread value (see Appendix B, e.g.
Listing 5 line 3).

The spreading model is a form of model-based crop growth management where a digital twin of the
agricultural field is created in the form of a world model. With this approach, crops are monitored using
a simulation of their growth, which predicts the state based on observations (Cobbenhagen et al., 2021).
This approach allows to predict the spread of pathogens and weeds and therefore aids the decision-making
process for the best control actions, as the prediction of the spread forms a source of information for the
planner.

The output of the spreading model is a world model consisting of a matrix containing the status
of all grid cells of the map. The status of each grid cell contains the predicted amount of weed or
pathogen. Additionally, each grid point contains a level of uncertainty, representing the possible variation
as predicted by the spreading model. This uncertainty characterizes the variability in possibility of spread
from one observation to the next, as represented by the stochasticity in the reproduction rate. Of course,
the uncertainty also increases whenever a location is unobserved for a longer time, to take potential new
infections into account. As such, a world model in the form of two intensity maps (one of the actual
spread and one of the uncertainty) are retrieved as outcome of the spreading module. The uncertainty
intensity map serves as information to the path planner such that it can generate an informed path.

9

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

5 Path Planning Module
The planner consists of an informed path planning algorithm. It uses the information map provided

by the spreading module to maximize the information gain while remaining within a specified budget, i.e.
the maximum path length. This path is represented by a consecutive array of grid cells, which can then
be used as input for the monitoring module (see Figure 2). The planner is based on the Rapidly Exploring
Information Gathering (RIG) algorithm (Hollinger and Sukhatme, 2014), with several adaptations and
additions. These adaptations and additions form the contribution of this project to the current literature,
as these improve upon the current algorithms available and solve the unique challenges of this project. In
this section, the RIG algorithm will be described briefly, after which the adaptations and additions made
to it will be discussed in the following sections. For variable definitions, consult Appendix A.

5.1 Rapidly Exploring Information Gathering Algorithm

The RIG algorithm is a sampling-based algorithm. It combines aspects of the RRT* algorithm and
the branch and bound technique. It creates a tree-structure, where each node represents the path from
the start up to a location. Each node has a location, a parent and the cost and information value of the
path. The pseudo-code of the algorithm as introduced (Hollinger and Sukhatme, 2014) can be found in
Listing 1. It should be noted that the pseudo-code in Listing 1 shows slight differences with the original
algorithm due to contributions of this thesis.

Sampling new locations happens through the method of RRT*: a new location is randomly sampled
(function Sample), then the closest existing node to the sampled location is determined. When the
distance between these locations is within the maximum specified step length, the sampled location will
be the location of the new node. If it is not, the location will be moved closer to the closest node (function
Steer). The Sample and Steer steps are visualized in Figure 3. Once this new location is determined, all
existing nodes that are within the step length distance of the location will form a connection whenever
feasible (i.e., a path without collision can be formed). Each connection then leads to the creation of a
new node, with the determined location and the connected node as parent. There can thus be multiple
nodes at a single location, with different paths leading to it. This is visible in Listing 1, where in Line 19,
a new node is created at a given location with each a different near node as parent (thus with a different
path leading up to it), also see Figure 4. This pattern of node creation leads to the aforementioned
tree-structure. In contrast to algorithms that only extend to direct neighbours, such as A*, the random
sampling method allows for quicker exploration of a large search space. RRT* is an optimized version
with respect to classic RRT, as it has the ability to reroute paths. This rerouting of paths is the rewiring
function, which will be described in more detail in Section 5.4.

RRT* ensures a tree-structure entailing candidate trajectories. To find the path with the best
information value and the costs within the budget, branch and bound is applied. Branch and bound
ensures that a node is only extended (connected to a new node) whenever the total cost of the path
does not exceed the budget, and pruned otherwise. The total cost is the sum of the cumulative cost
(of calculated distances) from start to current node and the cost from the node to the goal position. In
addition, pruning is applied to reduce memory usage and run-time, which will be discussed in detail in
Section 5.5, see also Figure 4.

Finally, the information value is evaluated for each node, where the node with the highest information
value is selected. The final path is then determined by tracing back the parents of that node.

10

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Listing 1: RIG Pseudo-Code

1 de f Planner (c on f i g va r s , info map) :
2 x nodes=[x s t a r t] # Al l nodes
3 x so l n =[] # Fea s i b l e s o l u t i o n s
4 # I t e r a t e u n t i l the maximum amount o f i t e r a t i o n s or the stopping

c r i t e r i o n i s reached
5 k=1
6 whi le k<=max iter and stop=False :
7 # Randomly sample a new l o c a t i o n :
8 x rand = Sample ()
9 # Connect the l o c a t i o n to the nea r e s t node

10 x new = Stee r (x rand)
11 # Create connec t i ons to the new l o c a t i o n from every node with in

reach
12 f o r x near in Near (x new) :
13 # Parent o f the node , d e f i n i n g the path
14 parent=x near
15 # Cost and i n f o o f the path up to the new l o c a t i o n
16 co s t=x near . co s t + Dist (x near , node new)
17 i n f o=x near . i n f o + In fo (x near , node new)
18 # Creat ing the new node
19 node new = Node ((x new . x , x new . y) , parent , cost , in fo , t o t a l c o s t

, t o t a l i n f o)
20 x nodes . append (node new)
21 # Total co s t and i n f o i n c l ud e s the part to the goa l l o c a t i o n
22 t o t a l c o s t = node new . co s t + Dist (node new , x goa l)
23 t o t a l i n f o = node new . i n f o + In fo (node new , x goa l)
24 # New node i s a f e a s i b l e s o l u t i o n i f with in budget
25 i f node new . t o t a l c o s t<=budget :
26 x so l n . append (node new)
27 # Non−promis ing co−l o ca t ed nodes are pruned
28 Pruning (x new)
29 # Computing the stopping c r i t e r i o n
30 stop = StopCr i t e r i on (x s o l n)
31 k+=1
32 # Rewiring the best nodes
33 Rewiring (s e a r ch r ad i u s)
34 # Computing the f i n a l path
35 best node = max(node . t o t a l i n f o f o r node in x so l n)
36 bes t path = ExtractPath (best node)
37 re turn bes t path

11

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

(a) End of iteration 2, latest
created node in blue and the best
path in blue

(b) Sample function executed,
x rand=(61,10) (blue)

(c) Steer function executed,
x rand moved towards the nearest
node (red)

Figure 3: RIG: Sample and Steer, overlaid on entropy map

(a) New location is sampled,
x new at (89,74) (line 10)

(b) New nodes are created with
near nodes (x near) as parents
(line 12)

(c) Unpromising nodes are pruned
(red paths) (line 28)

Figure 4: RIG: creating new nodes and Pruning (with Listing 1 line referrals), overlaid on entropy map

5.2 Goal Location

In the RIG-graph algorithm as introduced by Hollinger and Sukhatme (2014), no goal location is
specified. In this case, it simply starts from the specified starting location and then finds the path with
the highest information value within a budget. In this project, it is aimed to start and end at the location
of a charging station. Therefore, a required goal location is implemented.

Having an end location slightly changes the algorithm regarding the cost and information. Not only
must the cumulative costs up to the last node of the path be within the budget, but the sum of these costs
and the added costs from the last node to the goal location should be within the budget. Furthermore,
the information that is gathered while returning to the goal location should be taken into account during
optimization. For these two reasons, three extra variables where added to the node class: the final costs,
the final information value and the final information path. Respectively, these represent the cost it takes
to go from the node to the goal location, the information gathered on that path, and the locations that
are covered by that path.

12

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

This adaptation allows to optimize over the summation of the information gathered along the entire
path, including the final part to the goal location. Meanwhile, the requirement that the cost function is
additive is still retained, as the cost to the goal location is independent from the cost up to the node.

5.3 Information Metric

The gathered information is calculated by summing the entropy values of all grid cells that are crossed
by the path. The information is thus gathered continuously along the path, instead of only at the node
locations. However, the information metric is submodular, meaning the information metric is not simply
additive but dependent on the prior trajectory. More specifically, the entropy of a grid point is only added
to the information metric of the trajectory if the grid point was not already earlier observed during the
trajectory. As such, the best trajectory will not linger within high entropy areas and instead optimize the
observed information over the whole trajectory. Crossing the same area a second time will thus not result
in more information gain.

Additionally, a radius for monitoring can be specified. This radius indicates the distance around the
robot that is observed in addition to the grid cell it is crossing. This radius can thus be any integer. In
this project, the observation area is simply specified with a radius, thus creating a circular, 360 degrees
footprint. This could, however, be adapted according to user preference to fit other observation footprints,
such as a limited view.

5.4 Rewiring

Application of Rewiring One attribute of RRT* that was not implemented originally in RIG is the
rewiring feature. Rewiring entails re-ordering of trajectories within a certain search radius. Rewiring
allows the new node to become a parent of an existing node, thus actively rebuilding an existing branch
of the tree-graph instead of extending a current branch as is done when creating new nodes. The original
goal of rewiring, when applied in RRT*, is to further optimize the path by making existing trajectories
even shorter. This is applied at the end of each iteration throughout the algorithm. In this project, also
the information value is taken into account, which is not present in RRT*. Therefore, here the aim of
rewiring is improving the amount of gathered information while remaining within the budget. Throughout
the thesis, the rewiring function was redesigned multiple times, each based on the findings that resulted
from earlier design steps.

In literature, the original rewiring function of RRT* is described (Noreen et al., 2016), which will be
referred to in this report as path-based rewiring. Location-based rewiring is a variant to this approach,
designed for this thesis. These were explored to start with, after which the final rewiring function was
created, based upon the findings.

Classical applications of rewiring showed complications when applied to the problem at hand. The
complete design process of earlier rewiring versions can be found in Appendix C, which describes the
process of applying several forms of path-based and location-based rewiring and the conclusions derived
from the process. Each of these versions are described with the aim to both present the findings and
provide argumentation for following design steps leading to the final rewiring function.

The conclusions of these versions will shortly be summarized first, after which rewiring in hindsight
is introduced, which is a unique solution designed for the problem at hand. It solves the relevant
challenges of applying rewiring and allows for optimization through rewiring with the guarantee of
improvement. The challenge when looking at rewiring is that not the minimization of costs but the
maximization of gathered information is the objective of rewiring. This proves to be challenging,
since the information metric is submodular, as described in Section 5.3. In the case of rewiring, this
has the consequence that the entire path of a node should be considered, including the part back to
the docking station. More problematic is the consequence that optimizing a path through rewiring is
not guaranteed to be beneficial for children (the further extensions of the path). This contrasts with

13

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

classical rewiring in RRT*, where shortening a path up to a certain node also automatically guarantees
an improvement for its children. While it may be possible to account for currently existing children
when rewiring, it cannot be predicted which children will be added in future iterations due to random
sampling. The previously designed versions of rewiring were unable to overcome these challenges.

Listing 2: Hindsight Rewiring Pseudo-Code

1 de f Rewiring (f ina lnode , nearnodes , s e a r ch r ad i u s) :
2 # moving back along the path un t i l the beg inning i s reached
3 whi le node . parent :
4 d i s t anc e = Dist (node , node . parent)
5 i n f o s t e p s . append ((node . in fo−node . parent . i n f o) / d i s t ance)
6 node=node . parent
7 s o r t (i n f o s t e p s) # from high to low
8 f o r index , i n f o s t e p in i n f o s t e p s :
9 node = nodes [index]

10 f o r nearnode in nearnodes : # with in s e a r ch r ad i u s
11 # path1 : from node . parent . parent to nearnode
12 # path2 : from nearnode to node
13 newinfo = node . parent . parent . i n f o + in f o pa th1 +

in f o pa th2
14 newcost = node . parent . parent . co s t + cos t path1 +

cos t path2
15 [newtota lcost , n ewto ta l i n f o] = Reca l cu la t e (node)
16 i f (newtota lcost<=budget) and (newtota l in fo>=f ina l node .

t o t a l i n f o) :
17 node . parent = nearnode
18 node . i n f o = newinfo
19 node . co s t = newcost
20 nearnode . parent = node . parent . parent

Hindsight Rewiring With the described findings in mind, a new strategy was developed. Rewiring
does not guarantee improvement for nodes that are yet to be sampled, but that is out of the question
when there are no more nodes to be sampled. Hence, the idea of rewiring “in hindsight” was developed.
Instead of rewiring after sampling a new node during each iteration, the rewiring is only executing after all
iterations are finished, i.e. no more locations are sampled and all remaining nodes are feasible solutions.
The strategy referred to as location-based rewiring is applied (see Appendix C); one node in the path is
relocated. The criteria for rewiring then slightly change: rewiring occurs whenever the information value
of the total path increases and the total cost of the path remains within budget. A decrease in cost is
no longer required, since the function is dealing with the final paths of the algorithm, thus decreasing
their length is no longer valuable. It should be noted that this is based on the chosen scenario for the
thesis, where the sole goal is to maximize information within a given budget, and not to further shorten
the path. The described rewiring method guarantees that no negative effects follow from the function:
either no rewiring occurs and the information value remains the same, or rewiring occurs leading to an
increased total information value of the path.

Also the rewiring procedure is then slightly different: instead of rewiring towards a newly sampled
node, as is done in the earlier described strategies, the rewiring can now be done towards any node nearby.
The rewiring of a path happens iteratively: the pieces of the path are sorted based on their information

14

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

gain, after which the nodes in the path are rewired from highest to lowest gain. The information gain
of a piece of path is described by the information density: the amount of gained information divided by
the length of the path piece (Listing 2, line 5). This iterative method is used as the order of rewiring
has an influence on the final result due to the limited budget and rewiring of the parts with the highest
information gain is likely to have the biggest influence, as a small change of path in these high informative
areas may already make a big difference in the total information value. The rewiring function steps for
hindsight rewiring are outlined in Listing 2. Further details on the hindsight rewiring function are described
in Appendix C.3.

The rewiring steps are illustrated in Figure 5. Here, the current node to be rewired is node A (indicated
as “node” in Listing 2). Figure 5a shows the current path leading to node A and several near nodes
within its reach. Node A is then rewired to near node N, as illustrated by 5b. The rewired path to node
A is illustrated in 5c. Note that the path returning to the docking station and the information map are
not illustrated, for the sake of simplicity. Node A could be the end of the path (indicated as “finalnode”
in Listing 2), but it could also be somewhere along the path, where the path would then extend toward
further children after node A. However, for the rewiring to be executed, always the total information of
the entire path is considered, from start to end, thus taking the submodular information in account and
guaranteeing an improvement in the total path.

(a) Before rewiring (b) Rewiring node A to new parent
N

(c) Path after rewiring

Figure 5: Rewiring steps for path-based rewiring (blue is original path, green is rewired path)

5.5 Pruning

Pruning entails the evaluation of all nodes at a single location and the deletion of the nodes
which are less promising than other nodes. Pruning allows to move to a promising path quicker, as
unpromising paths are taken out and therefore not extended further. This operation saves time and
memory in the next iterations. RIG already contained the pruning function with the condition in Listing 3.

Listing 3: Pruning Condition 1

1 i f (node2 . cost<=node1 . co s t and node2 . in fo>node1 . i n f o) :
2 prune (node1)

Thus, a node was only pruned if it had higher or equation costs and a strictly lower information value than
other nodes at the same location. This condition ensures that there is no possibility of removing paths that
could have been, or become, promising. An additional condition was added in this project, see Listing 4.

15

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Listing 4: Pruning Condition 2

1 i f (node2 . cost<node1 . co s t and node2 . i n f o==node1 . i n f o) :
2 prune (node1)

The condition is similar to the first condition, but in this case also nodes with equal information but
strictly higher costs are pruned. This condition still ensures that no promising nodes are taken out, as the
information value is leading for pruning. If either condition is true, the node is pruned. This condition was
included to encourage pruning of non-promising nodes in the case of sparse information. In such a case,
it could occur that many nodes do not encounter information in the beginning in the path, thus having
equal (zero) information values. In this case, it is desirable to prune the nodes at the same location that
have a higher cost, as these nodes create unnecessary long paths in areas without information, leaving
less budget for the high information areas.

5.6 Field Shapes and Obstacles
An aim of the project was for the algorithm to take obstacles into account and to be able to work on

both convex and non-convex fields. This was further generalized in implementation, as the field shape
can be specified in the form of any kind of polygon, both convex and non-convex, as long as the polygon
does not cross itself. The free space in which nodes can be sampled is given by a rectangle of fixed size,
that at least encloses the polygon. Then the free space to be used by the planner is adapted based on
the area that falls inside the polygon.

Non-convex fields and obstacles are dealt with within the planner in the same way it deals with field
borders in general. When a new node is sampled, near nodes are determined. A path from the new node
to a near node can only exist if no collision occurs. This collision includes that every point on the path
falls within the polygon and does not collide with an obstacle.

A field of any polygon shape with obstacles of any form can be created in the form of a matrix,
as long as it remains within the maximum size of 100x100m. Both the field borders and obstacles are
defined by placing a NaN-value in the corresponding grid cell, after which the planner interprets paths
through these grid cells as collisions. Several examples of created fields are given in Figure 6, where the
black areas represent the NaN-values of the matrix.

(a) Convex polygon field (b) Concave polygon field (c) Rectangular polygon field with
obstacles

Figure 6: Examples of fields in different polygonal shapes

5.7 Discrete Sampling
The entropy map utilized by the planner is grid-based. This does not automatically require the planner

to work in a grid-based fashion. However, since the gathered information is determined based on the grid
points crossed by the path, it is reasonable to have grid-based sampling as well. Grid-based sampling also

16

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

reduces memory usage, as it prevents the emergence of nodes being sampled very close to each other,
having almost equal cost and information values.

To allow for grid-based sampling, an extra step is incorporated in the Steer function (Listing 1). First,
a location is sampled randomly, as is usual in the RIG algorithm. Next, this location is discretized such
that it matches the midpoint of a grid point. When the discretized location has already been sampled
before, a new location is sampled.

5.8 Stopping Criteria

The usual stopping criterion for RRT* and RIG is a maximum number of iterations (where each
iteration represents a new sampled location), a maximum processing time or the availability of any
solution. However, there are a number of factors influencing the rate in which the trajectory improves
across iterations, including the step length, the complexity of the map and the distribution of entropy
on the map. As it is difficult to estimate what the optimal number of iterations or processing time is
because of these factors, one might simply choose to overestimate the maximum number of iterations
required to reach a satisfactory solution. The ultimate example of overestimation is to set the maximum
amount of iterations equal to the total number of grid locations that can be sampled. However, to retain
a balance between runtime and quality of results, it would be desirable to stop iterating whenever the
current solution is close enough to the optimal solution. For the sake of creating this balance without
requiring an intuitive idea of the best number of iterations or running the risk of underestimating the
number of required iterations, an extra criterion was implemented.

That criterion is based on the rate of improvement of the average information value of the top nodes.
The top nodes indicate a predefined amount of nodes with the best information values. It is chosen to
consider this set of nodes since this gives a more trustworthy insight in the convergence compared to
only the single best node of the moment. This trustworthiness is due to the reason that averaging over a
number of nodes reduces the effect of random sampling on the convergence. In other words, the stopping
criterion is then less affected by the individual effect of sampled nodes. The information value of the
best node often does not increase for many iterations, not only due to the fact that a new node might
not be profitable, but for instance because the node has nearly reached the budget or cannot connect
to the new location. Hence, the information value of the best node gives an incomplete image of the
optimization status.

The number of nodes to consider can be set by the user. For the rest of the report, the number of
nodes will be set to 20. The rate of improvement is obtained by taking the discrete derivative of the
average information value of the top 20 of nodes over the course of a number of iterations. The derivative
is then computed through division of the increase in information value by the number of iterations:

r =
avg[t− 1]− avg[t− (1 +N)]

N
, (2)

where avg[i] =
∑20

n=1 In
20 for each iteration t− i with t being the current iteration, In is the information

value of top node nr n and N is the number of iterations over which the derivative is taken.
Also the number of iterations to consider can be set by the user to balance the strictness of the

criterion. The derivative converges to 0 over the iterations when the average information value of the
top nodes converges to a stable value. This indicates the convergence towards the (local) optimum, as
optimization principles state that the zero-point of a derivative indicates a stable point. The average
information value of the top 20 nodes is a non-decreasing function. It can thus be either increasing or
remain stable.

The stopping criterion is reached whenever the derivative of the average information value of the top
20 nodes reaches zero. Additionally, to make sure this does not happen too early, i.e. when stability is

17

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

reached early on in iterations before actual convergence, a minimum number of iterations can be set or
the stopping criterion can be set stricter by increasing the number of iterations over which the derivative
is computed. Two variations of the stopping criterion are tested in the simulations, which vary in the
number of iterations over which the derivative is computed. The results and implications will be further
discussed in Chapters 8.2.5 and 9.

5.9 Kinematic Constraints

One aim of the planner is to be versatile and easily applicable to different robot types. To this
end, it has to be able to incorporate kinematic constraints of mobile robots. In agriculture, different
types of robots are applied which come with their own constraints regarding kinematics. To ensure that
the planned path is feasible and the calculated information gain is accurate, it is a necessity that the
kinematic constraints are taken into account during exploration by the planner. If a path were to be
adapted to the kinematic constraints only afterwards, i.e. through trajectory smoothening, the planner
may yield kinematically infeasible paths or inaccurate information gain calculations. The latter occurs
since monitoring takes place continuously along the path, hence smoothening the path changes the
monitored area. With regard to kinematics, mobile robots can be divided into two categories: holonomic
and non-holonomic. This division is used as a basis for the incorporation of kinematic constraints in the
algorithm.

Robots with only holonomic constraints and robots that can rotate along their vertical axis, such as
the Origin, can move in any direction. In this case, there are no limitations to the allowed range of angles
between line segments. However, it might take time and energy to turn. Therefore, there is the option
to have costs are added to the path based on the angle and the angular cost. This angular cost is a
user-specified cost metric for turning 1 rad.

Robots with non-holonomic constraints cannot freely move in any direction. Their degrees of freedom
are limited. In this case, there are limitations to the allowed range of angles between line segments. Two
methods were identified to implement this limitation:

1. A connection between nodes simply cannot be created if the difference in direction between the
previous segment and the new segment is too large

2. The limit in angle range is incorporated in the calculated path by creating a smooth trajectory

The first method is easy to implement, but severely limits the exploration. It can be implemented by
applying infinite costs to paths with too sharp angles. An angle is too sharp whenever the robot is unable
to make the angle within the grid cell, e.g. when it can only turn 45 degrees during a segment of 0.5
meter. However, applying this method means that many nodes may not be able to connect directly, even
when this would be profitable for information gain. An example is given in Figure 7, where node B can
form a connection with the newly sampled node C, while node A cannot create such a connection with
node C due to the sharper angle. In this example, it can be imagined that with a smoothened trajectory,
node A could connect to node C.

The second method is more complex, as the change of path also impacts the information gain and
path length. Since smoothening the trajectory slightly changes the path and area covered, a path from
one location to the next no longer has a singular solution with fixed cost and information value, but
is dependent on the angle configuration at the beginning and end of the curve. An example is given
in Figure 8, where the straight trajectory (black) from location A to B clearly has different costs and
covered area from a curved trajectory (green) and another curved trajectory (blue) again has other
cost and information values due to the angle configurations. The dependence of the path on the angle
configurations leads to an infinite amount of possible paths from one location to another. Therefore,
this solution was simplified through discretizing the angle, such that the angle configuration at the start

18

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

and end of the curve is limited in the number of options. The number of options, characterizing the
interval between the possible angles, is configurable. For the remainder of the report, eight possible
configurations are considered: −π,−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4. The configuration is chosen
by rounding the angle to the closest option. Next, different options were implemented for the creation
of a curve trajectory. These options differ in the restrictions and preferences of the driving direction.
When the driving direction is forward-only, Dubins curves are used. When the driving direction can be
reversed, Reeds-Shepp curves are used. If there is no preference in driving direction, meaning the robot
may complete large parts of the path in reverse, the Reeds-Shepp curves are combined with the possibility
to change direction for longer segments. These three options are also visualized in Figure 9, where the
asterix shapes are located at the node positions and visualize the possible discrete angle configurations.

Figure 7: Node A cannot form a connection
with the newly sampled node C due to the limit-
exceeding angle between the line segments.
Node B forms a connection with node C as it
has a smaller angle between the line segments.

Figure 8: Straight trajectory from A to
B (black) and two examples of a curved
trajectory (blue and green) with different angle
configurations.

Dubins curves guarantee the shortest smooth trajectory within the given constraints for forward-only
vehicles. It requires a start and end position, start and end angle, and a maximum curvature to be
defined. The start and end positions are simply the node positions. The end angle is fixed to be the
direction of the vector between the two nodes, which is then rounded off to one of the discretized angles,
as explained before. The starting angle is defined similarly, but then taking the vector direction from
the start’s node parent node to the start node itself. The maximum curvature is equal to the inverse
of the turning radius. With these features given, the trajectory formed by consecutive Dubins curves is
kinematically feasible, for the given maximum curvature, and smooth, as the end angle of one curve is
equal to the starting angle of the next. Figure 10 visualizes a Dubins curve and a Reeds-Shepp curve for
equal start and end locations and angles, with a maximum curvature of 1/r.

Reeds-Shepp curves guaranteed give the shortest smooth trajectory within the given constraints for
reversible vehicles. Reeds-Shepp curves work very similarly to Dubins curves: it generates a kinematically
feasible curve given start and end positions, start and end angles, and a maximum curvature. The
method for determining the positions and angles remains equal to the Dubins-method. The benefit of
Reeds-Shepp curves is that it can avoid big turns by reversing direction in order to make a turn. This
yields more possibilities to create a kinematically feasible curve. Often, it is preferred still to drive forward
most of the time, even when these reversals are possible, e.g. due to sensor placement. However, in case
this has no influence, it could be beneficial to drive in reverse for an entire curve from one location to
another. In this case, the start angle is reversed (turned 180 degrees), after which a Reeds-Shepp curve

19

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

(a) Dubins curves (b) Reeds-Shepp curves (c) Reeds-Shepp curves with reverse
driving

Figure 9: Application of different curves between node positions

can be formed with this renewed start angle.
One disadvantage for all smooth trajectory options, even with discretization of the angles, is the

increase in possible paths from one location to another. There are eight times as many paths possible
with the choice of eight dicretization options, since a path is defined by the positions and the start angle.
Note that the end angle does not lead to an increase in possible paths, as it is fixed to the line direction.
This leads to increased memory usage when saving the paths and increased run-time when calculating
the paths. To reduce this disadvantage, the paths are saved in memory based on their relative positions:
the saved paths are identified by the difference in positions between the nodes and the start angle. In
other words, the start of the curve is translated to the origin. As such, curves can be reused more often.
This reduction of memory usage applies due to the choice to sample node locations within a grid, thus
creating a discretized set of locations. Whenever one would have opted for random sampling without
discretization, this method would have little effect, since the relative paths would seldom be equal to
each other. When the curves are being used again, the translation is reversed to the actual positions of
the nodes.

Figure 10: Dubins (dashed) and Reeds-Shepp curves (solid) (Kurzer, 2016)

For the implementation of kinematic constraints in the fields with rows, not only the cost and
information values should be considered, but also the feasibility of the path and the options for the
next segment of a path. Whenever non-holonomic robots are considered, with no option of driving in
reverse, the options for the path are more limited, as the robot can only choose to drive through a
complete row, or skip it completely, since turning back halfway is not a possibility. This restriction in
movement is incorporated as well. The Dubins and Reeds-Shepp curves are then used for determining
the path when changing between different rows, while the kinematic configuration determines whether
turning back within rows is feasible.

20

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

In conclusion, there are six options for the kinematic configuration of the algorithm: no constraints,
holonomic constraints with added costs, non-holonomic constraints with restricted angle or non-holonomic
constraints with smooth trajectories, where there is a choice between Dubins curves (forward-only),
Reeds-Shepp curves (reversible), or Reeds-Shepp curves with no preferred driving direction (reversible for
longer time). The options are available both in the scenario with and without rows in the field. The
configuration can easily be switched according to preference. The kinematic constraints are taken into
account while planning the most informative path, such that the planned path matches the final path
driven by the robot, and thus also the calculated information gain is based on the kinematically feasible
path. Notoriously, the state space complexity is only marginally increased by the incorporation of the
kinematic constraints.

5.10 Structured Fields
Applying RIG to structured fields, which contain rows of crops, requires a couple of adjustments. Two

key processes that require adjustments are the calculation of distances and the sampling of new nodes.

Distance calculation In the case of unstructured fields the distance between locations can simply be
determined using the formula for Euclidean distance. In the case of structured fields, the rows and their
edges have to be considered to find the distance between nodes. For this purpose, the A* algorithm was
used, which is a graph search algorithm using a heuristic based on Manhattan distance. This algorithm
guaranteed finds the optimal path from one location to another and is applicable to the grid-based field
map that is employed in this system. The A* approach was preferred over a task-specific function which
compared the difference between the distance of taking the left or right edge of rows. This preference
was due to the fact that such a task-specific approach is more dependent on assumptions about the field
and therefore less robust and less generalizable to different contexts.

Sampling in rows In fields with rows, new locations should only be sampled within one of these rows.
This is because it is intended for the scenario where the robot only moves in straight lines through the
rows, as the Origin One robot does. Additionally, depending on the kinematic constraints, some robots
may not be able to reverse within a row, thus having to cross the entire row. Therefore, the Sample
function, as indicated in Listing 1, was adapted. One intuitive approach is close to the original method
for sampling: sampling a random (discrete) location in the field, then determining a location in a row
that lies in the direction of that random location from the nearest node. However, this means that the
sampled location very likely has to be relocated when there is distance between rows, even if it is within
the step length of the nearest node, thus increasing the computational load. Additionally, in the case
of non-holonomic robots, it may be very inefficient to sample many points inside rows instead of at the
edges, since these robots only have the option to cross entire rows anyway. An alternative was applied
where the sampling in the free space happens in a more restrictive way: first, based on the kinematic
constraints, all grid points that are feasible to reach are determined at the start of the algorithm, after
which only these grid points can be sampled. Since these points only have to be calculated a single time,
computational load is greatly reduced during sampling. Two examples of placement of all feasible grid
points for sampling within a field are displayed in Figure 11, where the orange points indicate the feasible
points.

The approach to find a location on this path from the nearest node to the sampled location within
the step length distance was also altered to be able to apply it to structured fields, and has had several
iterations before reaching the approach described below. Earlier approaches are described in Appendix
D. This step is referred to as the Steer function in Listing 1. An approach was developed that coincided
with the introduction of using an A* algorithm to compute the distance between points. Since the A*
algorithm yields the steps (in terms of grid cells) to move from one location to another, these locations

21

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

and corresponding distances could be used to compute the furthest location on a path within a step
length.

Figure 12 shows the workings of the A* algorithm and taken steps in the sampling procedure. The
green square indicates the nearest node, thus the node from which the sampled node should be within
a maximum distance. The red square indicates the random sampled location, which is too distant from
the nearest node. The blue squares indicate the steps that are obtained from the A* algorithm, which
indicate the points where the algorithm turns into a different direction, where the arrows indicate the
entire route from the nearest node to the random sampled node. The distances are calculated at each
of these blue points, in a backwards fashion. In this case, it was found the farthest (the upper) blue step
was within reach, so then the line from this point to the end (red) square is followed until the maximum
distance is reached. This yields the new sampled node, the yellow circle.

(a) Possible sampling points without
kinematic constraints

(b) Possible sampling points with
constraints (without reversing)

Figure 11: Possible sampling points (= orange) for structured fields

Figure 12: Steer function using the A* algorithm path

5.11 Horizon Planning
The final goal of the planner is to be applied to a field over the course of multiple days, most likely

to be applied permanently on a daily basis. Up to this point, the strategy was chosen to compute a
path which gains as much information as possible purely based on the current entropy distribution. This
greedy strategy is, however, somewhat naive and might not be most effective in the longer term for
monitoring a field. To understand the reason for this, consider Figure 13 which portrays an orienteering
problem where one aims to maximize the number of visited orange points from the blue starting point

22

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

within an arbitrary amount of time. Based on the initial field and point locations (Figure 13a), it might
seem like a good choice to execute the route as displayed in Figure 13b, which leaves the points displayed
in Figure 13c. The remaining points are now very distributed across the field, which would leave a long
path if these would be gathered in a next day. However, would it have been known beforehand that
the remaining points after the first route would be gathered during a second route, one might opt for a
route such as the one in Figure 13d; slightly less effective by itself, but more effective when considering
a two-day horizon.

(a) Field at day 1 (b) First route (c) Field at day 2 (d) Smarter first route

Figure 13: Two-day orienteering problem

An adaption based on this principle is applied to the planner. This adaption allows the planner to
plan over a horizon. The length of this horizon is configurable, but for the rest of the report a two-day
horizon is considered. To apply this principle, the planner basically plans a two-day path: it plans a route
consisting of two paths that each individually fall within the budget. Eventually, the best routes are split
into the two paths, after which the best individual path of these is executed. In the basis, a route is thus
formed that mimics the scenario where the robot would execute two paths within a single day, where it
recharges in between these paths. Note that this means that both parts of the double route are based
on the same entropy map.

The implementation of this strategy to plan over a horizon requires a few adaptations to the planning
algorithm. A node characteristic is added to each node, which describes what part of the route it
belongs to, being either the first or second path. Every node that is created that belongs to the first
path automatically leads to the creation of a new node that is located at the starting point (i.e. the
charging station) and resembles the start of the second path. The creation of a node in the first path
thus automatically leads to the ability to continue from there on the second path. From a node within
the first path, it can either continue exploring, extending the first path until the budget is reached, or
it can return to the starting point to start the second path. The second path explores the field equally
to how planning without a horizon happens: it maximizes the gained information within the budget.
The information value of the entire route consists of the information gained by the two paths together.
Areas that are crossed by both the first and second path thus only add information a single time. Using
this principle, paths are expected to show more resemblance to Figure 13d, as the two paths of a route
complement each other.

A possible disadvantage may occur when the entropy of the map is low and could be largely covered
within a single path. In this case, it might be more effective not to look at the complementary information
values of two paths, but solely prioritize a single path, since this may lead to a more informative path.

23

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

To understand this, it should be considered that with the horizon strategy, optimization is focused on
routes consisting of two paths where a single path is executed in the end. However, for the majority of
cases, the entropy is expected to be higher and the distribution of information is such that it is unlikely
to be covered within a single path. Beneficial effects of planning over a horizon are then expected.

In theory, the horizon could be extended from a double path to any number. However, in practice
this would be unlikely to be very useful, both due to the effect described above, which becomes even
stronger for longer horizons, and due to the additional disadvantage of rapid increasing computational
load due to the extended paths and thus high amount of extra nodes created.

To analyze the effect and efficiency of planning over a horizon, this strategy will be tested and
compared to planning a single path. These tests are based on multi-day simulations, which allow to show
the long-term effect of this strategy. The outcomes and conclusions are described in Chapters 8.2.6 and
9.

5.12 Specified Variables

There is a range of variables within the algorithm of which the value can be altered, which have
an impact on the performance. The most important of these variables are discussed and are tested for
impact during simulations (see Chapter 8). These variables are as follows and will be further explained
in this section:

• Step length

• Search radius

• Number of iterations

A connection between nodes will only be made when the distance is within a certain limit. This limit
is the step length, prescribing the maximum allowed distance between existing and new nodes. The step
length influences the sampling, as a node will be sampled closer whenever no node is within the step
length of the original new sampled node. Furthermore, the step length influences the rate of exploration,
especially in the early iterations, as it limits the extension of the reach of existing nodes. Thus, a smaller
step length may limit optimisation of the path. The step length also influences the amount of nodes that
accumulate during each iteration, as more nodes will be created when the step length is larger, since
more existing nodes will then be within the range of the new node (remember that each node represents
a path from start to the current location, not just a location). A quicker growth of nodes means more
memory usage and a longer run-time (due to functions having to iterate over more nodes). The impact
of the step length on these described factors may be a cause for a decrease in performance and may also
vary across different kinds of contexts (e.g. with/without rows and different types and sizes of fields).

In the rewiring step, the nodes within a certain range of the new node are considered for rewiring.
This range is represented by the search radius. The search radius can simply be equal to the step length,
or can be chosen to be larger or smaller. The choice for the search radius has an impact on the memory
usage, run-time and performance of the algorithm.

A minimum and maximum amount of iterations can be prescribed. Of course, a limit on the number
of iterations impacts the run-time of the algorithm. The limit also impacts performance. Preferably, the
number of iterations would be such that the algorithm runs until the solution has converged to a certain
path and little improvement occurs. To make this preference more likely to be reached, the stopping
criterion has been introduced. Therefore, it is advisable to make the minimum and maximum amount
of iterations broad. The maximum number of iterations can be used to deal with limits in run-time or
memory availability.

24

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

6 Monitoring Module
The path generated by the planner is executed, which leads the robot to monitor the field. This

leads to new observed information about the growth of weeds and pathogens at each grid point, which
reduces the entropy of the world model. The monitored data is imperfect, as there is always some
uncertainty in measurements due to imperfect plant and weed recognition and distinction, imperfect
pathogen detection, and limited camera resolution. This uncertainty is taken into account by specifying
the sensor uncertainty, enabling modelling of imperfect information in simulations. The uncertainty in
monitoring influences the updated world model and the entropy, but not the functioning of the planner.
This is because the information remains submodular, even with uncertainty. The monitoring uncertainty
originates from errors in object detection. Errors in object detection within the field of agriculture are
common. Due to factors such as overlapping leaves, similar features of weeds and crops, unpredictable
and non-uniform natural light conditions, and variations in databases, detecting algorithms are prone
to errors leading to misclassifications of weeds, healthy crops and diseased crops, miscounting weeds
and crops or falsely detecting weeds and crops (Jeon et al., 2011, Mavridou et al., 2019). These errors
have an impact on the entropy of the world model. However, there is no guarantee that monitoring
one area multiple times within one path will lead to a decrease in monitoring uncertainty, hence the
information remains submodular, i.e. the entropy value is only added to the path information metric
when encountered the first time. In the case when errors were likely to average out to the correct value,
it would be worth changing the metric such that each new encounter with the same area would lead to
(a partial) addition to the information metric.

The path following is outside of the scope of this project, since the software to accomplish such a task
is already developed by Avular for the Origin One robot. Additionally, the motion trajectory is specific
to each type of driving platform. The generated path is therefore designed to be kinematically feasible
for the Origin One robot and other general driving platforms and it is then assumed that this path is
perfectly followed.

25

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

7 Updating the World Model
This task is not a module in itself, but it closes the cycle, as indicated by arrow 3 in Figure 2. In this

step, the observed information is given back as input to the model. Supplying this updated information,
together with the spreading model and the current world model, allows to generate an updated world
model. The spreading model characterizes the (simulated) ground truth of spread, whereas the world
model characterizes the predicted spread from the knowledge of the robot, based on monitored data.
This world model can then again be used to generate the entropy map which is then supplied to the
planner to compute the path for the next cycle. The spreading model, world model and entropy map all
consist of grid maps. Three of the described steps are visualized in Figure 14, which depicts the world
model, the entropy map supplied to the planner and the computed path of the planner, and the updated
entropy map based on the monitored data and the new spreading prediction. The new entropy is based
on the new world model (i.e. uncertainty of the spread of the pathogens and weeds), but additionally a
daily uncertainty can be configured for the update of the entropy map. This daily uncertainty represents
the uncertainty about the state of an cell which grows whenever it has not been visited for a longer time.
The entropy value of each non-visited cell is increased with the daily uncertainty value. Especially when
new infections are expected, this is useful to be included as it prevents the robot from blindly depending
on the current spread model and missing new pathogen or weed infestations.

The step of updating the world model follows naturally from the combination of the modules and
it allows to close the cycle. The updated world model enables to establish the expected effects of the
planned path on the state of the field. Additionally, with this full cycle, a long-term simulation can be
run, modelling the results from applying the informed path planner consequently over a longer period of
time. A long-term simulation more closely represents the needs of weed control in an agricultural field,
as the end goal is to create as much crop yield as possible over the course of a growing season. This
is a long-term goal, where periodic control interventions contribute to the final result. Furthermore, the
step of closing the cycle will prove useful when applying this architecture of models in a real life scenario,
where the monitored information can then be integrated into the world model after a robot has explored
the field. As such, it can autonomously keep monitoring a field on a daily basis without the need of a
user to update the supplied information.

(a) Spreading map of a pathogen (b) Planned path plotted over the
entropy map

(c) Updated entropy map

Figure 14: Steps of the architecture

26

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

8 Results
This chapter begins by describing the test cases of the simulation tests, tested variables, and measured

outcomes. Subsequently, the results are discussed in Section 8.2.

8.1 Simulation Experiments
The experiments to test and evaluate the architecture are performed within a simulation environment.

The different modules as well as the simulation environment are written in Python 3. The full code is
available in GitHub (van Esch, 2023). An informed RRT* software implementation (Zhou, 2020) was
modified to create a RIG implementation for this thesis due to the unavailability of the original RIG code.
This section describes the tests for the different algorithm aspects that are evaluated in detail.

All aspects were tested in identical scenarios where a predetermined seed was used, serving as a
pseudorandom number generator for the sampling locations, ensuring that the algorithm’s typically
random exploration is eliminated and experiments are repeatable. The seed allows for a deterministic
scenario, including the same world model map, entropy map, pathogen characteristics, deterministic
spread factor, field shape, number of iterations, order of sampled locations, and other characteristics that
are configurable. There is one scenario with rows and one without rows. The results are generalizable
to other types of maps and scenarios. To eliminate the impact of context variables and configurable
characteristics, the decision was made to test exclusively within a specific scenario, thus focusing completely
on the tested variable. This scenario was used to evaluate each of the tested aspects of the algorithm. The
aspects were tested to assess their influence on the planning performance, which is defined as the ratio
of the gained information over the total available information. Each tested aspect is briefly described.

Informedness refers to whether the planner is given an informative map of the entropy as opposed
to having no information of entropy. To simulate uninformed planning, the planner is given a uniform
entropy map. As such, it can be evaluated whether an informed planner benefits precision monitoring
and whether having a spreading module providing entropy mapping is valuable.

There are four cases aimed at testing the effect of budget on performance. Performance is expected
to improve with increased budget. The extent and linearity of the increase in performance is tested.

Rewiring is tested by comparing the results of the algorithm without rewiring and with rewiring. These
results enable forming conclusions on the extent of the effect of rewiring.

Variations in step length and search radius are tested jointly, considering the expectation that both
the absolute values and the values relative to each other influence performance. The step length for
structured fields is chosen to be larger than for unstructured fields, as the row structure requires larger
distances to be travelled.

The number of iterations and stopping criterion are closely intertwined, as a stricter stopping criterion
likely leads to a lower number of completed iterations. A minimum number of iterations is expected to
be required to achieve reasonable performance due to the sampling randomness and information sparsity
in a field. Increasing in the number of iterations is expected to enhance performance, though it is
expected that the improvement of the best path flattens off with increasing iterations. Therefore, a
balance between the improvement of the path and the run-time should be determined. This balance can
be explored through application of variations in the strictness of the stopping criterion. The mild criterion
averages over 25 iterations, while the strict criterion averages over 50 iterations.

Horizon path planning is tested through a multi-day simulation, as the effect of this option is mainly
detectable over the course of multiple cycles of the architecture (see Figure 2). A simulation entailing 12
cycles (days) is executed to analyze the effectiveness of horizon planning based on world model accuracy
and the amount of entropy in the map. The performance is compared to the setting where no horizon
planning is applied, thus each time only planning a single path.

When testing each of the aspects described above, the other aspects are kept static, to prevent cross-
effects. Tables 3 and 4 show an overview of all the performed experiments and corresponding results of

27

https://github.com/hildeesch/thesis/tree/master

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

simulations without and with rows, respectively. There are 16 test cases in total, each applied both to
the algorithm without and with rows. The tables show the configuration per test case, consisting of the
underlined setting that indicates the tested aspect for each test case, and the base settings for the other
aspects. For the results on the informedness and budget, additional simulation tests were conducted to
provide more insights, which are described in the corresponding sections.

The performance is evaluated in terms of the ratio of information of the final path over the total
amount of available information in the entropy map. In addition, the run-time is analyzed, as the run-time
gives an indication of the applicability and scalability of the architecture. The run-time is the measured
CPU time (for HP ZBook with Intel Core(TM) i7 Quad-Core processor) and is expressed in seconds. Due
to the limited number of performed simulations, run-time is heavily influenced by the specific scenario
and external factors (e.g. PC processor, internal temperature, etc.). This effect is evident in differences
in run-times of test cases with identical variable settings (i.e. some of the tested aspects have the same
variable settings for the base test), such as cases 4 and 7. For this reason, the run-time will only be used
as a measure for relative comparisons between variable settings. In multi-cycle simulations, the world
model inaccuracy is computed as follows:

sum(abs(Mw −Ms))

sum(Ms)
(3)

where Mw is the world model matrix of the robot, Ms is the real spreading model matrix after the last
cycle, abs is an element-wise operation and sum indicates the grand sum of all entries. This serves as
an indirect quality measurement of monitoring, since more effective modelling leads to a more accurate
world model over time.

Table 3: Testing Cases with Aspects, Settings, Performance Results, and Run-Time (without rows)

Informed Budget Rewiring Step Length Search Radius Stopping Criterion Horizon Max Iter Performance Run-time
1 Yes 350 Yes 40 40 No No 500 0.32 2577
2 No 350 Yes 40 40 No No 500 0.038 4853
3 Yes 200 Yes 40 40 No No 500 0.23 1815
4 Yes 350 Yes 40 40 No No 500 0.32 2346
5 Yes 500 Yes 40 40 No No 500 0.40 3299
6 Yes 650 Yes 40 40 No No 500 0.44 3304
7 Yes 350 Yes 40 40 No No 500 0.32 2575
8 Yes 350 No 40 40 No No 500 0.23 2178
9 Yes 350 Yes 20 20 No No 500 0.37 2155
10 Yes 350 Yes 20 40 No No 500 0.38 2367
11 Yes 350 Yes 40 20 No No 500 0.33 2604
12 Yes 350 Yes 40 40 No No 500 0.32 2831
13 Yes 350 Yes 40 40 Mild No 500 0.32 1121
14 Yes 350 Yes 40 40 Strict No 500 0.31 2202
15 Yes 350 Yes 40 40 No Horizon 300 0.14 345194
16 Yes 350 Yes 40 40 No Single Path 300 0.14 16700

28

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Table 4: Testing Cases with Aspects, Settings, Performance Results, and Run-Time (with rows)

Informed Budget Rewiring Step Length Search Radius Stopping Criterion Horizon Max Iter Performance Run-time
1 Yes 500 Yes 200 200 No No 500 0.16 26351
2 No 500 Yes 200 200 No No 500 0.058 50092
3 Yes 300 Yes 200 200 No No 500 0.11 25381
4 Yes 500 Yes 200 200 No No 500 0.16 26071
5 Yes 700 Yes 200 200 No No 500 0.21 24338
6 Yes 900 Yes 200 200 No No 500 0.25 24480
7 Yes 500 Yes 200 200 No No 500 0.16 26503
8 Yes 500 No 200 200 No No 500 0.08 23445
9 Yes 500 Yes 100 100 No No 500 0.16 18997
10 Yes 500 Yes 100 200 No No 500 0.16 19182
11 Yes 500 Yes 200 100 No No 500 0.16 25810
12 Yes 500 Yes 200 200 No No 500 0.16 26947
13 Yes 500 Yes 200 200 Mild No 500 0.12 976
14 Yes 500 Yes 200 200 Strict No 500 0.19 4718
15 Yes 500 Yes 200 200 No Horizon 300 0.055 43687
16 Yes 500 Yes 200 200 No Single Path 300 0.054 47310

8.2 Findings

This section of the chapter discusses the performance outcomes of the test cases for the tested
aspects. The results are summarized in Tables 3 and 4. Furthermore, further analysis is provided in the
following paragraphs.

8.2.1 Informed Path Planner

The informed planner demonstrates performance levels that are approximately three times higher (rows)
or even an order of magnitude higher (no rows) than the uninformed planner and run-times that are
nearly halved. The longer run-times for uninformed planner are caused by the uniform entropy map,
which leads to more nodes to iterate over, as less of them are pruned due to paths often being equally
informative.

Figure 15 shows the final paths for case 1 and 2, respectively. Here, it shows how the path of the
informed planner is centered more around one of the areas with high entropy, while the uninformed planner
travels more randomly through the field. Figure 20 (Appendix E.1) visualizes the paths overlaid on the
world model of a multi-cycle simulation, showing that the informed planner more quickly and accurately
builds up the world model and focuses on the areas with relevant information. In this simulation, both the
informed and uninformed planner started off without any prior information on the spreading map, thus
having a uniform world model, which comes closer to the real spreading model with each cycle. After
the last cycle, the inaccuracy of the world model for the informed planner is only 0.0014 compared to
0.012 for the uninformed planner. This additional simulation test demonstrates the use of the informed
planner in a realistic scenario where the robot enters a field with a yet unknown state of pathogens and
weeds.

29

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

(a) Informed setting (b) Uninformed setting

Figure 15: Final paths overlaid on the entropy map

8.2.2 Budget

As can be deduced from the outcomes in Tables 3 and 4, both for the scenarios with and without rows,
the performance increases with increasing budget. Figure 16 shows the performance plotted against the
different tested budgets.

In the plot of the results without rows (Figure 16a), it is clear that the results form a sublinear
function; the performance grows less than linearly with increasing budget. In the plot of the results with
rows (Figure 16b), the sublinear relation applies as well, only with slightly smaller differences between
the linear function and the data points. The non-linear relation between budget and performance is
due to the nature of pathogens and weeds, leading to non-uniform spread. The non-uniform spread
leads to a non-uniform entropy map, meaning a shorter budget focuses on the highest entropy areas,
where increasing budget leads to increasing exploration of less informative areas, thus having a non-linear
information gain. This is verified the results of tests on a uniform entropy map (see Figure 16c), which
show a linear relation between varying budgets and performance.

(a) Results for simulations without
rows

(b) Results for simulations with rows (c) Results for simulations without
rows and uniform entropy map

Figure 16: Performance over budget

8.2.3 Rewiring Function

Application of rewiring function leads to great increase in performance, varying from 39% (no rows) to
100% (with rows) increase. Since rewiring leads to application of an extra function in the algorithm,
run-times have increased. However, the increases in run-time are not proportional to the increase in
performance, with percentage increases of 18% (no rows) (Table 3) and 13% (with rows) (Table 4).

30

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

8.2.4 Step Length and Search Radius

Analyzing the tests performed on step length and search radius reveals that the differences in performance
are minor. For the simulations without rows (Table 3), it can be seen that particularly the step length
has an influence, where smaller step length gives better results. For the simulations with rows (Table 4),
no differences in results can be seen based on performance (rounded to two significant numbers).

One thing that is noticeable is that both for the simulations with and without rows, performance
results of test scenarios 9 and 10 are higher or equal to those of scenarios 11 and 12, while the run-times
are significantly lower. The lower run-times can be brought back to the meaning of the step length: a
higher step length requires looping over a higher number of nodes, thus leading to higher run-times. The
number of selected nodes to iterate over during rewiring is dictated by the search radius, but since this
is only executed a single time, there is no observable influence of the search radius on the run-time.

The hypothesis was that a larger step length would lead to more rapid exploration of the field and
the corresponding information and thus converge more rapidly to higher performance values of paths.
A possible explanation for the opposite observation regarding performance is that the number of nodes
created depends on the selection of near nodes (see Line 12 in Listing 1). The selected number of near
nodes depends on the step length, but also has a maximum to limit computation complexity, memory load
and run-time. Reducing the step length in the first place then leads to a more thorough exploration of the
field, where fewer nodes are created (due to a lower number of near nodes), and thus also the limitation
on near nodes is applied less frequently, such that new nodes are created more distributed across the
field. The same explanation applies to the results of the search radius, where also near nodes need to be
selected for rewiring and thus a dense, distributed network of nodes allows for the most efficient rewiring.

8.2.5 Stopping Criteria and Number of Iterations

When examining the results for simulations with rows, the differences in performance between the stopping
criteria are as expected: higher performance for a stricter criterion. Notably, even for the strict criterion
the run-times are significantly reduced compared to simulations without a stopping criterion, such as test
case 4. However, when looking at the results for simulations with rows, an irregularity seems present: the
performance is slightly lower for the stricter criterion. While this may seem odd at first, delving deeper
into the results gives clearer insights. The default setting for rewiring during the simulations is “on” (the
rewiring function is applied). However, when analyzing the results before rewiring, it can be seen that the
(rounded) average performance of the top 20 nodes (used for the stopping criterion), is slightly higher
for the stricter criterion: 0.233 compared to 0.229 for the mild criterion.

8.2.6 Horizon Planning

As described before, horizon planning is tested by running a simulation of 12 days with a horizon of two
cycles. The performance results and run-times in Tables 3 and 4 for cases 15 and 16 are the averages of
these 12 days. The performances are close together for both cases. This could be due to the fact that
no matter the horizon, the best path simply focuses on reaching as much high entropy areas as it can
within the budget. When there is horizon planning applied, the second cycle of the route is therefore less
effective, as it covers lower entropy areas which have not been covered yet. The run-times are shorter
for horizon planning when applied to a field with rows, while for fields without rows, the run-times are
shorter for single path planning. The table gives the average run-time of all days. The run-times increase
each day, which is probably due to the increasing spread of the pathogen. Notably, the run-times are
more than an order of magnitude higher for horizon planning than single path planning in fields without
rows.

31

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Table 5: Complementary Results for Evaluation of Horizon Planning Efficiency

Field Setting Final entropy World model
inaccuracy

No rows Horizon path 1106.54 0.0
No rows Single path 1264.11 0.0
Rows Horizon path 2590.18 3.4e-4
Rows Single path 2538.45 3.7e-4

Furthermore, more results can be analyzed that are meaningful for longer simulations. The first result
that can be compared is the final entropy after the last day. This gives an indication of the monitoring
quality over the span of multiple paths (i.e. monitoring sessions), though the entropy is also influenced
by the spreading model. The values in Table 5 indicate that these final entropy values are close for the
cases, where it is slightly higher for horizon planning for both field types. The second result drawn after
the 12-day simulation is the world model inaccuracy. Table 5 indicates that the inaccuracy is the same for
horizon planning in fields without rows and lower for horizon planning in fields with rows, each compared
with the inaccuracy of single path planning, which can be explained as results from the performance
values. Another reason for the implementation of horizon planning was the logic of the path: planning a
double path was expected to lead to less distributed paths; paths that complement each other in coverage
of high entropy areas throughout a span of multiple days. For this reason, the plotted paths are analyzed
and visualized in Appendix E. For fields with rows, no significant difference in the distribution of the path
across the field can be detected between the settings. For fields without rows, the single path setting
already shows paths that are not very distributed, but concentrated on certain areas. Therefore, little
difference occurs with the horizon paths.

8.2.7 Structured and unstructured fields

Initially, RIG was designed for unstructured search spaces (Hollinger and Sukhatme, 2014). It is not
explicitly a goal of the thesis to compare the planner for structured and unstructured fields, as it has
no practical meaning; farmers will not create an unstructured field to improve monitoring performance.
However, a comparison allows for an evaluation of the performance of the planner in structured fields.
Comparing the results raises a few noteworthy observations: in structured fields (Table 4), performance
values are around half as high as in unstructured fields (Table 3) for nearly every testing case. Additionally,
run-times are higher, ranging from a factor 2 to even a factor 10 higher, with a number of exceptions
where run-times are lower. These observations regarding performance and run-time can be explained by
the nature of the algorithm: it creates a tree-based structure, adding nodes within reach until a budget
is reached. It relies on the assumptions that distance calculation is a non-complex and fast operation
and that many new nodes are created in each operation. However, it is known from the design process
(Section 5.10) that distance calculation with rows in not straightforward, thus leading to higher run-
times, even with the applied strategies for run-time reduction. Additionally, when comparing paths with
an equal amount of iterations of unstructured and structured fields (e.g. Figures 24 and 22) it seems the
case that the structured paths are under-developed in comparison, seeing that often more informative
paths are possible with the same budget. This may be due to the fact that the tree-based structure is
less developed in structured fields, thus requiring more iterations to converge to higher performance.

An additional observation follows from Table 5, which shows that the world model inaccuracy for
unstructured fields converges to zero, while the inaccuracy for structured fields remains present, although
being minor.

32

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

9 Conclusion and Discussion
In this concluding chapter, the focus is on discussing the key findings and conclusions derived from

the results. Subsequently, a comprehensive examination of the research is presented, encompassing
evaluations and recommendations for future studies.

Several aspects were tested in the simulations. The informedness of the planner is the most important
factor, as it relates to the main research goal as introduced in Chapter 1: “Designing a planning agent that
takes into account information from spreading models such that it can monitor the spread of pathogens
and weeds in crop fields while minimizing entropy”. The performance values of and the world model
accuracy values show major improvements of the informed planner over the uninformed planner, thus
confirming the hypothesis for the efficiency of an informed planner for monitoring, as the informed planner
has a higher ability to reduce entropy, therefore enabling a more accurate spreading model.

The results of the budget tests have significant practical implications, as the results form an indication
of the required robot for a field size. An interesting conclusion that can be drawn based on Figure 16a, is
that increasing budget leads to less than linear increase in performance due to a non-uniform information
distribution. This result should be taken into account when deciding on the required path length (or
battery) capacity of a robot to reach a performance level. In contrast, this effect is a lot weaker in the
case of fields with rows, in other words: linearly increasing the budget leads to nearly linear increase in
performance. Thus, for fields with rows, an investment in a robot with higher battery capacity can be
expected to be worthy in relation to the expected performance. It should be noted that in both types
of fields, the focus is on budgets where the robot can still not cover (even nearly) the entire fields, as it
would be more efficient in that case to apply a coverage planner (see Section 2.2.2).

The original rewiring function from RRT* (Noreen et al., 2016) is not suitable to informative planning
problems, as these aim to maximize a submodular information metric instead of minimizing cost, and
therefore the function was modified as described in Chapter 5. The improved rewiring resulted in a
significant gain in the gathered information of the planner at a small cost of a slight run-time increase
(see Section 8.2).

The results on different settings for the step length and search radius are not as expected in Section
8.1, where both relative and absolute effects of these variables were anticipated. For fields with rows, no
effects were observed on performance, while in fields without rows, only a smaller step length improves
performance, independent of the search radius value. Explanation for the observed effects is given in
Section 8.2.4. Further exploration into optimal values for these variables is suggested. As indicated in
this explanation, there is likely a performance improvement with an increase in these values until reaching
the optimum point, beyond which the performance stabilizes or even diminishes.

The stopping criterion’s performance effects intertwine with rewiring and iterations, increasing the
complexity of results for evaluation. An increasing number of iterations, caused by a stricter stopping
criterion, generally leads to increased performance, but the effect of rewiring may overrule this effect. The
relation of performance over iterations may also show a “knee in the curve” which forms a good point
for a stopping criterion. The suggestion strengthens when one compares case 4 (no stopping criterion,
so most iterations), case 14 (strict criterion, so slightly fewer iterations) and case 13 (mild criterion, so
fewest iterations): case 14 shows the best results in the simulation with rows (hinting at an optimum),
while this case shows lesser results in the simulation without rows (possibly indicating the optimum was
already passed). However, since only two versions of the stopping criterion were tested, it is impossible to
verify this suggestion. The stopping criterion might thus be a good solution to balance performance and
run-time, but to draw applicable conclusions, more research is required. Future research should analyze
the interaction between iterations and rewiring effects and evaluate different stopping criteria for both
field types.

33

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

The efficiency of the horizon planning strategy was analyzed based on extensive comparisons between
the single path and horizon path settings. The results are not unanimous on the effect of horizon
planning, but still demonstrate the lack of benefits of the strategy. For fields without rows, performance
is equal, run-times are majorly higher, final entropy is lower and inaccuracy is equal. For fields with rows,
performance is slightly higher, run-times are lower, inaccuracy is lower, but entropy is higher. Most of
the differences in these measures between the settings are minor. For both field types, clear benefits of
horizon planning are lacking. It can be concluded that while non-greedy planning strategies might lead
to noteworthy performance increase, the currently applied strategy does not lead to the desired results.

There are a number of discussion points that relate to different parts of the research than a specific
tested aspect. The discussion points that are touched upon in the rest of the chapter are design of a
modular architecture, application to fields with rows, simulation testing and the spreading module.

While the first goal of the thesis related to the informedness of the planner, the supplementary second
goal was as follows: “Creating a modular software architecture for autonomously monitoring the spread
of pathogens and weeds in crop fields”. The basis of this architecture is outlined in Chapter 3, after which
the different modules are described in detail. It can be concluded that the design goal for the modular
architecture has been met. Furthermore, it is advised to maintain the modular nature of the architecture
in future research for two reasons. Firstly, the modular design has proved to simplify independent testing,
design and improvement of the modules throughout the project. Secondly, the modular design allows
simultaneous (multi-disciplinary) work on the modules by independent research teams, which would be
highly beneficial in future research such as discussed in the following discussion points.

A novelty of this research was the application of the RIG algorithm to a structured field, divided into
rows of crops. This application required major adjustment throughout different functions as discussed
thoroughly in Chapter 5. Drawing conclusions on the performance results is challenging and potentially
misleading due to the lack of a fair comparison with other informative planners in structured fields, since
there is little research available on such topics. As discussed in Section 8.2.7, performance is lower
and run-times are higher in structured fields compared to unstructured fields. The run-times are not
prioritized in this research - foremost because the research is more of exploratory nature and additionally
because no real-time processing by the robot due to offline path computation - however, run-times relate
to potential costs, applicability and scalability of the algorithm. Based on the described outcomes, the
current implemented planner seems less suited for informative monitoring of structured fields. Therefore,
more research is recommended on alternative informative planners for structured fields, preferably with a
focus on a planner that benefits from the given structure of the field to reduce computational complexity.
Such a follow-up research enables a valid comparison with the current planner and can indicate whether
performance and run-times for structured fields could be improved.

Extensive real-life testing is crucial, especially for an architecture designed for changing and unpredictable
environments. While more variety in the current simulation could provide additional insights, it is preferred
to test in real-life settings, such as on potato fields with the Origin One robot. While the spreading module
contains a stochastic element simulating part of the entropy in the real agricultural fields, the designed
architecture is only to be evaluated as a whole after testing with realistic scenarios.

Closely related to the previous discussion point, is the discussion point on the spreading module,
which was based on expert models in literature from the agricultural sector. These models were chosen
specifically with a few features in mind: wide applicability and generalizability, spatial and temporal model
aspects and the (simplistic) mathematical nature of the models. However, with the main focus of the
thesis being on the planning aspect of monitoring pathogens and weeds, the spreading module has not
reached its full potential. Recommended topics for future research are combinations of different pathogen
and weed species within a map (and the effects of competition) and more sophisticated spreading models
that allow for detailed modelling of influencing factors. This thesis begins to bridge the gap between
agricultural and technical domains. Future research can build on this effort by further developing the

34

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

architecture in a multi-disciplinary team of researchers. The Synergia project forms a valuable starting
point for this collaboration.

Lastly, it is recommended to extend the algorithm such that it can be applied to disease control as
well. It is an option to then replace the aim of monitoring with control by supplying the planner with the
spreading map instead of the uncertainty map. However, it is more valuable to combine the tasks into a
single planner that must balance exploration (monitoring) and exploitation (control).

To conclude, this thesis forms a foundation for informative path planning for disease monitoring.
Disease monitoring is a prerequisite for control in agriculture and aligns with the challenges of precision
farming. A proof of concept is created for budgeted planning for autonomous disease monitoring by
mobile robots, driven by a spreading model based on expert knowledge, using observational input of
previous path executions.

35

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

References
Auld, B., & Coote, B. (1980). A model of a spreading plant population. Oikos, 287–292.
Auld, B., & Coote, B. (1990). Invade: Towards the simulation of plant spread. Agriculture, ecosystems

& environment, 30(1-2), 121–128.
Avular. (2023). The ranger - autonomous driving platform. https : / / avular . com/ ranger (accessed:

04.01.2023)
Binney, J., & Sukhatme, G. S. (2012). Branch and bound for informative path planning, 2147–2154.
Cobbenhagen, A., Antunes, D. J., van de Molengraft, M., & Heemels, W. (2021). Opportunities for

control engineering in arable precision agriculture. Annual Reviews in Control, 51, 47–55.
Doyle, C. (1991). Mathematical models in weed management. Crop Protection, 10(6), 432–444.
Galceran, E., & Carreras, M. (2013). A survey on coverage path planning for robotics. Robotics and

Autonomous systems, 61(12), 1258–1276.
Hameed, I. A. (2018). A coverage planner for multi-robot systems in agriculture, 698–704.
Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms.

The International Journal of Robotics Research, 33(9), 1271–1287.
Jeon, H. Y., Tian, L. F., & Zhu, H. (2011). Robust crop and weed segmentation under uncontrolled

outdoor illumination. Sensors, 11(6), 6270–6283.
Kampmeijer, P., & Zadoks, J. (1977). Epimul, a simulator of foci and epidemics in mixtures, multilines,

and mosaics of resistant and suscptible plants.
Kurzer, K. (2016). Path planning in unstructured environments: A real-time hybrid a* implementation for

fast and deterministic path generation for the kth research concept vehicle (Doctoral dissertation).
https://doi.org/10.13140/RG.2.2.10091.49444

Mavridou, E., Vrochidou, E., Papakostas, G. A., Pachidis, T., & Kaburlasos, V. G. (2019). Machine vision
systems in precision agriculture for crop farming. Journal of Imaging, 5(12), 89.

Noreen, I., Khan, A., & Habib, Z. (2016). Optimal path planning using rrt* based approaches: A survey
and future directions. International Journal of Advanced Computer Science and Applications,
7(11).

NWO. (2019a). Miljoenensubsidie voor onderzoek naar duurzame landbouwproductie. https ://www.
wur.nl/nl/nieuws/miljoenensubsidie-voor-onderzoek-naar-duurzame- landbouwproductie.htm
(accessed: 07.12.2022)

NWO. (2019b). Vijf grote interdisciplinaire consortia versterken kennis en innovatie in nederland. https:
//www.nwo.nl/nieuws/vijf-grote- interdisciplinaire-consortia-versterken-kennis-en- innovatie-
nederland (accessed: 07.12.2022)

Papaix, J., Adamczyk-Chauvat, K., Bouvier, A., Kiêu, K., Touzeau, S., Lannou, C., & Monod, H.
(2014). Pathogen population dynamics in agricultural landscapes: The ddal modelling framework.
Infection, Genetics and Evolution, 27, 509–520.

Ruiz-Meza, J., & Montoya-Torres, J. R. (2022). A systematic literature review for the tourist trip
design problem: Extensions, solution techniques and future research lines. Operations Research
Perspectives, 100228.

Somerville, G. J., Sønderskov, M., Mathiassen, S. K., & Metcalfe, H. (2020). Spatial modelling of within-
field weed populations; a review. Agronomy, 10(7), 1044.

Van Agtmaal, M., Straathof, A., Termorshuizen, A., Teurlincx, S., Hundscheid, M., Ruyters, S., Busschaert,
P., Lievens, B., & de Boer, W. (2017). Exploring the reservoir of potential fungal plant pathogens
in agricultural soil. Applied Soil Ecology, 121, 152–160.

van Esch, H. (2023). Github repository for thesis on informative path planning for the monitoring of
pathogens and weeds for mobile robots. https://github.com/hildeesch/thesis/tree/master

36

https://avular.com/ranger
https://doi.org/10.13140/RG.2.2.10091.49444
https://www.wur.nl/nl/nieuws/miljoenensubsidie-voor-onderzoek-naar-duurzame-landbouwproductie.htm
https://www.wur.nl/nl/nieuws/miljoenensubsidie-voor-onderzoek-naar-duurzame-landbouwproductie.htm
https://www.nwo.nl/nieuws/vijf-grote-interdisciplinaire-consortia-versterken-kennis-en-innovatie-nederland
https://www.nwo.nl/nieuws/vijf-grote-interdisciplinaire-consortia-versterken-kennis-en-innovatie-nederland
https://www.nwo.nl/nieuws/vijf-grote-interdisciplinaire-consortia-versterken-kennis-en-innovatie-nederland
https://github.com/hildeesch/thesis/tree/master

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

van Mourik, S. (2019). Synergia - ecologisch gebaseerde systeemverandering met hulp van high tech in
de landbouw. https://agritechcampus.nl/sites/default/files/2022-03/4.b%20Synergia%20-
%20Greenport%20NHN%2010-03-2022.pdf (accessed: 07.12.2022)

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey.
European Journal of Operational Research, 209(1), 1–10.

Villette, S., Maillot, T., Guillemin, J. P., & Douzals, J.-P. (2021). Simulation-aided study of herbicide
patch spraying: Influence of spraying features and weed spatial distributions. Computers and
Electronics in Agriculture, 182, 105981.

Wageningen University & Research. (2019). Synergia. https://www.wur.nl/en/project/synergia.htm
(accessed: 21.12.2022)

Witting, C., Fehr, M., Bähnemann, R., Oleynikova, H., & Siegwart, R. (2018). History-aware autonomous
exploration in confined environments using mavs, 1–9.

Xiong, Y., Ge, Y., Liang, Y., & Blackmore, S. (2017). Development of a prototype robot and fast path-
planning algorithm for static laser weeding. Computers and Electronics in Agriculture, 494–503.
https://doi.org/https://doi.org/10.1016/j.compag.2017.11.023

Zhou, H. (2020). Github repository for informed rrt* algorithm. https : / / github . com / zhm - real /
PathPlanning/blob/master/Sampling based Planning/rrt 2D/informed rrt star.py

37

https://agritechcampus.nl/sites/default/files/2022-03/4.b%20Synergia%20-%20Greenport%20NHN%2010-03-2022.pdf
https://agritechcampus.nl/sites/default/files/2022-03/4.b%20Synergia%20-%20Greenport%20NHN%2010-03-2022.pdf
https://www.wur.nl/en/project/synergia.htm
https://doi.org/https://doi.org/10.1016/j.compag.2017.11.023
https://github.com/zhm-real/PathPlanning/blob/master/Sampling_based_Planning/rrt_2D/informed_rrt_star.py
https://github.com/zhm-real/PathPlanning/blob/master/Sampling_based_Planning/rrt_2D/informed_rrt_star.py

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

A Appendix A: Variable Overview
Table 6 contains the most relevant variables used throughout the different modules and functions.

Each variable is accompanied by a brief description and the function or module it is used in, whenever
applicable. The variables come back in the methodology where they are explained in detail.

Table 6: Overview of Variables.

Variable Description Function

Spreading
model

Grid map where each grid cell contains a value
representing the predicted density of pathogens or
weeds

Spreading and
monitoring module

World model Grid map containing the knowledge of the robot
based on monitored data representing the spread of
pathogens or weeds

Spreading and
monitoring module

Entropy map Grid map where each grid cell contains a value
representing the uncertainty of the prediction of
the spreading map, characterized by the possible
variation as predicted by the spreading model

Spreading,
planning and
monitoring module

Spreading
factor

Combination of context and type-defining variables
determining spread

Spreading module

Information
value

Uncertainty/ entropy at a grid cell Spreading and
planning module

Node cost
value

Path length up to a node Planning module

Total cost
value

Path length including the part to the end position Planning module

Node
information
value

Sum of information of grid cells of a path up to the
node

Planning module

Total
information
value

Summed path information value including the part
to the end position

Planning module

Budget Maximum allowed path length Planning module
Step length Maximum distance between nodes to form

connection
Sampling

Search radius Radius around new node evaluated for rerouting Rewiring
Iteration Each time that a new location is sampled Planning module

38

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

B Appendix B: Spreading Models
This appendix dives into the workings of the spreading models EPIMUL and INVADE. Through

pseudo-code and further details, it is described how the models operate and yield spatial maps with
the spread and entropy. The differences between the models is highlighted. It should be emphasized
that the pseudo-code listings provide simplified versions of the functions as to enable understanding and
readability for the reader, which may occasionally require reduced realism of coding.

Both the spreading model for pathogens as for weeds consist of three functions: spread, uncertainty
and update. The spread function initializes the spatial spreading map and creates the initial infections.
Note that this function exists purely for the sake of simulation, as in a real environment, one would
not “create” any infections, but monitor the existing infections in the field. The uncertainty function
creates a spatial entropy map based on the current spreading map, which is passed on to the planning
module for monitoring purposes. This uncertainty function characterizes the entropy that follows from
the prediction of the spread: based on the disease characteristics (of the given pathogen or weed), there
is knowledge about the expected spread in the next time step. However, this expected spread comes with
a certain standard deviation, which characterizes the variation in spread, caused by internal and external
influences such as weather circumstances, climate, humidity and natural variation in disease spread. The
uncertainty function takes the standard deviation (STD) and spatial mapping of the disease and from
there generates an entropy map where the intensity (grid cell values) indicate the level of uncertainty,
which in turn indicate the locations where monitoring is most wanted. The update function takes the
spreading map of the previous time step and uses the disease characteristics to predict the spreading map
of the next time step.

For simulation purposes, a difference is made between the actual spreading map and the world model
of the robot. In reality, the actual spreading map would not be available, as this characterizes the
real status of the spread of disease in the field; the ground truth. Due to the stochastic nature of the
spreading models, there is a difference between the real and the predicted spreading map. The disease
matrix (pathogenmatrix or weedmatrix) contains the ground truth spreading map, while the estimated
matrix (pathogenmatrix est or weedmatrix est) contains the world model of the robot. The difference
between these maps is created to mimic real circumstances where the world model is incomplete, such
that monitoring remains necessary to have accurate information on the status of spread. As such, the
effectiveness of the planner can be tested realistically.

For further details on the expected value of a grid cell (E(x,y)), see Equation 1. Note that this
equation already takes disease characteristics into account, such as the spreading range, the reproduction
rate, the reproduction fraction (for pathogen) and the density saturation. The stochasticity is introduced
by replacing this expected value by the actual value, which is created by dividing by the mean reproduction
rate and multiplying by the actual reproduction rate (randomly computed from the normal distribution).

39

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

B.1 EPIMUL: Pathogen Spreading Model

The pathogen spreading model is an implementation of the EPIMUL model (Kampmeijer and Zadoks,
1977). It can be observed in the pseudo-code that the spread and update function are very similar, aside
from the fact that the spread function also creates the initial epicentres for the infections.

Listing 5: EPIMUL: spread function pseudo-code

1 de f pathogenspread (weed , p lantmatr ix) :
2 # simula t ing the s t o c h a s t i c r eproduct ion ra t e based on the normal

d i s t r i b u t i o n
3 r ep roduc t i on ra t e = np . random . normal (pathogen . r eproduct i onrate ,

pathogen .STD)
4 # crea t e the i nd i c a t ed amount o f patches
5 f o r patches in range (pathogen . patchnr) :
6 ep i c en t r e = (randint , rand int) # randomly chosen cent r e o f

i n f e c t i o n
7 curspread = randint (pathogen . durat ion) # the cur rent patch i s

spread ing at most s i n c e the g iven i n f e c t i o n durat ion
8 # the pathogen i s spread ing f o r the cur rent spread ing durat ion

from the ep i c en t r e
9 f o r day in range (curspread) :

10 f o r (x , y) in range(−spreadrange , spreadrange) :
11 [x , y] = [x , y] + ep i c en t r e # l o c a t i o n i s the d i s t anc e

from the ep i c en t r e
12 pathogenmatrix [y , x] = E(x , y)* r ep roduc t i on ra t e /pathogen .

r ep roduc t i on ra t e
13 pathogenmatr ix est [y , x] = E(x , y)
14 uncer ta intymatr ix = uncerta intypathogen (plantmatr ix ,

pathogenmatr ix est new , pathogen)
15 re turn pathogenmatrix , pathogenmatr ix est , uncer ta intymatr ix

Listing 6: EPIMUL: uncertainty function pseudo-code

1 de f uncerta intypathogen (plantmatr ix , pathogenmatrix , pathogen) :
2 # loop ing over every po s i t i o n in the f i e l d :
3 f o r (x , y) in range (p lantmatr ix) :
4 uncer ta intymatr ix [y , x] = E(x , y) * pathogen .STD
5 re turn uncer ta intymatr ix

40

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Listing 7: EPIMUL: update function pseudo-code

1 de f pathogenupdate (plantmatr ix , pathogenmatrix , pathogenmatr ix est ,
pathogen) :

2 # simula t ing the s t o c h a s t i c r eproduct ion ra t e based on the normal
d i s t r i b u t i o n

3 r ep roduc t i on ra t e = np . random . normal (pathogen . r eproduct i onrate ,
pathogen .STD)

4 # loop ing over every po s i t i o n in the f i e l d :
5 f o r (x , y) in range (p lantmatr ix) :
6 pathogenmatrix new [y , x] = E(x , y)* r ep roduc t i on ra t e /pathogen .

r ep roduc t i on ra t e
7 pathogenmatr ix est \ new [y , x] = E(x , y)
8 uncerta intymatr ix new = uncerta intyweeds (plantmatr ix ,

pathogenmatr ix est new , pathogen)
9 re turn pathogenmatrix new , pathogenmatr ix est new ,

uncerta intymatr ix new

41

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

B.2 INVADE: Weed Spreading Model

A big difference between the implementations of INVADE and EPIMUL is the application of stochasticity.
As is the case with the pathogen spreading model, the weed spreading model consists of three functions:
creating the spreading map, creating the entropy map and updating at the next time step. However,
where the creation and updating step were very similar in the pathogen spreading model, these show major
differences for weeds. This is due to the fact that originally, INVADE did not contain any stochasticity,
but was completely deterministic in nature. In the weedsspread function (see Listing 8), this feature
was retained. This is due to a great difference in the nature of pathogens and weeds: while pathogens
spread in a more random fashion, weeds tend to form patches, from where they spread. Diverging from
the original INVADE model, stochasticity in the spread is introduced in the updating step (weedsupdate
function, see Listing 10) as a contribution to this thesis in a similar manner as it occurs in EPIMUL.

Listing 8: INVADE: spread function pseudo-code

1 de f weedsspread (weed , p lantmatr ix) :
2 # crea t e the i nd i c a t ed amount o f patches
3 f o r patches in range (weed . patchnr) :
4 ep i c en t r e = (randint , rand int) # randomly chosen cent r e o f

i n f e c t i o n
5 curspread = randint (weed . pa t ch s i z e) # s i z e o f patch i s at most

the g iven weed pa t ch s i z e
6 # the weed i s p laced everywhere with in spread ing d i s t anc e from

the ep i c en t r e
7 f o r (x , y) in range(−curspread , curspread) :
8 [x , y] = [x , y] + ep i c en t r e # l o c a t i o n i s the d i s t anc e from

the ep i c en t r e
9 # i f the weed i s p a r a s i t i c (a t tach ing to crops) and there i s

a plant , dens i ty = high
10 i f weed . p lantat tach and plantmatr ix [y , x]>0:
11 weeddensity = 1 .0
12 # i f the weed i s competing (not at tach ing to crops) and

there i s no plant , dens i ty = high
13 e l i f not weed . p lantat tach and plantmatr ix [y , x]>0:
14 weeddensity = 1 .0
15 # e l s e , dens i ty i s low
16 e l s e :
17 weeddensity = 0 .5
18 weedmatrix [y , x] = weeddensity
19 uncer ta intymatr ix = uncerta intyweeds (plantmatr ix , weedmatrix , weed)
20 re turn weedmatrix , uncer ta intymatr ix

42

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Listing 9: INVADE: uncertainty function pseudo-code

1 de f uncerta intyweeds (plantmatr ix , weedmatrix , weed) :
2 # loop ing over every po s i t i o n in the f i e l d :
3 f o r (x , y) in range (p lantmatr ix) :
4 # i f the weed i s p a r a s i t i c (a t tach ing to crops) and there i s a

plant , f a c t o r = high
5 i f weed . p lantat tach and plantmatr ix [y , x]>0:
6 f a c t o r = 1 .0
7 # i f the weed i s competing (not at tach ing to crops) and there i s

no plant , f a c t o r = high
8 e l i f not weed . p lantat tach and plantmatr ix [y , x]==0:
9 f a c t o r = 1 .0

10 # e l s e , f a c t o r i s low
11 e l s e :
12 f a c t o r = 0 .5
13 uncer ta intymatr ix [y , x] = E(x , y) * weed .STD * f a c t o r
14 re turn uncer ta intymatr ix

Listing 10: INVADE: update function pseudo-code

1 de f weedsupdate (plantmatr ix , weedmatrix , weedmatr ix est , weed) :
2 # simula t ing the s t o c h a s t i c r eproduct ion ra t e based on the normal

d i s t r i b u t i o n
3 r ep roduc t i on ra t e = np . random . normal (weed . r eproduct ionra te , weed .STD)
4 # loop ing over every po s i t i o n in the f i e l d :
5 f o r (x , y) in range (p lantmatr ix) :
6 # i f the weed i s p a r a s i t i c (a t tach ing to crops) and there i s a

plant , f a c t o r = high
7 i f weed . p lantat tach and plantmatr ix [y , x]>0:
8 f a c t o r = 1 .0
9 # i f the weed i s competing (not at tach ing to crops) and there i s

no plant , f a c t o r = high
10 e l i f not weed . p lantat tach and plantmatr ix [y , x]==0:
11 f a c t o r = 1 .0
12 # e l s e , f a c t o r i s low
13 e l s e :
14 f a c t o r = 0 .5
15 weedmatrix new [y , x] = E(x , y)* r ep roduc t i on ra t e /weed .

r ep roduc t i on ra t e
16 weedmatr ix est \ new [y , x] = E(x , y)
17 uncerta intymatr ix new = uncerta intyweeds (plantmatr ix ,

weedmatrix est new , weed)
18 re turn weedmatrix new , weedmatrix est new , uncerta intymatr ix new

43

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

C Appendix C: Rewiring Design Process

C.1 Path-Based Rewiring

The path-based rewiring strategy was applied first. This strategy consists of changing the parent of
the node to the new node, including the whole path leading up to this new node, hence the referral
“path-based”. In other words: the rewiring includes the new node as a complete node, including its cost,
information value and the parent.

RIG deals with an information metric alongside the path cost, in contrast to RRT*. Therefore, the
criteria for rewiring are a lower cost while retaining or improving the gathered information. The steps
followed by the rewiring function can be found in pseudo-code in Listing 11.

Listing 11: Path-Based Rewiring Pseudo-Code

1 de f Rewiring (newnode , nearnodes , s e a r ch r ad i u s) :
2 f o r node in nearnodes : # with in s e a r ch r ad i u s
3 # path : from newnode to node
4 newinfo = newnode . i n f o + in f o pa th
5 newcost = newnode . co s t + cos t path
6 i f (newcost<node . co s t) and (newinfo>=node . i n f o) :
7 node . parent = newnode
8 node . i n f o = newinfo
9 node . co s t = newcost

The steps are also visualized in Figure 17. A node (A, Figure 17a) is rewired, getting the new node
(N) with its path as parent (Figure 17b,c), when this leads to a decrease in cost and no change or an
increase in information value up to the current node (A).

A disadvantage of this method is that many paths “disappear”: the path that originally led to the
node is not further expanded anymore, as the branch of the tree-graph has been relocated. Also, when a
path is initially just a little bit more promising than others, many nodes will then be linked to this path.
Both of these features are very useful in RRT*: in this classical case, the only metric that matters is the
length of the path. A shorter path simply leads to a better result. However, in this project, there has
to be dealt with submodular information. Additionally, it is not the aim to have a path that is as short
as possible, but it is meant to have a path as informative as possible, as long as it remains within the
budget.

The fact that many paths are not expanded further resulted in negative effects of rewiring: applying
no rewiring at all often lead to more informative paths. Rewiring leads to a decrease in the amount of
different paths created and hereby limits the growth of the tree-based structure of paths and thus the
broad exploration of the map. These results have lead to the conclusion that this form of rewiring does
not fit the problem at hand.

44

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

(a) Before rewiring (b) Rewiring node A to new parent
N

(c) Path after rewiring

Figure 17: Rewiring steps for path-based rewiring (blue is original path, green is rewired path)

(a) Before rewiring (b) Rewiring node A to new parent
N

(c) Path after rewiring

Figure 18: Rewiring steps for location-based rewiring (blue is original path, green is rewired path)

(a) Total path after rewiring (b) Total path of child after rewiring

Figure 19: Rewired paths including path back to docking station (blue is original path, green is rewired
path)

45

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

C.2 Location-Based Rewiring

Location-based rewiring was created as a variant to the most commonly used strategy in RRT*. In
this case, the node (A) is rewired using only the location of the new node (N) instead of the entire path
up to the new node, as was the case for path-based rewiring, see Figure 18a,b,c. The criteria are still the
same. The function steps are outlined in Listing 12.

Listing 12: Location-Based Rewiring Pseudo-Code

1 de f Rewiring (newnode , nearnodes , s e a r ch r ad i u s) :
2 f o r node in nearnodes : # with in s e a r ch r ad i u s
3 # path1 : from node . parent . parent to newnode
4 # path2 : from newnode to node
5 newinfo = node . parent . parent . i n f o + in f o pa th1 +

in f o pa th2
6 newcost = node . parent . parent . co s t + cos t path1 +

cos t path2
7 i f (newcost<node . co s t) and (newinfo>=node . i n f o) :
8 node . parent = newnode
9 node . i n f o = newinfo

10 node . co s t = newcost
11 newnode . parent = node . parent . parent

A node (A) is rewired, meaning that the parent of the parent of the node (C, two steps back along
the path) is linked to the new node and the new node (N) is then linked to the node (A). In other words,
the location of the parent of the node (B) is replaced by the location of the new node (N).

This method was found to be less limiting to exploration than the path-based method. This is
because during rewiring, not an entire branch of the tree-structure of paths is cut off, but it is merely
restructured. As such, less paths are removed and it will not occur that when one path is particularly
informative, many nodes will be rewired to the same path. Instead, it may use parts of this path by
changing parent locations.

However, there is still the problem of submodular information: when the information up to the node is
increasing, it may occur that the total information is not increasing (due to crossing of the path). Figure
19a shows an example where the path up to the node may be informative, but the path back to the
docking station largely overlaps that path, thus yielding no new information. When applying rewiring,
the total information may not increase, since the path overlaps itself for a significant part of the path
from the node to the the end location, thereby not gaining new information. Additionally, it may not
be beneficial for the information value of the children of the node, again with the reason of submodular
information and the possibility of overlapping pieces of path. This is illustrated in Figure 19b, which
shows the rewired path (to node A) and an extension to a child node (Z). Here, the total information of
the node (A), including the part back to the end location (not drawn in the figure), is increasing, while
the total information of the path of the child node (Z) might not be increasing due to the large overlap
in the part back to the end location.

For this reason, the total information was taken into account. A recalculating method was introduced.
In the rewiring function and recalculating function, both the information value up the node and the total
information are considered, after which it can be decided which are rewired. Multiple methods were
attempted:

• When the total information at the node is not increasing, no rewiring was applied at all

46

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

• When the total information at the node is not increasing, a copy is made of the non-rewired node
before rewiring, after which the children are connected to the copy or the rewired node, based on
what gives them a higher total information value

• When the total information at the node is not increasing, a copy is made of the non-rewired node
before rewiring. The children are connected to both the copy and the rewired node when their
total information value does not increase with the rewired node

These methods all gave different results in comparison regarding performance, but aside from a few
exceptions, not applying any rewiring at all seemed to give the best results in the end. To understand
this result, the difference between the aim of RRT* and RIG as mentioned before should be kept in
mind: while RRT* simply minimizes point-to-point path length, RIG aims to maximize information gain
within a budget. Additionally, this information metric is submodular. Even when the current children
of all nodes are considered, the rewiring function can not consider the effects of rewiring to future path
segments, since these are still to be created. Therefore, while rewiring may prove beneficial to a node
and all its current children, it may actually lead to worse paths in following iterations where more nodes
are sampled. While certain versions of the rewiring attempts described above seemed to have beneficial
effects, these results were not reproducable and not guaranteed. In other words, rewiring has no guarantee
of improvement since its effect on the information value of future nodes is unpredictable.

The only option to apply this type of rewiring while having the guarantee of improvement is to always
save a copy of every node and every child when rewiring. However, this is infeasible due to memory
constraints. As such, the memory constraints combined with the testing results lead to the conclusion
that also location-based rewiring is deemed unfit for the problem at hand.

C.3 Hindsight rewiring

This section described more design features and argumentation of the hindsight rewiring function. It
includes the comparison to location-based rewiring and an explanation of the paths on which rewiring is
applied. For the general explanation of hindsight rewiring, see Section 5.4.

From Listing 2, it can be concluded that the rewiring function in itself is very similar to the procedure
for location-based rewiring. Only the selection of the node to be rewired (“node”) and the node to which
this node is rewired (“nearnode”) has slightly changed. Instead of considering only a single node to be
rewired, rewiring in hindsight considers every node up to the final node at the end of the path to be
rewired. The Recalculate function recomputes the cost and information values of all nodes further along
the path, which allows to verify improvement along the full path.

This function is applied to a number of paths, based on the total information value. The reason for
including multiple paths instead of only the single best is that rewiring might lead to such improvements
that paths might overtake each other in information value. The reason for not including all paths is a
question of balance: rewiring takes up run-time and paths with a much lower information value than the
best path are unlikely to become the best path after rewiring. The number of paths that are rewired was
determined through tests on the amount of improvement caused by rewiring. In independent executions
with diverse maps, there is a lot of difference in the effect of rewiring; there were observations of increase
in information value varying between 10-90%. However, within one execution of the algorithm, it is
observed that the range of increase through rewiring is quite stable in different nodes. Mostly the range
of increase is within 20% difference, for instance when all nodes increase around 40-60% through rewiring.
Therefore, it was chosen to select all the nodes that have a total information value that lies within 20%
of the best node (before rewiring). Using this measure, there is the highest probability of including all
nodes that could become the best node after rewiring, without including an unnecessarily large amount
of nodes. When the information value is below the threshold, the chances are slim that it will improve
so drastically that it will be higher than the information value of the best node after rewiring.

47

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

D Appendix D: Structured Steering Design Process
The approach to find a location on this path from the nearest node to the sampled location within

the step length distance was also altered throughout the project. This step is referred to as the Steer
function in Listing 1. First, it was found by starting at the sampled location and then in steps of a
certain length going towards the nearest node until the distance was within the step length, thus yielding
a location somewhere along the path from the node to the nearest node. However, this approach has
a high computational load, as it needs to calculate the new distance at every step, and additionally it
may not find the furthest point within the step length from the nearest node in case the step size is
bigger than 1. For this reason, another approach was implemented which is based on principles of linear
optimization. Sections are taken where the distance is evaluated. The sections consist of parts of the
path, moving from the new node towards the nearest node. When the end section turns out to be too
distant still, the distance to the next section end is calculated. If the end of the section is within the step
length, each grid point is evaluated from that section end towards the new node, until the step length
is reached. As such, large parts can be skipped when finding a location within the step length and the
furthest possible grid point on the path is selected. This approach reduces the computational load of
sampling, but still requires a number of computations.

Later, a new approach was developed that coincided with the introduction of using an A* algorithm
to compute the distance between points (see Section 5.10). In essence, this approach still largely uses
the same principles: moving backward in sections, then moving forward in single steps.

48

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

E Appendix E: Computed Paths of Multi-Cycle Simulations
The following figures show the final paths of each day throughout a 12-day (cycle) simulation.

E.1 Informed planning

As explained in Section 8.2.1, this additional simulation visualizes even more clearly how the informed
planner leads to a more accurate world model of the robot. These conclusions can be made by comparing
each of the world models with the ground truth spreading model (Figure 21) and by paying attention to
the paths themselves, which are more focused on the areas of spread for informed planner.

(a) Informed setting

(b) Uninformed setting

Figure 20: Final paths for 12-day simulation overlaid on the world model map

49

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Figure 21: Ground truth spreading map for 12-day simulation

50

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

E.2 Horizon planning

The simulation is used for evaluation of the horizon planning aspect. As such, for both structured
and unstructured fields, the simulation is executed once with the base setting (single path planning) and
once with the horizon planning setting.

Figure 22: Single path in field without rows

Figure 23: Horizon path in field without rows

51

Informative Path Planning for the Monitoring of Pathogens and Weeds H. van Esch

Figure 24: Single path in field with rows

Figure 25: Horizon path in field with rows

52

	Introduction
	Background
	Context of the Project
	Literature Review

	Architecture
	Spreading Module
	Path Planning Module
	Rapidly Exploring Information Gathering Algorithm
	Goal Location
	Information Metric
	Rewiring
	Pruning
	Field Shapes and Obstacles
	Discrete Sampling
	Stopping Criteria
	Kinematic Constraints
	Structured Fields
	Horizon Planning
	Specified Variables

	Monitoring Module
	Updating the World Model
	Results
	Simulation Experiments
	Findings

	Conclusion and Discussion
	References
	Appendix A: Variable Overview
	Appendix B: Spreading Models
	EPIMUL: Pathogen Spreading Model
	INVADE: Weed Spreading Model

	Appendix C: Rewiring Design Process
	Path-Based Rewiring
	Location-Based Rewiring
	Hindsight rewiring

	Appendix D: Structured Steering Design Process
	Appendix E: Computed Paths of Multi-Cycle Simulations
	Informed planning
	Horizon planning

