189 research outputs found

    Plastic responses of some life history traits and cellular components of body size in Aphidius ervi as related to the age of its host Acyrthosiphon pisum

    Get PDF
    Phenotypic plasticity of wing size and shape has been evaluated in Aphidius ervi developing in its host, Acyrthosiphon pisum, parasitized at seven different ages. The parasitoid wing size was used as an estimator of both whole body size and its cellular composition. No size difference was observed in A. ervi adults emerged from aphids 1, 2 or 3 days old at parasitization. Body size then increased in A. ervi emerged from hosts older at parasitization. Body size values as related to host age at parasitization were achieved by adjusting developmental time, developmental rate or both. Parasitoids of similar size, but developed in hosts parasitized at different ages, had different wing cellular composition, while the increase of parasitoid body size was related to a general increase in both cell area and cell number. These results seem to suggest a trade-off between adult size and developmental time, at least for parasitoids developed at the two extremes of host ages at parasitization, and that A. ervi can reach the same adult size via different trajectories, adapting its ontogenetic processes. Wing shape was typical for all the different parasitoid classes considered and differed strongly between males and females, independent of their size. Parasitoid males (haploids) and females (diploids) did not differ in either cell area or cell number, suggesting a possible sex-determined dosage compensation in somatic tissue endoreplication

    Prey abundance and intraguild predation between Adalia bipunctata (Coleoptera: Coccinellidae) and Macrolophus pygmaeus (Hemiptera: Miridae)

    Get PDF
    Macrolophus pygmaeus Rambur (Hemiptera: Miridae) and Adalia bipunctata (L.) (Coleoptera: Coccinellidae) are two predatory insects commonly used as biological control agents. In order to determine the incidence with which both species attack and eat each other [Intraguild predation (IGP)], the direction and symmetry of the interaction between A. bipunctata and M. pygmaeus were characterized. In addition, whether the intensity of IGP between these two predators increased when the number of extraguild prey Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) decreased, was also determined. Unidirectional sensu stricto IGP between A. bipunctata and M. pygmaeus was recorded: when IGP occurred, A. bipunctata was always the IG predator that killed and ate M. pygmaeus, the IG prey. However, the intensity of IGP was a function of the abundance of the extraguild prey, A. pisum, since IGP increased when the number of extraguild prey decreased. These results are discussed in terms of theoretical models that predict stability and the outcome of using natural enemies to control pests

    Plastic responses of some life history traits and cellular components of body size in Aphidius ervi as related to the age of its host Acyrthosiphon pisum

    Get PDF
    Phenotypic plasticity of wing size and shape has been evaluated in Aphidius ervi developing in its host, Acyrthosiphon pisum, parasitized at seven different ages. The parasitoid wing size was used as an estimator of both whole body size and its cellular composition. No size difference was observed in A. ervi adults emerged from aphids 1, 2 or 3 days old at parasitization. Body size then increased in A. ervi emerged from hosts older at parasitization. Body size values as related to host age at parasitization were achieved by adjusting developmental time, developmental rate or both. Parasitoids of similar size, but developed in hosts parasitized at different ages, had different wing cellular composition, while the increase of parasitoid body size was related to a general increase in both cell area and cell number. These results seem to suggest a trade-off between adult size and developmental time, at least for parasitoids developed at the two extremes of host ages at parasitization, and that A. ervi can reach the same adult size via different trajectories, adapting its ontogenetic processes. Wing shape was typical for all the different parasitoid classes considered and differed strongly between males and females, independent of their size. Parasitoid males (haploids) and females (diploids) did not differ in either cell area or cell number, suggesting a possible sex-determined dosage compensation in somatic tissue endoreplication

    Metagenomic Analysis of Bacterial Community Structure and Dynamics of a Digestate and a More Stabilized Digestate-Derived Compost from Agricultural Waste

    Get PDF
    Recycling of different products and waste materials plays a crucial role in circular economy, where the anaerobic digestion (AD) constitutes an important pillar since it reuses nutrients in the form of organic fertilizers. Knowledge about the digestate and compost microbial community structure and its variations over time is important. The aim of the current study was to investigate the microbiome of a slurry cow digestate produced on a farm (ADG) and of a more stabilized digestate-derived compost (DdC) in order to ascertain their potential uses as organic amendments in agriculture. The results from this study, based on a partial fragment of 16S bacterial rRNA NGS sequencing, showed that there is a greater microbial diversity in the DdC originated from agricultural waste compared to the ADG. Overall, the existence of a higher microbial diversity in the DdC was confirmed by an elevated number (1115) of OTUs identified, compared with the ADG (494 OTUs identified). In the DdC, 74 bacterial orders and 125 families were identified, whereas 27 bacterial orders and 54 families were identified in the ADG. Shannon diversity and Chao1 richness indexes were higher in DdC samples compared to ADG ones (Shannon: 3.014 and 1.573, Chao1: 68 and 24.75; p< 0.001 in both cases). A possible association between the microbiome composition at different stages of composting process and the role that these microorganisms may have on the quality of the compost-like substrate and its future uses is also discussed

    Effetti diretti di shock termici su due specie afidiche (Acyrthosiphon pisum e Macrosiphum euphorbiae) e sull’imenottero parassitoide Aphidius ervi

    Get PDF
    La capacità degli organismi viventi di rispondere ai cambiamenti climatici e gli aspetti genetici interessati a queste risposte hanno enormi implicazioni pratiche in settori come la selvicoltura e l’agricoltura. Nel presente studio sono stati indagati gli effetti diretti di uno stress termico (esposizione per 30 minuti alla temperatura di 40°C) sulla sopravvivenza di mummie e parassitoidi adulti di Aphidius ervi e sulla sopravvivenza e fecondità in due distinte specie di afidi (Acyrthosiphon pisum e Macrosiphum euphorbiae, entrambe ospiti di A. ervi) La sopravvivenza di M. euphorbiae in seguito allo shock termico applicato è del tutto simile a quella di A. pisum (80% circa). A 24 ore dal trattamento, la capacità riproduttiva degli afidi sopravvissuti risulta essere simile al controllo per A. pisum, mentre in M. euphorbiae è ridotta del 60% circa. A 48 ore dallo shock termico non si registrano differenze di produttività tra controlli e afidi sperimentali sopravvissuti. La sopravvivenza delle femmine adulte di A. ervi è decisamente più bassa rispetto a quella dei due afidi: alla temperatura di 40°C la sopravvivenza degli adulti è del 20% circa, mentre alla stessa temperatura la sopravvivenza delle mummie è del 89% circa

    Thermal evolution of gene expression profiles in Drosophila subobscura

    Get PDF
    BACKGROUND: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays. RESULTS: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments. CONCLUSION: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes

    Thermal plasticity in Drosophila melanogaster: A comparison of geographic populations

    Get PDF
    BACKGROUND: Populations of Drosophila melanogaster show differences in many morphometrical traits according to their geographic origin. Despite the widespread occurrence of these differences in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of such variation are not fully understood. Thermal selection is considered to be the most likely cause explaining these differences. RESULTS: In our work, we investigated several life history traits (body size, duration of development, preadult survival, longevity and productivity) in two tropical and two temperate natural populations of D. melanogaster recently collected, and in a temperate population maintained for twelve years at the constant temperature of 18°C in the laboratory. In order to characterise the plasticity of these life history traits, the populations were grown at 12, 18, 28 and 31.2°C. Productivity was the fitness trait that showed clearly adaptive differences between latitudinal populations: tropical flies did better in the heat but worse in the cold environments with respect to temperate flies. Differences for the plasticity of other life history traits investigated between tropical and temperate populations were also found. The differences were particularly evident at stressful temperatures (12 and 31.2°C). CONCLUSION: Our results evidence a better cold tolerance in temperate populations that seems to have been evolved during the colonisation of temperate countries by D. melanogaster Afrotropical ancestors, and support the hypothesis of an adaptive response of plasticity to the experienced environment
    • …
    corecore