258 research outputs found

    An early record of Meloidogyne fallax from Ireland

    Get PDF
    Root-knot nematodes, Meloidogyne spp., cause huge economic losses worldwide. Currently, three Meloidogyne spp. are present on the quarantine A2 list of EPPO, M. chitwoodi, M. fallax and M. enterolobii. As a quarantine organism, M. fallax has been detected in England and Northern Ireland on sport turf in 2011, and in England on leek in 2013. However, its presence in Ireland has probably been overlooked since 1965, when Mr. John F. Moore and Dr. Mary T. Franklin had detected a new Meloidogyne species for that time. While the relevant data was recorded and a preliminary manuscript describing the species was prepared but never submitted for publication, and together with the original slides, pictures and drawings, it was restudied recently. We compared the population of Irish Meloidogyne sp. to other similar Meloidogyne spp. Careful observation and comparison shows that it belongs to M. fallax. The characters found to be common for Irish Meloidogyne sp. and M. fallax are female stylet length (14.6 mu m) with oval to rounded basal knobs, oval shaped perineal pattern with moderately high dorsal arch, slender stylet in males (18.5 mu m) with set off and rounded basal knobs, slightly set off male head with one post-labial annule and incomplete transverse incisures, and second-stage juveniles with large and rounded stylet basal knobs, and a gradually tapering tail (46.9 mu m) with a broadly rounded tip and a clearly delimitated smooth hyaline part sometimes marked by constrictions (12.9 mu m). The host test and gall formation also correspond to M. fallax. The identification could not be additionally supported by molecular analysis, as we were unable to extract DNA from the old permanent slides. Nevertheless, our study reveals that the Meloidogyne species detected in Ireland in 1965 belongs to M. fallax

    Reporting and Comparing School Performances

    Get PDF
    This report provides advice on the collection and reporting of information about the performances of Australian schools. The focus is on the collection of nationally comparable data. Two purposes are envisaged: use by education authorities and governments to monitor school performances and, in particular, to identify schools that are performing unusually well or unusually poorly given their circumstances; and use by parents/caregivers and the public to make informed judgements about, and meaningful comparisons of, schools and their offerings. Our advice is based on a review of recent Australian and international research and experience in reporting on the performances of schools. This is an area of educational practice in which there have been many recent developments, much debate and a growing body of relevant research

    Fluorescence In Situ

    Get PDF

    The Canadian Federation of Earth Sciences Scientific Statement on Climate Change – Its Impacts in Canada, and the Critical Role of Earth Scientists in Mitigation and Adaptation

    Get PDF
    The Canadian Federation of Earth Sciences (CFES) has issued this statement to summarize the science, effects, and implications of climate change. We highlight the role of Earth scientists in documenting and mitigating climate change, and in managing and adapting to its consequences in Canada. CFES is the coordinated voice of Canada’s Earth Sciences community with 14 member organizations representing some 15,000 geoscientists. Our members are drawn from academia, industry, education, and government. The mission of CFES is to ensure decision makers and the public understand the contributions of Earth Science to Canadian society and the economy.  Climate change has become a national and global priority for all levels of government. The geological record shows us that the global climate has changed throughout Earth’s history, but the current rates of change are almost unprecedented. Over the last 70 years, levels of common greenhouse gases (GHGs) in the atmosphere have steadily increased. Carbon dioxide (CO2) concentration is now 418 parts per million — its highest of the last three million years. The chemical (isotopic) composition of carbon in the atmosphere indicates the increase in GHGs is due to burning fossil fuels. GHGs absorb energy emitted from Earth’s surface and re-radiate it back, warming the lower levels of the atmosphere. Climatic adjustments that have recently occurred are, in practical terms, irreversible, but further change can be mitigated by lowering emissions of GHGs.  Climate change is amplified by three important Earth system processes and effects. First, as the climate warms evaporation increases, raising atmospheric concentrations of water vapour, itself a GHG — and adding to warming. Second, loss of ice cover from the polar ice sheets and glaciers exposes larger areas of land and open water — leading to greater absorption of heat from the sun. Third, thawing of near-surface permafrost releases additional GHGs (primarily CO2 and methane) during decay of organic matter previously preserved frozen in the ground. Some impacts of climate change are incremental and steadily occurring, such as melting of glaciers and ice sheets, with consequent sea level rise. Others are intermittent, such as extreme weather events, like hurricanes — but are becoming more frequent. Summer water shortages are increasingly common in western Canada as mountain snowpacks melt earlier and summer river flows decline. In northern Canada, warming and thawing of near-surface permafrost has led to deterioration of infrastructure and increased costs for buildings that now require chilled foundations. Other consequences of unchecked climate change include increased coastal erosion, increases in the number and size of wildfires, and reduction in winter road access to isolated northern communities. Reductions in net GHG emissions are urgently required to mitigate the many effects of further climate change. Industrial and public works development projects must now assess the effects of climate change in their planning, design, and management. Cities, municipalities, and rural communities need to plan new residential development carefully to avoid enhanced risk of flooding, coastal erosion, or wildfire.  Earth Science knowledge and expertise is integral to exploration and development of new metals and Earth materials required for a carbon-neutral future, and in the capture and storage of CO2 within the Earth. Earth Science is also central to society’s adaptation to new climatic regimes and reduction of risks. This includes anticipation, assessment, and management of extreme events, development of new standards and guidelines for geotechnical and engineering practice, and revision to regulations that consider climate change. Geoscientists also have an important role in the education of students and the public on the reasons for necessary action. Canada is uniquely positioned with its strong global geoscientific leadership, its vast landmass, and its northern terrain to effectively leverage research activities around climate change. Geoscience tools and geoscientists’ skills will be integral to Canada’s preparation for climate change.La Fédération canadienne des sciences de la Terre (FCST) a publié ce communiqué pour résumer la science, les effets et les implications des changements climatiques. Nous soulignons le rôle des scientifiques en science de la Terre dans la documentation et l'atténuation des changements climatiques, ainsi que dans la gestion de leurs conséquences et la création de mesures d'adaptation au Canada. La FCST est la voix coordonnée de la communauté canadienne des sciences de la Terre avec 14 organisations membres représentant environ 15 000 géoscientifiques. Nos membres sont issus du milieu universitaire, de l'industrie, de l'éducation et du gouvernement. La mission de la FCST est de s'assurer que les décideurs et le public comprennent les contributions des sciences de la Terre à la société canadienne et à l'économie.  Les changements climatiques sont devenus une priorité nationale et mondiale à tous les niveaux de gouvernement. Les archives géologiques nous montrent que le climat mondial a changé tout au long de l'histoire de la Terre, mais les taux de changement actuels sont presque sans précédent. Au cours des 70 dernières années, les niveaux de gaz à effet de serre (GES) communs dans l'atmosphère n'ont cessé d'augmenter. La concentration de dioxyde de carbone (CO2) est maintenant de 418 parties par million - son plus haut niveau des trois derniers millions d'années. La composition chimique (isotopique) du carbone dans l'atmosphère indique que l'augmentation des GES est due à la combustion de combustibles fossiles. Les GES absorbent l'énergie émise par la surface de la Terre et la réfléchissent, réchauffant les niveaux inférieurs de l'atmosphère. Les modifications climatiques qui se sont produits récemment sont, concrètement, irréversibles, mais les changements additionnels peuvent être atténués en réduisant les émissions de GES.  Les changements climatiques sont amplifiés par trois processus et effets importants du système terrestre. Premièrement, à mesure que le climat se réchauffe, l'évaporation augmente, ce qui augmente les concentrations atmosphériques de vapeur d'eau, elle-même un GES, et contribue au réchauffement. Deuxièmement, la perte de la couverture de glace des calottes glaciaires polaires et des glaciers expose de plus grandes superficies de terre et d'eau libre, ce qui entraîne une plus grande absorption de la chaleur du soleil. Troisièmement, le dégel du pergélisol proche de la surface libère des GES supplémentaires (principalement du CO2 et du méthane) lors de la décomposition de la matière organique jusqu’alors préservée gelée dans le sol. Certains impacts des changements climatiques sont progressifs et se produisent régulièrement, comme la fonte des glaciers et des calottes glaciaires, avec pour conséquence une élévation du niveau de la mer. D'autres sont intermittents, comme les événements météorologiques extrêmes, tels que les ouragans, mais deviennent de plus en plus fréquents. Les pénuries d'eau en été sont de plus en plus courantes dans l'ouest du Canada, car le manteau neigeux des montagnes fond plus tôt et le débit des rivières en été diminue. Dans le nord du Canada, le réchauffement et le dégel du pergélisol proche de la surface ont entraîné une détérioration des infrastructures et une augmentation des coûts des bâtiments qui nécessitent maintenant des fondations réfrigérées. Les autres conséquences des changements climatiques incontrôlés comprennent l'augmentation de l'érosion côtière, l'augmentation du nombre et de la taille des incendies de forêt et la réduction de l'accès aux routes d’hiver aux collectivités isolées du Nord. Des réductions des émissions nettes de GES sont nécessaires de toute urgence pour atténuer les nombreux effets de nouveaux changements climatiques. Les projets de développement industriel et de travaux publics doivent désormais évaluer les effets des changements climatiques dans leur planification, leur conception et leur gestion. Les villes, les municipalités et les communautés rurales doivent planifier soigneusement les nouveaux développements résidentiels pour éviter les risques accrus d'inondation, d'érosion côtière ou d'incendie de forêt.  Les connaissances et l'expertise en sciences de la Terre font partie intégrante de l'exploration et du développement de nouveaux métaux et matériaux terrestres requis pour un avenir neutre en carbone, ainsi que dans la capture et la séquestration du CO2 dans la Terre. Les sciences de la Terre sont également au cœur de l'adaptation de la société aux nouveaux régimes climatiques et de la réduction des risques. Cela comprend l'anticipation, l'évaluation et la gestion des événements extrêmes, l'élaboration de nouvelles normes et directives pour les pratiques géotechniques et d'ingénierie, et la révision des réglementations qui tient compte des changements climatiques. Les géoscientifiques ont également un rôle important dans l'éducation des étudiants et du public sur le fondement des mesures nécessaires. Le Canada occupe une position unique grâce à son solide leadership géoscientifique mondial, sa vaste étendue et son territoire nordique pour tirer efficacement parti des activités de recherche sur les changements climatiques. Les outils géoscientifiques et les compétences des géoscientifiques feront partie intégrante de la préparation du Canada aux changements climatiques

    Construction costs, chemical composition and payback time of high- and low-irradiance leaves

    Get PDF
    The effect of irradiance on leaf construction costs, chemical composition, and on the payback time of leaves was investigated. To enable more generalized conclusions, three different systems were studied: top and the most-shaded leaves of 10 adult tree species in a European mixed forest, top leaves of sub-dominant trees of two evergreen species growing in small gaps or below the canopy in an Amazonian rainforest, and plants of six herbaceous and four woody species grown hydroponically at low or high irradiance in growth cabinets. Daily photon irradiance varied 3-6-fold between low- and high-light leaves. Specific leaf area (SLA) was 30-130% higher at low light. Construction costs, on the other hand, were 1-5% lower for low-irradiance leaves, mainly because low-irradiance leaves had lower concentrations of soluble phenolics. Photosynthetic capacity and respiration, expressed per unit leaf mass, were hardly different for the low- and high-light leaves. Estimates of payback times of the high-irradiance leaves ranged from 2-4 d in the growth cabinets, to 15-20 d for the adult tree species in the European forest. Low-irradiance leaves had payback times that were 2-3 times larger, ranging from 4 d in the growth cabinets to 20-80 d at the most shaded part of the canopy of the mixed forest. In all cases, estimated payback times were less than half the life span of the leaves, suggesting that even at time-integrated irradiances lower than 5% of the total seasonal value, investment in leaves is still fruitful from a carbon-economy point of view. A sensitivity analysis showed that increased SLA of low-irradiance leaves was the main factor constraining payback times. Acclimation in the other five factors determining payback time, namely construction costs, photosynthetic capacity per unit leaf mass, respiration per unit leaf mass, apparent quantum yield, and curvature of the photosynthetic light-response-curve, were unimportant when the observed variation in each factor was examine

    Profiles of learning. The Basic Skills Testing Program in New South Wales 1989

    Get PDF
    The 1989 Basic Skills Testing Program in New South Wales provides the most comprehensive picture yet compiled of literacy and numeracy learning in Australian primary schools. In 1989, some 53,800 Year 6 students in NSW government schools were tested in five aspects of literacy and numeracy. Another 2,300 Year 3 students took part in a pilot study. This book discusses the writing of the tests, the analysis of results, and the reporting of results to parents, teachers and schools. The aim of the basic skills tests is to describe, in positive terms, the skills that students have mastered, to identify areas in which students have special strengths and weaknesses, and to provide guides to further learning. The picture that emerges from this study is of widespread success in learning. The results point to much good teaching and a fine start in learning for most primary students. But this generally optimistic picture is over shadowed by the performances of some students who have not yet mastered essential Year 6 skills. Part I of the book describes the skills typical of students performing at each of five skill levels in each of five areas of learning (Reading, Language, Number, Measurement, and Space) on the tests. Part II shows how different subgroups of students performed on the tests. Results on each aspect of literacy and numeracy are reported separately for girls and boys, students with non-English-speaking backgrounds, Aboriginal and Torres Strait Islander students, and several age groupings. Part III explains and gives examples of reports mailed to parents, more detailed reports given to teachers, and summary tables generated for each school. Part IV describes procedures used to develop BSTP tests and to analyze students\u27 results in preparation for reporting. Numerous test items are presented

    Children with burn injuries-assessment of trauma, neglect, violence and abuse

    Get PDF
    Burns are an important cause of injury to young children, being the third most frequent cause of injury resulting in death behind motor vehicle accidents and drowning. Burn injuries account for the greatest length of stay of all hospital admissions for injuries and costs associated with care are substantial

    Social values as arguments:similar is convincing

    Get PDF
    Politicians, philosophers, and rhetors engage in co-value argumentation: appealing to one value in order to support another value (e.g., equality leads to freedom). Across four experiments in the United Kingdom and India, we found that the psychological relatedness of values affects the persuasiveness of the arguments that bind them. Experiment 1 found that participants were more persuaded by arguments citing values that fulfilled similar motives than by arguments citing opposing values. Experiments 2 and 3 replicated this result using a wider variety of values, while finding that the effect is stronger among people higher in need for cognition and that the effect is mediated by the greater plausibility of co-value arguments that link motivationally compatible values. Experiment 4 extended the effect to real-world arguments taken from political propaganda and replicated the mediating effect of argument plausibility. The findings highlight the importance of value relatedness in argument persuasiveness

    Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations

    Get PDF
    We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble species within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO_3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH_2O) and hydrogen peroxide (H_2O_2) and complete retention for methyl hydrogen peroxide (CH_3OOH) and sulfur dioxide (SO_2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO_3 and less removal of CH_3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NO_x), processes that may explain the observed differences in HNO_3 and CH_3OOH scavenging
    • …
    corecore