455 research outputs found

    BIOACTIVITIES OF THE THAI MEDICINAL AND EDIBLE PLANTS C. CAJAN, M. CITRIFOLIA AND O. AMERICANUM

    Get PDF
    Objective: Inflammation and oxidative stress are closely related and play a role in various diseases. If an infectious component plays a role, an antibacterial effect is of advantage. Thus, natural remedies which combine different bioactivities have a broader range of application.Methods: Here we elucidate the anti-inflammatory, antioxidant and antibacterial effects of three edible and traditionally used Thai plants including leaves of Cajanus cajan, Morinda citrifolia and Ocimum americanum.Results: The extracts exerted significant anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophages. C. cajan extract shows a broad spectrum of antibacterial activity against Gram positive and negative, aerobic and anaerobic bacteria, whereas M. citrifolia and O. americanum possess antibacterial activity only against anaerobic bacteria. Extracts of all three plants showed significant antioxidant effects.Conclusion: The three plants are potential herbal remedies or supplements for functional food for the treatment and prevention of inflammation, oxidative imbalance, and bacterial infections or associated diseases.Â

    ANTI-INFLAMMATORY, ANTIBACTERIAL, AND ANTIOXIDANT ACTIVITIES OF THAI MEDICINAL PLANTS

    Get PDF
    Objective: Acacia farnesiana (L.) Willd, Senna alata (L.) Roxb., Sesbania grandiflora (L.) Pers., Syzygium cumini (L.) Skeels and Tabernaemontana divaricate (L.) R. Br. ex Roem. & Schult. are used in Thai traditional remedies to treat various disorders ranging from fever and pain to inflammation or microbial infections. However, there is a lack of scientific data on some of the biological activities. Methods: The present study was designed to compare the antibacterial, antioxidant, and anti-inflammatory effects of the five plants. Ethanolic extracts of A. farnesiana, S. alata, S. grandiflora, S. cumini, T. divaricata were firstly compared for antioxidant activity using free radical scavenging of 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power tests. Antibacterial activity indicated by minimum bactericidal concentration (MBC) was determined using broth and agar dilution tests against aerobic and anaerobic pathogenic bacterial strains. The anti-inflammatory activity was evaluated in vitro using a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage model.Results: All the tested extracts exerted antioxidant, antibacterial and anti-inflammatory effects. S. cumini and S. grandiflora extracts showed the highest free radical scavenging activities. S. cumini extract showed the highest activity against Staphylococcus aureus, S. epidermidis, and Corynebacterium diphtheriae. All extracts exerted anti-inflammatory activity as indicated by a reduction of interleukin (IL)-6 secretion and/or tumor necrosis factor (TNF)-α production.Conclusion: Taken together, these findings suggest that the tested plants can be developed as effective herbal remedies for the treatment and prevention of inflammation or associated diseases as well as against bacterial infections.Â

    Non-clasical Nucleation in Supercooled Nickel

    Full text link
    The dynamics of homogeneous nucleation and growth of crystalline nickel from the super-cooled melt is examined during rapid quenching using molecular dynamics and a modified embedded atom method potential. The character of the critical nuclei of the crystallization transition is examined using common neighbor analysis and visualization. At nucleation the saddle point droplet consists of randomly stacked planar structures with an in plane triangular order. These results are consistent with previous theoretical results that predict that the nucleation process in some metals is non-classical due to the presence of long-range forces and a spinodal.Comment: 4 pages, 5 figure

    Methods to Standardize a Multicenter Acupuncture Trial Protocol to Reduce Aromatase Inhibitor-related Joint Symptoms in Breast Cancer Patients

    Get PDF
    AbstractRobust methods are needed to efficiently conduct large, multisite, randomized, controlled clinical trials of acupuncture protocols. The Southwest Oncology Group (SWOG) S1200 trial is a randomized, controlled (i.e., sham-controlled and waitlist-controlled) trial of a standardized acupuncture protocol for treating aromatase inhibitor (AI)-associated arthralgias in early-stage breast cancer patients (n = 228). The primary objective of this study was to determine whether true acupuncture administered twice weekly for 6 weeks, as compared to sham acupuncture or a waitlist control, reduced AI-associated joint pain at 6 weeks as assessed by patient reports. The study was conducted at 11 institutions across the United States. The true acupuncture protocol was developed using a consensus-based process. The true acupuncture and the sham acupuncture protocols each consisted of 12 sessions administered for 6 weeks, followed by one weekly session for 6 weeks. The true acupuncture protocol used standardized protocol points, and the standardized acupoints were tailored to a patient's joint symptoms. The similarly standardized sham acupuncture protocol utilized superficial needling of nonacupoints. Standardized methods were developed to train and monitor acupuncturists and included online and in-person training, study manuals, monthly phone calls, and remote quality assurance monitoring throughout the study period. The research staff similarly received online and in-person training and monthly phone calls

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph)

    Detection of peptide-based nanoparticles in blood plasma by ELISA

    Get PDF
    Aims: The aim of the current study was to develop a method to detect peptide-linked nanoparticles in blood plasma. Materials & Methods: A convenient enzyme linked immunosorbent assay (ELISA) was developed for the detection of peptides functionalized with biotin and fluorescein groups. As a proof of principle, polymerized pentafluorophenyl methacrylate nanoparticles linked to biotin-carboxyfluorescein labeled peptides were intravenously injected in Wistar rats. Serial blood plasma samples were analyzed by ELISA and by liquid chromatography mass spectrometry (LC/MS) technology. Results: The ELISA based method for the detection of FITC labeled peptides had a detection limit of 1 ng/mL. We were able to accurately measure peptides bound to pentafluorophenyl meth-acrylate nanoparticles in blood plasma of rats, and similar results were obtained by LC/MS. Conclusions: We detected FITC-labeled peptides on pentafluorophenyl methacrylate nanoparticles after injection in vivo. This method can be extended to detect nanoparticles with different chemical compositions

    The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes

    Get PDF
    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph )

    Cancer Induces Cardiomyocyte Remodeling and Hypoinnervation in the Left Ventricle of the Mouse Heart

    Get PDF
    Cancer is often associated with cachexia, cardiovascular symptoms and autonomic dysregulation. We tested whether extracardiac cancer directly affects the innervation of left ventricular myocardium. Mice injected with Lewis lung carcinoma cells (tumor group, TG) or PBS (control group, CG) were analyzed after 21 days. Cardiac function (echocardiography), serum levels of TNF-α and Il-6 (ELISA), structural alterations of cardiomyocytes and their innervation (design-based stereology) and levels of innervation-related mRNA (quantitative RT-PCR) were analysed. The groups did not differ in various functional parameters. Serum levels of TNF-α and Il-6 were elevated in TG. The total length of axons in the left ventricle was reduced. The number of dense core vesicles per axon profile was reduced. Decreased myofibrillar volume, increased sarcoplasmic volume and increased volume of lipid droplets were indicative of metabolic alterations of TG cardiomyocytes. In the heart, the mRNA level of nerve growth factor was reduced whereas that of β1-adrenergic receptor was unchanged in TG. In the stellate ganglion of TG, mRNA levels of nerve growth factor and neuropeptide Y were decreased and that of tyrosine hydroxylase was increased. In summary, cancer induces a systemic pro-inflammatory state, a significant reduction in myocardial innervation and a catabolic phenotype of cardiomyocytes in the mouse. Reduced expression of nerve growth factor may account for the reduced myocardial innervation
    • …
    corecore