76 research outputs found

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Global polarization of Λ and Λ hyperons in Pb-Pb collisions at √ s N N = 2.76 and 5.02 TeV

    No full text
    The global polarization of Λ and Λ hyperons is measured for Pb-Pb collisions at √sNN = 2.76 and 5.02 TeV recorded with the ALICE at the Large Hadron Collider (LHC). The results are reported differentially as a function of collision centrality and hyperon’s transverse momentum (pT ) for the range of centrality 5–50%, 0.5 < pT < 5 GeV/c, and rapidity |y| < 0.5. The hyperon global polarization averaged for Pb-Pb collisions at √sNN = 2.76 and 5.02 TeV is found to be consistent with zero, ⟹PH⟩(%)≈0.01±0.06(stat.)±0.03(syst.) in the collision centrality range 15–50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at the Relativistic Heavy Ion Collider, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%

    Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The production rates and the transverse momentum distribution of strange hadrons at mid-rapidity (∣y∣<0.5\left| y\right| < 0.5) are measured in proton-proton collisions at s\sqrt{s} = 13 TeV as a function of the charged particle multiplicity, using the ALICE detector at the LHC. The production rates of KS0\mathrm{K}^{0}_{S}, Λ\Lambda , Ξ\Xi , and Ω\Omega increase with the multiplicity faster than what is reported for inclusive charged particles. The increase is found to be more pronounced for hadrons with a larger strangeness content. Possible auto-correlations between the charged particles and the strange hadrons are evaluated by measuring the event-activity with charged particle multiplicity estimators covering different pseudorapidity regions. When comparing to lower energy results, the yields of strange hadrons are found to depend only on the mid-rapidity charged particle multiplicity. Several features of the data are reproduced qualitatively by general purpose QCD Monte Carlo models that take into account the effect of densely-packed QCD strings in high multiplicity collisions. However, none of the tested models reproduce the data quantitatively. This work corroborates and extends the ALICE findings on strangeness production in proton-proton collisions at 7 TeV

    Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pppp collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    International audienceMid-rapidity production of π±\pi^{\pm}, K±\rm{K}^{\pm} and (pˉ\bar{\rm{p}})p measured by the ALICE experiment at the LHC, in Pb-Pb and inelastic pp collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV, is presented. The invariant yields are measured over a wide transverse momentum (pTp_{\rm{T}}) range from hundreds of MeV/cc up to 20 GeV/cc. The results in Pb-Pb collisions are presented as a function of the collision centrality, in the range 0−-90%. The comparison of the pTp_{\rm{T}}-integrated particle ratios, i.e. proton-to-pion (p/π\pi) and kaon-to-pion (K/π\pi) ratios, with similar measurements in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV show no significant energy dependence. Blast-wave fits of the pTp_{\rm{T}} spectra indicate that in the most central collisions radial flow is slightly larger at 5.02 TeV with respect to 2.76 TeV. Particle ratios (p/π\pi, K/π\pi) as a function of pTp_{\rm{T}} show pronounced maxima at pTp_{\rm{T}} ≈\approx 3 GeV/cc in central Pb-Pb collisions. At high pTp_{\rm{T}}, particle ratios at 5.02 TeV are similar to those measured in pp collisions at the same energy and in Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. Using the pp reference spectra measured at the same collision energy of 5.02 TeV, the nuclear modification factors for the different particle species are derived. Within uncertainties, the nuclear modification factor is particle species independent for high pTp_{\rm{T}} and compatible with measurements at sNN\sqrt{s_{\rm{NN}}} = 2.76 TeV. The results are compared to state-of-the-art model calculations, which are found to describe the observed trends satisfactorily

    Study of the Λ\Lambda-Λ\Lambda interaction with femtoscopy correlations in pp and p-Pb collisions at the LHCC

    No full text
    This work presents new constraints on the existence and the binding energy of a possible Λ\Lambda-Λ\Lambda bound state, the H-dibaryon, derived from Λ\Lambda-Λ\Lambda femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at s=13\sqrt{s}=13 TeV and p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, combined with previously published results from pp collisions at s=7\sqrt{s}=7 TeV. The Λ\Lambda-Λ\Lambda scattering parameter space, spanned by the inverse scattering length f0−1f_0^{-1} and the effective range d0d_0, is constrained by comparing the measured Λ\Lambda-Λ\Lambda correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the Λ\Lambda-Λ\Lambda interaction. The region in the (f0−1,d0)(f_0^{-1},d_0) plane which would accommodate a Λ\Lambda-Λ\Lambda bound state is substantially restricted compared to previous studies. The binding energy of the possible Λ\Lambda-Λ\Lambda bound state is estimated within an effective-range expansion approach and is found to be BΛΛ=3.2−2.4+1.6(stat)−1.0+1.8(syst)B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\rm{(stat)}^{+1.8}_{-1.0}\rm{(syst)} MeV.This work presents new constraints on the existence and the binding energy of a possible Λ–Λ bound state, the H-dibaryon, derived from Λ–Λ femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in Image 1 collisions at s=13 TeV and p–Pb collisions at sNN=5.02 TeV, combined with previously published results from Image 1 collisions at s=7 TeV. The Λ–Λ scattering parameter space, spanned by the inverse scattering length f0−1 and the effective range d0 , is constrained by comparing the measured Λ–Λ correlation function with calculations obtained within the LednickĂœ model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the Λ–Λ interaction. The region in the (f0−1,d0) plane which would accommodate a Λ–Λ bound state is substantially restricted compared to previous studies. The binding energy of the possible Λ–Λ bound state is estimated within an effective-range expansion approach and is found to be BΛΛ=3.2−2.4+1.6(stat)−1.0+1.8(syst) MeV.This work presents new constraints on the existence and the binding energy of a possible Λ\Lambda-Λ\Lambda bound state, the H-dibaryon, derived from Λ\Lambda-Λ\Lambda femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at s=13\sqrt{s}=13 TeV and p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, combined with previously published results from p-Pb collisions at s=7\sqrt{s}=7 TeV. The Λ\Lambda-Λ\Lambda scattering parameter space, spanned by the inverse scattering length f0−1f_0^{-1} and the effective range d0d_0, is constrained by comparing the measured Λ\Lambda-Λ\Lambda correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the Λ\Lambda-Λ\Lambda interaction. The region in the (f0−1,d0)(f_0^{-1},d_0) plane which would accommodate a Λ\Lambda-Λ\Lambda bound state is substantially restricted compared to previous studies. The binding energy of the possible Λ\Lambda-Λ\Lambda bound state is estimated within an effective-range expansion approach and is found to be BΛΛ=3.2−2.4+1.6(stat)−1.0+1.8(syst)B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\mathrm{(stat)}^{+1.8}_{-1.0}\mathrm{(syst)} MeV

    Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations in pppp, p−Pbp-Pb, Xe-Xe, and Pb-Pb Collisions at the LHC

    No full text
    International audienceMeasurements of anisotropic flow coefficients (vn) and their cross-correlations using two- and multiparticle cumulant methods are reported in collisions of pp at s=13  TeV, p-Pb at a center-of-mass energy per nucleon pair sNN=5.02  TeV, Xe-Xe at sNN=5.44  TeV, and Pb-Pb at sNN=5.02  TeV recorded with the ALICE detector. The multiplicity dependence of vn is studied in a very wide range from 20 to 3000 particles produced in the midrapidity region |η|v3>v4 is found in pp and p-Pb collisions, similar to that seen in large collision systems, while a weak v2 multiplicity dependence is observed relative to nucleus-nucleus collisions in the same multiplicity range. Using a novel subevent method, v2 measured with four-particle cumulants is found to be compatible with that from six-particle cumulants in pp and p-Pb collisions. The magnitude of the correlation between vn2 and vm2, evaluated with the symmetric cumulants SC(m,n) is observed to be positive at all multiplicities for v2 and v4, while for v2 and v3 it is negative and changes sign for multiplicities below 100, which may indicate a different vn fluctuation pattern in this multiplicity range. The observed long-range multiparticle azimuthal correlations in high multiplicity pp and p-Pb collisions can neither be described by pythia 8 nor by impact-parameter-Glasma, music, and ultrarelativistic quantum molecular dynamics model calculations, and hence, provide new insights into the understanding of collective effects in small collision systems

    Measurement of prompt D0^{0}, D+^{+}, D∗+^{*+}, and DS+ {\mathrm{D}}_{\mathrm{S}}^{+} production in p–Pb collisions at sNN \sqrt{{\mathrm{s}}_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe measurement of the production of prompt D0^{0}, D+^{+}, D∗+^{*+}, and DS+ {\mathrm{D}}_{\mathrm{S}}^{+} mesons in proton–lead (p–Pb) collisions at the centre-of-mass energy per nucleon pair of sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV, with an integrated luminosity of 292 ± 11 ÎŒb−1^{−1}, are reported. Differential production cross sections are measured at mid-rapidity (−0.96 < ycms_{cms}< 0.04) as a function of transverse momentum (pT_{T}) in the intervals 0 < pT_{T}< 36 GeV/c for D0^{0}, 1 < pT_{T}< 36 GeV/c for D+^{+} and D∗+^{*+}, and 2 < pT_{T}< 24 GeV/c for D+^{+} mesons. For each species, the nuclear modification factor RpPb_{pPb} is calculated as a function of pT_{T} using a proton-proton (pp) ref- erence measured at the same collision energy. The results are compatible with unity in the whole pT_{T} range. The average of the non-strange D mesons RpPb_{pPb} is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The pT_{T} dependence of the D0^{0}, D+^{+}, and D∗+^{*+} nuclear modification factors is also reported in the interval 1 < pT_{T}< 36 GeV/c as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the pT_{T}-differential cross sections of D0^{0}, D+^{+}, D∗+^{*+}, and DS+ {\mathrm{D}}_{\mathrm{S}}^{+} mesons are also reported. The DS+ {\mathrm{D}}_{\mathrm{S}}^{+} and D+^{+} yields are compared as a function of the charged-particle multiplicity for several pT_{T} intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties

    Λ3H^3_\Lambda\mathrm{H} and Λˉ3H‟^3_{\bar{\Lambda}}\mathrm{\overline{H}} lifetime measurement in Pb-Pb collisions at sNN=\sqrt{s_{\mathrm{NN}}} = 5.02 TeV via two-body decay

    No full text
    International audienceAn improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb–Pb collisions at sNN=5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the d N /d( ct ) spectrum. The measured value, τ=242−38+34 (stat.) ± 17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle
    • 

    corecore