37 research outputs found
Smart Moves: Effects of Relative Brain Size on Establishment Success of Invasive Amphibians and Reptiles
Brain size relative to body size varies considerably among animals, but the
ecological consequences of that variation remain poorly understood. Plausibly,
larger brains confer increased behavioural flexibility, and an ability to
respond to novel challenges. In keeping with that hypothesis, successful
invasive species of birds and mammals that flourish after translocation to a new
area tend to have larger brains than do unsuccessful invaders. We found the same
pattern in ectothermic terrestrial vertebrates. Brain size relative to body size
was larger in species of amphibians and reptiles reported to be successful
invaders, compared to species that failed to thrive after translocation to new
sites. This pattern was found in six of seven global biogeographic realms; the
exception (where relatively larger brains did not facilitate invasion success)
was Australasia. Establishment success was also higher in amphibian and reptile
families with larger relative brain sizes. Future work could usefully explore
whether invasion success is differentially associated with enlargement of
specific parts of the brain (as predicted by the functional role of the
forebrain in promoting behavioural flexibility), or with a general size increase
(suggesting that invasion success is facilitated by enhanced perceptual and
motor skills, as well as cognitive ability)
Environment and shipping drive environmental DNA beta-diversity among commercial ports
The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.Fil: Andrés, Jose. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Czechowski, Paul. Cornell University. Department Of Ecology And Evolutionary Biology; . University of Otago; Nueva Zelanda. Helmholtz Institute for Metabolic, Obesity and Vascular Research; AlemaniaFil: Grey, Erin. University of Maine; Estados Unidos. Governors State University; Estados UnidosFil: Saebi, Mandana. University of Notre Dame; Estados UnidosFil: Andres, Kara. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Brown, Christopher. California State University Maritime Academy; Estados UnidosFil: Chawla, Nitesh. University of Notre Dame; Estados UnidosFil: Corbett, James J.. University of Delaware; Estados UnidosFil: Brys, Rein. Research Institute for Nature and Forest; BélgicaFil: Cassey, Phillip. University of Adelaide; AustraliaFil: Correa, Nancy. Ministerio de Defensa. Armada Argentina. Instituto Universitario Naval de la Ara. Escuela de Ciencias del Mar; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Deveney, Marty R.. South Australian Research And Development Institute; AustraliaFil: Egan, Scott P.. Rice University; Estados UnidosFil: Fisher, Joshua P.. United States Fish and Wildlife Service; Estados UnidosFil: vanden Hooff, Rian. Oregon Department of Environmental Quality; Estados UnidosFil: Knapp, Charles R.. Daniel P. Haerther Center for Conservation and Research; Estados UnidosFil: Leong, Sandric Chee Yew. National University of Singapore; SingapurFil: Neilson, Brian J.. State of Hawaii Division of Aquatic Resources; Estados UnidosFil: Paolucci, Esteban Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Pfrender, Michael E.. University of Notre Dame; Estados UnidosFil: Pochardt, Meredith R.. M. Rose Consulting; Estados UnidosFil: Prowse, Thomas A. A.. University of Adelaide; AustraliaFil: Rumrill, Steven S.. Oregon Department of Fish and Wildlife; Estados UnidosFil: Scianni, Chris. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Marine Invasive Species Program; Estados UnidosFil: Sylvester, Francisco. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Tamburri, Mario N.. University of Maryland; Estados UnidosFil: Therriault, Thomas W.. Pacific Biological Station; CanadáFil: Yeo, Darren C. J.. National University of Singapore; SingapurFil: Lodge, David M.. Cornell University. Department Of Ecology And Evolutionary Biology
How useful are volunteers for visual biodiversity surveys? An evaluation of skill level and group size during a conservation expedition
The ability of volunteers to undertake different tasks and accurately collect data is critical for the success of many conservation projects. In this study, a simulated herpetofauna visual encounter survey was used to compare the detection and distance estimation accuracy of volunteers and more experienced observers. Experience had a positive effect on individual detection accuracy. However, lower detection performance of less experienced volunteers was not found in the group data, with larger groups being more successful overall, suggesting that working in groups facilitates detection accuracy of those with less experience. This study supports the idea that by optimizing survey protocols according to the available resources (time and volunteer numbers), the sampling efficiency of monitoring programs can be improved and that non-expert volunteers can provide valuable contributions to visual encounter-based biodiversity surveys. Recommendations are made for the improvement of survey methodology involving non-expert volunteers
Adaptive Sampling of Information in Perceptual Decision-Making
In many perceptual and cognitive decision-making problems, humans sample multiple noisy information sources serially, and integrate the sampled information to make an overall decision. We derive the optimal decision procedure for two-alternative choice tasks in which the different options are sampled one at a time, sources vary in the quality of the information they provide, and the available time is fixed. To maximize accuracy, the optimal observer allocates time to sampling different information sources in proportion to their noise levels. We tested human observers in a corresponding perceptual decision-making task. Observers compared the direction of two random dot motion patterns that were triggered only when fixated. Observers allocated more time to the noisier pattern, in a manner that correlated with their sensory uncertainty about the direction of the patterns. There were several differences between the optimal observer predictions and human behaviour. These differences point to a number of other factors, beyond the quality of the currently available sources of information, that influences the sampling strategy
The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models
Most data analyses rely on models. To complement statistical models, psychologists have developed cognitive models, which translate observed variables into psychologically interesting constructs. Response time models, in particular, assume that response time and accuracy are the observed expression of latent variables including 1) ease of processing, 2) response caution, 3) response bias, and 4) non-decision time. Inferences about these psychological factors, hinge upon the validity of the models’ parameters. Here, we use a blinded, collaborative approach to assess the validity of such model-based inferences. Seventeen teams of researchers analyzed the same 14 data sets. In each of these two-condition data sets, we manipulated properties of participants’ behavior in a two-alternative forced choice task. The contributing teams were blind to the manipulations, and had to infer what aspect of behavior was changed using their method of choice. The contributors chose to employ a variety of models, estimation methods, and inference procedures. Our results show that, although conclusions were similar across different methods, these "modeler’s degrees of freedom" did affect their inferences. Interestingly, many of the simpler approaches yielded as robust and accurate inferences as the more complex methods. We recommend that, in general, cognitive models become a typical analysis tool for response time data. In particular, we argue that the simpler models and procedures are sufficient for standard experimental designs. We finish by outlining situations in which more complicated models and methods may be necessary, and discuss potential pitfalls when interpreting the output from response time models
The National Early Warning Score and its subcomponents recorded within ±24 hours of emergency medical admission are poor predictors of hospital-acquired acute kidney injury
YesBackground: Hospital-acquired Acute Kidney Injury (H-AKI) is a common cause of avoidable morbidity and mortality.
Aim: To determine if the patients’ vital signs data as defined by a National Early Warning Score (NEWS), can predict H-AKI following emergency admission to hospital.
Methods: Analyses of emergency admissions to York hospital over 24-months with NEWS data. We report the area under the curve (AUC) for logistic regression models that used the index NEWS (model A0), plus age and sex (A1), plus subcomponents of NEWS (A2) and two-way interactions (A3). Likewise for maximum NEWS (models B0,B1,B2,B3).
Results: 4.05% (1361/33608) of emergency admissions had H-AKI. Models using the index NEWS had the lower AUCs (0.59 to 0.68) than models using the maximum NEWS AUCs (0.75 to 0.77). The maximum NEWS model (B3) was more sensitivity than the index NEWS model (A0) (67.60% vs 19.84%) but identified twice as many cases as being at risk of H-AKI (9581 vs 4099) at a NEWS of 5.
Conclusions: The index NEWS is a poor predictor of H-AKI. The maximum NEWS is a better predictor but seems unfeasible because it is only knowable in retrospect and is associated with a substantial increase in workload albeit with improved sensitivity.The Health Foundatio
Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates.
Self-replicating gene drives that can spread deleterious alleles through animal populations have been promoted as a much needed but controversial 'silver bullet' for controlling invasive alien species. Homing-based drives comprise an endonuclease and a guide RNA (gRNA) that are replicated during meiosis via homologous recombination. However, their efficacy for controlling wild populations is threatened by inherent polymorphic resistance and the creation of resistance alleles via non-homologous end-joining (NHEJ)-mediated DNA repair. We used stochastic individual-based models to identify realistic gene-drive strategies capable of eradicating vertebrate pest populations (mice, rats and rabbits) on islands. One popular strategy, a sex-reversing drive that converts heterozygous females into sterile males, failed to spread and required the ongoing deployment of gene-drive carriers to achieve eradication. Under alternative strategies, multiplexed gRNAs could overcome inherent polymorphic resistance and were required for eradication success even when the probability of NHEJ was low. Strategies causing homozygotic embryonic non-viability or homozygotic female sterility produced high probabilities of eradication and were robust to NHEJ-mediated deletion of the DNA sequence between multiplexed endonuclease recognition sites. The latter two strategies also purged the gene drive when eradication failed, therefore posing lower long-term risk should animals escape beyond target islands. Multiplexing gRNAs will be necessary if this technology is to be useful for insular extirpation attempts; however, precise knowledge of homing rates will be required to design low-risk gene drives with high probabilities of eradication success.Thomas A. A. Prowse, Phillip Cassey, Joshua V. Ross, Chandran Pfitzner, Talia A. Wittmann and Paul Thoma
Integrative Analysis of the Physical Transport Network into Australia
Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999-2012. Seaborne and air traffic were weighted to calculate a "weighted cumulative impact" score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy