38 research outputs found

    Les effets directs et semi-directs des aérosols sur le climat régional du sud de l'Afrique pendant la saison d'hiver austral

    Get PDF
    Le modèle climatique régional RegCM3 est utilisépour examiner les effets direct et semi-direct des aérosols sur le climat du sud de l'Afrique pendant l'hiver austral (juin-septembre). La sensibilité des effets simulés aux différents inventaires d'émissions de combustion de biomasse et aux différentes conditions aux limites est evaluer, afin d'estimer l'incertitude associée à ces paramètres. La sensibilité aux conditions aux limites derivées de réanalyses est modeste, mais le forçage radiatif des aérosols varie linéairement en réponse au différents inventaires testées jusqu'à un facteur deux. Le forçage radiatif est toujours négatif, alors que le forçage radiatif au sommet de l'atmosphère est negatif sur la plupart du domaine sauf au-dessus les régions de savane ou le contenu atmosphérique d'aérosols est élevée. Même si la magnitude du forçage radiatif varie, les simulations pour la période présente montrent des impacts climatiques comparables. La température de surface diminue sur la plupart de la région, ce signale qui réduit le biais du modèle sur l'ouest du sous-continent. L'échauffement en altitude est lié à la charge d'aérosols absorbants et cela, en combinaison avec la réduction de température en surface, mène à la stabilisation de la basse atmosphère. Toutefois, dans la moyenne troposphère de la zone équatoriale (entre 8°N et 5°S) cet échauffement à pour résultat un effet de 'pompe à chaleur en altitude'. Cet effet augmente la convection, les précipitations et l'humidité du sol, en accélérant le cycle hydrologique dans cette région. Une étude de la variabilité interannuelle des effets climatiques des aérosols montre que les changements des précipitations en moyenne saisonnière sont plus variables d'un an à l'autre que les changements de température de surface. Par contre, malgré des différences significatives entre les conditions synoptiques, la variabilité synoptique des impacts climatiques des aérosols est faible.The regional climate model RegCM3 is used to investigate the direct and semi-direct aerosol effects on the southern African climate during the austral winter season (June-September). The sensitivity of simulated aerosol-climate effects to different biomass burning inventories, boundary conditions and sea surface temperature (SST) feedbacks is tested to assess the range of uncertainty associated with these parameters. Little sensitivity to boundary forcing is found, while the aerosol radiative forcing (RF) varies approximately linearly by up to a factor of two, in response to the factor of two difference between emissions inventories. In all cases the surface RF is negative, while the top-to-atmosphere RF is negative over most of the domain but positive over high-albedo savannah regions where aerosol loading is high. Sensitivity to SST feedbacks is negligible in RegCM3. Although the magnitude of simulated RF varies, all simulations show similar aerosol-climate impacts. Surface temperature decreases over most of the subcontinent, a signal which acts to reduce model bias over the western half of the region. The absorbing nature of the simulated aerosol burden results in heating at altitude, which, in combination with the surface cooling, serves to increase stability in the lower atmosphere over most of the subcontinent. In the middle troposphere, however, this warming induces an elevated heat-pump effect in the equatorial regions between approximately 8°N and 5°S. This enhances convection, precipitation as well as soil moisture, effectively spinning-up the hydrological cycle in the tropics. An investigation of the interannual variability of the simulated aerosol radiative impacts showed that seasonal average precipitation changes varied more from year to year than aerosol-induced surface temperature changes. In contrast, despite significant differences between synoptic conditions, there is little synoptic-scale variability of aerosol-climate impacts

    Direct and semi-direct aerosol effects on the southern African regional climate during the austral winter season

    Get PDF
    Includes abstract.Includes bibliographical references (p. 195-219).The regional climate model RegCM3 is used to investigate the direct and semi-direct aerosol effects on the southern African climate during the austral winter season (June-September). The sensitivity of simulated aerosol-climate effects to different biomass burning inventories, boundary conditions and sea surface temperature (SST) feedbacks is tested to assess the range of uncertainty associated with these parameters

    Predictibilidad del clima en la estratosfera

    Get PDF

    Real-time pollen monitoring using digital holography

    Get PDF
    We present the first validation of the SwisensPoleno, currently the only operational automatic pollen mon-itoring system based on digital holography. The device pro-vides in-flight images of all coarse aerosols, and here wedevelop a two-step classification algorithm that uses theseimages to identify a range of pollen taxa. Deterministiccriteria based on the shape of the particle are applied toinitially distinguish between intact pollen grains and othercoarse particulate matter. This first level of discriminationidentifies pollen with an accuracy of 96 %. Thereafter, in-dividual pollen taxa are recognized using supervised learn-ing techniques. The algorithm is trained using data obtainedby inserting known pollen types into the device, and out ofeight pollen taxa six can be identified with an accuracy ofabove 90 %. In addition to the ability to correctly identifyaerosols, an automatic pollen monitoring system needs to beable to correctly determine particle concentrations. To fur-ther verify the device, controlled chamber experiments us-ing polystyrene latex beads were performed. This providedreference aerosols with traceable particle size and numberconcentrations in order to ensure particle size and samplingvolume were correctly characterized

    Atmospheric isoprene measurements reveal larger-than-expected Southern Ocean emissions

    Get PDF
    Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol formation. Marine fluxes are poorly constrained due to the paucity of long-term measurements; this in turn limits our understanding of isoprene cycling in the ocean. Here we present the analysis of isoprene concentrations in the atmosphere measured across the Southern Ocean over 4 months in the summertime. Some of the highest concentrations ( >500 ppt) originated from the marginal ice zone in the Ross and Amundsen seas, indicating the marginal ice zone is a significant source of isoprene at high latitudes. Using the United Kingdom Earth System Model we show that current estimates of sea-to-air isoprene fluxes underestimate observed isoprene by a factor >20. A daytime source of isoprene is required to reconcile models with observations. The model presented here suggests such an increase in isoprene emissions would lead to >8% decrease in the hydroxyl radical in regions of the Southern Ocean, with implications for our understanding of atmospheric oxidation and composition in remote environments, often used as proxies for the pre-industrial atmosphere.V.F. and N.R.P.H. were supported in the analysis of the data by UKRI NERC project Southern Ocean Clouds (NE/T006366/1)

    Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH 3 CCl 3 Alternatives

    Get PDF
    An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH₃CCl₃) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom‐up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long‐lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH‐SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long‐term trend and emissions derived from the measured hemispheric gradient, the combination of HFC‐32 (CH₂F₂), HFC‐134a (CH₂FCF₃, HFC‐152a (CH₃CHF₂), and HCFC‐22 (CHClF₂), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF

    An update on ozone profile trends for the period 2000 to 2016

    Get PDF
    Ozone profile trends over the period 2000 to 2016 from several merged satellite ozone data sets and from ground-based data measured by four techniques at stations of the Network for the Detection of Atmospheric Composition Change indicate significant ozone increases in the upper stratosphere, between 35 and 48 km altitude (5 and 1 hPa). Near 2 hPa (42 km), ozone has been increasing by about 1.5 % per decade in the tropics (20° S to 20° N), and by 2 to 2.5 % per decade in the 35 to 60° latitude bands of both hemispheres. At levels below 35 km (5 hPa), 2000 to 2016 ozone trends are smaller and not statistically significant. The observed trend profiles are consistent with expectations from chemistry climate model simulations. This study confirms positive trends of upper stratospheric ozone already reported, e.g., in the WMO/UNEP Ozone Assessment 2014 or by Harris et al. (2015). Compared to those studies, three to four additional years of observations, updated and improved data sets with reduced drift, and the fact that nearly all individual data sets indicate ozone increase in the upper stratosphere, all give enhanced confidence. Uncertainties have been reduced, for example for the trend near 2 hPa in the 35 to 60° latitude bands from about ±5 % (2σ) in Harris et al. (2015) to less than ±2 % (2σ). Nevertheless, a thorough analysis of possible drifts and differences between various data sources is still required, as is a detailed attribution of the observed increases to declining ozone-depleting substances and to stratospheric cooling. Ongoing quality observations from multiple independent platforms are key for verifying that recovery of the ozone layer continues as expected

    Direct and semi-direct aerosol effects on the southern African regional climate during the austral winter season

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocTOULOUSE-Observ. Midi Pyréné (315552299) / SudocSudocFranceF

    Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    No full text
    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a "super-recovery" of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due to the unique length of the observational record. This paper presents the evolution of the ozone layer, the history of international ozone research, and discusses the justification for the measurements in the past, present and into future.ISSN:1680-7375ISSN:1680-736
    corecore