54 research outputs found

    Detection of regional scale sea-to-air oxygen emission related to spring bloom near Japan by using in-situ measurements of atmospheric oxygen/nitrogen ratio

    Get PDF
    International audienceWe have been carrying out in-situ monitoring of atmospheric O2/N2 ratio at Cape Ochi-ishi (COI; 43°10´ N, 145°30´ E) in the northern part of Japan since March 2005 by using a modified gas chromatography/thermal conductivity detector (GC/TCD). The standard deviation of the O2/N2 ratio is estimated to be about ±14 per meg (?3 ppm) with intervals of 10 min. Thus, the in-situ measurement system has a 1? precision of ±6 per meg ((?1.2 ppm) for one-hour mean O2/N2 ratio. Atmospheric potential oxygen (APO ?O2+1.1CO2), which is conserved with respect to terrestrial photosynthesis and respiration but reflects changes in air-sea O2 and CO2 fluxes, shows large variabilities from April to early July 2005. Distribution of satellite-derived marine primary production indicates occurrences of strong bloom in the Japan Sea in April and in the Okhotsk Sea and the western North Pacific near Hokkaido Island in June. Back trajectory analysis of air masses indicates that high values of APO, which last for several hours or several days, can be attributed to the oxygen emission associated with the spring bloom of active primary production

    Onboard measurement system of atmospheric carbon monoxide in the Pacific by voluntary observing ships

    Get PDF
    Long-term monitoring of carbon monoxide (CO) mixing ratios in the atmosphere over the Pacific Ocean is being carried out on commercial cargo vessels participating in the National Institute for Environmental Studies Voluntary Observing Ships program. The program provides a regular platform for measurement of atmospheric CO along four cruise routes: from Japan to Oceania, the United States, Canada, and Southeast Asia. Flask samples are collected during every cruise for subsequent analysis in the laboratory, and in 2005, continuous shipboard CO measurements were initiated on three of the routes. Here, we describe the system we developed for onboard measurement of CO mixing ratios with a commercially available gas filter correlation CO analyzer. The fully automated system measures CO in ambient air, and the detector sensitivity and background signals are calibrated by referencing the measurements to a CO-in-air standard gas (~1 ppmv) and to CO-free air scrubbed with a catalyst, respectively. We examined the artificial production of CO in the high-pressure working gas standards during storage by referencing the measurements to CO standard gases maintained as our primary scale before and after use on the ships. The onboard performance of the continuous CO measurement system was evaluated by comparing its data with data from laboratory analyses of flask samples using gas chromatography with a reduction gas detector. The reasonably good consistency between the two independent measurement methods demonstrated the good performance of both methods over the course of 3–5 years. The continuous measurement system was more useful than the flask sampling method for regionally polluted air masses, which were often encountered on Southeast Asian cruises

    In situ observation of atmospheric oxygen and carbon dioxide in the North Pacific using a cargo ship

    Get PDF
    Atmospheric oxygen (O2) and carbon dioxide (CO2) variations in the North Pacific were measured aboard a cargo ship, the New Century 2 (NC2), while it cruised between Japan and the United States between December 2015 and November 2016. A fuel cell analyzer and a nondispersive infrared analyzer were used for the measurement of O2 and CO2, respectively. To achieve parts-per-million precision for the O2 measurements, we precisely controlled the flow rates of the sample and reference air introduced into the analyzers and the outlet pressure. A relatively low airflow rate (10 cm3 min−1) was adopted to reduce the consumption rate of the reference gases. In the laboratory, the system achieved measurement precisions of 3.8 per meg for δ(O2 ∕ N2), which is commonly used to express atmospheric O2 variation, and 0.1 ppm for the CO2 mole fraction. After the in situ observation started aboard NC2, we found that the ship's motion caused false wavy variations in the O2 signal with an amplitude of more than several tens of ppm and a period of about 20 s. Although we have not resolved the problem at this stage, hourly averaging considerably suppressed the variation associated with ship motion. Comparison between the in situ observation and flask sampling of air samples aboard NC2 showed that the averaged differences (in situ–flask) and the standard deviations (±1σ) are −2.8 ± 9.4 per meg for δ(O2 ∕ N2) and −0.02 ± 0.33 ppm for the CO2 mole fraction. We compared 1 year of in situ data for atmospheric potential oxygen (APO; O2 +1.1 × CO2) obtained from the broad middle-latitude region (140° E–130° W, 29° N–45° N) with previous flask sampling data from the North Pacific. This comparison showed that longitudinal differences in the seasonal amplitude of APO, ranging from 51 to 73 per meg, were smaller than the latitudinal differences.</p

    TransCom N2O model inter-comparison - Part 2:Atmospheric inversion estimates of N2O emissions

    Get PDF
    This study examines N2O emission estimates from five different atmospheric inversion frameworks based on chemistry transport models (CTMs). The five frameworks differ in the choice of CTM, meteorological data, prior uncertainties and inversion method but use the same prior emissions and observation data set. The posterior modelled atmospheric N2O mole fractions are compared to observations to assess the performance of the inversions and to help diagnose problems in the modelled transport. Additionally, the mean emissions for 2006 to 2008 are compared in terms of the spatial distribution and seasonality. Overall, there is a good agreement among the inversions for the mean global total emission, which ranges from 16.1 to 18.7 TgN yr(-1) and is consistent with previous estimates. Ocean emissions represent between 31 and 38% of the global total compared to widely varying previous estimates of 24 to 38%. Emissions from the northern mid- to high latitudes are likely to be more important, with a consistent shift in emissions from the tropics and subtropics to the mid- to high latitudes in the Northern Hemisphere; the emission ratio for 0-30A degrees N to 30-90A degrees N ranges from 1.5 to 1.9 compared with 2.9 to 3.0 in previous estimates. The largest discrepancies across inversions are seen for the regions of South and East Asia and for tropical and South America owing to the poor observational constraint for these areas and to considerable differences in the modelled transport, especially inter-hemispheric exchange rates and tropical convective mixing. Estimates of the seasonal cycle in N2O emissions are also sensitive to errors in modelled stratosphere-to-troposphere transport in the tropics and southern extratropics. Overall, the results show a convergence in the global and regional emissions compared to previous independent studies

    Large XCH 4 anomaly in summer 2013 over northeast Asia observed by GOSAT

    Get PDF
    Extremely high levels of column-averaged dry-air mole fractions of atmospheric methane (XCH4) were detected in August and September 2013 over northeast Asia (∼  20 ppb above the averaged summertime XCH4 over 2009–2012, after removing a long-term trend), as being retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT). Similar enhancements of XCH4 were also observed by the ground-based measurements at two Total Carbon Column Observing Network (TCCON) sites in Japan

    Global and regional emissions estimates for N2O

    Get PDF
    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely due to an increase in the use of nitrogenous fertilizers, as has been suggested by previous studies.</p

    Estimation of fire-induced carbon emissions from Equatorial Asia in 2015 using in situ aircraft and ship observations

    Get PDF
    Inverse analysis was used to estimate fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. This inverse analysis is unique because it extensively used high-precision atmospheric mole fraction data of carbon dioxide (CO2) from the commercial aircraft observation project CONTRAIL. Through comparisons with independent shipboard observations, especially carbon monoxide (CO) data, the validity of the estimated fire-induced carbon emissions was demonstrated. The best estimate, which used both aircraft and shipboard CO2 observations, indicated 273 Tg C for fire emissions from September–October 2015. This 2-month period accounts for 75 % of the annual total fire emissions and 45 % of the annual total net carbon flux within the region, indicating that fire emissions are a dominant driving force of interannual variations of carbon fluxes in Equatorial Asia. Several sensitivity experiments demonstrated that aircraft observations could measure fire signals, though they showed a certain degree of sensitivity to prior fire-emission data. The inversions coherently estimated smaller fire emissions than the prior data, partially because of the small contribution of peatland fires indicated by enhancement ratios of CO and CO2 observed by the ship. In future warmer climate conditions, Equatorial Asia may experience more severe droughts, which risks releasing a large amount of carbon into the atmosphere. Therefore, the continuation of aircraft and shipboard observations is fruitful for reliable monitoring of carbon fluxes in Equatorial Asia.</p

    Measurement report: Assessment of Asian emissions of ethane and propane with a chemistry transport model based on observations from the island of Hateruma

    Get PDF
    The island of Hateruma is the southernmost inhabited island of Japan. Here we interpret observations of ethane (C2H6) and propane (C3H8) together with carbon monoxide (CO), nitrogen oxides (NOx and NOy) and ozone (O3) carried out in the island in 2018 with the GEOS-Chem atmospheric chemistry transport model. We simulated the mixing ratios of these species within a nested grid centred over the site, with a model resolution of 0.5∘ × 0.625∘. We use the Community Emissions Data System (CEDS) dataset for anthropogenic emissions and add a geological source of C2H6 and C3H8. The model captured the seasonality of primary pollutants (CO, C2H6, C3H8) at the site – high mixing ratios in the winter months when oxidation rates are low and flow is from the north and low mixing ratios in the summer months when oxidation rates are higher and flow is from the south. It also simulates many of the synoptic-scale events with Pearson's correlation coefficients (r) of 0.74, 0.88 and 0.89 for CO, C2H6 and C3H8, respectively. Mixing ratios of CO are simulated well by the model (slope of the linear fit between model results and measurements is 0.91), but simulated mixing ratios of C2H6 and C3H8 are significantly lower than the observations (slopes of the linear fit between model results and measurements are 0.57 and 0.41, respectively), most noticeably in the winter months. Simulated NOx mixing ratios were underestimated, but NOy appears to be overestimated. The mixing ratio of O3 is moderately well simulated (slope of the linear fit between model results and observations is 0.76, with an r of 0.87), but there is a tendency to underestimate mixing ratios in the winter months. By switching off the model's biomass burning emissions we show that during winter, biomass burning has limited influence on the mixing ratios of compounds but can represent a more sizeable fraction in the summer. We also show that increasing the anthropogenic emissions of C2H6 and C3H8 within the domain by factors of 2.22 and 3.17 increases the model's ability to simulate these species in the winter months, consistent with previous studies.</p

    Variations of tropospheric methane over Japan during 1988–2010

    Get PDF
    We present observations of CH4 concentrations from the lower to upper troposphere (LT and UT) over Japan during 1988–2010 based on aircraft measurements from the Tohoku University (TU). The analysis is aided by simulation results using an atmospheric chemistry transport model (i.e. ACTM). Tropospheric CH4 over Japan shows interannual and seasonal variations that are dependent on altitudes, primarily reflecting differences in air mass origins at different altitudes. The long-term trend and interannual variation of CH4 in the LT are consistent with previous reports of measurements at surface baseline stations in the northern hemisphere. However, those in the UT show slightly different features from those in the LT. In the UT, CH4 concentrations show a seasonal maximum in August due to efficient transport of air masses influenced by continental CH4 sources, while LT CH4 reaches its seasonal minimum during summer due to enhanced chemical loss. Vertical profiles of the CH4 concentrations also vary with season, reflecting the seasonal cycles at the respective altitudes. In summer, transport of CH4-rich air from Asian regions elevates UT CH4 levels, forming a uniform vertical profile above the mid-troposphere. On the other hand, CH4 decreases nearly monotonically with altitude in winter–spring. The ACTM simulations with different emission scenarios reproduce general features of the tropospheric CH4 variations over Japan. Tagged tracer simulations using the ACTM indicate substantial contributions of CH4 sources in South Asia and East Asia to the summertime high CH4 values observed in the UT. This suggests that our observations over Japan are highly sensitive to CH4 emission signals particularly from Asia

    The global methane budget 2000-2017

    Get PDF
    Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008-2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr-1 (range 550-594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr-1 or ĝ1/4 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336-376 Tg CH4 yr-1 or 50 %-65 %). The mean annual total emission for the new decade (2008-2017) is 29 Tg CH4 yr-1 larger than our estimate for the previous decade (2000-2009), and 24 Tg CH4 yr-1 larger than the one reported in the previous budget for 2003-2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr-1, range 594-881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (ĝ1/4 65 % of the global budget, &lt; 30ĝ  N) compared to mid-latitudes (ĝ1/4 30 %, 30-60ĝ  N) and high northern latitudes (ĝ1/4 4 %, 60-90ĝ  N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr-1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr-1 by 8 Tg CH4 yr-1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project
    corecore